

The
C+ +

Programming
Language

Third Edition

Bjarne Stroustrup

AT&T Labs
Murray Hill, New Jersey

Addison-Wesley
An Imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts• Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney

Bonn • Amsterdam • Tokyo • Mexico City

ii

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial capital letters or all capital letters

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information please contact:
Corporate & Professional Publishing Group
Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data

Stroustrup, Bjarne
The C++ Programming Language / Bjarne Stroustrup.— 3rd. ed.

p. cm.
Includes index.
ISBN 0-201-88954-4
1. C++ (Computer Programming Language) I. Title

QA76.73.C153S77 1997 97-20239
005.13’3—dc21 CIP

Copyright © 1997 by AT&T

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America.

This book was typeset in Times and Courier by the author.

ISBN 0-201-88954-4
Printed on recycled paper
1 2 3 4 5 6 7 8 9—CRW—0100999897
First printing, June 1997

Contents

Contents iii

Preface v

Preface to Second Edition vii

Preface to First Edition ix

Introductory Material 1

1 Notes to the Reader ... 3
2 A Tour of C++ ... 21
3 A Tour of the Standard Library .. 45

Part I: Basic Facilities 67

4 Types and Declarations ... 69
5 Pointers, Arrays, and Structures .. 87
6 Expressions and Statements .. 107
7 Functions ... 143
8 Namespaces and Exceptions ... 165
9 Source Files and Programs .. 197

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

iv Contents

Part II: Abstraction Mechanisms 221

10 Classes .. 223
11 Operator Overloading ... 261
12 Derived Classes ... 301
13 Templates .. 327
14 Exception Handling .. 355
15 Class Hierarchies .. 389

Part III: The Standard Library 427

16 Library Organization and Containers .. 429
17 Standard Containers .. 461
18 Algorithms and Function Objects ... 507
19 Iterators and Allocators ... 549
20 Strings ... 579
21 Streams .. 605
22 Numerics ... 657

Part IV: Design Using C++ 689

23 Development and Design .. 691
24 Design and Programming ... 723
25 Roles of Classes .. 765

Appendices 791

A The C++ Grammar .. 793
B Compatibility .. 815
C Technicalities .. 827

Index 869

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Preface

Programming is understanding.
– Kristen Nygaard

I find using C++ more enjoyable than ever. C++’s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed for
its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also suc-
ceeded at tasks I hadn’t even dreamt of.

This book introduces standard C++† and the key programming and design techniques supported
by C++. Standard C++ is a far more powerful and polished language than the version of C++ intro-
duced by the first edition of this book. New language features such as namespaces, exceptions,
templates, and run-time type identification allow many techniques to be applied more directly than
was possible before, and the standard library allows the programmer to start from a much higher
level than the bare language.

About a third of the information in the second edition of this book came from the first. This
third edition is the result of a rewrite of even larger magnitude. It offers something to even the
most experienced C++ programmer; at the same time, this book is easier for the novice to approach
than its predecessors were. The explosion of C++ use and the massive amount of experience accu-
mulated as a result makes this possible.

The definition of an extensive standard library makes a difference to the way C++ concepts can
be presented. As before, this book presents C++ independently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a ‘‘bottom up’’
order so that a construct is used only after it has been defined. However, it is much easier to use a
well-designed library than it is to understand the details of its implementation. Therefore, the stan-
dard library can be used to provide realistic and interesting examples well before a reader can be
assumed to understand its inner workings. The standard library itself is also a fertile source of pro-
gramming examples and design techniques.

† ISO/IEC 14882, Standard for the C++ Programming Language.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

vi Preface

This book presents every major C++ language feature and the standard library. It is organized
around language and library facilities. However, features are presented in the context of their use.
That is, the focus is on the language as the tool for design and programming rather than on the lan-
guage in itself. This book demonstrates key techniques that make C++ effective and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are
taken from the domain of systems software. A companion,The Annotated C++ Language Stan-
dard, presents the complete language definition together with annotations to make it more compre-
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C++
support key programming techniques. The aim is to take the reader far beyond the point where he
or she gets code running primarily by copying examples and emulating programming styles from
other languages. Only a good understanding of the ideas behind the language facilities leads to
mastery. Supplemented by implementation documentation, the information provided is sufficient
for completing significant real-world projects. The hope is that this book will help the reader gain
new insights and become a better programmer and designer.

Acknowledgments
In addition to the people mentioned in the acknowledgement sections of the first and second edi-
tions, I would like to thank Matt Austern, Hans Boehm, Don Caldwell, Lawrence Crowl, Alan
Feuer, Andrew Forrest, David Gay, Tim Griffin, Peter Juhl, Brian Kernighan, Andrew Koenig,
Mike Mowbray, Rob Murray, Lee Nackman, Joseph Newcomer, Alex Stepanov, David Vandevo-
orde, Peter Weinberger, and Chris Van Wyk for commenting on draft chapters of this third edition.
Without their help and suggestions, this book would have been harder to understand, contained
more errors, been slightly less complete, and probably been a little bit shorter.

I would also like to thank the volunteers on the C++ standards committees who did an immense
amount of constructive work to make C++ what it is today. It is slightly unfair to single out indi-
viduals, but it would be even more unfair not to mention anyone, so I’d like to especially mention
Mike Ball, Dag Br

. .
uck, Sean Corfield, Ted Goldstein, Kim Knuttila, Andrew Koenig, José e Lajoie,

Dmitry Lenkov, Nathan Myers, Martin O’Riordan, Tom Plum, Jonathan Shopiro, John Spicer,
Jerry Schwarz, Alex Stepanov, and Mike Vilot, as people who each directly cooperated with me
over some part of C++ and its standard library.

Murray Hill, New Jersey Bjarne Stroustrup

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Preface to the Second Edition

The road goes ever on and on.
– Bilbo Baggins

As promised in the first edition of this book, C++ has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds working
in a great range of application areas. The C++ user-community has grown a hundredfold during the
six years since the first edition of this book; many lessons have been learned, and many techniques
have been discovered and/or validated by experience. Some of these experiences are reflected here.

The primary aim of the language extensions made in the last six years has been to enhance C++
as a language for data abstraction and object-oriented programming in general and to enhance it as
a tool for writing high-quality libraries of user-defined types in particular. A ‘‘high-quality
library,’’ is a library that provides a concept to a user in the form of one or more classes that are
convenient, safe, and efficient to use. In this context,safemeans that a class provides a specific
type-safe interface between the users of the library and its providers;efficientmeans that use of the
class does not impose significant overheads in run-time or space on the user compared with hand-
written C code.

This book presents the complete C++ language. Chapters 1 through 10 give a tutorial introduc-
tion; Chapters 11 through 13 provide a discussion of design and software development issues; and,
finally, the complete C++ reference manual is included. Naturally, the features added and resolu-
tions made since the original edition are integral parts of the presentation. They include refined
overloading resolution, memory management facilities, and access control mechanisms, type-safe
linkage,c co on ns st t ands st ta at ti ic c member functions, abstract classes, multiple inheritance, templates, and
exception handling.

C++ is a general-purpose programming language; its core application domain is systems pro-
gramming in the broadest sense. In addition, C++ is successfully used in many application areas
that are not covered by this label. Implementations of C++ exist from some of the most modest
microcomputers to the largest supercomputers and for almost all operating systems. Consequently,
this book describes the C++ language itself without trying to explain a particular implementation,
programming environment, or library.

This book presents many examples of classes that, though useful, should be classified as
‘‘toys.’’ This style of exposition allows general principles and useful techniques to stand out more

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

viii Preface to the Second Edition

clearly than they would in a fully elaborated program, where they would be buried in details. Most
of the useful classes presented here, such as linked lists, arrays, character strings, matrices, graphics
classes, associative arrays, etc., are available in ‘‘bulletproof’’ and/or ‘‘goldplated’’ versions from a
wide variety of commercial and non-commercial sources. Many of these ‘‘industrial strength’’
classes and libraries are actually direct and indirect descendants of the toy versions found here.

This edition provides a greater emphasis on tutorial aspects than did the first edition of this
book. However, the presentation is still aimed squarely at experienced programmers and endeavors
not to insult their intelligence or experience. The discussion of design issues has been greatly
expanded to reflect the demand for information beyond the description of language features and
their immediate use. Technical detail and precision have also been increased. The reference man-
ual, in particular, represents many years of work in this direction. The intent has been to provide a
book with a depth sufficient to make more than one reading rewarding to most programmers. In
other words, this book presents the C++ language, its fundamental principles, and the key tech-
niques needed to apply it. Enjoy!

Acknowledgments
In addition to the people mentioned in the acknowledgements section in the preface to the first edi-
tion, I would like to thank Al Aho, Steve Buroff, Jim Coplien, Ted Goldstein, Tony Hansen, Lor-
raine Juhl, Peter Juhl, Brian Kernighan, Andrew Koenig, Bill Leggett, Warren Montgomery, Mike
Mowbray, Rob Murray, Jonathan Shopiro, Mike Vilot, and Peter Weinberger for commenting on
draft chapters of this second edition. Many people influenced the development of C++ from 1985
to 1991. I can mention only a few: Andrew Koenig, Brian Kernighan, Doug McIlroy, and Jonathan
Shopiro. Also thanks to the many participants of the ‘‘external reviews’’ of the reference manual
drafts and to the people who suffered through the first year of X3J16.

Murray Hill, New Jersey Bjarne Stroustrup

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Preface to the First Edition

Language shapes the way we think,
and determines what we can think about.

– B.L.Whorf

C++ is a general purpose programming language designed to make programming more enjoyable
for the serious programmer. Except for minor details, C++ is a superset of the C programming lan-
guage. In addition to the facilities provided by C, C++ provides flexible and efficient facilities for
defining new types. A programmer can partition an application into manageable pieces by defining
new types that closely match the concepts of the application. This technique for program construc-
tion is often calleddata abstraction.Objects of some user-defined types contain type information.
Such objects can be used conveniently and safely in contexts in which their type cannot be deter-
mined at compile time. Programs using objects of such types are often calledobject based. When
used well, these techniques result in shorter, easier to understand, and easier to maintain programs.

The key concept in C++ is class. A class is a user-defined type. Classes provide data hiding,
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic typing,
user-controlled memory management, and mechanisms for overloading operators. C++ provides
much better facilities for type checking and for expressing modularity than C does. It also contains
improvements that are not directly related to classes, including symbolic constants, inline substitu-
tion of functions, default function arguments, overloaded function names, free store management
operators, and a reference type. C++ retains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This allows the user-defined types to
be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implementation will run
on most systems that support C. C libraries can be used from a C++ program, and most tools that
support programming in C can be used with C++.

This book is primarily intended to help serious programmers learn the language and use it for
nontrivial projects. It provides a complete description of C++, many complete examples, and many
more program fragments.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

x Preface to the First Edition

Acknowledgments
C++ could never have matured without the constant use, suggestions, and constructive criticism of
many friends and colleagues. In particular, Tom Cargill, Jim Coplien, Stu Feldman, Sandy Fraser,
Steve Johnson, Brian Kernighan, Bart Locanthi, Doug McIlroy, Dennis Ritchie, Larry Rosler, Jerry
Schwarz, and Jon Shopiro provided important ideas for development of the language. Dave Pre-
sotto wrote the current implementation of the stream I/O library.

In addition, hundreds of people contributed to the development of C++ and its compiler by
sending me suggestions for improvements, descriptions of problems they had encountered, and
compiler errors. I can mention only a few: Gary Bishop, Andrew Hume, Tom Karzes, Victor
Milenkovic, Rob Murray, Leonie Rose, Brian Schmult, and Gary Walker.

Many people have also helped with the production of this book, in particular, Jon Bentley,
Laura Eaves, Brian Kernighan, Ted Kowalski, Steve Mahaney, Jon Shopiro, and the participants in
the C++ course held at Bell Labs, Columbus, Ohio, June 26-27, 1985.

Murray Hill, New Jersey Bjarne Stroustrup

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Introduction

This introduction gives an overview of the major concepts and features of the C++ pro-
gramming language and its standard library. It also provides an overview of this book
and explains the approach taken to the description of the language facilities and their
use. In addition, the introductory chapters present some background information about
C++, the design of C++, and the use of C++.

Chapters

1 Notes to the Reader
2 A Tour of C++
3 A Tour of the Standard Library

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

2 Introduction Introduction

‘‘... and you, Marcus, you have given me many things; now I shall give you this good
advice. Be many people. Give up the game of being always Marcus Cocoza. You
have worried too much about Marcus Cocoza, so that you have been really his slave
and prisoner. You have not done anything without first considering how it would
affect Marcus Cocoza’s happiness and prestige. You were always much afraid that
Marcus might do a stupid thing, or be bored. What would it really have mattered? All
over the world people are doing stupid things ... I should like you to be easy, your lit-
tle heart to be light again. You must from now, be more than one, many people, as
many as you can think of ...’’

– Karen Blixen
(‘‘The Dreamers’’ from ‘‘Seven Gothic Tales’’
written under the pseudonym Isak Dinesen,
Random House, Inc.
Copyright, Isac Dinesen, 1934 renewed 1961)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

1
_ __ _______________________________________

Notes to the Reader

"The time has come," the Walrus said,
"to talk of many things."

– L.Carroll

Structure of this book — how to learn C++ — the design of C++ — efficiency and struc-
ture — philosophical note — historical note — what C++ is used for — C and C++ —
suggestions for C programmers — suggestions for C++ programmers — thoughts about
programming in C++ — advice — references.

1.1 The Structure of This Book

This book consists of six parts:
Introduction: Chapters 1 through 3 give an overview of the C++ language, the key programming

styles it supports, and the C++ standard library.
Part I: Chapters 4 through 9 provide a tutorial introduction to C++’s built-in types and the

basic facilities for constructing programs out of them.
Part II: Chapters 10 through 15 are a tutorial introduction to object-oriented and generic pro-

gramming using C++.
Part III: Chapters 16 through 22 present the C++ standard library.
Part IV: Chapters 23 through 25 discuss design and software development issues.
Appendices: Appendices A through E provide language-technical details.

Chapter 1 provides an overview of this book, some hints about how to use it, and some background
information about C++ and its use. You are encouraged to skim through it, read what appears inter-
esting, and return to it after reading other parts of the book.

Chapters 2 and 3 provide an overview of the major concepts and features of the C++ program-
ming language and its standard library. Their purpose is to motivate you to spend time on funda-
mental concepts and basic language features by showing what can be expressed using the complete

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

4 Notes to the Reader Chapter 1

C++ language. If nothing else, these chapters should convince you that C++ isn’t (just) C and that
C++ has come a long way since the first and second editions of this book. Chapter 2 gives a high-
level acquaintance with C++. The discussion focuses on the language features supporting data
abstraction, object-oriented programming, and generic programming. Chapter 3 introduces the
basic principles and major facilities of the standard library. This allows me to use standard library
facilities in the following chapters. It also allows you to use library facilities in exercises rather
than relying directly on lower-level, built-in features.

The introductory chapters provide an example of a general technique that is applied throughout
this book: to enable a more direct and realistic discussion of some technique or feature, I occasion-
ally present a concept briefly at first and then discuss it in depth later. This approach allows me to
present concrete examples before a more general treatment of a topic. Thus, the organization of
this book reflects the observation that we usually learn best by progressing from the concrete to the
abstract – even where the abstract seems simple and obvious in retrospect.

Part I describes the subset of C++ that supports the styles of programming traditionally done in
C or Pascal. It covers fundamental types, expressions, and control structures for C++ programs.
Modularity – as supported by namespaces, source files, and exception handling – is also discussed.
I assume that you are familiar with the fundamental programming concepts used in Part I. For
example, I explain C++’s facilities for expressing recursion and iteration, but I do not spend much
time explaining how these concepts are useful.

Part II describes C++’s facilities for defining and using new types. Concrete and abstract
classes (interfaces) are presented here (Chapter 10, Chapter 12), together with operator overloading
(Chapter 11), polymorphism, and the use of class hierarchies (Chapter 12, Chapter 15). Chapter 13
presents templates, that is, C++’s facilities for defining families of types and functions. It demon-
strates the basic techniques used to provide containers, such as lists, and to support generic pro-
gramming. Chapter 14 presents exception handling, discusses techniques for error handling, and
presents strategies for fault tolerance. I assume that you either aren’t well acquainted with object-
oriented programming and generic programming or could benefit from an explanation of how the
main abstraction techniques are supported by C++. Thus, I don’t just present the language features
supporting the abstraction techniques; I also explain the techniques themselves. Part IV goes fur-
ther in this direction.

Part III presents the C++ standard library. The aim is to provide an understanding of how to use
the library, to demonstrate general design and programming techniques, and to show how to extend
the library. The library provides containers (such as l li is st t, v ve ec ct to or r, and m ma ap p; Chapter 16, Chapter 17),
standard algorithms (such as s so or rt t, f fi in nd d, and m me er rg ge e; Chapter 18, Chapter 19), strings (Chapter 20),
Input/Output (Chapter 21), and support for numerical computation (Chapter 22).

Part IV discusses issues that arise when C++ is used in the design and implementation of large
software systems. Chapter 23 concentrates on design and management issues. Chapter 24 discusses
the relation between the C++ programming language and design issues. Chapter 25 presents some
ways of using classes in design.

Appendix A is C++’s grammar, with a few annotations. Appendix B discusses the relation
between C and C++ and between Standard C++ (also called ISO C++ and ANSI C++) and the ver-
sions of C++ that preceded it. Appendix C presents some language-technical examples. Appendix
D explains the standard library’s facilities supporting internationalization. Appendix E discusses
the exception-safety guarantees and requirements of the standard library.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.1.1 Examples and References 5

1.1.1 Examples and References

This book emphasizes program organization rather than the writing of algorithms. Consequently, I
avoid clever or harder-to-understand algorithms. A trivial algorithm is typically better suited to
illustrate an aspect of the language definition or a point about program structure. For example, I
use a Shell sort where, in real code, a quicksort would be better. Often, reimplementation with a
more suitable algorithm is an exercise. In real code, a call of a library function is typically more
appropriate than the code used here for illustration of language features.

Textbook examples necessarily give a warped view of software development. By clarifying and
simplifying the examples, the complexities that arise from scale disappear. I see no substitute for
writing realistically-sized programs for getting an impression of what programming and a program-
ming language are really like. This book concentrates on the language features, the basic tech-
niques from which every program is composed, and the rules for composition.

The selection of examples reflects my background in compilers, foundation libraries, and simu-
lations. Examples are simplified versions of what is found in real code. The simplification is nec-
essary to keep programming language and design points from getting lost in details. There are no
‘‘cute’’ examples without counterparts in real code. Wherever possible, I relegated to Appendix C
language-technical examples of the sort that use variables named x x and y y, types called A A and B B, and
functions called f f() and g g().

In code examples, a proportional-width font is used for identifiers. For example:

#i in nc cl lu ud de e<i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: :c co ou ut t << "H He el ll lo o, n ne ew w w wo or rl ld d!\ \n n";
}

At first glance, this presentation style will seem ‘‘unnatural’’ to programmers accustomed to seeing
code in constant-width fonts. However, proportional-width fonts are generally regarded as better
than constant-width fonts for presentation of text. Using a proportional-width font also allows me
to present code with fewer illogical line breaks. Furthermore, my experiments show that most peo-
ple find the new style more readable after a short while.

Where possible, the C++ language and library features are presented in the context of their use
rather than in the dry manner of a manual. The language features presented and the detail in which
they are described reflect my view of what is needed for effective use of C++. A companion, The
Annotated C++ Language Standard, authored by Andrew Koenig and myself, is the complete defi-
nition of the language together with comments aimed at making it more accessible. Logically,
there ought to be another companion, The Annotated C++ Standard Library. However, since both
time and my capacity for writing are limited, I cannot promise to produce that.

References to parts of this book are of the form §2.3.4 (Chapter 2, section 3, subsection 4),
§B.5.6 (Appendix B, subsection 5.6), and §6.6[10] (Chapter 6, exercise 10). Italics are used spar-
ingly for emphasis (e.g., ‘‘a string literal is not acceptable’’), for first occurrences of important con-
cepts (e.g., polymorphism), for nonterminals of the C++ grammar (e.g., for-statement), and for com-
ments in code examples. Semi-bold italics are used to refer to identifiers, keywords, and numeric
values from code examples (e.g., c co ou un nt te er r, c cl la as ss s, and 1 17 71 12 2).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

6 Notes to the Reader Chapter 1

1.1.2 Exercises

Exercises are found at the ends of chapters. The exercises are mainly of the write-a-program vari-
ety. Always write enough code for a solution to be compiled and run with at least a few test cases.
The exercises vary considerably in difficulty, so they are marked with an estimate of their diffi-
culty. The scale is exponential so that if a (∗1) exercise takes you ten minutes, a (∗2) might take an
hour, and a (∗3) might take a day. The time needed to write and test a program depends more on
your experience than on the exercise itself. A (∗1) exercise might take a day if you first have to get
acquainted with a new computer system in order to run it. On the other hand, a (∗5) exercise might
be done in an hour by someone who happens to have the right collection of programs handy.

Any book on programming in C can be used as a source of extra exercises for Part I. Any book
on data structures and algorithms can be used as a source of exercises for Parts II and III.

1.1.3 Implementation Note

The language used in this book is ‘‘pure C++’’ as defined in the C++ standard [C++,1998]. There-
fore, the examples ought to run on every C++ implementation. The major program fragments in
this book were tried using several C++ implementations. Examples using features only recently
adopted into C++ didn’t compile on every implementation. However, I see no point in mentioning
which implementations failed to compile which examples. Such information would soon be out of
date because implementers are working hard to ensure that their implementations correctly accept
every C++ feature. See Appendix B for suggestions on how to cope with older C++ compilers and
with code written for C compilers.

1.2 Learning C++

The most important thing to do when learning C++ is to focus on concepts and not get lost in
language-technical details. The purpose of learning a programming language is to become a better
programmer; that is, to become more effective at designing and implementing new systems and at
maintaining old ones. For this, an appreciation of programming and design techniques is far more
important than an understanding of details; that understanding comes with time and practice.

C++ supports a variety of programming styles. All are based on strong static type checking, and
most aim at achieving a high level of abstraction and a direct representation of the programmer’s
ideas. Each style can achieve its aims effectively while maintaining run-time and space efficiency.
A programmer coming from a different language (say C, Fortran, Smalltalk, Lisp, ML, Ada, Eiffel,
Pascal, or Modula-2) should realize that to gain the benefits of C++, they must spend time learning
and internalizing programming styles and techniques suitable to C++. The same applies to pro-
grammers used to an earlier and less expressive version of C++.

Thoughtlessly applying techniques effective in one language to another typically leads to awk-
ward, poorly performing, and hard-to-maintain code. Such code is also most frustrating to write
because every line of code and every compiler error message reminds the programmer that the lan-
guage used differs from ‘‘the old language.’’ You can write in the style of Fortran, C, Smalltalk,
etc., in any language, but doing so is neither pleasant nor economical in a language with a different
philosophy. Every language can be a fertile source of ideas of how to write C++ programs.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.2 Learning C++ 7

However, ideas must be transformed into something that fits with the general structure and type
system of C++ in order to be effective in the different context. Over the basic type system of a lan-
guage, only Pyrrhic victories are possible.

C++ supports a gradual approach to learning. How you approach learning a new programming
language depends on what you already know and what you aim to learn. There is no one approach
that suits everyone. My assumption is that you are learning C++ to become a better programmer
and designer. That is, I assume that your purpose in learning C++ is not simply to learn a new syn-
tax for doing things the way you used to, but to learn new and better ways of building systems.
This has to be done gradually because acquiring any significant new skill takes time and requires
practice. Consider how long it would take to learn a new natural language well or to learn to play a
new musical instrument well. Becoming a better system designer is easier and faster, but not as
much easier and faster as most people would like it to be.

It follows that you will be using C++ – often for building real systems – before understanding
every language feature and technique. By supporting several programming paradigms (Chapter 2),
C++ supports productive programming at several levels of expertise. Each new style of program-
ming adds another tool to your toolbox, but each is effective on its own and each adds to your
effectiveness as a programmer. C++ is organized so that you can learn its concepts in a roughly lin-
ear order and gain practical benefits along the way. This is important because it allows you to gain
benefits roughly in proportion to the effort expended.

In the continuing debate on whether one needs to learn C before C++, I am firmly convinced
that it is best to go directly to C++. C++ is safer, more expressive, and reduces the need to focus on
low-level techniques. It is easier for you to learn the trickier parts of C that are needed to compen-
sate for its lack of higher-level facilities after you have been exposed to the common subset of C
and C++ and to some of the higher-level techniques supported directly in C++. Appendix B is a
guide for programmers going from C++ to C, say, to deal with legacy code.

Several independently developed and distributed implementations of C++ exist. A wealth of
tools, libraries, and software development environments are also available. A mass of textbooks,
manuals, journals, newsletters, electronic bulletin boards, mailing lists, conferences, and courses
are available to inform you about the latest developments in C++, its use, tools, libraries, implemen-
tations, etc. If you plan to use C++ seriously, I strongly suggest that you gain access to such
sources. Each has its own emphasis and bias, so use at least two. For example, see [Barton,1994],
[Booch,1994], [Henricson,1997], [Koenig,1997], [Martin,1995].

1.3 The Design of C++

Simplicity was an important design criterion: where there was a choice between simplifying the
language definition and simplifying the compiler, the former was chosen. However, great impor-
tance was attached to retaining a high degree of compatibility with C [Koenig,1989] [Strous-
trup,1994] (Appendix B); this precluded cleaning up the C syntax.

C++ has no built-in high-level data types and no high-level primitive operations. For example,
the C++ language does not provide a matrix type with an inversion operator or a string type with a
concatenation operator. If a user wants such a type, it can be defined in the language itself. In fact,
defining a new general-purpose or application-specific type is the most fundamental programming

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

8 Notes to the Reader Chapter 1

activity in C++. A well-designed user-defined type differs from a built-in type only in the way it is
defined, not in the way it is used. The C++ standard library described in Part III provides many
examples of such types and their uses. From a user’s point of view, there is little difference
between a built-in type and a type provided by the standard library.

Features that would incur run-time or memory overheads even when not used were avoided in
the design of C++. For example, constructs that would make it necessary to store ‘‘housekeeping
information’’ in every object were rejected, so if a user declares a structure consisting of two 16-bit
quantities, that structure will fit into a 32-bit register.

C++ was designed to be used in a traditional compilation and run-time environment, that is, the
C programming environment on the UNIX system. Fortunately, C++ was never restricted to UNIX;
it simply used UNIX and C as a model for the relationships between language, libraries, compilers,
linkers, execution environments, etc. That minimal model helped C++ to be successful on essen-
tially every computing platform. There are, however, good reasons for using C++ in environments
that provide significantly more support. Facilities such as dynamic loading, incremental compila-
tion, and a database of type definitions can be put to good use without affecting the language.

C++ type-checking and data-hiding features rely on compile-time analysis of programs to pre-
vent accidental corruption of data. They do not provide secrecy or protection against someone who
is deliberately breaking the rules. They can, however, be used freely without incurring run-time or
space overheads. The idea is that to be useful, a language feature must not only be elegant; it must
also be affordable in the context of a real program.

For a systematic and detailed description of the design of C++, see [Stroustrup,1994].

1.3.1 Efficiency and Structure

C++ was developed from the C programming language and, with few exceptions, retains C as a
subset. The base language, the C subset of C++, is designed to ensure a very close correspondence
between its types, operators, and statements and the objects that computers deal with directly: num-
bers, characters, and addresses. Except for the n ne ew w, d de el le et te e, t ty yp pe ei id d, d dy yn na am mi ic c_ _c ca as st t, and t th hr ro ow w oper-
ators and the try-block, individual C++ expressions and statements need no run-time support.

C++ can use the same function call and return sequences as C – or more efficient ones. When
even such relatively efficient mechanisms are too expensive, a C++ function can be substituted
inline, so that we can enjoy the notational convenience of functions without run-time overhead.

One of the original aims for C was to replace assembly coding for the most demanding systems
programming tasks. When C++ was designed, care was taken not to compromise the gains in this
area. The difference between C and C++ is primarily in the degree of emphasis on types and struc-
ture. C is expressive and permissive. C++ is even more expressive. However, to gain that increase
in expressiveness, you must pay more attention to the types of objects. Knowing the types of
objects, the compiler can deal correctly with expressions when you would otherwise have had to
specify operations in painful detail. Knowing the types of objects also enables the compiler to
detect errors that would otherwise persist until testing – or even later. Note that using the type sys-
tem to check function arguments, to protect data from accidental corruption, to provide new types,
to provide new operators, etc., does not increase run-time or space overheads in C++.

The emphasis on structure in C++ reflects the increase in the scale of programs written since C
was designed. You can make a small program (say, 1,000 lines) work through brute force even

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.3.1 Efficiency and Structure 9

when breaking every rule of good style. For a larger program, this is simply not so. If the structure
of a 100,000-line program is bad, you will find that new errors are introduced as fast as old ones are
removed. C++ was designed to enable larger programs to be structured in a rational way so that it
would be reasonable for a single person to cope with far larger amounts of code. In addition, the
aim was to have an average line of C++ code express much more than the average line of C or Pas-
cal code. C++ has by now been shown to over-fulfill these goals.

Not every piece of code can be well-structured, hardware-independent, easy-to-read, etc. C++
possesses features that are intended for manipulating hardware facilities in a direct and efficient
way without regard for safety or ease of comprehension. It also possesses facilities for hiding such
code behind elegant and safe interfaces.

Naturally, the use of C++ for larger programs leads to the use of C++ by groups of program-
mers. C++’s emphasis on modularity, strongly typed interfaces, and flexibility pays off here. C++
has as good a balance of facilities for writing large programs as any language has. However, as
programs get larger, the problems associated with their development and maintenance shift from
being language problems to more global problems of tools and management. Part IV explores
some of these issues.

This book emphasizes techniques for providing general-purpose facilities, generally useful
types, libraries, etc. These techniques will serve programmers of small programs as well as pro-
grammers of large ones. Furthermore, because all nontrivial programs consist of many semi-
independent parts, the techniques for writing such parts serve programmers of all applications.

You might suspect that specifying a program by using a more detailed type structure would lead
to a larger program source text. With C++, this is not so. A C++ program declaring function argu-
ment types, using classes, etc., is typically a bit shorter than the equivalent C program not using
these facilities. Where libraries are used, a C++ program will appear much shorter than its C equiv-
alent, assuming, of course, that a functioning C equivalent could have been built.

1.3.2 Philosophical Note

A programming language serves two related purposes: it provides a vehicle for the programmer to
specify actions to be executed, and it provides a set of concepts for the programmer to use when
thinking about what can be done. The first purpose ideally requires a language that is ‘‘close to the
machine’’ so that all important aspects of a machine are handled simply and efficiently in a way
that is reasonably obvious to the programmer. The C language was primarily designed with this in
mind. The second purpose ideally requires a language that is ‘‘close to the problem to be solved’’
so that the concepts of a solution can be expressed directly and concisely. The facilities added to C
to create C++ were primarily designed with this in mind.

The connection between the language in which we think/program and the problems and solu-
tions we can imagine is very close. For this reason, restricting language features with the intent of
eliminating programmer errors is at best dangerous. As with natural languages, there are great ben-
efits from being at least bilingual. A language provides a programmer with a set of conceptual
tools; if these are inadequate for a task, they will simply be ignored. Good design and the absence
of errors cannot be guaranteed merely by the presence or the absence of specific language features.

The type system should be especially helpful for nontrivial tasks. The C++ class concept has, in
fact, proven itself to be a powerful conceptual tool.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

10 Notes to the Reader Chapter 1

1.4 Historical Note

I invented C++, wrote its early definitions, and produced its first implementation. I chose and for-
mulated the design criteria for C++, designed all its major facilities, and was responsible for the
processing of extension proposals in the C++ standards committee.

Clearly, C++ owes much to C [Kernighan,1978]. Except for closing a few serious loopholes in
the type system (see Appendix B), C is retained as a subset. I also retained C’s emphasis on facili-
ties that are low-level enough to cope with the most demanding systems programming tasks. C in
turn owes much to its predecessor BCPL [Richards,1980]; in fact, BCPL’s / / comment convention
was (re)introduced in C++. The other main source of inspiration for C++ was Simula67
[Dahl,1970] [Dahl,1972]; the class concept (with derived classes and virtual functions) was bor-
rowed from it. C++’s facility for overloading operators and the freedom to place a declaration
wherever a statement can occur resembles Algol68 [Woodward,1974].

Since the original edition of this book, the language has been extensively reviewed and refined.
The major areas for revision were overload resolution, linking, and memory management facilities.
In addition, several minor changes were made to increase C compatibility. Several generalizations
and a few major extensions were added: these included multiple inheritance, s st ta at ti ic c member func-
tions, c co on ns st t member functions, p pr ro ot te ec ct te ed d members, templates, exception handling, run-time type
identification, and namespaces. The overall theme of these extensions and revisions was to make
C++ a better language for writing and using libraries. The evolution of C++ is described in [Strous-
trup,1994].

The template facility was primarily designed to support statically typed containers (such as lists,
vectors, and maps) and to support elegant and efficient use of such containers (generic program-
ming). A key aim was to reduce the use of macros and casts (explicit type conversion). Templates
were partly inspired by Ada’s generics (both their strengths and their weaknesses) and partly by
Clu’s parameterized modules. Similarly, the C++ exception-handling mechanism was inspired
partly by Ada [Ichbiah,1979], Clu [Liskov,1979], and ML [Wikstr

. .
om,1987]. Other developments

in the 1985 to 1995 time span – such as multiple inheritance, pure virtual functions, and name-
spaces – were primarily generalizations driven by experience with the use of C++ rather than ideas
imported from other languages.

Earlier versions of the language, collectively known as ‘‘C with Classes’’ [Stroustrup,1994],
have been in use since 1980. The language was originally invented because I wanted to write some
event-driven simulations for which Simula67 would have been ideal, except for efficiency consid-
erations. ‘‘C with Classes’’ was used for major projects in which the facilities for writing programs
that use minimal time and space were severely tested. It lacked operator overloading, references,
virtual functions, templates, exceptions, and many details. The first use of C++ outside a research
organization started in July 1983.

The name C++ (pronounced ‘‘see plus plus’’) was coined by Rick Mascitti in the summer of
1983. The name signifies the evolutionary nature of the changes from C; ‘‘++’’ is the C increment
operator. The slightly shorter name ‘‘C+’’ is a syntax error; it has also been used as the name of an
unrelated language. Connoisseurs of C semantics find C++ inferior to ++C. The language is not
called D, because it is an extension of C, and it does not attempt to remedy problems by removing
features. For yet another interpretation of the name C++, see the appendix of [Orwell,1949].

C++ was designed primarily so that my friends and I would not have to program in assembler,

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.4 Historical Note 11

C, or various modern high-level languages. Its main purpose was to make writing good programs
easier and more pleasant for the individual programmer. In the early years, there was no C++ paper
design; design, documentation, and implementation went on simultaneously. There was no ‘‘C++
project’’ either, or a ‘‘C++ design committee.’’ Throughout, C++ evolved to cope with problems
encountered by users and as a result of discussions between my friends, my colleagues, and me.

Later, the explosive growth of C++ use caused some changes. Sometime during 1987, it
became clear that formal standardization of C++ was inevitable and that we needed to start prepar-
ing the ground for a standardization effort [Stroustrup,1994]. The result was a conscious effort to
maintain contact between implementers of C++ compilers and major users through paper and elec-
tronic mail and through face-to-face meetings at C++ conferences and elsewhere.

AT&T Bell Laboratories made a major contribution to this by allowing me to share drafts of
revised versions of the C++ reference manual with implementers and users. Because many of these
people work for companies that could be seen as competing with AT&T, the significance of this
contribution should not be underestimated. A less enlightened company could have caused major
problems of language fragmentation simply by doing nothing. As it happened, about a hundred
individuals from dozens of organizations read and commented on what became the generally
accepted reference manual and the base document for the ANSI C++ standardization effort. Their
names can be found in The Annotated C++ Reference Manual [Ellis,1989]. Finally, the X3J16
committee of ANSI was convened in December 1989 at the initiative of Hewlett-Packard. In June
1991, this ANSI (American national) standardization of C++ became part of an ISO (international)
standardization effort for C++. From 1990, these joint C++ standards committees have been the
main forum for the evolution of C++ and the refinement of its definition. I served on these commit-
tees throughout. In particular, as the chairman of the working group for extensions, I was directly
responsible for the handling of proposals for major changes to C++ and the addition of new lan-
guage features. An initial draft standard for public review was produced in April 1995. The ISO
C++ standard (ISO/IEC 14882) was ratified in 1998.

C++ evolved hand-in-hand with some of the key classes presented in this book. For example, I
designed complex, vector, and stack classes together with the operator overloading mechanisms.
String and list classes were developed by Jonathan Shopiro and me as part of the same effort.
Jonathan’s string and list classes were the first to see extensive use as part of a library. The string
class from the standard C++ library has its roots in these early efforts. The task library described in
[Stroustrup,1987] and in §12.7[11] was part of the first ‘‘C with Classes’’ program ever written. I
wrote it and its associated classes to support Simula-style simulations. The task library has been
revised and reimplemented, notably by Jonathan Shopiro, and is still in extensive use. The stream
library as described in the first edition of this book was designed and implemented by me. Jerry
Schwarz transformed it into the iostreams library (Chapter 21) using Andrew Koenig’s manipulator
technique (§21.4.6) and other ideas. The iostreams library was further refined during standardiza-
tion, when the bulk of the work was done by Jerry Schwarz, Nathan Myers, and Norihiro Kumagai.
The development of the template facility was influenced by the v ve ec ct to or r, m ma ap p, l li is st t, and s so or rt t tem-
plates devised by Andrew Koenig, Alex Stepanov, me, and others. In turn, Alex Stepanov’s work
on generic programming using templates led to the containers and algorithms parts of the standard
C++ library (§16.3, Chapter 17, Chapter 18, §19.2). The v va al la ar rr ra ay y library for numerical computa-
tion (Chapter 22) is primarily the work of Kent Budge.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

12 Notes to the Reader Chapter 1

1.5 Use of C++

C++ is used by hundreds of thousands of programmers in essentially every application domain.
This use is supported by about a dozen independent implementations, hundreds of libraries, hun-
dreds of textbooks, several technical journals, many conferences, and innumerable consultants.
Training and education at a variety of levels are widely available.

Early applications tended to have a strong systems programming flavor. For example, several
major operating systems have been written in C++ [Campbell,1987] [Rozier,1988] [Hamilton,1993]
[Berg,1995] [Parrington,1995] and many more have key parts done in C++. I considered uncom-
promising low-level efficiency essential for C++. This allows us to use C++ to write device drivers
and other software that rely on direct manipulation of hardware under real-time constraints. In such
code, predictability of performance is at least as important as raw speed. Often, so is compactness
of the resulting system. C++ was designed so that every language feature is usable in code under
severe time and space constraints [Stroustrup,1994,§4.5].

Most applications have sections of code that are critical for acceptable performance. However,
the largest amount of code is not in such sections. For most code, maintainability, ease of exten-
sion, and ease of testing is key. C++’s support for these concerns has led to its widespread use
where reliability is a must and in areas where requirements change significantly over time. Exam-
ples are banking, trading, insurance, telecommunications, and military applications. For years, the
central control of the U.S. long-distance telephone system has relied on C++ and every 800 call
(that is, a call paid for by the called party) has been routed by a C++ program [Kamath,1993].
Many such applications are large and long-lived. As a result, stability, compatibility, and scalabil-
ity have been constant concerns in the development of C++. Million-line C++ programs are not
uncommon.

Like C, C++ wasn’t specifically designed with numerical computation in mind. However, much
numerical, scientific, and engineering computation is done in C++. A major reason for this is that
traditional numerical work must often be combined with graphics and with computations relying on
data structures that don’t fit into the traditional Fortran mold [Budge,1992] [Barton,1994]. Graph-
ics and user interfaces are areas in which C++ is heavily used. Anyone who has used either an
Apple Macintosh or a PC running Windows has indirectly used C++ because the primary user inter-
faces of these systems are C++ programs. In addition, some of the most popular libraries support-
ing X for UNIX are written in C++. Thus, C++ is a common choice for the vast number of applica-
tions in which the user interface is a major part.

All of this points to what may be C++’s greatest strength: its ability to be used effectively for
applications that require work in a variety of application areas. It is quite common to find an appli-
cation that involves local and wide-area networking, numerics, graphics, user interaction, and data-
base access. Traditionally, such application areas have been considered distinct, and they have
most often been served by distinct technical communities using a variety of programming lan-
guages. However, C++ has been widely used in all of those areas. Furthermore, it is able to coexist
with code fragments and programs written in other languages.

C++ is widely used for teaching and research. This has surprised some who – correctly – point
out that C++ isn’t the smallest or cleanest language ever designed. It is, however

– clean enough for successful teaching of basic concepts,
– realistic, efficient, and flexible enough for demanding projects,

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.5 Use of C++ 13

– available enough for organizations and collaborations relying on diverse development and
execution environments,

– comprehensive enough to be a vehicle for teaching advanced concepts and techniques, and
– commercial enough to be a vehicle for putting what is learned into non-academic use.

C++ is a language that you can grow with.

1.6 C and C++

C was chosen as the base language for C++ because it
[1] is versatile, terse, and relatively low-level;
[2] is adequate for most systems programming tasks;
[3] runs everywhere and on everything; and
[4] fits into the UNIX programming environment.

C has its problems, but a language designed from scratch would have some too, and we know C’s
problems. Importantly, working with C enabled ‘‘C with Classes’’ to be a useful (if awkward) tool
within months of the first thought of adding Simula-like classes to C.

As C++ became more widely used, and as the facilities it provided over and above those of C
became more significant, the question of whether to retain compatibility was raised again and
again. Clearly some problems could be avoided if some of the C heritage was rejected (see, e.g.,
[Sethi,1981]). This was not done because

[1] there are millions of lines of C code that might benefit from C++, provided that a complete
rewrite from C to C++ were unnecessary;

[2] there are millions of lines of library functions and utility software code written in C that
could be used from/on C++ programs provided C++ were link-compatible with and syntacti-
cally very similar to C;

[3] there are hundreds of thousands of programmers who know C and therefore need only learn
to use the new features of C++ and not relearn the basics; and

[4] C++ and C will be used on the same systems by the same people for years, so the differ-
ences should be either very large or very small so as to minimize mistakes and confusion.

The definition of C++ has been revised to ensure that a construct that is both legal C and legal C++
has the same meaning in both languages (with a few minor exceptions; see §B.2).

The C language has itself evolved, partly under the influence of the development of C++
[Rosler,1984]. The ANSI C standard [C,1990] contains a function declaration syntax borrowed
from ‘‘C with Classes.’’ Borrowing works both ways. For example, the v vo oi id d* pointer type was
invented for ANSI C and first implemented in C++. As promised in the first edition of this book,
the definition of C++ has been reviewed to remove gratuitous incompatibilities; C++ is now more
compatible with C than it was originally. The ideal was for C++ to be as close to ANSI C as possi-
ble – but no closer [Koenig,1989]. One hundred percent compatibility was never a goal because
that would compromise type safety and the smooth integration of user-defined and built-in types.

Knowing C is not a prerequisite for learning C++. Programming in C encourages many tech-
niques and tricks that are rendered unnecessary by C++ language features. For example, explicit
type conversion (casting) is less frequently needed in C++ than it is in C (§1.6.1). However, good
C programs tend to be C++ programs. For example, every program in Kernighan and Ritchie, The

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

14 Notes to the Reader Chapter 1

C Programming Language (2nd Edition) [Kernighan,1988], is a C++ program. Experience with
any statically typed language will be a help when learning C++.

1.6.1 Suggestions for C Programmers

The better one knows C, the harder it seems to be to avoid writing C++ in C style, thereby losing
some of the potential benefits of C++. Please take a look at Appendix B, which describes the dif-
ferences between C and C++. Here are a few pointers to the areas in which C++ has better ways of
doing something than C has:

[1] Macros are almost never necessary in C++. Use c co on ns st t (§5.4) or e en nu um m (§4.8) to define mani-
fest constants, i in nl li in ne e (§7.1.1) to avoid function-calling overhead, t te em mp pl la at te es (Chapter 13) to
specify families of functions and types, and n na am me es sp pa ac ce es (§8.2) to avoid name clashes.

[2] Don’t declare a variable before you need it so that you can initialize it immediately. A
declaration can occur anywhere a statement can (§6.3.1), in for-statement initializers
(§6.3.3), and in conditions (§6.3.2.1).

[3] Don’t use m ma al ll lo oc c(). The n ne ew w operator (§6.2.6) does the same job better, and instead of
r re ea al ll lo oc c(), try a v ve ec ct to or r (§3.8).

[4] Try to avoid v vo oi id d*, pointer arithmetic, unions, and casts, except deep within the implemen-
tation of some function or class. In most cases, a cast is an indication of a design error. If
you must use an explicit type conversion, try using one of the ‘‘new casts’’ (§6.2.7) for a
more precise statement of what you are trying to do.

[5] Minimize the use of arrays and C-style strings. The C++ standard library s st tr ri in ng g (§3.5) and
v ve ec ct to or r (§3.7.1) classes can often be used to simplify programming compared to traditional C
style. In general, try not to build yourself what has already been provided by the standard
library.

To obey C linkage conventions, a C++ function must be declared to have C linkage (§9.2.4).
Most important, try thinking of a program as a set of interacting concepts represented as classes

and objects, instead of as a bunch of data structures with functions twiddling their bits.

1.6.2 Suggestions for C++ Programmers

By now, many people have been using C++ for a decade. Many more are using C++ in a single
environment and have learned to live with the restrictions imposed by early compilers and first-
generation libraries. Often, what an experienced C++ programmer has failed to notice over the
years is not the introduction of new features as such, but rather the changes in relationships between
features that make fundamental new programming techniques feasible. In other words, what you
didn’t think of when first learning C++ or found impractical just might be a superior approach
today. You find out only by re-examining the basics.

Read through the chapters in order. If you already know the contents of a chapter, you can be
through in minutes. If you don’t already know the contents, you’ll have learned something unex-
pected. I learned a fair bit writing this book, and I suspect that hardly any C++ programmer knows
every feature and technique presented. Furthermore, to use the language well, you need a perspec-
tive that brings order to the set of features and techniques. Through its organization and examples,
this book offers such a perspective.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.7 Thinking about Programming in C++ 15

1.7 Thinking about Programming in C++

Ideally, you approach the task of designing a program in three stages. First, you gain a clear under-
standing of the problem (analysis), then you identify the key concepts involved in a solution
(design), and finally you express that solution in a program (programming). However, the details
of the problem and the concepts of the solution often become clearly understood only through the
effort to express them in a program and trying to get it to run acceptably. This is where the choice
of programming language matters.

In most applications, there are concepts that are not easily represented as one of the fundamental
types or as a function without associated data. Given such a concept, declare a class to represent it
in the program. A C++ class is a type. That is, it specifies how objects of its class behave: how they
are created, how they can be manipulated, and how they are destroyed. A class may also specify
how objects are represented, although in the early stages of the design of a program that should not
be the major concern. The key to writing good programs is to design classes so that each cleanly
represents a single concept. Often, this means that you must focus on questions such as: How are
objects of this class created? Can objects of this class be copied and/or destroyed? What opera-
tions can be applied to such objects? If there are no good answers to such questions, the concept
probably wasn’t ‘‘clean’’ in the first place. It might then be a good idea to think more about the
problem and its proposed solution instead of immediately starting to ‘‘code around’’ the problems.

The concepts that are easiest to deal with are the ones that have a traditional mathematical for-
malism: numbers of all sorts, sets, geometric shapes, etc. Text-oriented I/O, strings, basic contain-
ers, the fundamental algorithms on such containers, and some mathematical classes are part of the
standard C++ library (Chapter 3, §16.1.2). In addition, a bewildering variety of libraries supporting
general and domain-specific concepts are available.

A concept does not exist in a vacuum; there are always clusters of related concepts. Organizing
the relationship between classes in a program – that is, determining the exact relationship between
the different concepts involved in a solution – is often harder than laying out the individual classes
in the first place. The result had better not be a muddle in which every class (concept) depends on
every other. Consider two classes, A and B. Relationships such as ‘‘A calls functions from B,’’
‘‘A creates Bs,’’ and ‘‘A has a B member’’ seldom cause major problems, while relationships such
as ‘‘A uses data from B’’ can typically be eliminated.

One of the most powerful intellectual tools for managing complexity is hierarchical ordering,
that is, organizing related concepts into a tree structure with the most general concept as the root.
In C++, derived classes represent such structures. A program can often be organized as a set of
trees or directed acyclic graphs of classes. That is, the programmer specifies a number of base
classes, each with its own set of derived classes. Virtual functions (§2.5.5, §12.2.6) can often be
used to define operations for the most general version of a concept (a base class). When necessary,
the interpretation of these operations can be refined for particular special cases (derived classes).

Sometimes even a directed acyclic graph seems insufficient for organizing the concepts of a
program; some concepts seem to be inherently mutually dependent. In that case, we try to localize
cyclic dependencies so that they do not affect the overall structure of the program. If you cannot
eliminate or localize such mutual dependencies, then you are most likely in a predicament that no
programming language can help you out of. Unless you can conceive of some easily stated rela-
tionships between the basic concepts, the program is likely to become unmanageable.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

16 Notes to the Reader Chapter 1

One of the best tools for untangling dependency graphs is the clean separation of interface and
implementation. Abstract classes (§2.5.4, §12.3) are C++’s primary tool for doing that.

Another form of commonality can be expressed through templates (§2.7, Chapter 13). A class
template specifies a family of classes. For example, a list template specifies ‘‘list of T,’’ where
‘‘T’’ can be any type. Thus, a template is a mechanism for specifying how one type is generated
given another type as an argument. The most common templates are container classes such as lists,
vectors, and associative arrays (maps) and the fundamental algorithms using such containers. It is
usually a mistake to express parameterization of a class and its associated functions with a type
using inheritance. It is best done using templates.

Remember that much programming can be simply and clearly done using only primitive types,
data structures, plain functions, and a few library classes. The whole apparatus involved in defin-
ing new types should not be used except when there is a real need.

The question ‘‘How does one write good programs in C++?’’ is very similar to the question
‘‘How does one write good English prose?’’ There are two answers: ‘‘Know what you want to
say’’ and ‘‘Practice. Imitate good writing.’’ Both appear to be as appropriate for C++ as they are
for English – and as hard to follow.

1.8 Advice

Here is a set of ‘‘rules’’ you might consider while learning C++. As you get more proficient you
can evolve them into something suitable for your kind of applications and your style of program-
ming. They are deliberately very simple, so they lack detail. Don’t take them too literally. To
write a good program takes intelligence, taste, and patience. You are not going to get it right the
first time. Experiment!
[1] When you program, you create a concrete representation of the ideas in your solution to some

problem. Let the structure of the program reflect those ideas as directly as possible:
[a] If you can think of ‘‘it’’ as a separate idea, make it a class.
[b] If you can think of ‘‘it’’ as a separate entity, make it an object of some class.
[c] If two classes have a common interface, make that interface an abstract class.
[d] If the implementations of two classes have something significant in common, make that

commonality a base class.
[e] If a class is a container of objects, make it a template.
[f] If a function implements an algorithm for a container, make it a template function imple-

menting the algorithm for a family of containers.
[g] If a set of classes, templates, etc., are logically related, place them in a common namespace.

[2] When you define either a class that does not implement either a mathematical entity like a
matrix or a complex number or a low-level type such as a linked list:
[a] Don’t use global data (use members).
[b] Don’t use global functions.
[c] Don’t use public data members.
[d] Don’t use friends, except to avoid [a] or [c].
[e] Don’t put a ‘‘type field’’ in a class; use virtual functions.
[f] Don’t use inline functions, except as a significant optimization.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.8 Advice 17

More specific or detailed rules of thumb can be found in the ‘‘Advice’’ section of each chapter.
Remember, this advice is only rough rules of thumb, not immutable laws. A piece of advice should
be applied only ‘‘where reasonable.’’ There is no substitute for intelligence, experience, common
sense, and good taste.

I find rules of the form ‘‘never do this’’ unhelpful. Consequently, most advice is phrased as
suggestions of what to do, while negative suggestions tend not to be phrased as absolute prohibi-
tions. I know of no major feature of C++ that I have not seen put to good use. The ‘‘Advice’’ sec-
tions do not contain explanations. Instead, each piece of advice is accompanied by a reference to
the appropriate section of the book. Where negative advice is given, that section usually provides a
suggested alternative.

1.8.1 References

There are few direct references in the text, but here is a short list of books and papers that are men-
tioned directly or indirectly.
[Barton,1994] John J. Barton and Lee R. Nackman: Scientific and Engineering C++.

Addison-Wesley. Reading, Mass. 1994. ISBN 0-201-53393-6.
[Berg,1995] William Berg, Marshall Cline, and Mike Girou: Lessons Learned from the

OS/400 OO Project. CACM. Vol. 38 No. 10. October 1995.
[Booch,1994] Grady Booch: Object-Oriented Analysis and Design. Benjamin/Cummings.

Menlo Park, Calif. 1994. ISBN 0-8053-5340-2.
[Budge,1992] Kent Budge, J. S. Perry, and A. C. Robinson: High-Performance Scientific

Computation using C++. Proc. USENIX C++ Conference. Portland, Oregon.
August 1992.

[C,1990] X3 Secretariat: Standard – The C Language. X3J11/90-013. ISO Standard
ISO/IEC 9899. Computer and Business Equipment Manufacturers Association.
Washington, DC, USA.

[C++,1998] X3 Secretariat: International Standard – The C++ Language. X3J16-14882.
Information Technology Council (NSITC). Washington, DC, USA.

[Campbell,1987] Roy Campbell, et al.: The Design of a Multiprocessor Operating System. Proc.
USENIX C++ Conference. Santa Fe, New Mexico. November 1987.

[Coplien,1995] James O. Coplien and Douglas C. Schmidt (editors): Pattern Languages of
Program Design. Addison-Wesley. Reading, Mass. 1995. ISBN 0-201-
60734-4.

[Dahl,1970] O-J. Dahl, B. Myrhaug, and K. Nygaard: SIMULA Common Base Language.
Norwegian Computing Center S-22. Oslo, Norway. 1970.

[Dahl,1972] O-J. Dahl and C. A. R. Hoare: Hierarchical Program Construction in Struc-
tured Programming. Academic Press, New York. 1972.

[Ellis,1989] Margaret A. Ellis and Bjarne Stroustrup: The Annotated C++ Reference Man-
ual. Addison-Wesley. Reading, Mass. 1990. ISBN 0-201-51459-1.

[Gamma,1995] Erich Gamma, et al.: Design Patterns. Addison-Wesley. Reading, Mass.
1995. ISBN 0-201-63361-2.

[Goldberg,1983] A. Goldberg and D. Robson: SMALLTALK-80 – The Language and Its Imple-
mentation. Addison-Wesley. Reading, Mass. 1983.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

18 Notes to the Reader Chapter 1

[Griswold,1970] R. E. Griswold, et al.: The Snobol4 Programming Language. Prentice-Hall.
Englewood Cliffs, New Jersey. 1970.

[Griswold,1983] R. E. Griswold and M. T. Griswold: The ICON Programming Language.
Prentice-Hall. Englewood Cliffs, New Jersey. 1983.

[Hamilton,1993] G. Hamilton and P. Kougiouris: The Spring Nucleus: A Microkernel for
Objects. Proc. 1993 Summer USENIX Conference. USENIX.

[Henricson,1997] Mats Henricson and Erik Nyquist: Industrial Strength C++: Rules and Recom-
mendations. Prentice-Hall. Englewood Cliffs, New Jersey. 1997. ISBN 0-
13-120965-5.

[Ichbiah,1979] Jean D. Ichbiah, et al.: Rationale for the Design of the ADA Programming Lan-
guage. SIGPLAN Notices. Vol. 14 No. 6. June 1979.

[Kamath,1993] Yogeesh H. Kamath, Ruth E. Smilan, and Jean G. Smith: Reaping Benefits with
Object-Oriented Technology. AT&T Technical Journal. Vol. 72 No. 5.
September/October 1993.

[Kernighan,1978] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language.
Prentice-Hall. Englewood Cliffs, New Jersey. 1978.

[Kernighan,1988] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language
(Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. 1988. ISBN
0-13-110362-8.

[Koenig,1989] Andrew Koenig and Bjarne Stroustrup: C++: As close to C as possible – but no
closer. The C++ Report. Vol. 1 No. 7. July 1989.

[Koenig,1997] Andrew Koenig and Barbara Moo: Ruminations on C++. Addison Wesley
Longman. Reading, Mass. 1997. ISBN 0-201-42339-1.

[Knuth,1968] Donald Knuth: The Art of Computer Programming. Addison-Wesley. Read-
ing, Mass.

[Liskov,1979] Barbara Liskov et al.: Clu Reference Manual. MIT/LCS/TR-225. MIT Cam-
bridge. Mass. 1979.

[Martin,1995] Robert C. Martin: Designing Object-Oriented C++ Applications Using the
Booch Method. Prentice-Hall. Englewood Cliffs, New Jersey. 1995. ISBN
0-13-203837-4.

[Orwell,1949] George Orwell: 1984. Secker and Warburg. London. 1949.
[Parrington,1995] Graham Parrington et al.: The Design and Implementation of Arjuna. Com-

puter Systems. Vol. 8 No. 3. Summer 1995.
[Richards,1980] Martin Richards and Colin Whitby-Strevens: BCPL – The Language and Its

Compiler. Cambridge University Press, Cambridge. England. 1980. ISBN
0-521-21965-5.

[Rosler,1984] L. Rosler: The Evolution of C – Past and Future. AT&T Bell Laboratories
Technical Journal. Vol. 63 No. 8. Part 2. October 1984.

[Rozier,1988] M. Rozier, et al.: CHORUS Distributed Operating Systems. Computing Sys-
tems. Vol. 1 No. 4. Fall 1988.

[Sethi,1981] Ravi Sethi: Uniform Syntax for Type Expressions and Declarations. Software
Practice & Experience. Vol. 11. 1981.

[Stepanov,1994] Alexander Stepanov and Meng Lee: The Standard Template Library. HP Labs
Technical Report HPL-94-34 (R. 1). August, 1994.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 1.8.1 References 19

[Stroustrup,1986] Bjarne Stroustrup: The C++ Programming Language. Addison-Wesley.
Reading, Mass. 1986. ISBN 0-201-12078-X.

[Stroustrup,1987] Bjarne Stroustrup and Jonathan Shopiro: A Set of C Classes for Co-Routine
Style Programming. Proc. USENIX C++ Conference. Santa Fe, New Mexico.
November 1987.

[Stroustrup,1991] Bjarne Stroustrup: The C++ Programming Language (Second Edition).
Addison-Wesley. Reading, Mass. 1991. ISBN 0-201-53992-6.

[Stroustrup,1994] Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley. Read-
ing, Mass. 1994. ISBN 0-201-54330-3.

[Tarjan,1983] Robert E. Tarjan: Data Structures and Network Algorithms. Society for Indus-
trial and Applied Mathematics. Philadelphia, Penn. 1983. ISBN 0-898-
71187-8.

[Unicode,1996] The Unicode Consortium: The Unicode Standard, Version 2.0. Addison-
Wesley Developers Press. Reading, Mass. 1996. ISBN 0-201-48345-9.

[UNIX,1985] UNIX Time-Sharing System: Programmer’s Manual. Research Version, Tenth
Edition. AT&T Bell Laboratories, Murray Hill, New Jersey. February 1985.

[Wilson,1996] Gregory V. Wilson and Paul Lu (editors): Parallel Programming Using C++.
The MIT Press. Cambridge. Mass. 1996. ISBN 0-262-73118-5.

[Wikstr
. .
om,1987] Åke Wikstr

. .
om: Functional Programming Using ML. Prentice-Hall. Engle-

wood Cliffs, New Jersey. 1987.
[Woodward,1974] P. M. Woodward and S. G. Bond: Algol 68-R Users Guide. Her Majesty’s Sta-

tionery Office. London. England. 1974.
References to books relating to design and larger software development issues can be found at the
end of Chapter 23.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

20 Notes to the Reader Chapter 1

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

_ __ _______________________________________

2
_ __ _______________________________________

A Tour of C+ +

The first thing we do, let´s
kill all the language lawyers.

– Henry VI, part II

What is C++? — programming paradigms— procedural programming— modularity—
separate compilation— exception handling— data abstraction— user-defined types—
concrete types— abstract types— virtual functions— object-oriented programming—
generic programming— containers— algorithms— language and programming—
advice.

2.1 What is C++? [tour.intro]

C++ is a general-purpose programming language with a bias towards systems programming that
– is a better C,
– supports data abstraction,
– supports object-oriented programming, and
– supports generic programming.

This chapter explains what this means without going into the finer details of the language defini-
tion. Its purpose is to give you a general overview of C++ and the key techniques for using it,not
to provide you with the detailed information necessary to start programming in C++.

If you find some parts of this chapter rough going, just ignore those parts and plow on. All will
be explained in detail in later chapters. However, if you do skip part of this chapter, do yourself a
favor by returning to it later.

Detailed understanding of language features– even ofall features of a language– cannot com-
pensate for lack of an overall view of the language and the fundamental techniques for using it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

22 A Tour of C++ Chapter 2

2.2 Programming Paradigms[tour.paradigm]

Object-oriented programming is a technique for programming– a paradigm for writing ‘‘good’’
programs for a set of problems. If the term ‘‘object-oriented programming language’’ means any-
thing, it must mean a programming language that provides mechanisms that support the object-
oriented style of programming well.

There is an important distinction here. A language is said tosupporta style of programming if
it provides facilities that make it convenient (reasonably easy, safe, and efficient) to use that style.
A language does not support a technique if it takes exceptional effort or skill to write such pro-
grams; it merelyenablesthe technique to be used. For example, you can write structured programs
in Fortran77 and object-oriented programs in C, but it is unnecessarily hard to do so because these
languages do not directly support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allow
direct use of the paradigm, but also in the more subtle form of compile-time and/or run-time checks
against unintentional deviation from the paradigm. Type checking is the most obvious example of
this; ambiguity detection and run-time checks are also used to extend linguistic support for para-
digms. Extra-linguistic facilities such as libraries and programming environments can provide fur-
ther support for paradigms.

One language is not necessarily better than another because it possesses a feature the other does
not. There are many examples to the contrary. The important issue is not so much what features a
language possesses, but that the features it does possess are sufficient to support the desired pro-
gramming styles in the desired application areas:

[1] All features must be cleanly and elegantly integrated into the language.
[2] It must be possible to use features in combination to achieve solutions that would otherwise

require extra, separate features.
[3] There should be as few spurious and ‘‘special-purpose’’ features as possible.
[4] A feature’s implementation should not impose significant overheads on programs that do

not require it.
[5] A user should need to know only about the subset of the language explicitly used to write a

program.
The first principle is an appeal to aesthetics and logic. The next two are expressions of the ideal of
minimalism. The last two can be summarized as ‘‘what you don’t know won’t hurt you.’’

C++ was designed to support data abstraction, object-oriented programming, and generic pro-
gramming in addition to traditional C programming techniques under these constraints. It wasnot
meant to force one particular programming style upon all users.

The following sections consider some programming styles and the key language mechanisms
supporting them. The presentation progresses through a series of techniques starting with procedu-
ral programming and leading up to the use of class hierarchies in object-oriented programming and
generic programming using templates. Each paradigm builds on its predecessors, each adds some-
thing new to the C++ programmer’s toolbox, and each reflects a proven design approach.

The presentation of language features is not exhaustive. The emphasis is on design approaches
and ways of organizing programs rather than on language details. At this stage, it is far more
important to gain an idea of what can be done using C++ than to understand exactly how it can be
achieved.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.3 Procedural Programming 23

2.3 Procedural Programming[tour.proc]

The original programming paradigm is:

Decide which procedures you want;
use the best algorithms you can find.

The focus is on the processing– the algorithm needed to perform the desired computation. Lan-
guages support this paradigm by providing facilities for passing arguments to functions and return-
ing values from functions. The literature related to this way of thinking is filled with discussion of
ways to pass arguments, ways to distinguish different kinds of arguments, different kinds of func-
tions (e.g., procedures, routines, and macros), etc.

A typical example of ‘‘good style’’ is a square-root function. Given a double-precision
floating-point argument, it produces a result. To do this, it performs a well-understood mathemati-
cal computation:

d do ou ub bl le e s sq qr rt t(d do ou ub bl le e a ar rg g)
{

/ / code for calculating a square root
}

v vo oi id d f f()
{

d do ou ub bl le e r ro oo ot t2 2 = s sq qr rt t(2 2) ;
/ / ...

}

Curly braces,{ } , express grouping in C++. Here, they indicate the start and end of the function
bodies. The double slash,/ / , begins a comment that extends to the end of the line. The keyword
v vo oi id d indicates that a function does not return a value.

From the point of view of program organization, functions are used to create order in a maze of
algorithms. The algorithms themselves are written using function calls and other language facili-
ties. The following subsections present a thumb-nail sketch of C++’s most basic facilities for
expressing computation.

2.3.1 Variables and Arithmetic [tour.var]

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

i in nt t i in nc ch h;

specifies thati in nc ch h is of typei in nt t; that is,i in nc ch h is an integer variable.
A declarationis a statement that introduces a name into the program. It specifies a type for that

name. Atypedefines the proper use of a name or an expression.
C++ offers a variety of fundamental types, which correspond directly to hardware facilities. For

example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

24 A Tour of C++ Chapter 2

b bo oo ol l / / Boolean, possible values are true and false
c ch ha ar r / / character, for example, ’a’, ’z’, and ’9’
i in nt t / / integer, for example, 1, 42, and 1216
d do ou ub bl le e / / double-precision floating-point number, for example, 3.14 and 299793.0

A c ch ha ar r variable is of the natural size to hold a character on a given machine (typically a byte), and
an i in nt t variable is of the natural size for integer arithmetic on a given machine (typically a word).

The arithmetic operators can be used for any combination of these types:

+ / / plus, both unary and binary
- / / minus, both unary and binary
* / / multiply
/ / / divide
% / / remainder

So can the comparison operators:

== / / equal
!= / / not equal
< / / less than
> / / greater than
<= / / less than or equal
>= / / greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions between the
basic types so that they can be mixed freely:

v vo oi id d s so om me e_ _f fu un nc ct ti io on n() / / function that doesn’t return a value
{

d do ou ub bl le e d d = 2 2. 2 2; / / initialize floating-point number
i in nt t i i = 7 7; / / initialize integer
d d = d d+i i; / / assign sum to d
i i = d d* i i; / / assign product to i

}

As in C,= is the assignment operator and== tests equality.

2.3.2 Tests and Loops [tour.loop]

C++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

b bo oo ol l a ac cc ce ep pt t()
{

c co ou ut t << " D Do o y yo ou u w wa an nt t t to o p pr ro oc ce ee ed d (y y o or r n n)? \ \n n"; / / write question

c ch ha ar r a an ns sw we er r = 0 0;
c ci in n >> a an ns sw we er r; / / read answer

i if f (a an ns sw we er r == ´ y y´) r re et tu ur rn n t tr ru ue e;
r re et tu ur rn n f fa al ls se e;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.3.2 Tests and Loops 25

The<< operator (‘‘put to’’) is used as an output operator;c co ou ut t is the standard output stream. The
>> operator (‘‘get from’’) is used as an input operator;c ci in n is the standard input stream. The type of
the right-hand operand of>> determines what input is accepted and is the target of the input opera-
tion. The\ \n n character at the end of the output string represents a newline.

The example could be slightly improved by taking an ‘n’ answer into account:

b bo oo ol l a ac cc ce ep pt t2 2()
{

c co ou ut t << " D Do o y yo ou u w wa an nt t t to o p pr ro oc ce ee ed d (y y o or r n n)? \ \n n"; / / write question

c ch ha ar r a an ns sw we er r = 0 0;
c ci in n >> a an ns sw we er r; / / read answer

s sw wi it tc ch h (a an ns sw we er r) {
c ca as se e ´ y y´:

r re et tu ur rn n t tr ru ue e;
c ca as se e ´ n n´:

r re et tu ur rn n f fa al ls se e;
d de ef fa au ul lt t:

c co ou ut t << " I I´ l ll l t ta ak ke e t th ha at t f fo or r a a n no o. \ \n n";
r re et tu ur rn n f fa al ls se e;

}
}

A switch-statementtests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, thed de ef fa au ul lt t is chosen. The programmer need not
provide ad de ef fa au ul lt t.

Few programs are written without loops. In this case, we might like to give the user a few tries:

b bo oo ol l a ac cc ce ep pt t3 3()
{

i in nt t t tr ri ie es s = 1 1;
w wh hi il le e (t tr ri ie es s < 4 4) {

c co ou ut t << " D Do o y yo ou u w wa an nt t t to o p pr ro oc ce ee ed d (y y o or r n n)? \ \n n"; / / write question
c ch ha ar r a an ns sw we er r = 0 0;
c ci in n >> a an ns sw we er r; / / read answer

s sw wi it tc ch h (a an ns sw we er r) {
c ca as se e ´ y y´:

r re et tu ur rn n t tr ru ue e;
c ca as se e ´ n n´:

r re et tu ur rn n f fa al ls se e;
d de ef fa au ul lt t:

c co ou ut t << " S So or rr ry y, I I d do on n´ t t u un nd de er rs st ta an nd d t th ha at t. \ \n n";
t tr ri ie es s = t tr ri ie es s + 1 1;

}
}
c co ou ut t << " I I´ l ll l t ta ak ke e t th ha at t f fo or r a a n no o. \ \n n";
r re et tu ur rn n f fa al ls se e;

}

Thewhile-statementexecutes until its condition becomesf fa al ls se e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

26 A Tour of C++ Chapter 2

2.3.3 Pointers and Arrays [tour.ptr]

An array can be declared like this:

c ch ha ar r v v[1 10 0] ; / / array of 10 characters

Similarly, a pointer can be declared like this:

c ch ha ar r* p p; / / pointer to character

In declarations,[] means ‘‘array of’’ and* means ‘‘pointer to.’’ All arrays have0 0 as their lower
bound, sov v has ten elements,v v[0 0] ...v v[9 9] . A pointer variable can hold the address of an object of
the appropriate type:

p p = &v v[3 3] ; / / p points to v’s fourth element

Unary& is the address-of operator.
Consider copying ten elements from one array to another:

v vo oi id d a an no ot th he er r_ _f fu un nc ct ti io on n()
{

i in nt t v v1 1[1 10 0] ;
i in nt t v v2 2[1 10 0] ;
/ / ...
f fo or r (i in nt t i i=0 0; i i<1 10 0; ++i i) v v1 1[i i]= v v2 2[i i] ;

}

This for-statementcan be read as ‘‘seti i to zero, whilei i is less than1 10 0, copy thei ith element and
incrementi i.’’ When applied to an integer variable, the increment operator++ simply adds1 1.

2.4 Modular Programming [tour.module]

Over the years, the emphasis in the design of programs has shifted from the design of procedures
and toward the organization of data. Among other things, this reflects an increase in program size.
A set of related procedures with the data they manipulate is often called amodule. The program-
ming paradigm becomes:

Decide which modules you want;
partition the program so that data is hidden within modules.

This paradigm is also known as thedata-hiding principle. Where there is no grouping of proce-
dures with related data, the procedural programming style suffices. Also, the techniques for design-
ing ‘‘good procedures’’ are now applied for each procedure in a module. The most common exam-
ple of a module is the definition of a stack. The main problems that have to be solved are:

[1] Provide a user interface for the stack (e.g., functionsp pu us sh h() andp po op p()).
[2] Ensure that the representation of the stack (e.g., an array of elements) can be accessed only

through this user interface.
[3] Ensure that the stack is initialized before its first use.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.4 Modular Programming 27

C++ provides a mechanism for grouping related data, functions, etc., into separate namespaces. For
example, the user interface of aS St ta ac ck k module could be declared and used like this:

n na am me es sp pa ac ce e S St ta ac ck k { / / interface
v vo oi id d p pu us sh h(c ch ha ar r) ;
c ch ha ar r p po op p() ;

}

v vo oi id d f f()
{

S St ta ac ck k: : p pu us sh h(´ c c´) ;
i if f (S St ta ac ck k: : p po op p() != ´ c c´) e er rr ro or r(" i im mp po os ss si ib bl le e") ;

}

The S St ta ac ck k: : qualification indicates that thep pu us sh h() and p po op p() are those from theS St ta ac ck k name-
space. Other uses of those names will not interfere or cause confusion.

The definition of theS St ta ac ck k could be provided in a separately-compiled part of the program:

n na am me es sp pa ac ce e S St ta ac ck k { / / implementation
c co on ns st t i in nt t m ma ax x_ _s si iz ze e = 2 20 00 0;
c ch ha ar r v v[m ma ax x_ _s si iz ze e] ;
i in nt t t to op p = 0 0;

v vo oi id d p pu us sh h(c ch ha ar r c c) { /* check for overflow and push c*/ }
c ch ha ar r p po op p() { /* check for underflow and pop*/ }

}

The key point about thisS St ta ac ck k module is that the user code is insulated from the data representation
of S St ta ac ck k by the code implementingS St ta ac ck k: : p pu us sh h() andS St ta ac ck k: : p po op p() . The user doesn’t need to
know that theS St ta ac ck k is implemented using an array, and the implementation can be changed without
affecting user code.

Because data is only one of the things one might want to ‘‘hide,’’ the notion of data hiding is
trivially extended to the notion ofinformation hiding; that is, the names of functions, types, etc.,
can also be made local to a module. Consequently, C++ allows any declaration to be placed in a
namespace (§8.2).

This S St ta ac ck k module is one way of representing a stack. The following sections use a variety of
stacks to illustrate different programming styles.

2.4.1 Separate Compilation [tour.comp]

C++ supports C’s notion of separate compilation. This can be used to organize a program into a set
of semi-independent fragments.

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. Thus,

n na am me es sp pa ac ce e S St ta ac ck k { / / interface
v vo oi id d p pu us sh h(c ch ha ar r) ;
c ch ha ar r p po op p() ;

}

would be placed in a files st ta ac ck k. h h, and users willincludethat file, called aheader file, like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

28 A Tour of C++ Chapter 2

#i in nc cl lu ud de e " s st ta ac ck k. h h" / / get the interface

v vo oi id d f f()
{

S St ta ac ck k: : p pu us sh h(´ c c´) ;
i if f (S St ta ac ck k: : p po op p() != ´ c c´) e er rr ro or r(" i im mp po os ss si ib bl le e") ;

}

To help the compiler ensure consistency, the file providing the implementation of theS St ta ac ck k module
will also include the interface:

#i in nc cl lu ud de e " s st ta ac ck k. h h" / / get the interface

n na am me es sp pa ac ce e S St ta ac ck k { / / representation
c co on ns st t i in nt t m ma ax x_ _s si iz ze e = 2 20 00 0;
c ch ha ar r v v[m ma ax x_ _s si iz ze e] ;
i in nt t t to op p = 0 0;

}

v vo oi id d S St ta ac ck k: : p pu us sh h(c ch ha ar r c c) { /* check for overflow and push c*/ }

c ch ha ar r S St ta ac ck k: : p po op p() { /* check for underflow and pop*/ }

The user code goes in a third file, sayu us se er r. c c. The code inu us se er r. c c ands st ta ac ck k. c c shares the stack
interface information presented ins st ta ac ck k. h h, but the two files are otherwise independent and can be
separately compiled. Graphically, the program fragments can be represented like this:

S St ta ac ck k i in nt te er rf fa ac ce e

. .

#i in nc cl lu ud de e " "s st ta ac ck k. .h h" "
u us se e s st ta ac ck k

. .

#i in nc cl lu ud de e " "s st ta ac ck k. .h h" "
d de ef fi in ne e s st ta ac ck k

.
stack.h:

user.c: stack.c:

Separate compilation is an issue in all real programs. It is not simply a concern in programs that
present facilities, such as aS St ta ac ck k, as modules. Strictly speaking, using separate compilation isn’t a
language issue; it is an issue of how best to take advantage of a particular language implementation.
However, it is of great practical importance. The best approach is to maximize modularity, repre-
sent that modularity logically through language features, and then exploit the modularity physically
through files for effective separate compilation (Chapter 8, Chapter 9).

2.4.2 Exception Handling [tour.except]

When a program is designed as a set of modules, error handling must be considered in light of these
modules. Which module is responsible for handling what errors? Often, the module that detects an
error doesn’t know what action to take. The recovery action depends on the module that invoked

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.4.2 Exception Handling 29

the operation rather than on the module that found the error while trying to perform the operation.
As programs grow, and especially when libraries are used extensively, standards for handling errors
(or, more generally, ‘‘exceptional circumstances’’) become important.

Consider again theS St ta ac ck k example. Whatought to be done when we try top pu us sh h() one too
many characters? The writer of theS St ta ac ck k module doesn’t know what the user would like to be
done in this case, and the user cannot consistently detect the problem (if the user could, the over-
flow wouldn’t happen in the first place). The solution is for theS St ta ac ck k implementer to detect the
overflow and then tell the (unknown) user. The user can then take appropriate action. For exam-
ple:

n na am me es sp pa ac ce e S St ta ac ck k { / / interface
v vo oi id d p pu us sh h(c ch ha ar r) ;
c ch ha ar r p po op p() ;

c cl la as ss s O Ov ve er rf fl lo ow w { }; / / type representing overflow exceptions
}

When detecting an overflow,S St ta ac ck k: : p pu us sh h() can invoke the exception-handling code; that is,
‘‘throw an O Ov ve er rf fl lo ow w exception:’’

v vo oi id d S St ta ac ck k: : p pu us sh h(c ch ha ar r c c)
{

i if f (t to op p == m ma ax x_ _s si iz ze e) t th hr ro ow w O Ov ve er rf fl lo ow w() ;
/ / push c

}

The t th hr ro ow w transfers control to a handler for exceptions of typeS St ta ac ck k: : O Ov ve er rf fl lo ow w in some function
that directly or indirectly calledS St ta ac ck k: : p pu us sh h() . To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. Thus, thet th hr ro ow w acts as a mul-
tilevel r re et tu ur rn n. For example:

v vo oi id d f f()
{

/ / ...
t tr ry y { / / exceptions here are handled by the handler defined below

w wh hi il le e (t tr ru ue e) S St ta ac ck k: : p pu us sh h(´ c c´) ;
}
c ca at tc ch h (S St ta ac ck k: : O Ov ve er rf fl lo ow w) {

/ / oops: stack overflow; take appropriate action
}
/ / ...

}

The w wh hi il le e loop will try to loop forever. Therefore, thec ca at tc ch h-clause providing a handler for
S St ta ac ck k: : O Ov ve er rf fl lo ow w will be entered after some call ofS St ta ac ck k: : p pu us sh h() causes at th hr ro ow w.

Use of the exception-handling mechanisms can make error handling more regular and readable.
See §8.3 and Chapter 14 for further discussion and details.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

30 A Tour of C++ Chapter 2

2.5 Data Abstraction[tour.da]

Modularity is a fundamental aspect of all successful large programs. It remains a focus of all
design discussions throughout this book. However, modules in the form described previously are
not sufficient to express complex systems cleanly. Here, I first present a way of using modules to
provide a form of user-defined types and then show how to overcome some problems with that
approach by defining user-defined types directly.

2.5.1 Modules Defining Types [tour.types]

Programming with modules leads to the centralization of all data of a type under the control of a
type manager module. For example, if we wanted many stacks– rather than the single one pro-
vided by theS St ta ac ck k module above– we could define a stack manager with an interface like this:

n na am me es sp pa ac ce e S St ta ac ck k {
s st tr ru uc ct t R Re ep p; / / definition of stack layout is elsewhere
t ty yp pe ed de ef f R Re ep p& s st ta ac ck k;

s st ta ac ck k c cr re ea at te e() ; / / make a new stack
v vo oi id d d de es st tr ro oy y(s st ta ac ck k s s) ; / / delete s

v vo oi id d p pu us sh h(s st ta ac ck k s s, c ch ha ar r c c) ; / / push c onto s
c ch ha ar r p po op p(s st ta ac ck k s s) ; / / pop s

}

The declaration

s st tr ru uc ct t R Re ep p;

says thatR Re ep p is the name of a type, but it leaves the type to be defined later (§5.7). The declaration

t ty yp pe ed de ef f R Re ep p& s st ta ac ck k;

gives the names st ta ac ck k to a ‘‘reference toR Re ep p’’ (details in §5.5). The idea is that a stack is identified
by itsS St ta ac ck k: : s st ta ac ck k and that further details are hidden from users.

A S St ta ac ck k: : s st ta ac ck k acts much like a variable of a built-in type:

s st tr ru uc ct t B Ba ad d_ _p po op p { };

v vo oi id d f f()
{

S St ta ac ck k: : s st ta ac ck k s s1 1 = S St ta ac ck k: : c cr re ea at te e() ; / / make a new stack
S St ta ac ck k: : s st ta ac ck k s s2 2 = S St ta ac ck k: : c cr re ea at te e() ; / / make another new stack

S St ta ac ck k: : p pu us sh h(s s1 1,´ c c´) ;
S St ta ac ck k: : p pu us sh h(s s2 2,´ k k´) ;

i if f (S St ta ac ck k: : p po op p(s s1 1) != ´ c c´) t th hr ro ow w B Ba ad d_ _p po op p() ;
i if f (S St ta ac ck k: : p po op p(s s2 2) != ´ k k´) t th hr ro ow w B Ba ad d_ _p po op p() ;

S St ta ac ck k: : d de es st tr ro oy y(s s1 1) ;
S St ta ac ck k: : d de es st tr ro oy y(s s2 2) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.5.1 Modules Defining Types 31

We could implement thisS St ta ac ck k in several ways. It is important that a user doesn’t need to know
how we do it. As long as we keep the interface unchanged, a user will not be affected if we decide
to re-implementS St ta ac ck k.

An implementation might preallocate a few stack representations and letS St ta ac ck k: : c cr re ea at te e() hand
out a reference to an unused one.S St ta ac ck k: : d de es st tr ro oy y() could then mark a representation ‘‘unused’’
so thatS St ta ac ck k: : c cr re ea at te e() can recycle it:

n na am me es sp pa ac ce e S St ta ac ck k { / / representation

c co on ns st t i in nt t m ma ax x_ _s si iz ze e = 2 20 00 0;

s st tr ru uc ct t R Re ep p {
c ch ha ar r v v[m ma ax x_ _s si iz ze e] ;
i in nt t t to op p;

};

c co on ns st t i in nt t m ma ax x = 1 16 6; / / maximum number of stacks

R Re ep p s st ta ac ck ks s[m ma ax x] ; / / preallocated stack representations
b bo oo ol l u us se ed d[m ma ax x] ; / / used[i] is true if stacks[i] is in use

}

v vo oi id d S St ta ac ck k: : p pu us sh h(s st ta ac ck k s s, c ch ha ar r c c) { /* check s for overflow and push c*/ }

c ch ha ar r S St ta ac ck k: : p po op p(s st ta ac ck k s s) { /* check s for underflow and pop*/ }

S St ta ac ck k: : s st ta ac ck k S St ta ac ck k: : c cr re ea at te e()
{

/ / pick an unused Rep, mark it used, initialize it, and return a reference to it
}

v vo oi id d S St ta ac ck k: : d de es st tr ro oy y(s st ta ac ck k s s) { /* mark s unused*/ }

What we have done is to wrap a set of interface functions around the representation type. How the
resulting ‘‘stack type’’ behaves depends partly on how we defined these interface functions, partly
on how we presented the representation type to the users ofS St ta ac ck ks, and partly on the design of the
representation type itself.

This is often less than ideal. A significant problem is that the presentation of such ‘‘fake types’’
to the users can vary greatly depending on the details of the representation type– and users ought
to be insulated from knowledge of the representation type. For example, had we chosen to use a
more elaborate data structure to identify a stack, the rules for assignment and initialization of
S St ta ac ck k: : s st ta ac ck ks would have changed dramatically. This may indeed be desirable at times. How-
ever, it shows that we have simply moved the problem of providing convenientS St ta ac ck ks from the
S St ta ac ck k module to theS St ta ac ck k: : s st ta ac ck k representation type.

More fundamentally, user-defined types implemented through a module providing access to an
implementation type don’t behave like built-in types and receive less and different support than do
built-in types. For example, the time that aS St ta ac ck k: : R Re ep p can be used is controlled through
S St ta ac ck k: : c cr re ea at te e() andS St ta ac ck k: : d de es st tr ro oy y() rather than by the usual language rules.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

32 A Tour of C++ Chapter 2

2.5.2 User-Defined Types [tour.udt]

C++ attacks this problem by allowing a user to directly define types that behave in (nearly) the
same way as built-in types. Such a type is often called anabstract data type. I prefer the term
user-defined type. A more reasonable definition ofabstract data typewould require a mathemati-
cal ‘‘abstract’’ specification. Given such a specification, what are calledtypeshere would be con-
crete examples of such truly abstract entities. The programming paradigm becomes:

Decide which types you want;
provide a full set of operations for each type.

Where there is no need for more than one object of a type, the data-hiding programming style using
modules suffices.

Arithmetic types such as rational and complex numbers are common examples of user-defined
types. Consider:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r, d do ou ub bl le e i i) { r re e=r r; i im m=i i; } / / construct complex from two scalars
c co om mp pl le ex x(d do ou ub bl le e r r) { r re e=r r; i im m=0 0; } / / construct complex from one scalar
c co om mp pl le ex x() { r re e = i im m = 0 0; } / / default complex: (0,0)

f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, c co om mp pl le ex x) ;
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r-(c co om mp pl le ex x, c co om mp pl le ex x) ; / / binary
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r-(c co om mp pl le ex x) ; / / unary
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r*(c co om mp pl le ex x, c co om mp pl le ex x) ;
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r/(c co om mp pl le ex x, c co om mp pl le ex x) ;

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x, c co om mp pl le ex x) ; / / equal
f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co om mp pl le ex x, c co om mp pl le ex x) ; / / not equal
/ / ...

};

The declaration of class (that is, user-defined type)c co om mp pl le ex x specifies the representation of a com-
plex number and the set of operations on a complex number. The representation isprivate; that is,
r re e and i im m are accessible only to the functions specified in the declaration of classc co om mp pl le ex x. Such
functions can be defined like this:

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a1 1, c co om mp pl le ex x a a2 2)
{

r re et tu ur rn n c co om mp pl le ex x(a a1 1. r re e+a a2 2. r re e, a a1 1. i im m+a a2 2. i im m) ;
}

A member function with the same name as its class is called aconstructor. A constructor defines a
way to initialize an object of its class. Classc co om mp pl le ex x provides three constructors. One makes a
c co om mp pl le ex x from a d do ou ub bl le e, another takes a pair ofd do ou ub bl le es, and the third makes ac co om mp pl le ex x with a
default value.

Classc co om mp pl le ex x can be used like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.5.2 User-Defined Types 33

v vo oi id d f f(c co om mp pl le ex x z z)
{

c co om mp pl le ex x a a = 2 2. 3 3;
c co om mp pl le ex x b b = 1 1/ a a;
c co om mp pl le ex x c c = a a+b b* c co om mp pl le ex x(1 1, 2 2. 3 3) ;
/ / ...
i if f (c c != b b) c c = -(b b/ a a)+ 2 2* b b;

}

The compiler converts operators involvingc co om mp pl le ex x numbers into appropriate function calls. For
example,c c!= b b meanso op pe er ra at to or r!=(c c, b b) and1 1/ a a meanso op pe er ra at to or r/(c co om mp pl le ex x(1 1) , a a) .

Most, but not all, modules are better expressed as user-defined types.

2.5.3 Concrete Types [tour.concrete]

User-defined types can be designed to meet a wide variety of needs. Consider a user-definedS St ta ac ck k
type along the lines of thec co om mp pl le ex x type. To make the example a bit more realistic, thisS St ta ac ck k type
is defined to take its number of elements as an argument:

c cl la as ss s S St ta ac ck k {
c ch ha ar r* v v;
i in nt t t to op p;
i in nt t m ma ax x_ _s si iz ze e;

p pu ub bl li ic c:
c cl la as ss s U Un nd de er rf fl lo ow w { }; / / used as exception
c cl la as ss s O Ov ve er rf fl lo ow w { }; / / used as exception
c cl la as ss s B Ba ad d_ _s si iz ze e { }; / / used as exception

S St ta ac ck k(i in nt t s s) ; / / constructor
~S St ta ac ck k() ; / / destructor

v vo oi id d p pu us sh h(c ch ha ar r c c) ;
c ch ha ar r p po op p() ;

};

The constructorS St ta ac ck k(i in nt t) will be called whenever an object of the class is created. This takes
care of initialization. If any cleanup is needed when an object of the class goes out of scope, a com-
plement to the constructor– called thedestructor– can be declared:

S St ta ac ck k: : S St ta ac ck k(i in nt t s s) / / constructor
{

t to op p = 0 0;
i if f (1 10 00 00 00 0<s s) t th hr ro ow w B Ba ad d_ _s si iz ze e() ;
m ma ax x_ _s si iz ze e = s s;
v v = n ne ew w c ch ha ar r[s s] ; / / allocate elements on the free store (heap, dynamic store)

}

S St ta ac ck k: :~ S St ta ac ck k() / / destructor
{

d de el le et te e[] v v; / / free the elements for possible reuse of their space (§6.2.6)
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

34 A Tour of C++ Chapter 2

The constructor initializes a newS St ta ac ck k variable. To do so, it allocates some memory on the free
store (also called theheapor dynamic store) using then ne ew w operator. The destructor cleans up by
freeing that memory. This is all done without intervention by users ofS St ta ac ck ks. The users simply
create and useS St ta ac ck ks much as they would variables of built-in types. For example:

S St ta ac ck k s s_ _v va ar r1 1(1 10 0) ; / / global stack with 10 elements

v vo oi id d f f(S St ta ac ck k& s s_ _r re ef f, i in nt t i i) / / reference to Stack
{

S St ta ac ck k s s_ _v va ar r2 2(i i) ; / / local stack with i elements
S St ta ac ck k* s s_ _p pt tr r = n ne ew w S St ta ac ck k(2 20 0) ; / / pointer to Stack allocated on free store

s s_ _v va ar r1 1. p pu us sh h(´ a a´) ;
s s_ _v va ar r2 2. p pu us sh h(´ b b´) ;
s s_ _r re ef f. p pu us sh h(´ c c´) ;
s s_ _p pt tr r-> p pu us sh h(´ d d´) ;
/ / ...

}

This S St ta ac ck k type obeys the same rules for naming, scope, allocation, lifetime, copying, etc., as does
a built-in type such asi in nt t andc ch ha ar r.

Naturally, thep pu us sh h() andp po op p() member functions must also be defined somewhere:

v vo oi id d S St ta ac ck k: : p pu us sh h(c ch ha ar r c c)
{

i if f (t to op p == m ma ax x_ _s si iz ze e) t th hr ro ow w O Ov ve er rf fl lo ow w() ;
v v[t to op p] = c c;
t to op p = t to op p + 1 1;

}

c ch ha ar r S St ta ac ck k: : p po op p()
{

i if f (t to op p == 0 0) t th hr ro ow w U Un nd de er rf fl lo ow w() ;
t to op p = t to op p - 1 1;
r re et tu ur rn n v v[t to op p] ;

}

Types such asc co om mp pl le ex x andS St ta ac ck k are calledconcrete types, in contrast toabstract types, where the
interface more completely insulates a user from implementation details.

2.5.4 Abstract Types [tour.abstract]

One property was lost in the transition fromS St ta ac ck k as a ‘‘fake type’’ implemented by a module
(§2.5.1) to a proper type (§2.5.3). The representation is not decoupled from the user interface;
rather, it is a part of what would be included in a program fragment usingS St ta ac ck ks. The representa-
tion is private, and therefore accessible only through the member functions, but it is present. If it
changes in any significant way, a user must recompile. This is the price to pay for having concrete
types behave exactly like built-in types. In particular, we cannot have genuine local variables of a
type without knowing the size of the type’s representation.

For types that don’t change often, and where local variables provide much-needed clarity and
efficiency, this is acceptable and often ideal. However, if we want to completely isolate users of a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.5.4 Abstract Types 35

stack from changes to its implementation, this lastS St ta ac ck k is insufficient. Then, the solution is to
decouple the interface from the representation and give up genuine local variables.

First, we define the interface:

c cl la as ss s S St ta ac ck k {
p pu ub bl li ic c:

c cl la as ss s U Un nd de er rf fl lo ow w { }; / / used as exception
c cl la as ss s O Ov ve er rf fl lo ow w { }; / / used as exception

v vi ir rt tu ua al l v vo oi id d p pu us sh h(c ch ha ar r c c) = 0 0;
v vi ir rt tu ua al l c ch ha ar r p po op p() = 0 0;

};

The wordv vi ir rt tu ua al l means ‘‘may be redefined later in a class derived from this one’’ in Simula and
C++. A class derived fromS St ta ac ck k provides an implementation for theS St ta ac ck k interface. The curious
=0 0 syntax says that some class derived fromS St ta ac ck k mustdefine the function. Thus, thisS St ta ac ck k can
serve as the interface to any class that implements itsp pu us sh h() andp po op p() functions.

This S St ta ac ck k could be used like this:

v vo oi id d f f(S St ta ac ck k& s s_ _r re ef f)
{

s s_ _r re ef f. p pu us sh h(´ c c´) ;
i if f (s s_ _r re ef f. p po op p() != ´ c c´) t th hr ro ow w b ba ad d_ _s st ta ac ck k() ;

}

Note howf f() uses theS St ta ac ck k interface in complete ignorance of implementation details. A class
that provides the interface to a variety of other classes is often called apolymorphic type.

Not surprisingly, the implementation could consist of everything from the concrete classS St ta ac ck k
that we left out of the interfaceS St ta ac ck k:

c cl la as ss s A Ar rr ra ay y_ _s st ta ac ck k : p pu ub bl li ic c S St ta ac ck k { / / Array_stack implements Stack
c ch ha ar r* p p;
i in nt t m ma ax x_ _s si iz ze e;
i in nt t t to op p;

p pu ub bl li ic c:
A Ar rr ra ay y_ _s st ta ac ck k(i in nt t s s) ;
~A Ar rr ra ay y_ _s st ta ac ck k() ;

v vo oi id d p pu us sh h(c ch ha ar r c c) ;
c ch ha ar r p po op p() ;

};

The ‘‘: p pu ub bl li ic c’’ can be read as ‘‘is derived from,’’ ‘‘implements,’’ and ‘‘is a subtype of.’’
For a function likef f() to use aS St ta ac ck k in complete ignorance of implementation details, some

other function will have to make an object on which it can operate. For example:

v vo oi id d g g()
{

A Ar rr ra ay y_ _s st ta ac ck k a as s(2 20 00 0) ;
f f(a as s) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

36 A Tour of C++ Chapter 2

Sincef f() doesn’t know aboutA Ar rr ra ay y_ _s st ta ac ck ks but only knows theS St ta ac ck k interface, it will work just as
well for a different implementation of aS St ta ac ck k. For example:

c cl la as ss s L Li is st t_ _s st ta ac ck k : p pu ub bl li ic c S St ta ac ck k { / / List_stack implements Stack
l li is st t<c ch ha ar r> l lc c; / / (standard library) list of characters (§3.7.3)

p pu ub bl li ic c:
L Li is st t_ _s st ta ac ck k() { }

v vo oi id d p pu us sh h(c ch ha ar r c c) { l lc c. p pu us sh h_ _f fr ro on nt t(c c) ; }
c ch ha ar r p po op p() ;

};

c ch ha ar r L Li is st t_ _s st ta ac ck k: : p po op p()
{

c ch ha ar r x x = l lc c. f fr ro on nt t() ; / / get first element
l lc c. p po op p_ _f fr ro on nt t() ; / / remove first element
r re et tu ur rn n x x;

}

Here, the representation is a list of characters. Thel lc c. p pu us sh h_ _f fr ro on nt t(c c) addsc c as the first element of
l lc c, the calll lc c. p po op p_ _f fr ro on nt t() removes the first element, andl lc c. f fr ro on nt t() denotesl lc c’s first element.

A function can create aL Li is st t_ _s st ta ac ck k and havef f() use it:

v vo oi id d h h()
{

L Li is st t_ _s st ta ac ck k l ls s;
f f(l ls s) ;

}

2.5.5 Virtual Functions [tour.virtual]

How is the calls s_ _s se et t. p po op p() in f f() resolved to the right function definition? Whenf f() is called
from h h() , L Li is st t_ _s st ta ac ck k: : p po op p() must be called. Whenf f() is called from g g() ,
A Ar rr ra ay y_ _s st ta ac ck k: : p po op p() must be called. To achieve this resolution, aS St ta ac ck k object must contain
information to indicate the function to be called at run-time. A common implementation technique
is for the compiler to convert the name of av vi ir rt tu ua al l function into an index into a table of pointers to
functions. That table is usually called ‘‘a virtual function table’’ or simply, av vt tb bl l. Each class with
virtual functions has its ownv vt tb bl l identifying its virtual functions. This can be represented graphi-
cally like this:

p p
m ma ax x_ _s si iz ze e

t to op p

. .
A Ar rr ra ay y_ _s st ta ac ck k:: p pu us sh h()

A Ar rr ra ay y_ _s st ta ac ck k:: p po op p()

v vt tb bl l: : A Ar rr ra ay y_ _s st ta ac ck k o ob bj je ec ct t: :
..

l lc c

. .
L Li is st t_ _s st ta ac ck k:: p pu us sh h()

L Li is st t_ _s st ta ac ck k:: p po op p()

v vt tb bl l: : L Li is st t_ _s st ta ac ck k o ob bj je ec ct t: :
..

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.5.5 Virtual Functions 37

The functions in thev vt tb bl l allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. All the caller needs to know is the location of the
v vt tb bl l in a S St ta ac ck k and the index used for each virtual function. This virtual call mechanism can be
made essentially as efficient as the ‘‘normal function call’’ mechanism. Its space overhead is one
pointer in each object of a class with virtual functions plus onev vt tb bl l for each such class.

2.6 Object-Oriented Programming[tour.oop]

Data abstraction is fundamental to good design and will remain a focus of design throughout this
book. However, user-defined types by themselves are not flexible enough to serve our needs. This
section first demonstrates a problem with simple user-defined data types and then shows how to
overcome that problem by using class hierarchies.

2.6.1 Problems with Concrete Types [tour.problems]

A concrete type, like a ‘‘fake type’’ defined through a module, defines a sort of black box. Once
the black box has been defined, it does not really interact with the rest of the program. There is no
way of adapting it to new uses except by modifying its definition. This situation can be ideal, but it
can also lead to severe inflexibility. Consider defining a typeS Sh ha ap pe e for use in a graphics system.
Assume for the moment that the system has to support circles, triangles, and squares. Assume also
that we have

c cl la as ss s P Po oi in nt t{ /* ... */ };
c cl la as ss s C Co ol lo or r{ /* ... */ };

The /* and*/ specify the beginning and end, respectively, of a comment. This comment notation
can be used for multi-line comments and comments that end before the end of a line.

We might define a shape like this:

e en nu um m K Ki in nd d { c ci ir rc cl le e, t tr ri ia an ng gl le e, s sq qu ua ar re e }; / / enumeration (§4.8)

c cl la as ss s S Sh ha ap pe e {
K Ki in nd d k k; / / type field
P Po oi in nt t c ce en nt te er r;
C Co ol lo or r c co ol l;
/ / ...

p pu ub bl li ic c:
v vo oi id d d dr ra aw w() ;
v vo oi id d r ro ot ta at te e(i in nt t) ;
/ / ...

};

The ‘‘type field’’ k k is necessary to allow operations such asd dr ra aw w() and r ro ot ta at te e() to determine
what kind of shape they are dealing with (in a Pascal-like language, one might use a variant record
with tagk k). The functiond dr ra aw w() might be defined like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

38 A Tour of C++ Chapter 2

v vo oi id d S Sh ha ap pe e: : d dr ra aw w()
{

s sw wi it tc ch h (k k) {
c ca as se e c ci ir rc cl le e:

/ / draw a circle
b br re ea ak k;

c ca as se e t tr ri ia an ng gl le e:
/ / draw a triangle
b br re ea ak k;

c ca as se e s sq qu ua ar re e:
/ / draw a square
b br re ea ak k;

}
}

This is a mess. Functions such asd dr ra aw w() must ‘‘know about’’ all the kinds of shapes there are.
Therefore, the code for any such function grows each time a new shape is added to the system. If
we define a new shape, every operation on a shape must be examined and (possibly) modified. We
are not able to add a new shape to a system unless we have access to the source code for every
operation. Because adding a new shape involves ‘‘touching’’ the code of every important operation
on shapes, doing so requires great skill and potentially introduces bugs into the code that handles
other (older) shapes. The choice of representation of particular shapes can get severely cramped by
the requirement that (at least some of) their representation must fit into the typically fixed-sized
framework presented by the definition of the general typeS Sh ha ap pe e.

2.6.2 Class Hierarchies [tour.hierarchies]

The problem is that there is no distinction between the general properties of every shape (that is, a
shape has a color, it can be drawn, etc.) and the properties of a specific kind of shape (a circle is a
shape that has a radius, is drawn by a circle-drawing function, etc.). Expressing this distinction and
taking advantage of it defines object-oriented programming. Languages with constructs that allow
this distinction to be expressed and used support object-oriented programming. Other languages
don’t.

The inheritance mechanism (borrowed for C++ from Simula) provides a solution. First, we
specify a class that defines the general properties of all shapes:

c cl la as ss s S Sh ha ap pe e {
P Po oi in nt t c ce en nt te er r;
C Co ol lo or r c co ol l;
/ / ...

p pu ub bl li ic c:
P Po oi in nt t w wh he er re e() { r re et tu ur rn n c ce en nt te er r; }
v vo oi id d m mo ov ve e(P Po oi in nt t t to o) { c ce en nt te er r = t to o; /* ... */ d dr ra aw w() ; }

v vi ir rt tu ua al l v vo oi id d d dr ra aw w() = 0 0;
v vi ir rt tu ua al l v vo oi id d r ro ot ta at te e(i in nt t a an ng gl le e) = 0 0;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.6.2 Class Hierarchies 39

As in the abstract typeS St ta ac ck k in §2.5.4, the functions for which the calling interface can be defined
– but where the implementation cannot be defined yet– arev vi ir rt tu ua al l. In particular, the functions
d dr ra aw w() andr ro ot ta at te e() can be defined only for specific shapes, so they are declaredv vi ir rt tu ua al l.

Given this definition, we can write general functions manipulating vectors of pointers to shapes:

v vo oi id d r ro ot ta at te e_ _a al ll l(v ve ec ct to or r<S Sh ha ap pe e*>& v v, i in nt t a an ng gl le e) / / rotate v’s elements angle degrees
{

f fo or r (i in nt t i i = 0 0; i i<v v. s si iz ze e() ; ++i i) v v[i i]-> r ro ot ta at te e(a an ng gl le e) ;
}

To define a particular shape, we must say that it is a shape and specify its particular properties
(including the virtual functions):

c cl la as ss s C Ci ir rc cl le e : p pu ub bl li ic c S Sh ha ap pe e {
i in nt t r ra ad di iu us s;

p pu ub bl li ic c:
v vo oi id d d dr ra aw w() { /* ... */ }
v vo oi id d r ro ot ta at te e(i in nt t) {} / / yes, the null function

};

In C++, classC Ci ir rc cl le e is said to bederivedfrom classS Sh ha ap pe e, and classS Sh ha ap pe e is said to be abaseof
classC Ci ir rc cl le e. An alternative terminology callsC Ci ir rc cl le e andS Sh ha ap pe e subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to asinheritance.

The programming paradigm is:

Decide which classes you want;
provide a full set of operations for each class;

make commonality explicit by using inheritance.

Where there is no such commonality, data abstraction suffices. The amount of commonality
between types that can be exploited by using inheritance and virtual functions is the litmus test of
the applicability of object-oriented programming to a problem. In some areas, such as interactive
graphics, there is clearly enormous scope for object-oriented programming. In other areas, such as
classical arithmetic types and computations based on them, there appears to be hardly any scope for
more than data abstraction, and the facilities needed for the support of object-oriented programming
seem unnecessary.

Finding commonality among types in a system is not a trivial process. The amount of common-
ality to be exploited is affected by the way the system is designed. When a system is designed–
and even when the requirements for the system are written– commonality must be actively sought.
Classes can be designed specifically as building blocks for other types, and existing classes can be
examined to see if they exhibit similarities that can be exploited in a common base class.

For attempts to explain what object-oriented programming is without recourse to specific pro-
gramming language constructs, see [Kerr,1987] and [Booch,1994] in §23.6.

Class hierarchies and abstract classes (§2.5.4) complement each other instead of being mutually
exclusive (§12.5). In general, the paradigms listed here tend to be complementary and often

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

40 A Tour of C++ Chapter 2

mutually supportive. For example, classes and modules contain functions, while modules contain
classes and functions. The experienced designer applies a variety of paradigms as need dictates.

2.7 Generic Programming[tour.generic]

Someone who wants a stack is unlikely always to want a stack of characters. A stack is a general
concept, independent of the notion of a character. Consequently, it ought to be represented inde-
pendently.

More generally, if an algorithm can be expressed independently of representation details and if
it can be done so affordably and without logical contortions, it ought to be done so.

The programming paradigm is:

Decide which algorithms you want;
parameterize them so that they work for

a variety of suitable types and data structures.

2.7.1 Containers [tour.containers]

We can generalize a stack-of-characters type to a stack-of-anything type by making it atemplate
and replacing the specific typec ch ha ar r with a template parameter. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S St ta ac ck k {
T T* v v;
i in nt t m ma ax x_ _s si iz ze e;
i in nt t t to op p;

p pu ub bl li ic c:
c cl la as ss s U Un nd de er rf fl lo ow w { };
c cl la as ss s O Ov ve er rf fl lo ow w { };

S St ta ac ck k(i in nt t s s) ; / / constructor
~S St ta ac ck k() ; / / destructor

v vo oi id d p pu us sh h(T T) ;
T T p po op p() ;

};

Thet te em mp pl la at te e<c cl la as ss s T T> prefix makesT T a parameter of the declaration it prefixes.
The member functions might be defined similarly:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d S St ta ac ck k<T T>: : p pu us sh h(T T c c)
{

i if f (t to op p == m ma ax x_ _s si iz ze e) t th hr ro ow w O Ov ve er rf fl lo ow w() ;
v v[t to op p] = c c;
t to op p = t to op p + 1 1;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.7.1 Containers 41

t te em mp pl la at te e<c cl la as ss s T T> T T S St ta ac ck k<T T>: : p po op p()
{

i if f (t to op p == 0 0) t th hr ro ow w U Un nd de er rf fl lo ow w() ;
t to op p = t to op p - 1 1;
r re et tu ur rn n v v[t to op p] ;

}

Given these definitions, we can use stacks like this:

S St ta ac ck k<c ch ha ar r> s sc c; / / stack of characters
S St ta ac ck k<c co om mp pl le ex x> s sc cp pl lx x; / / stack of complex numbers
S St ta ac ck k< l li is st t<i in nt t> > s sl li i; / / stack of list of integers

v vo oi id d f f()
{

s sc c. p pu us sh h(´ c c´) ;
i if f (s sc c. p po op p() != ´ c c´) t th hr ro ow w B Ba ad d_ _p po op p() ;

s sc cp pl lx x. p pu us sh h(c co om mp pl le ex x(1 1, 2 2)) ;
i if f (s sc cp pl lx x. p po op p() != c co om mp pl le ex x(1 1, 2 2)) t th hr ro ow w B Ba ad d_ _p po op p() ;

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates. A class
holding a collection of elements of some type is commonly called acontainer class, or simply a
container.

Templates are a compile-time mechanism so that their use incurs no run-time overhead com-
pared to ‘‘hand-written code.’’

2.7.2 Generic Algorithms [tour.algorithms]

The C++ standard library provides a variety of containers, and users can write their own (Chapter 3,
Chapter 17, Chapter 18). Thus, we find that we can apply the generic programming paradigm once
more to parameterize algorithms by containers. For example, we want to sort, copy, and search
v ve ec ct to or rs, l li is st ts, and arrays without having to writes so or rt t() , c co op py y() , ands se ea ar rc ch h() functions for each
container. We also don’t want to convert to a specific data structure accepted by a single sort func-
tion. Therefore, we must find a generalized way of defining our containers that allows us to manip-
ulate one without knowing exactly which kind of container it is.

One approach, the approach taken for the containers and non-numerical algorithms in the C++
standard library (§3.8, Chapter 18) is to focus on the notion of a sequence and manipulate
sequences through iterators.

Here is a graphical representation of the notion of a sequence:

begin end

...
.

..

.
elements:

A sequence has a beginning and an end. An iterator refers to an element, and provides an operation
that makes the iterator refer to the next element of the sequence. The end of a sequence is an

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

42 A Tour of C++ Chapter 2

iterator that refers one beyond the last element of the sequence. The physical representation of
‘‘the end’’ may be a sentinel element, but it doesn’t have to be. In fact, the point is that this notion
of sequences covers a wide variety of representations, including lists and arrays.

We need some standard notation for operations such as ‘‘access an element through an iterator’’
and ‘‘make the iterator refer to the next element.’’ The obvious choices (once you get the idea) are
to use the dereference operator* to mean ‘‘access an element through an iterator’’ and the incre-
ment operator++ to mean ‘‘make the iterator refer to the next element.’’

Given that, we can write code like this:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t> v vo oi id d c co op py y(I In n f fr ro om m, I In n t to oo o_ _f fa ar r, O Ou ut t t to o)
{

w wh hi il le e (f fr ro om m != t to oo o_ _f fa ar r) {
* t to o = * f fr ro om m; / / copy element pointed to
++t to o; / / next input
++f fr ro om m; / / next output

}
}

This copies any container for which we can define iterators with the right syntax and semantics.
C++’s built-in, low-level array and pointer types have the right operations for that, so we can

write

c ch ha ar r v vc c1 1[2 20 00 0] ; / / array of 200 characters
c ch ha ar r v vc c2 2[5 50 00 0] ; / / array of 500 characters

v vo oi id d f f()
{

c co op py y(& v vc c1 1[0 0] ,& v vc c1 1[2 20 00 0] ,& v vc c2 2[0 0]) ;
}

This copiesv vc c1 1 from its first element until its last intov vc c2 2 starting atv vc c2 2’s first element.
All standard library containers (§16.3, Chapter 17) support this notion of iterators and

sequences.
Two template parametersI In n andO Ou ut t are used to indicate the types of the source and the target

instead of a single argument. This was done because we often want to copy from one kind of con-
tainer into another. For example:

c co om mp pl le ex x a ac c[2 20 00 0] ;

v vo oi id d g g(v ve ec ct to or r<c co om mp pl le ex x>& v vc c, l li is st t<c co om mp pl le ex x>& l lc c)
{

c co op py y(& a ac c[0 0] ,& a ac c[2 20 00 0] , l lc c. b be eg gi in n()) ;
c co op py y(l lc c. b be eg gi in n() , l lc c. e en nd d() , v vc c. b be eg gi in n()) ;

}

This copies the array to thel li is st t and thel li is st t to thev ve ec ct to or r. For a standard container,b be eg gi in n() is an
iterator pointing to the first element.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 2.8 Postscript 43

2.8 Postscript[tour.post]

No programming language is perfect. Fortunately, a programming language does not have to be
perfect to be a good tool for building great systems. In fact, a general-purpose programming lan-
guage cannot be perfect for all of the many tasks to which it is put. What is perfect for one task is
often seriously flawed for another because perfection in one area implies specialization. Thus, C++
was designed to be a good tool for building a wide variety of systems and to allow a wide variety of
ideas to be expressed directly.

Not everything can be expressed directly using the built-in features of a language. In fact, that
isn’t even the ideal. Language features exist to support a variety of programming styles and tech-
niques. Consequently, the task of learning a language should focus on mastering the native and
natural styles for that language– not on the understanding of every little detail of all the language
features.

In practical programming, there is little advantage in knowing the most obscure language fea-
tures or for using the largest number of features. A single language feature in isolation is of little
interest. Only in the context provided by techniques and by other features does the feature acquire
meaning and interest. Thus, when reading the following chapters, please remember that the real
purpose of examining the details of C++ is to be able to use them in concert to support good pro-
gramming style in the context of sound designs.

2.9 Advice[tour.advice]

[1] Don’t panic! All will become clear in time; §2.1.
[2] You don’t have to know every detail of C++ to write good programs; §1.7.
[3] Focus on programming techniques, not on language features; §2.1.

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

44 A Tour of C++ Chapter 2

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

3
_ __ _______________________________________

A Tour of the Standard Library

Why waste time learning
when ignorance is instantaneous?

– Hobbes

Standard libraries— output— strings— input — vectors— range checking— lists —
maps— container overview— algorithms— iterators— I/O iterators— traversals and
predicates— algorithms using member functions— algorithm overview— complex
numbers— vector arithmetic— standard library overview— advice.

3.1 Introduction [tour2.lib]

No significant program is written in just a bare programming language. First, a set of supporting
libraries are developed. These then form the basis for further work.

Continuing Chapter 2, this chapter gives a quick tour of key library facilities to give you an idea
what can be done using C++ and its standard library. Useful library types, such ass st tr ri in ng g, v ve ec ct to or r,
l li is st t, andm ma ap p, are presented as well as the most common ways of using them. Doing this allows me
to give better examples and to set better exercises in the following chapters. As in Chapter 2, you
are strongly encouraged not to be distracted or discouraged by an incomplete understanding of
details. The purpose of this chapter is to give you a taste of what is to come and to convey an
understanding of the simplest uses of the most useful library facilities. A more detailed introduc-
tion to the standard library is given in §16.1.2.

The standard library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard C++ library, most implementations offer ‘‘graphical user inter-
face’’ systems, often referred to as GUIs or window systems, for interaction between a user and a
program. Similarly, most application development environments provide ‘‘foundation libraries’’
that support corporate or industrial ‘‘standard’’ development and/or execution environments. I do
not describe such systems and libraries. The intent is to provide a self-contained description of C++

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

46 A Tour of the Standard Library Chapter 3

as defined by the standard and to keep the examples portable, except where specifically noted. Nat-
urally, a programmer is encouraged to explore the more extensive facilities available on most sys-
tems, but that is left to exercises.

3.2 Hello, world! [tour2.hello]

The minimal C++ program is

i in nt t m ma ai in n() { }

It defines a function calledm ma ai in n, which takes no arguments and does nothing.
Every C++ program must have a function namedm ma ai in n() . The program starts by executing that

function. Thei in nt t value returned bym ma ai in n() , if any, is the program’s return value to ‘‘the system.’’
If no value is returned, the system will receive a value indicating successful completion. A nonzero
value fromm ma ai in n() indicates failure.

Typically, a program produces some output. Here is a program that writes outH He el ll lo o, w wo or rl ld d! :

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: : c co ou ut t << " H He el ll lo o, w wo or rl ld d! \ \n n";
}

The line#i in nc cl lu ud de e <i io os st tr re ea am m> instructs the compiler toincludethe declarations of the standard
stream I/O facilities as found ini io os st tr re ea am m. Without these declarations, the expression

s st td d: : c co ou ut t << " H He el ll lo o, w wo or rl ld d! \ \n n"

would make no sense. The operator<< (‘‘put to’’) writes its second argument onto its first. In this
case, the string literal" H He el ll lo o, w wo or rl ld d! \ \n n" is written onto the standard output streams st td d: : c co ou ut t. A
string literal is a sequence of characters surrounded by double quotes. In a string literal, the back-
slash character\ \ followed by another character denotes a single special character. In this case,\ \n n is
the newline character, so that the characters written areH He el ll lo o, w wo or rl ld d! followed by a newline.

3.3 The Standard Library Namespace[tour2.name]

The standard library is defined in a namespace (§2.4, §8.2) calleds st td d. That is why I wrote
s st td d: : c co ou ut t rather than plainc co ou ut t. I was being explicit about using thes st ta an nd da ar rd d c co ou ut t, rather than
some otherc co ou ut t.

Every standard library facility is provided through some standard header similar to<i io os st tr re ea am m>.
For example:

#i in nc cl lu ud de e<s st tr ri in ng g>
#i in nc cl lu ud de e<l li is st t>

This makes the standards st tr ri in ng g andl li is st t available. To use them, thes st td d: : prefix can be used:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.3 The Standard Library Namespace 47

s st td d: : s st tr ri in ng g s s = " F Fo ou ur r l le eg gs s G Go oo od d; t tw wo o l le eg gs s B Ba aa aa ad d!";
s st td d: : l li is st t<s st td d: : s st tr ri in ng g> s sl lo og ga an ns s;

For simplicity, I will rarely use thes st td d: : prefix explicitly in examples. Neither will I always
#i in nc cl lu ud de e the necessary headers explicitly. To compile and run the program fragments here, you
must #i in nc cl lu ud de e the appropriate headers (as listed in §3.7.5, §3.8.6, and Chapter 16). In addition,
you must either use thes st td d: : prefix or make every name froms st td d global (§8.2.3). For example:

#i in nc cl lu ud de e<s st tr ri in ng g> / / make the standard string facilities accessible
u us si in ng g n na am me es sp pa ac ce e s st td d; / / make std names available without std:: prefix

s st tr ri in ng g s s = " I Ig gn no or ra an nc ce e i is s b bl li is ss s!"; / / ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, to keep short the program fragments used to illustrate language and library features, I
omit repetitive#i in nc cl lu ud de es ands st td d: : qualifications. In this book, I use the standard library almost
exclusively, so if a name from the standard library is used, it either is a use of what the standard
offers or part of an explanation of how the standard facility might be defined.

3.4 Output [tour2.ostream]

The iostream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type. By default, values output toc co ou ut t are converted to a sequence of characters. For
example,

v vo oi id d f f()
{

c co ou ut t << 1 10 0;
}

will place the character1 1 followed by the character0 0 on the standard output stream. So will

v vo oi id d g g()
{

i in nt t i i = 1 10 0;
c co ou ut t << i i;

}

Output of different types can be combined in the obvious way:

v vo oi id d h h(i in nt t i i)
{

c co ou ut t << " t th he e v va al lu ue e o of f i i i is s ";
c co ou ut t << i i;
c co ou ut t << ´ \ \n n´;

}

If i i has the value1 10 0, the output will be

t th he e v va al lu ue e o of f i i i is s 1 10 0

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

48 A Tour of the Standard Library Chapter 3

A character constant is a character enclosed in single quotes. Note that a character constant is out-
put as a character rather than as a numerical value. For example,

v vo oi id d k k()
{

c co ou ut t << ´ a a´;
c co ou ut t << ´ b b´;
c co ou ut t << ´ c c´;

}

will output a ab bc c.
People soon tire of repeating the name of the output stream when outputting several related

items. Fortunately, the result of an output expression can itself be used for further output. For
example:

v vo oi id d h h2 2(i in nt t i i)
{

c co ou ut t << " t th he e v va al lu ue e o of f i i i is s " << i i << ´ \ \n n´;
}

This is equivalent toh h() . Streams are explained in more detail in Chapter 21.

3.5 Strings[tour2.string]

The standard library provides as st tr ri in ng g type to complement the string literals used earlier. The
s st tr ri in ng g type provides a variety of useful string operations, such as concatenation. For example:

s st tr ri in ng g s s1 1 = " H He el ll lo o";
s st tr ri in ng g s s2 2 = " w wo or rl ld d";

v vo oi id d m m1 1()
{

s st tr ri in ng g s s3 3 = s s1 1 + ", " + s s2 2 + "! \ \n n";

c co ou ut t << s s3 3;
}

Here,s s3 3 is initialized to the character sequence

H He el ll lo o, w wo or rl ld d!

followed by a newline. Addition of strings means concatenation. You can add strings, string liter-
als, and characters to a string.

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the+= operation. For example:

v vo oi id d m m2 2(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2)
{

s s1 1 = s s1 1 + ´ \ \n n´; / / append newline
s s2 2 += ´ \ \n n´; / / append newline

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.5 Strings 49

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more concise and likely to be more efficiently implemented.

Naturally,s st tr ri in ng gs can be compared against each other and against string literals. For example:

s st tr ri in ng g i in nc ca an nt ta at ti io on n;

v vo oi id d r re es sp po on nd d(c co on ns st t s st tr ri in ng g& a an ns sw we er r)
{

i if f (a an ns sw we er r == i in nc ca an nt ta at ti io on n) {
/ / perform magic

}
e el ls se e i if f (a an ns sw we er r == " y ye es s") {

/ / ...
}
/ / ...

}

The standard library string class is described in Chapter 20. Among other useful features, it pro-
vides the ability to manipulate substrings. For example:

s st tr ri in ng g n na am me e = " N Ni ie el ls s S St tr ro ou us st tr ru up p";

v vo oi id d m m3 3()
{

s st tr ri in ng g s s = n na am me e. s su ub bs st tr r(6 6, 1 10 0) ; / / s = "Stroustrup"
n na am me e. r re ep pl la ac ce e(0 0, 5 5," N Ni ic ch ho ol la as s") ; / / name becomes "Nicholas Stroustrup"

}

Thes su ub bs st tr r() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second argument is the length of
the desired substring. Since indexing starts from0 0, s s gets the valueS St tr ro ou us st tr ru up p.

Ther re ep pl la ac ce e() operation replaces a substring with a value. In this case, the substring starting at
0 0 with length5 5 is N Ni ie el ls s; it is replaced byN Ni ic ch ho ol la as s. Thus, the final value ofn na am me e is N Ni ic ch ho ol la as s
S St tr ro ou us st tr ru up p. Note that the replacement string need not be the same size as the substring that it is
replacing.

3.5.1 C-Style Strings [tour2.cstring]

A C-style string is a zero-terminated array of characters (§5.2.2). As shown, we can easily enter a
C-style string into as st tr ri in ng g. To call functions that take C-style strings, we need to be able to extract
the value of as st tr ri in ng g in the form of a C-style string. Thec c_ _s st tr r() function does that (§20.4.1). For
example, we can print then na am me eusing the C output functionp pr ri in nt tf f() (§21.8) like this:

v vo oi id d f f()
{

p pr ri in nt tf f(" n na am me e: %s s\ \n n", n na am me e. c c_ _s st tr r()) ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

50 A Tour of the Standard Library Chapter 3

3.6 Input [tour2.istream]

The standard library offersi is st tr re ea am ms for input. Likeo os st tr re ea am ms, i is st tr re ea am ms deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator>> (‘‘get from’’) is used as an input operator;c ci in n is the standard input stream.
The type of the right-hand operand of>> determines what input is accepted and what is the target
of the input operation. For example,

v vo oi id d f f()
{

i in nt t i i;
c ci in n >> i i; / / read an integer into i

d do ou ub bl le e d d;
c ci in n >> d d; / / read a double-precision, floating-point number into d

}

reads a number, such as1 12 23 34 4, from the standard input into the integer variablei i and a floating-
point number, such as1 12 2. 3 34 4e e5 5, into the double-precision, floating-point variabled d.

Here is an example that performs inch-to-centimeter and centimeter-to-inch conversions. You
input a number followed by a character indicating the unit: centimeters or inches. The program
then outputs the corresponding value in the other unit:

i in nt t m ma ai in n()
{

c co on ns st t f fl lo oa at t f fa ac ct to or r = 2 2. 5 54 4; / / 1 inch equals 2.54 cm
f fl lo oa at t x x, i in n, c cm m;
c ch ha ar r c ch h = 0 0;

c co ou ut t << " e en nt te er r l le en ng gt th h: ";

c ci in n >> x x; / / read a floating-point number
c ci in n >> c ch h; / / read a suffix

s sw wi it tc ch h (c ch h) {
c ca as se e ´ i i´: / / inch

i in n = x x;
c cm m = x x* f fa ac ct to or r;
b br re ea ak k;

c ca as se e ´ c c´: / / cm
i in n = x x/ f fa ac ct to or r;
c cm m = x x;
b br re ea ak k;

d de ef fa au ul lt t:
i in n = c cm m = 0 0;
b br re ea ak k;

}

c co ou ut t << i in n << " i in n = " << c cm m << " c cm m\ \n n";
}

Theswitch-statementtests a value against a set of constants. Thebreak-statements are used to exit

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.6 Input 51

theswitch-statement. The case constants must be distinct. If the value tested does not match any of
them, thed de ef fa au ul lt t is chosen. The programmer need not provide ad de ef fa au ul lt t.

Often, we want to read a sequence of characters. A convenient way of doing that is to read into
as st tr ri in ng g. For example:

i in nt t m ma ai in n()
{

s st tr ri in ng g s st tr r;

c co ou ut t << " P Pl le ea as se e e en nt te er r y yo ou ur r n na am me e\ \n n";
c ci in n >> s st tr r;
c co ou ut t << " H He el ll lo o, " << s st tr r << "! \ \n n";

}

If you type in

E Er ri ic c

the response is

H He el ll lo o, E Er ri ic c!

By default, a whitespace character (§5.2.2) such as a space terminates the read, so if you enter

E Er ri ic c B Bl lo oo od da ax xe e

pretending to be the ill-fated king of York, the response is still

H He el ll lo o, E Er ri ic c!

You can read a whole line using theg ge et tl li in ne e() function. For example:

i in nt t m ma ai in n()
{

s st tr ri in ng g s st tr r;

c co ou ut t << " P Pl le ea as se e e en nt te er r y yo ou ur r n na am me e\ \n n";
g ge et tl li in ne e(c ci in n, s st tr r) ;
c co ou ut t << " H He el ll lo o, " << s st tr r << "! \ \n n";

}

With this program, the input

E Er ri ic c B Bl lo oo od da ax xe e

yields the desired output:

H He el ll lo o, E Er ri ic c B Bl lo oo od da ax xe e!

The standard strings have the nice property of expanding to hold what you put in them, so if you
enter a couple of megabytes of semicolons, the program will echo pages of semicolons back at you
– unless your machine or operating system runs out of some critical resource first.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

52 A Tour of the Standard Library Chapter 3

3.7 Containers[tour2.stl]

Much computing involves creating collections of various forms of objects and then manipulating
such collections. Reading characters into a string and printing out the string is a simple example.
A class with the main purpose of holding objects is commonly called acontainer. Providing suit-
able containers for a given task and supporting them with useful fundamental operations are impor-
tant steps in the construction of any program.

To illustrate the standard library’s most useful containers, consider a simple program for keep-
ing names and telephone numbers. This is the kind of program for which different approaches
appear ‘‘simple and obvious’’ to people of different backgrounds.

3.7.1 Vector [tour2.vector]

For many C programmers, a built-in array of (name,number) pairs would seem to be a suitable
starting point:

s st tr ru uc ct t E En nt tr ry y {
s st tr ri in ng g n na am me e;
i in nt t n nu um mb be er r;

};

E En nt tr ry y p ph ho on ne e_ _b bo oo ok k[1 10 00 00 0] ;

v vo oi id d p pr ri in nt t_ _e en nt tr ry y(i in nt t i i) / / simple use
{

c co ou ut t << p ph ho on ne e_ _b bo oo ok k[i i]. n na am me e << ´ ´ << p ph ho on ne e_ _b bo oo ok k[i i]. n nu um mb be er r << ´ \ \n n´;
}

However, a built-in array has a fixed size. If we choose a large size, we waste space; if we choose a
smaller size, the array will overflow. In either case, we will have to write low-level memory-
management code. The standard library provides av ve ec ct to or r (§16.3) that takes care of that:

v ve ec ct to or r<E En nt tr ry y> p ph ho on ne e_ _b bo oo ok k(1 10 00 00 0) ;

v vo oi id d p pr ri in nt t_ _e en nt tr ry y(i in nt t i i) / / simple use, exactly as for array
{

c co ou ut t << p ph ho on ne e_ _b bo oo ok k[i i]. n na am me e << ´ ´ << p ph ho on ne e_ _b bo oo ok k[i i]. n nu um mb be er r << ´ \ \n n´;
}

v vo oi id d a ad dd d_ _e en nt tr ri ie es s(i in nt t n n) / / increase size by n
{

p ph ho on ne e_ _b bo oo ok k. r re es si iz ze e(p ph ho on ne e_ _b bo oo ok k. s si iz ze e()+ n n) ;
}

Thev ve ec ct to or r member functions si iz ze e() gives the number of elements.
Note the use of parentheses in the definition ofp ph ho on ne e_ _b bo oo ok k. We made a single object of type

v ve ec ct to or r<E En nt tr ry y> and supplied its initial size as an initializer. This is very different from declaring a
built-in array:

v ve ec ct to or r<E En nt tr ry y> b bo oo ok k(1 10 00 00 0) ; / / vector of 1000 elements
v ve ec ct to or r<E En nt tr ry y> b bo oo ok ks s[1 10 00 00 0] ; / / 1000 empty vectors

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.7.1 Vector 53

Should you make the mistake of using[] where you meant() when declaring av ve ec ct to or r, your com-
piler will almost certainly catch the mistake and issue an error message when you try to use the
v ve ec ct to or r.

A v ve ec ct to or r is a single object that can be assigned. For example:

v vo oi id d f f(v ve ec ct to or r<E En nt tr ry y>& v v)
{

v ve ec ct to or r<E En nt tr ry y> v v2 2 = p ph ho on ne e_ _b bo oo ok k;
v v = v v2 2;
/ / ...

}

Assigning av ve ec ct to or r involves copying its elements. Thus, after the initialization and assignment in
f f() , v v andv v2 2 each holds a separate copy of everyE En nt tr ry y in the phone book. When av ve ec ct to or r holds
many elements, such innocent-looking assignments and initializations can be prohibitively expen-
sive. Where copying is undesirable, references or pointers should be used.

3.7.2 Range Checking [tour2.range]

The standard libraryv ve ec ct to or r does not provide range checking by default (§16.3.3). For example:

v vo oi id d f f()
{

i in nt t i i = p ph ho on ne e_ _b bo oo ok k[1 10 00 01 1]. n nu um mb be er r; / / 1001 is out of range
/ / ...

}

The initialization is likely to place some random value ini i rather than giving an error. This is
undesirable, so I will use a simple range-checking adaptation ofv ve ec ct to or r, calledV Ve ec c, in the following
chapters. AV Ve ec c is like av ve ec ct to or r, except that it throws an exception of typeo ou ut t_ _o of f_ _r ra an ng ge e if a sub-
script is out of range.

Techniques for implementing types such asV Ve ec c and for using exceptions effectively are dis-
cussed in §11.12, §8.3, and Chapter 14. However, the definition here is sufficient for the examples
in this book:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec c : p pu ub bl li ic c v ve ec ct to or r<T T> {
p pu ub bl li ic c:

V Ve ec c() : v ve ec ct to or r<T T>() { }
V Ve ec c(i in nt t s s) : v ve ec ct to or r<T T>(s s) { }

T T& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n a at t(i i) ; } / / range-checked
c co on ns st t T T& o op pe er ra at to or r[](i in nt t i i) c co on ns st t { r re et tu ur rn n a at t(i i) ; } / / range-checked

};

Thea at t() operation is av ve ec ct to or r subscript operation that throws an exception of typeo ou ut t_ _o of f_ _r ra an ng ge e
if its argument is out of thev ve ec ct to or r’s range (§16.3.3).

Returning to the problem of keeping names and telephone numbers, we can now use aV Ve ec c to
ensure that out-of-range accesses are caught. For example:

V Ve ec c<E En nt tr ry y> p ph ho on ne e_ _b bo oo ok k(1 10 00 00 0) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

54 A Tour of the Standard Library Chapter 3

v vo oi id d p pr ri in nt t_ _e en nt tr ry y(i in nt t i i) / / simple use, exactly as for vector
{

c co ou ut t << p ph ho on ne e_ _b bo oo ok k[i i]. n na am me e << ´ ´ << p ph ho on ne e_ _b bo oo ok k[i i]. n nu um mb be er r << ´ \ \n n´;
}

An out-of-range access will throw an exception that the user can catch. For example:

v vo oi id d f f()
{

t tr ry y {
f fo or r (i in nt t i i = 0 0; i i<1 10 00 00 00 0; i i++) p pr ri in nt t_ _e en nt tr ry y(i i) ;

}
c ca at tc ch h (o ou ut t_ _o of f_ _r ra an ng ge e) {

c co ou ut t << " r ra an ng ge e e er rr ro or r\ \n n";
}

}

The exception will be thrown, and then caught, whenp ph ho on ne e_ _b bo oo ok k[i i] is tried withi i==1 10 00 00 0.
If the user doesn’t catch this kind of exception, the program will terminate in a well-defined manner
rather than proceeding or failing in an undefined manner. One way to minimize surprises from
exceptions is to use am ma ai in n() with a try-blockas its body:

i in nt t m ma ai in n()
t tr ry y {

/ / your code
}
c ca at tc ch h (o ou ut t_ _o of f_ _r ra an ng ge e) {

c ce er rr r << " r ra an ng ge e e er rr ro or r\ \n n";
}
c ca at tc ch h (...) {

c ce er rr r << " u un nk kn no ow wn n e ex xc ce ep pt ti io on n t th hr ro ow wn n\ \n n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output streamc ce er rr r (§21.2.1).

3.7.3 List [tour2.list]

Insertion and deletion of phone book entries could be common. Therefore, a list could be more
appropriate than a vector for representing a simple phone book. For example:

l li is st t<E En nt tr ry y> p ph ho on ne e_ _b bo oo ok k;

When we use a list, we tend not to access elements using subscripting the way we commonly do for
vectors. Instead, we might search the list looking for an element with a given value. To do this, we
take advantage of the fact that al li is st t is a sequence as described in §3.8:

v vo oi id d p pr ri in nt t_ _e en nt tr ry y(c co on ns st t s st tr ri in ng g& s s)
{

t ty yp pe ed de ef f l li is st t<E En nt tr ry y>: : c co on ns st t_ _i it te er ra at to or r L LI I;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.7.3 List 55

f fo or r (L LI I i i = p ph ho on ne e_ _b bo oo ok k. b be eg gi in n() ; i i != p ph ho on ne e_ _b bo oo ok k. e en nd d() ; ++i i) {
E En nt tr ry y& e e = * i i; / / reference used as shorthand
i if f (s s == e e. n na am me e) c co ou ut t << e e. n na am me e << ´ ´ << e e. n nu um mb be er r << ´ \ \n n´;

}
}

The search fors s starts at the beginning of the list and proceeds until eithers s is found or the end is
reached. Every standard library container provides the functionsb be eg gi in n() ande en nd d() , which return
an iterator to the first and to one-past-the-last element, respectively (§16.3.2). Given an iteratori i,
the next element is++i i. Given an iteratori i, the element it refers to is* i i.

A user need not know the exact type of the iterator for a standard container. That iterator type is
part of the definition of the container and can be referred to by name. When we don’t need to mod-
ify an element of the container,c co on ns st t_ _i it te er ra at to or r is the type we want. Otherwise, we use the plain
i it te er ra at to or r type (§16.3.1).

Adding elements to al li is st t is easy:

v vo oi id d a ad dd d_ _e en nt tr ry y(E En nt tr ry y& e e, l li is st t<E En nt tr ry y>: : i it te er ra at to or r i i)
{

p ph ho on ne e_ _b bo oo ok k. p pu us sh h_ _f fr ro on nt t(e e) ; / / add at beginning
p ph ho on ne e_ _b bo oo ok k. p pu us sh h_ _b ba ac ck k(e e) ; / / add at end
p ph ho on ne e_ _b bo oo ok k. i in ns se er rt t(i i, e e) ; / / add before the element ‘i’ refers to

}

3.7.4 Map [tour2.map]

Writing code to look up a name in a list of (name,number) pairs is really quite tedious. In addition,
a linear search is quite inefficient for all but the shortest lists. Other data structures directly support
insertion, deletion, and searching based on values. In particular, the standard library provides the
m ma ap p type (§17.4.1). Am ma ap p is a container of pairs of values. For example:

m ma ap p<s st tr ri in ng g, i in nt t> p ph ho on ne e_ _b bo oo ok k;

In other contexts, am ma ap p is known as an associative array or a dictionary.
When indexed by a value of its first type (called thekey) am ma ap p returns the corresponding value

of the second type (called thevalueor themapped type). For example:

v vo oi id d p pr ri in nt t_ _e en nt tr ry y(c co on ns st t s st tr ri in ng g& s s)
{

i if f (i in nt t i i = p ph ho on ne e_ _b bo oo ok k[s s]) c co ou ut t << s s << ´ ´ << i i << ´ \ \n n´;
}

If no match was found for the keys s, a default value is returned from thep ph ho on ne e_ _b bo oo ok k. The default
value for an integer type in am ma ap p is 0 0. Here, I assume that0 0 isn’t a valid telephone number.

3.7.5 Standard Containers [tour2.stdcontainer]

A m ma ap p, a l li is st t, and av ve ec ct to or r can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscripting av ve ec ct to or r is cheap and easy. On the other
hand, inserting an element between two elements tends to be expensive. Al li is st t has exactly the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

56 A Tour of the Standard Library Chapter 3

opposite properties. Am ma ap p resembles al li is st t of (key,value) pairs except that it is optimized for find-
ing values based on keys.

The standard library provides some of the most general and useful container types to allow the
programmer to select a container that best serves the needs of an application:

_ __
Standard Container Summary_ ___ __

v ve ec ct to or r< <T T> > A variable-sized vector (§16.3)
l li is st t< <T T> > A doubly-linked list (§17.2.2)
q qu ue eu ue e< <T T> > A queue (§17.3.2)
s st ta ac ck k< <T T> > A stack (§17.3.1)
d de eq qu ue e< <T T> > A double-ended queue (§17.2.3)
p pr ri io or ri it ty y_ _q qu ue eu ue e< <T T> > A queue sorted by value (§17.3.3)
s se et t< <T T> > A set (§17.4.3)
m mu ul lt ti is se et t< <T T> > A set in which a value can occur many times (§17.4.4)
m ma ap p< <k ke ey y, ,v va al l> > An associative array (§17.4.1)
m mu ul lt ti im ma ap p< <k ke ey y, ,v va al l> > A map in which a key can occur many times (§17.4.2)_ __ 




























The standard containers are presented in §16.2, §16.3, and Chapter 17. The containers are defined
in namespaces st td d and presented in headers<v ve ec ct to or r>, <l li is st t>, <m ma ap p>, etc. (§16.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. In general, basic operations apply to every kind of container. For example,p pu us sh h_ _b ba ac ck k() can
be used (reasonably efficiently) to add elements to the end of av ve ec ct to or r as well as for al li is st t, and
every container has as si iz ze e() member function that returns its number of elements.

This notational and semantic uniformity enables programmers to provide new container types
that can be used in a very similar manner to the standard ones. The range-checked vector,V Ve ec c
(§3.7.2), is an example of that. Chapter 17 demonstrates how ah ha as sh h_ _m ma ap p can be added to the
framework. The uniformity of container interfaces also allows us to specify algorithms indepen-
dently of individual container types.

3.8 Algorithms [tour2.algorithms]

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need oper-
ations for basic access such as adding and removing elements. Furthermore, we rarely just store
objects in a container. We sort them, print them, extract subsets, remove elements, search for
objects, etc. Consequently, the standard library provides the most common algorithms for contain-
ers in addition to providing the most common container types. For example, the following sorts a
v ve ec ct to or r and places a copy of each uniquev ve ec ct to or r element on al li is st t:

v vo oi id d f f(v ve ec ct to or r<E En nt tr ry y>& v ve e, l li is st t<E En nt tr ry y>& l le e)
{

s so or rt t(v ve e. b be eg gi in n() , v ve e. e en nd d()) ;
u un ni iq qu ue e_ _c co op py y(v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e. b be eg gi in n()) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8 Algorithms 57

The standard algorithms are described in Chapter 18. They are expressed in terms of sequences of
elements (§2.7.2). A sequence is represented by a pair of iterators specifying the first element and
the one-beyond-the-last element. In the example,s so or rt t() sorts the sequence fromv ve e. b be eg gi in n() to
v ve e. e en nd d() – which just happens to be all the elements of av ve ec ct to or r. For writing, you need only to
specify the first element to be written. If more than one element is written, the elements following
that initial element will be overwritten.

If we wanted to add the new elements to the end of a container, we could have written:

v vo oi id d f f(v ve ec ct to or r<E En nt tr ry y>& v ve e, l li is st t<E En nt tr ry y>& l le e)
{

s so or rt t(v ve e. b be eg gi in n() , v ve e. e en nd d()) ;
u un ni iq qu ue e_ _c co op py y(v ve e. b be eg gi in n() , v ve e. e en nd d() , b ba ac ck k_ _i in ns se er rt te er r(l le e)) ; / / append to le

}

A b ba ac ck k_ _i in ns se er rt te er r() adds elements at the end of a container, extending the container to make room
for them (§19.2.4). C programmers will appreciate that the standard containers plus
b ba ac ck k_ _i in ns se er rt te er r() s eliminate the need to use error-prone, explicit C-style memory management
using r re ea al ll lo oc c() (§16.3.5). Forgetting to use ab ba ac ck k_ _i in ns se er rt te er r() when appending can lead to
errors. For example:

v vo oi id d f f(l li is st t<E En nt tr ry y>& v ve e, v ve ec ct to or r<E En nt tr ry y>& l le e)
{

c co op py y(v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e) ; / / error: le not an iterator
c co op py y(v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e. e en nd d()) ; / / bad: writes beyond the end
c co op py y(v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e. b be eg gi in n()) ; / / overwrite elements

}

3.8.1 Use of Iterators [tour2.iteruse]

When you first encounter a container, a few iterators referring to useful elements can be obtained;
b be eg gi in n() ande en nd d() are the best examples of this. In addition, many algorithms return iterators.
For example, the standard algorithmf fi in nd d looks for a value in a sequence and returns an iterator to
the element found. Usingf fi in nd d, we can write a function that counts the number of occurrences of a
character in as st tr ri in ng g:

i in nt t c co ou un nt t(c co on ns st t s st tr ri in ng g& s s, c ch ha ar r c c)
{

s st tr ri in ng g: : c co on ns st t_ _i it te er ra at to or r i i = f fi in nd d(s s. b be eg gi in n() , s s. e en nd d() , c c) ;
i in nt t n n = 0 0;
w wh hi il le e (i i != s s. e en nd d()) {

++n n;
i i = f fi in nd d(i i+1 1, s s. e en nd d() , c c) ;

}
r re et tu ur rn n n n;

}

The f fi in nd d algorithm returns an iterator to the first occurrence of a value in a sequence or the one-
past-the-end iterator. Consider what happens for a simple call ofc co ou un nt t:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

58 A Tour of the Standard Library Chapter 3

v vo oi id d f f()
{

s st tr ri in ng g m m = " M Ma ar ry y h ha ad d a a l li it tt tl le e l la am mb b";
i in nt t a a_ _c co ou un nt t = c co ou un nt t(m m,´ a a´) ;

}

The first call tof fi in nd d() finds the´ a a´ in M Ma ar ry y. Thus, the iterator points to that character and not to
s s. e en nd d() , so we enter the loop. In the loop, we start the search ati i+1 1; that is, we start one past
where we found théa a´ . We then loop finding the other three´ a a´ s. That done,f fi in nd d() reaches
the end and returnss s. e en nd d() so that the conditioni i!= s s. e en nd d() fails and we exit the loop.

That call ofc co ou un nt t() could be graphically represented like this:

M a r y h a d a l i t t l e l a m b
.

..

.

The arrows indicate the initial, intermediate, and final values of the iteratori i.
Naturally, the f fi in nd d algorithm will work equivalently on every standard container. Conse-

quently, we could generalize thec co ou un nt t() function in the same way:

t te em mp pl la at te e<c cl la as ss s C C, c cl la as ss s T T> i in nt t c co ou un nt t(c co on ns st t C C& v v, T T v va al l)
{

t ty yp pe en na am me e C C: : c co on ns st t_ _i it te er ra at to or r i i = f fi in nd d(v v. b be eg gi in n() , v v. e en nd d() , v va al l) ; / / "typename;" see §C.13.5
i in nt t n n = 0 0;
w wh hi il le e (i i != v v. e en nd d()) {

++n n;
++i i; / / skip past the element we just found
i i = f fi in nd d(i i, v v. e en nd d() , v va al l) ;

}
r re et tu ur rn n n n;

}

This works, so we can say:

v vo oi id d f f(l li is st t<c co om mp pl le ex x>& l lc c, v ve ec ct to or r<s st tr ri in ng g>& v vc c, s st tr ri in ng g s s)
{

i in nt t i i1 1 = c co ou un nt t(l lc c, c co om mp pl le ex x(1 1, 3 3)) ;
i in nt t i i2 2 = c co ou un nt t(v vc c," C Ch hr ry ys si ip pp pu us s") ;
i in nt t i i3 3 = c co ou un nt t(s s,´ x x´) ;

}

However, we don’t have to define ac co ou un nt t template. Counting occurrences of an element is so gen-
erally useful that the standard library provides that algorithm. To be fully general, the standard
library c co ou un nt t takes a sequence as its argument, rather than a container, so we would say:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8.1 Use of Iterators 59

v vo oi id d f f(l li is st t<c co om mp pl le ex x>& l lc c, v ve ec ct to or r<s st tr ri in ng g>& v vs s, s st tr ri in ng g s s)
{

i in nt t i i1 1 = c co ou un nt t(l lc c. b be eg gi in n() , l lc c. e en nd d() , c co om mp pl le ex x(1 1, 3 3)) ;
i in nt t i i2 2 = c co ou un nt t(v vs s. b be eg gi in n() , v vs s. e en nd d() ," D Di io og ge en ne es s") ;
i in nt t i i3 3 = c co ou un nt t(s s. b be eg gi in n() , s s. e en nd d() ,´ x x´) ;

}

The use of a sequence allows us to usec co ou un nt t for a built-in array and also to count parts of a con-
tainer. For example:

v vo oi id d g g(c ch ha ar r c cs s[] , i in nt t s sz z)
{

i in nt t i i1 1 = c co ou un nt t(& c cs s[0 0] ,& c cs s[s sz z] ,´ z ź) ; / / ’z’s in array
i in nt t i i2 2 = c co ou un nt t(& c cs s[0 0] ,& c cs s[s sz z/ 2 2] ,´ z ź) ; / / ’z’s in first half of array

}

3.8.2 Iterator Types [tour2.iter]

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, av ve ec ct to or r’s iterator is most likely an ordinary pointer
because a pointer is quite a reasonable way of referring to an element of av ve ec ct to or r:

P i e t H e i n vector:

p iterator:

Alternatively, av ve ec ct to or r iterator could be implemented as a pointer to thev ve ec ct to or r plus an index:

P i e t H e i n vector:

(start == p, position == 3) iterator:
.

Using such an iterator would allow range checking (§19.3).
A list iterator must be something more complicated than a simple pointer to an element because

an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

60 A Tour of the Standard Library Chapter 3

link link link link ... list:

p iterator:

P i e t elements:

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying++ to any iterator yields an iterator that refers to the next element. Similarly,* yields
the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator (§19.2.1). Furthermore, users rarely need to know the type of a specific iterator; each
container ‘‘knows’’ its iterator types and makes them available under the conventional namesi it te er ra a- -
t to or r and c co on ns st t_ _i it te er ra at to or r. For example,l li is st t<E En nt tr ry y>: : i it te er ra at to or r is the general iterator type for
l li is st t<E En nt tr ry y>. I rarely have to worry about the details of how that type is defined.

3.8.3 Iterators and I/O [tour2.ioiterators]

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make ano os st tr re ea am m_ _i it te er ra at to or r, we need to specify which stream will be used and the type of
objects written to it. For example, we can define an iterator that refers to the standard output
stream,c co ou ut t:

o os st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> o oo o(c co ou ut t) ;

The effect of assigning to* o oo o is to write the assigned value toc co ou ut t. For example:

i in nt t m ma ai in n()
{

* o oo o = " H He el ll lo o, "; / / meaning cout<< "Hello, "
++o oo o;
* o oo o = " w wo or rl ld d! \ \n n"; / / meaning cout<< "world!\n"

}

This is yet another way of writing the canonical message to standard output. The++o oo o is done to
mimic writing into an array through a pointer. This way wouldn’t be my first choice for that simple
task, but the utility of treating output as a write-only container will soon be obvious– if it isn’t
already.

Similarly, an i is st tr re ea am m_ _i it te er ra at to or r is something that allows us to treat an input stream as a read-
only container. Again, we must specify the stream to be used and the type of values expected:

i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> i ii i(c ci in n) ;

Because input iterators invariably appear in pairs representing a sequence, we must provide an

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8.3 Iterators and I/O 61

i is st tr re ea am m_ _i it te er ra at to or r to indicate the end of input. This is the defaulti is st tr re ea am m_ _i it te er ra at to or r:

i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> e eo os s;

We could now readH He el ll lo o, w wo or rl ld d! from input and write it out again like this:

i in nt t m ma ai in n()
{

s st tr ri in ng g s s1 1 = * i ii i;
++i ii i;
s st tr ri in ng g s s2 2 = * i ii i;

c co ou ut t << s s1 1 << ´ ´ << s s2 2 << ´ \ \n n´;
}

Actually, i is st tr re ea am m_ _i it te er ra at to or rs ando os st tr re ea am m_ _i it te er ra at to or rs are not meant to be used directly. Instead, they
are typically provided as arguments to algorithms. For example, we can write a simple program to
read a file, sort the words read, eliminate duplicates, and write the result to another file:

i in nt t m ma ai in n()
{

s st tr ri in ng g f fr ro om m, t to o;
c ci in n >> f fr ro om m >> t to o; / / get source and target file names

i if fs st tr re ea am m i is s(f fr ro om m. c c_ _s st tr r()) ; / / input stream (c_str(); see §3.5)
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> i ii i(i is s) ; / / input iterator for stream
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> e eo os s; / / input sentinel

v ve ec ct to or r<s st tr ri in ng g> b b(i ii i, e eo os s) ; / / b is a vector initialized from input
s so or rt t(b b. b be eg gi in n() , b b. e en nd d()) ; / / sort the buffer

o of fs st tr re ea am m o os s(t to o. c c_ _s st tr r()) ; / / output stream
o os st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> o oo o(o os s," \ \n n") ; / / output iterator for stream

u un ni iq qu ue e_ _c co op py y(b b. b be eg gi in n() , b b. e en nd d() , o oo o) ; / / copy buffer to output,
/ / discard replicated values

r re et tu ur rn n ! i is s. e eo of f() && ! o os s; / / return error state (§3.2, §21.3.3)
}

An i if fs st tr re ea am m is ani is st tr re ea am m that can be attached to a file, and ano of fs st tr re ea am m is ano os st tr re ea am m that can be
attached to a file. Theo os st tr re ea am m_ _i it te er ra at to or r’s second argument is used to delimit output values.

3.8.4 Traversals and Predicates [tour2.traverse]

Iterators allow us to write loops to iterate through a sequence. However, writing loops can be
tedious, so the standard library provides ways for a function to be called for each element of a
sequence.

Consider writing a program that reads words from input and records the frequency of their
occurrence. The obvious representation of the strings and their associated frequencies is am ma ap p:

m ma ap p<s st tr ri in ng g, i in nt t> h hi is st to og gr ra am m;

The obvious action to be taken for each string to record its frequency is:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

62 A Tour of the Standard Library Chapter 3

v vo oi id d r re ec co or rd d(c co on ns st t s st tr ri in ng g& s s)
{

h hi is st to og gr ra am m[s s]++; / / record frequency of ‘‘s’’
}

Once the input has been read, we would like to output the data we have gathered. Them ma ap p consists
of a sequence of (string,int) pairs. Consequently, we would like to call

v vo oi id d p pr ri in nt t(c co on ns st t p pa ai ir r<c co on ns st t s st tr ri in ng g, i in nt t>& r r)
{

c co ou ut t << r r. f fi ir rs st t << ´ ´ << r r. s se ec co on nd d << ´ \ \n n´;
}

for each element in the map (the first element of ap pa ai ir r is calledf fi ir rs st t, and the second element is
calleds se ec co on nd d). The first element of thep pa ai ir r is ac co on ns st t s st tr ri in ng g rather than a plains st tr ri in ng g because all
m ma ap p keys are constants.

Thus, the main program becomes:

i in nt t m ma ai in n()
{

i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> i ii i(c ci in n) ;
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> e eo os s;

f fo or r_ _e ea ac ch h(i ii i, e eo os s, r re ec co or rd d) ;
f fo or r_ _e ea ac ch h(h hi is st to og gr ra am m. b be eg gi in n() , h hi is st to og gr ra am m. e en nd d() , p pr ri in nt t) ;

}

Note that we don’t need to sort them ma ap p to get the output in order. Am ma ap p keeps its elements
ordered so that an iteration traverses them ma ap p in (increasing) order.

Many programming tasks involve looking for something in a container rather than simply doing
something to every element. For example, thef fi in nd d algorithm (§18.5.2) provides a convenient way
of looking for a specific value. A more general variant of this idea looks for an element that fulfills
a specific requirement. For example, we might want to search am ma ap p for the first value larger than
4 42 2. A m ma ap p is a sequence of (key,value) pairs, so we search that list for ap pa ai ir r<c co on ns st t s st tr ri in ng g, i in nt t>
where thei in nt t is greater than4 42 2:

b bo oo ol l g gt t_ _4 42 2(c co on ns st t p pa ai ir r<c co on ns st t s st tr ri in ng g, i in nt t>& r r)
{

r re et tu ur rn n r r. s se ec co on nd d>4 42 2;
}

v vo oi id d f f(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

t ty yp pe ed de ef f m ma ap p<s st tr ri in ng g, i in nt t>: : c co on ns st t_ _i it te er ra at to or r M MI I;
M MI I i i = f fi in nd d_ _i if f(m m. b be eg gi in n() , m m. e en nd d() , g gt t_ _4 42 2) ;
/ / ...

}

Alternatively, we could count the number of words with a frequency higher than 42:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8.4 Traversals and Predicates 63

v vo oi id d g g(c co on ns st t m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

i in nt t c c4 42 2 = c co ou un nt t_ _i if f(m m. b be eg gi in n() , m m. e en nd d() , g gt t_ _4 42 2) ;
/ / ...

}

A function, such asg gt t_ _4 42 2() , that is used to control the algorithm is called apredicate. A predicate
is called for each element and returns a Boolean value, which the algorithm uses to perform its
intended action. For example,f fi in nd d_ _i if f() searches until its predicate returnst tr ru ue e to indicate that an
element of interest has been found. Similarly,c co ou un nt t_ _i if f() counts the number of times its predicate
is t tr ru ue e.

The standard library provides a few useful predicates and some templates that are useful for cre-
ating more (§18.4.2).

3.8.5 Algorithms Using Member Functions [tour2.memp]

Many algorithms apply a function to elements of a sequence. For example, in §3.8.4

f fo or r_ _e ea ac ch h(i ii i, e eo os s, r re ec co or rd d) ;

callsr re ec co or rd d() to read strings from input.
Often, we deal with containers of pointers and we really would like to call a member function of

the object pointed to, rather than a global function on the pointer. For example, we might want to
call the member functionS Sh ha ap pe e: : d dr ra aw w() for each element of al li is st t<S Sh ha ap pe e*> . To handle this
specific example, we simply write a nonmember function that invokes the member function. For
example:

v vo oi id d d dr ra aw w(S Sh ha ap pe e* p p)
{

p p-> d dr ra aw w() ;
}

v vo oi id d f f(l li is st t<S Sh ha ap pe e*>& s sh h)
{

f fo or r_ _e ea ac ch h(s sh h. b be eg gi in n() , s sh h. e en nd d() , d dr ra aw w) ;
}

By generalizing this technique, we can write the example like this:

v vo oi id d g g(l li is st t<S Sh ha ap pe e*>& s sh h)
{

f fo or r_ _e ea ac ch h(s sh h. b be eg gi in n() , s sh h. e en nd d() , m me em m_ _f fu un n(& S Sh ha ap pe e: : d dr ra aw w)) ;
}

The standard librarym me em m_ _f fu un n() template (§18.4.4.2) takes a pointer to a member function (§15.5)
as its argument and produces something that can be called for a pointer to the member’s class. The
result of m me em m_ _f fu un n(& S Sh ha ap pe e: : d dr ra aw w) takes a S Sh ha ap pe e* argument and returns whatever
S Sh ha ap pe e: : d dr ra aw w() returns.

Them me em m_ _f fu un n() mechanism is important because it allows the standard algorithms to be used
for containers of polymorphic objects.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

64 A Tour of the Standard Library Chapter 3

3.8.6 Standard Library Algorithms [tour2.algolist]

What is an algorithm? A general definition of an algorithm is ‘‘a finite set of rules which gives a
sequence of operations for solving a specific set of problems [and] has five important features:
Finiteness ... Definiteness ... Input ... Output ... Effectiveness’’ [Knuth,1968,§1.1]. In the context of
the C++ standard library, an algorithm is a set of templates operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
s st td d and presented in the<a al lg go or ri it th hm m> header. Here are a few I have found particularly useful:

_ ___
Selected Standard Algorithms_ __ ___

f fo or r_ _e ea ac ch h(()) Invoke function for each element (§18.5.1)
f fi in nd d(()) Find first occurrence of arguments (§18.5.2)
f fi in nd d_ _i if f(()) Find first match of predicate (§18.5.2)
c co ou un nt t(()) Count occurrences of element (§18.5.3)
c co ou un nt t_ _i if f(()) Count matches of predicate (§18.5.3)
r re ep pl la ac ce e(()) Replace element with new value (§18.6.4)
r re ep pl la ac ce e_ _i if f(()) Replace element that matches predicate with new value (§18.6.4)
c co op py y(()) Copy elements (§18.6.1)
u un ni iq qu ue e_ _c co op py y(()) Copy elements that are not duplicates (§18.6.1)
s so or rt t(()) Sort elements (§18.7.1)
e eq qu ua al l_ _r ra an ng ge e(()) Find all elements with equivalent values (§18.7.2)
m me er rg ge e(()) Merge sorted sequences (§18.7.3)_ ___ 


































These algorithms, and many more (see Chapter 18), can be applied to elements of containers,
s st tr ri in ng gs, and built-in arrays.

3.9 Math [tour2.math]

Like C, C++ wasn’t designed primarily with numerical computation in mind. However, a lot of
numerical work is done in C++, and the standard library reflects that.

3.9.1 Complex Numbers [tour2.complex]

The standard library supports a family of complex number types along the lines of thec co om mp pl le ex x
class described in §2.5.2. To support complex numbers where the scalars are single-precision,
floating-point numbers (f fl lo oa at ts), double precision numbers (d do ou ub bl le es), etc., the standard libraryc co om m- -
p pl le ex x is a template:

t te em mp pl la at te e<c cl la as ss s s sc ca al la ar r> c cl la as ss s c co om mp pl le ex x {
p pu ub bl li ic c:

c co om mp pl le ex x(s sc ca al la ar r r re e, s sc ca al la ar r i im m) ;
/ / ...

};

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.9.1 Complex Numbers 65

/ / standard exponentiation function from<complex>:
t te em mp pl la at te e<c cl la as ss s C C> c co om mp pl le ex x<C C> p po ow w(c co on ns st t c co om mp pl le ex x<C C>&, i in nt t) ;

v vo oi id d f f(c co om mp pl le ex x<f fl lo oa at t> f fl l, c co om mp pl le ex x<d do ou ub bl le e> d db b)
{

c co om mp pl le ex x<l lo on ng g d do ou ub bl le e> l ld d = f fl l+s sq qr rt t(d db b) ;
d db b += f fl l* 3 3;
f fl l = p po ow w(1 1/ f fl l, 2 2) ;
/ / ...

}

For more details, see §22.5.

3.9.2 Vector Arithmetic [tour2.valarray]

The v ve ec ct to or r described in §3.7.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does
not support mathematical vector operations. Adding such operations tov ve ec ct to or r would be easy, but
its generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides a vector, calledv va al la ar rr ra ay y, that is less
general and more amenable to optimization for numerical computation:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v va al la ar rr ra ay y {
/ / ...
T T& o op pe er ra at to or r[](s si iz ze e_ _t t) ;
/ / ...

};

The types si iz ze e_ _t t is the unsigned integer type that the implementation uses for array indices.
The usual arithmetic operations and the most common mathematical functions are supported for

v va al la ar rr ra ay ys. For example:

/ / standard absolute value function from<valarray>:
t te em mp pl la at te e<c cl la as ss s T T> v va al la ar rr ra ay y<T T> a ab bs s(c co on ns st t v va al la ar rr ra ay y<T T>&) ;

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& a a1 1, v va al la ar rr ra ay y<d do ou ub bl le e>& a a2 2)
{

v va al la ar rr ra ay y<d do ou ub bl le e> a a = a a1 1* 3 3. 1 14 4+a a2 2/ a a1 1;
a a2 2 += a a1 1* 3 3. 1 14 4;
a a = a ab bs s(a a) ;
d do ou ub bl le e d d = a a2 2[7 7] ;
/ / ...

}

For more details, see §22.4.

3.9.3 Basic Numeric Support [tour2.basicnum]

Naturally, the standard library contains the most common mathematical functions– such asl lo og g() ,
p po ow w() , and c co os s() – for floating-point types; see §22.3. In addition, classes that describe the
properties of built-in types– such as the maximum exponent of af fl lo oa at t – are provided; see §22.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

66 A Tour of the Standard Library Chapter 3

3.10 Standard Library Facilities [tour2.post]

The facilities provided by the standard library can be classified like this:
[1] Basic run-time language support (e.g., for allocation and run-time type information); see

§16.1.3.
[2] The C standard library (with very minor modifications to minimize violations of the type

system); see §16.1.2.
[3] Strings and I/O streams (with support for international character sets and localization); see

Chapter 20 and Chapter 21.
[4] A framework of containers (such asv ve ec ct to or r, l li is st t, andm ma ap p) and algorithms using containers

(such as general traversals, sorts, and merges); see Chapter 16, Chapter 17, Chapter 18, and
Chapter 19.

[5] Support for numerical computation (complex numbers plus vectors with arithmetic opera-
tions, BLAS-like and generalized slices, and semantics designed to ease optimization); see
Chapter 22.

The main criterion for including a class in the library was that it would somehow be used by almost
every C++ programmer (both novices and experts), that it could be provided in a general form that
did not add significant overhead compared to a simpler version of the same facility, and that simple
uses should be easy to learn. Essentially, the C++ standard library provides the most common fun-
damental data structures together with the fundamental algorithms used on them.

Every algorithm works with every container without the use of conversions. This framework,
conventionally called the STL [Stepanov,1994], is extensible in the sense that users can easily pro-
vide containers and algorithms in addition to the ones provided as part of the standard and have
these work directly with the standard containers and algorithms.

3.11 Advice[tour2.advice]

[1] Don’t reinvent the wheel; use libraries.
[2] Don’t believe in magic; understand what your libraries do, how they do it, and at what cost

they do it.
[3] When you have a choice, prefer the standard library to other libraries.
[4] Do not think that the standard library is ideal for everything.
[5] Remember to#i in nc cl lu ud de e the headers for the facilities you use; §3.3.
[6] Remember that standard library facilities are defined in namespaces st td d; §3.3.
[7] Uses st tr ri in ng g rather thanc ch ha ar r* ; §3.5, §3.6.
[8] If in doubt use a range-checked vector (such asV Ve ec c); §3.7.2.
[9] Preferv ve ec ct to or r<T T>, l li is st t<T T>, andm ma ap p<k ke ey y, v va al lu ue e> to T T[] ; §3.7.1, §3.7.3, §3.7.4.
[10] When adding elements to a container, usep pu us sh h_ _b ba ac ck k() or b ba ac ck k_ _i in ns se er rt te er r() ; §3.7.3, §3.8.
[11] Usep pu us sh h_ _b ba ac ck k() on av ve ec ct to or r rather thanr re ea al ll lo oc c() on an array; §3.8.
[12] Catch common exceptions inm ma ai in n() ; §3.7.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Part I

Basic Facilities

This part describes C++’s built-in types and the basic facilities for constructing pro-
grams out of them. The C subset of C++ is presented together with C++’s additional
support for traditional styles of programming. It also discusses the basic facilities for
composing a C++ program out of logical and physical parts.

Chapters

4 Types and Declarations
5 Pointers, Arrays, and Structures
6 Expressions and Statements
7 Functions
8 Namespaces and Exceptions
9 Source Files and Programs

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

68 Basic Facilities Part I

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

4
_ __ _______________________________________

Types and Declarations

Accept nothing short of perfection!
– anon

Perfection is achieved
only on the point of collapse.

– C. N. Parkinson

Types— fundamental types— Booleans— characters— character literals— integers
— integer literals— floating-point types— floating-point literals— sizes— v vo oi id d —
enumerations— declarations— names— scope— initialization — objects— t ty yp pe ed de ef fs
— advice— exercises.

4.1 Types[dcl.type]

Consider

x x = y y+f f(2 2) ;

For this to make sense in a C++ program, the namesx x, y y, andf f must be suitably declared. That is,
the programmer must specify that entities namedx x, y y, and f f exist and that they are of types for
which= (assignment),+ (addition), and() (function call), respectively, are meaningful.

Every name (identifier) in a C++ program has a type associated with it. This type determines
what operations can be applied to the name (that is, to the entity referred to by the name) and how
such operations are interpreted. For example, the declarations

f fl lo oa at t x x; / / x is a floating-point variable
i in nt t y y = 7 7; / / y is an integer variable with the initial value 7
f fl lo oa at t f f(i in nt t) ; / / f is a function taking an argument of type int and returning a floating-point number

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

70 Types and Declarations Chapter 4

would make the example meaningful. Becausey y is declared to be ani in nt t, it can be assigned to, used
in arithmetic expressions, etc. On the other hand,f f is declared to be a function that takes ani in nt t as
its argument, so it can be called given a suitable argument.

This chapter presents fundamental types (§4.1.1) and declarations (§4.9). Its examples just
demonstrate language features; they are not intended to do anything useful. More extensive and
realistic examples are saved for later chapters after more of C++ has been described. This chapter
simply provides the most basic elements from which C++ programs are constructed. You must
know these elements, plus the terminology and simple syntax that goes with them, in order to com-
plete a real project in C++ and especially to read code written by others. However, a thorough
understanding of every detail mentioned in this chapter is not a requirement for understanding the
following chapters. Consequently, you may prefer to skim through this chapter, observing the
major concepts, and return later as the need for understanding of more details arises.

4.1.1 Fundamental Types [dcl.fundamental]

C++ has a set of fundamental types corresponding to the most common basic storage units of a
computer and the most common ways of using them to hold data:

§4.2 A Boolean type (b bo oo ol l)
§4.3 Character types (such asc ch ha ar r)
§4.4 Integer types (such asi in nt t)
§4.5 Floating-point types (such asd do ou ub bl le e)

In addition, a user can define
§4.8 Enumeration types for representing specific sets of values (e en nu um m)

There also is
§4.7 A type,v vo oi id d, used to signify the absence of information

From these types, we can construct other types:
§5.1 Pointer types (such asi in nt t*)
§5.2 Array types (such asc ch ha ar r[])
§5.5 Reference types (such asd do ou ub bl le e&)
§5.7 Data structures and classes (Chapter 10)

The Boolean, character, and integer types are collectively calledintegral types. The integral and
floating-point types are collectively calledarithmetic types. Enumerations and classes (Chapter 10)
are calleduser-defined typesbecause they must be defined by users rather than being available for
use without previous declaration, the way fundamental types are. In contrast, other types are called
built-in types.

The integral and floating-point types are provided in a variety of sizes to give the programmer a
choice of the amount of storage consumed, the precision, and the range available for computations
(§4.6). The assumption is that a computer provides bytes for holding characters, words for holding
and computing integer values, some entity most suitable for floating-point computation, and
addresses for referring to those entities. The C++ fundamental types together with pointers and
arrays present these machine-level notions to the programmer in a reasonably implementation-
independent manner.

For most applications, one could simply useb bo oo ol l for logical values,c ch ha ar r for characters,i in nt t for
integer values, andd do ou ub bl le e for floating-point values. The remaining fundamental types are

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.1.1 Fundamental Types 71

variations for optimizations and special needs that are best ignored until such needs arise. They
must be known, however, to read old C and C++ code.

4.2 Booleans[dcl.bool]

A Boolean,b bo oo ol l, can have one of the two valuest tr ru ue e or f fa al ls se e. A Boolean is used to express the
results of logical operations. For example:

v vo oi id d f f(i in nt t a a, i in nt t b b)
{

b bo oo ol l b b1 1 = a a==b b; / / = is assignment, == is equality
/ / ...

}

If a a andb b have the same value,b b1 1 becomest tr ru ue e; otherwise,b b1 1 becomesf fa al ls se e.
A common use ofb bo oo ol l is as the type of the result of a function that tests some condition (a

predicate). For example:

b bo oo ol l i is s_ _o op pe en n(F Fi il le e*) ;

b bo oo ol l g gr re ea at te er r(i in nt t a a, i in nt t b b) { r re et tu ur rn n a a>b b; }

By definition, t tr ru ue e has the value1 1 when converted to an integer andf fa al ls se e has the value0 0. Con-
versely, integers can be implicitly converted tob bo oo ol l values: nonzero integers convert tot tr ru ue e and0 0
converts tof fa al ls se e. For example:

b bo oo ol l b b = 7 7; / / bool(7) is true, so b becomes true
i in nt t i i = t tr ru ue e; / / int(true) is 1, so i becomes 1

In arithmetic and logical expressions,b bo oo ol ls are converted toi in nt ts; integer arithmetic and logical
operations are performed on the converted values. If the result is converted back tob bo oo ol l, a 0 0 is
converted tof fa al ls se eand a nonzero value is converted tot tr ru ue e.

v vo oi id d g g()
{

b bo oo ol l a a = t tr ru ue e;
b bo oo ol l b b = t tr ru ue e;

b bo oo ol l x x = a a+b b; / / a+b is 2, so x becomes true
b bo oo ol l y y = a a| b b; / / ab is 1, so y becomes true

}

A pointer can be implicitly converted to ab bo oo ol l (§C.6.2.5). A nonzero pointer converts tot tr ru ue e;
zero-valued pointers convert tof fa al ls se e.

4.3 Character Types[dcl.char]

A variable of typec ch ha ar r can hold a character of the implementation’s character set. For example:

c ch ha ar r c ch h = ´ a a´;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

72 Types and Declarations Chapter 4

Almost universally, ac ch ha ar r has 8 bits so that it can hold one of 256 different values. Typically, the
character set is a variant of ISO-646, for example ASCII, thus providing the characters appearing
on your keyboard. Many problems arise from the fact that this set of characters is only partially
standardized (§C.3).

Serious variations occur between character sets supporting different natural languages and also
between different character sets supporting the same natural language in different ways. However,
here we are interested only in how such differences affect the rules of C++. The larger and more
interesting issue of how to program in a multi-lingual, multi-character-set environment is beyond
the scope of this book, although it is alluded to in several places (§20.2, §21.7, §C.3.3).

It is safe to assume that the implementation character set includes the decimal digits, the 26
alphabetic characters of English, and some of the basic punctuation characters. It is not safe to
assume that there are no more than 127 characters in an 8-bit character set (e.g., some sets provide
255 characters), that there are no more alphabetic characters than English provides (most European
languages provide more), that the alphabetic characters are contiguous (EBCDIC leaves a gap
betweeń i i´ and ´ j j´), or that every character used to write C++ is available (e.g., some national
character sets do not provide{ } [] | \ \; §C.3.1). Whenever possible, we should avoid making
assumptions about the representation of objects. This general rule applies even to characters.

Each character constant has an integer value. For example, the value of´ b b´ is 9 98 8 in the ASCII
character set. Here is a small program that will tell you the integer value of any character you care
to input:

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n()
{

c ch ha ar r c c;
s st td d: : c ci in n >> c c;
s st td d: : c co ou ut t << " t th he e v va al lu ue e o of f ´" << c c << "´ i is s " << i in nt t(c c) << ´ \ \n n´;

}

The notationi in nt t(c c) gives the integer value for a characterc c. The possibility of converting ac ch ha ar r
to an integer raises the question: is ac ch ha ar r signed or unsigned? The 256 values represented by an
8-bit byte can be interpreted as the values0 0 to 2 25 55 5 or as the values- 1 12 27 7 to 1 12 27 7. Unfortunately,
which choice is made for a plainc ch ha ar r is implementation-defined (§C.1, §C.3.4). C++ provides two
types for which the answer is definite;s si ig gn ne ed d c ch ha ar r, which can hold at least the values- 1 12 27 7 to 1 12 27 7,
andu un ns si ig gn ne ed d c ch ha ar r, which can hold at least the values0 0 to 2 25 55 5. Fortunately, the difference matters
only for values outside the0 0 to 1 12 27 7 range, and the most common characters are within that range.

Values outside that range stored in a plainc ch ha ar r can lead to subtle portability problems. See
§C.3.4 if you need to use more than one type ofc ch ha ar r or if you store integers inc ch ha ar r variables.

A type w wc ch ha ar r_ _t t is provided to hold characters of a larger character set such as Unicode. It is a
distinct type. The size ofw wc ch ha ar r_ _t t is implementation-defined and large enough to hold the largest
character set supported by the implementation’s locale (see §21.7, §C.3.3). The strange name is a
leftover from C. In C,w wc ch ha ar r_ _t t is a t ty yp pe ed de ef f (§4.9.7) rather than a built-in type. The suffix_ _t t was
added to distinguish standardt ty yp pe ed de ef fs.

Note that the character types are integral types (§4.1.1) so that arithmetic and logical operations
(§6.2) apply.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.3.1 Character Literals 73

4.3.1 Character Literals [dcl.char.lit]

A character literal, often called a character constant, is a character enclosed in single quotes, for
example,́ a a´ and ´ 0 0´ . The type of a character literal isc ch ha ar r. Such character literals are really
symbolic constants for the integer value of the characters in the character set of the machine on
which the C++ program is to run. For example, if you are running on a machine using the ASCII
character set, the value of´ 0 0´ is 4 48 8. The use of character literals rather than decimal notation
makes programs more portable. A few characters also have standard names that use the backslash\ \
as an escape character. For example,\ \n n is a newline and\ \t t is a horizontal tab. See §C.3.2 for
details about escape characters.

Wide character literals are of the formL L´ a ab b´ , where the number of characters between the
quotes and their meanings is implementation-defined to match thew wc ch ha ar r_ _t t type. A wide character
literal has typew wc ch ha ar r_ _t t.

4.4 Integer Types[dcl.int]

Like c ch ha ar r, each integer type comes in three forms: ‘‘plain’’i in nt t, s si ig gn ne ed d i in nt t, andu un ns si ig gn ne ed d i in nt t. In
addition, integers come in three sizes:s sh ho or rt t i in nt t, ‘‘plain’’ i in nt t, and l lo on ng g i in nt t. A l lo on ng g i in nt t can be
referred to as plainl lo on ng g. Similarly, s sh ho or rt t is a synonym fors sh ho or rt t i in nt t, u un ns si ig gn ne ed d for u un ns si ig gn ne ed d i in nt t,
ands si ig gn ne ed d for s si ig gn ne ed d i in nt t.

The u un ns si ig gn ne ed d integer types are ideal for uses that treat storage as a bit array. Using an
u un ns si ig gn ne ed d instead of ani in nt t to gain one more bit to represent positive integers is almost never a good
idea. Attempts to ensure that some values are positive by declaring variablesu un ns si ig gn ne ed d will typi-
cally be defeated by the implicit conversion rules (§C.6.1, §C.6.2.1).

Unlike plainc ch ha ar rs, plaini in nt ts are always signed. The signedi in nt t types are simply more explicit
synonyms for their plaini in nt t counterparts.

4.4.1 Integer Literals [dcl.int.lit]

Integer literals come in four guises: decimal, octal, hexadecimal, and character literals. Decimal lit-
erals are the most commonly used and look as you would expect them to:

0 0 1 12 23 34 4 9 97 76 6 1 12 23 34 45 56 67 78 89 90 01 12 23 34 45 56 67 78 89 90 0

The compiler ought to warn about literals that are too long to represent.
A literal starting with zero followed byx x (0 0x x) is a hexadecimal (base 16) number. A literal

starting with zero followed by a digit is an octal (base 8) number. For example:

d de ec ci im ma al l: 0 0 2 2 6 63 3 8 83 3
o oc ct ta al l: 0 00 0 0 02 2 0 07 77 7 0 01 12 23 3
h he ex xa ad de ec ci im ma al l: 0 0x x0 0 0 0x x2 2 0 0x x3 3f f 0 0x x5 53 3

The lettersa a, b b, c c, d d, e e, andf f, or their uppercase equivalents, are used to represent1 10 0, 1 11 1, 1 12 2, 1 13 3,
1 14 4, and1 15 5, respectively. Octal and hexadecimal notations are most useful for expressing bit pat-
terns. Using these notations to express genuine numbers can lead to surprises. For example, on a
machine on which ani in nt t is represented as a two’s complement 16-bit integer,0 0x xf ff ff ff f is the negative
decimal number- 1 1. Had more bits been used to represent an integer, it would have been6 65 55 53 35 5.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

74 Types and Declarations Chapter 4

The suffix U U can be used to write explicitlyu un ns si ig gn ne ed d literals. Similarly, the suffixL L can be
used to write explicitlyl lo on ng g literals. For example,3 3 is ani in nt t, 3U is anu un ns si ig gn ne ed d i in nt t, and3 3L L is a
l lo on ng g i in nt t. If no suffix is provided, the compiler gives an integer literal a suitable type based on its
value and the implementation’s integer sizes (§C.4).

It is a good idea to limit the use of nonobvious constants to a few well-commentedc co on ns st t (§5.4)
or enumerator (§4.8) initializers.

4.5 Floating-Point Types[dcl.float]

The floating-point types represent floating-point numbers. Like integers, floating-point types come
in three sizes:f fl lo oa at t (single-precision),d do ou ub bl le e (double-precision), andl lo on ng g d do ou ub bl le e (extended-
precision).

The exact meaning of single-, double-, and extended-precision is implementation-defined.
Choosing the right precision for a problem where the choice matters requires significant under-
standing of floating-point computation. If you don’t have that understanding, get advice, take the
time to learn, or used do ou ub bl le eand hope for the best.

4.5.1 Floating-Point Literals [dcl.fp.lit]

By default, a floating-point literal is of typed do ou ub bl le e. Again, a compiler ought to warn about
floating-point literals that are too large to be represented. Here are some floating-point literals:

1 1. 2 23 3 . 2 23 3 0 0. 2 23 3 1 1. 1 1. 0 0 1 1. 2 2e e1 10 0 1 1. 2 23 3e e- 1 15 5

Note that a space cannot occur in the middle of a floating-point literal. For example,6 65 5. 4 43 3 e e- 2 21 1
is not a floating-point literal but rather four separate lexical tokens (causing a syntax error):

6 65 5. 4 43 3 e e - 2 21 1

If you want a floating-point literal of typef fl lo oa at t, you can define one using the suffixf f or F F:

3 3. 1 14 41 15 59 92 26 65 5f f 2 2. 0 0f f 2 2. 9 99 97 79 92 25 5F F

4.6 Sizes[dcl.size]

Some of the aspects of C++’s fundamental types, such as the size of ani in nt t, are implementation-
defined (§C.2). I point out these dependencies and often recommend avoiding them or taking steps
to minimize their impact. Why should you bother? People who program on a variety of systems or
use a variety of compilers care a lot because if they don’t, they are forced to waste time finding and
fixing obscure bugs. People who claim they don’t care about portability usually do so because they
use only a single system and feel they can afford the attitude that ‘‘the language is what my com-
piler implements.’’ This is a narrow and shortsighted view. If your program is a success, it is
likely to be ported, so someone will have to find and fix problems related to implementation-
dependent features. In addition, programs often need to be compiled with other compilers for the
same system, and even a future release of your favorite compiler may do some things differently
from the current one. It is far easier to know and limit the impact of implementation dependencies

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.6 Sizes 75

when a program is written than to try to untangle the mess afterwards.
It is relatively easy to limit the impact of implementation-dependent language features. Limit-

ing the impact of system-dependent library facilities is far harder. Using standard library facilities
wherever feasible is one approach.

The reason for providing more than one integer type, more than one unsigned type, and more
than one floating-point type is to allow the programmer to take advantage of hardware characteris-
tics. On many machines, there are significant differences in memory requirements, memory access
times, and computation speed between the different varieties of fundamental types. If you know a
machine, it is usually easy to choose, for example, the appropriate integer type for a particular vari-
able. Writing truly portable low-level code is harder.

Sizes of C++ objects are expressed in terms of multiples of the size of ac ch ha ar r, so by definition
the size of ac ch ha ar r is 1 1. The size of an object or type can be obtained using thes si iz ze eo of f operator
(§6.2). This is what is guaranteed about sizes of fundamental types:

1 ≡ sizeof(char)≤ sizeof(short)≤ sizeof(int)≤ sizeof(long)

1 ≤ sizeof(bool)≤ sizeof(long)

sizeof(char)≤ sizeof(wchar_t) ≤ sizeof(long)

sizeof(float)≤ sizeof(double)≤ sizeof(long double)

sizeof(N)≡ sizeof(signed N)≡ sizeof(unsigned N)

whereN N can bec ch ha ar r, s sh ho or rt t i in nt t, i in nt t, or l lo on ng g i in nt t. In addition, it is guaranteed that ac ch ha ar r has at least
8 bits, as sh ho or rt t at least 16 bits, and al lo on ng g at least 32 bits. Ac ch ha ar r can hold a character of the
machine’s character set.

Here is a graphical representation of a plausible set of fundamental types and a sample string:

’a’

1

756

100000000

&c1

1234567e34

Hello, world!\0

char:

bool:

short:

int:

int*:

double:

char[14]:

On the same scale (.2 inch to a byte), a megabyte of memory would stretch about three miles (five
km) to the right.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

76 Types and Declarations Chapter 4

Thec ch ha ar r type is supposed to be chosen by the implementation to be the most suitable type for
holding and manipulating characters on a given computer; it is typically an 8-bit byte. Similarly,
the i in nt t type is supposed to be chosen to be the most suitable for holding and manipulating integers
on a given computer; it is typically a 4-byte (32-bit) word. It is unwise to assume more. For exam-
ple, there are machines with 32 bitc ch ha ar rs.

When needed, implementation-dependent aspects about an implementation can be found in
<l li im mi it ts s> (§22.2). For example:

#i in nc cl lu ud de e <l li im mi it ts s>

i in nt t m ma ai in n()
{

c co ou ut t << " l la ar rg ge es st t f fl lo oa at t == " << n nu um me er ri ic c_ _l li im mi it ts s<f fl lo oa at t>: : m ma ax x()
<< ", c ch ha ar r i is s s si ig gn ne ed d == " << n nu um me er ri ic c_ _l li im mi it ts s<c ch ha ar r>: : i is s_ _s si ig gn ne ed d << ´ \ \n n´;

}

The fundamental types can be mixed freely in assignments and expressions. Wherever possible,
values are converted so as not to lose information (§C.6).

If a valuev v can be represented exactly in a variable of typeT T, a conversion ofv v to T T is value-
preserving and no problem. The cases where conversions are not value-preserving are best avoided
(§C.6.2.6).

You need to understand implicit conversion in some detail in order to complete a major project
and especially to understand real code written by others. However, such understanding is not
required to read the following chapters.

4.7 Void[dcl.void]

The typev vo oi id d is syntactically a fundamental type. It can, however, be used only as part of a more
complicated type; there are no objects of typev vo oi id d. It is used either to specify that a function does
not return a value or as the base type for pointers to objects of unknown type. For example:

v vo oi id d x x; / / error: there are no void objects
v vo oi id d f f() ; / / function f does not return a value (§7.3)
v vo oi id d* p pv v; / / pointer to object of unknown type (§5.6)

When declaring a function, you must specify the type of the value returned. Logically, you would
expect to be able to indicate that a function didn’t return a value by omitting the return type. How-
ever, that would make the grammar (Appendix A) less regular and clash with C usage. Conse-
quently,v vo oi id d is used as a ‘‘pseudo return type’’ to indicate that a function doesn’t return a value.

4.8 Enumerations[dcl.enum]

An enumerationis a type that can hold a set of values specified by the user. Once defined, an enu-
meration is used very much like an integer type.

Named integer constants can be defined as members of an enumeration. For example,

e en nu um m { A AS SM M, A AU UT TO O, B BR RE EA AK K };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.8 Enumerations 77

defines three integer constants, called enumerators, and assigns values to them. By default, enu-
merator values are assigned increasing from0 0, soA AS SM M==0 0, A AU UT TO O==1 1, andB BR RE EA AK K==2 2. An enu-
meration can be named. For example:

e en nu um m k ke ey yw wo or rd d { A AS SM M, A AU UT TO O, B BR RE EA AK K };

Each enumeration is a distinct type. The type of an enumerator is its enumeration. For example,
A AU UT TO O is of typek ke ey yw wo or rd d.

Declaring a variablek ke ey yw wo or rd d instead of plaini in nt t can give both the user and the compiler a hint
as to the intended use. For example:

v vo oi id d f f(k ke ey yw wo or rd d k ke ey y)
{

s sw wi it tc ch h (k ke ey y) {
c ca as se e A AS SM M:

/ / do something
b br re ea ak k;

c ca as se e B BR RE EA AK K:
/ / do something
b br re ea ak k;

}
}

A compiler can issue a warning because only two out of threek ke ey yw wo or rd d values are handled.
An enumerator can be initialized by aconstant-expression(§C.5) of integral type (§4.1.1). The

range of an enumeration holds all the enumeration’s enumerator values rounded up to the nearest
larger binary power minus1 1. The range goes down to0 0 if the smallest enumerator is non-negative
and to the nearest lesser negative binary power if the smallest enumerator is negative. This defines
the smallest bit-field capable of holding the enumerator values. For example:

e en nu um m e e1 1 { d da ar rk k, l li ig gh ht t }; / / range 0:1
e en nu um m e e2 2 { a a = 3 3, b b = 9 9 }; / / range 0:15
e en nu um m e e3 3 { m mi in n = - 1 10 0, m ma ax x = 1 10 00 00 00 00 00 0 }; / / range -1048576:1048575

A value of integral type may be explicitly converted to an enumeration type. The result of such a
conversion is undefined unless the value is within the range of the enumeration. For example:

e en nu um m f fl la ag g { x x=1 1, y y=2 2, z z=4 4, e e=8 8 }; / / range 0:15

f fl la ag g f f1 1 = 5 5; / / type error: 5 is not of type flag
f fl la ag g f f2 2 = f fl la ag g(5 5) ; / / ok: flag(5) is of type flag and within the range of flag

f fl la ag g f f3 3 = f fl la ag g(z z| e e) ; / / ok: flag(12) is of type flag and within the range of flag
f fl la ag g f f4 4 = f fl la ag g(9 99 9) ; / / undefined: 99 is not within the range of flag

The last assignment shows why there is no implicit conversion from an integer to an enumeration;
most integer values do not have a representation in a particular enumeration.

The notion of a range of values for an enumeration differs from the enumeration notion in the
Pascal family of languages. However, bit-manipulation examples that require values outside the set
of enumerators to be well-defined have a long history in C and C++.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

78 Types and Declarations Chapter 4

Thes si iz ze eo of f an enumeration is thes si iz ze eo of f some integral type that can hold its range and not larger
thans si iz ze eo of f(i in nt t) , unless an enumerator cannot be represented as ani in nt t or as anu un ns si ig gn ne ed d i in nt t. For
example,s si iz ze eo of f(e e1 1) could be1 1 or maybe4 4 but not8 8 on a machine wheres si iz ze eo of f(i in nt t)== 4 4.

By default, enumerations are converted to integers for arithmetic operations (§6.2). An enumer-
ation is a user-defined type, so users can define their own operations, such as++ and<< for an enu-
meration (§11.2.3).

4.9 Declarations[dcl.dcl]

Before a name (identifier) can be used in a C++ program, it must be declared. That is, its type must
be specified to inform the compiler to what kind of entity the name refers. Here are some examples
illustrating the diversity of declarations:

c ch ha ar r c ch h;
s st tr ri in ng g s s;
i in nt t c co ou un nt t = 1 1;
c co on ns st t d do ou ub bl le e p pi i = 3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5;
e ex xt te er rn n i in nt t e er rr ro or r_ _n nu um mb be er r;

c ch ha ar r* n na am me e = " N Nj ja al l";
c ch ha ar r* s se ea as so on n[] = { " s sp pr ri in ng g", " s su um mm me er r", " f fa al ll l", " w wi in nt te er r" };

s st tr ru uc ct t D Da at te e { i in nt t d d, m m, y y; };
i in nt t d da ay y(D Da at te e* p p) { r re et tu ur rn n p p-> d d; }
d do ou ub bl le e s sq qr rt t(d do ou ub bl le e) ;
t te em mp pl la at te e<c cl la as ss s T T> T T a ab bs s(T T a a) { r re et tu ur rn n a a<0 0 ? - a a : a a; }

t ty yp pe ed de ef f c co om mp pl le ex x<s sh ho or rt t> P Po oi in nt t;
s st tr ru uc ct t U Us se er r;
e en nu um m B Be ee er r { C Ca ar rl ls sb be er rg g, T Tu ub bo or rg g, T Th ho or r };
n na am me es sp pa ac ce e N NS S { i in nt t a a; }

As can be seen from these examples, a declaration can do more than simply associate a type with a
name. Most of thesedeclarationsare alsodefinitions; that is, they also define an entity for the
name to which they refer. Forc ch h, that entity is the appropriate amount of memory to be used as a
variable– that memory will be allocated. Ford da ay y, it is the specified function. For the constantp pi i,
it is the value3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5. ForD Da at te e, that entity is a new type. ForP Po oi in nt t, it is the
typec co om mp pl le ex x<s sh ho or rt t> so thatP Po oi in nt t becomes a synonym forc co om mp pl le ex x<s sh ho or rt t>. Of the declarations
above, only

d do ou ub bl le e s sq qr rt t(d do ou ub bl le e) ;
e ex xt te er rn n i in nt t e er rr ro or r_ _n nu um mb be er r;
s st tr ru uc ct t U Us se er r;

are not also definitions; that is, the entity they refer to must be defined elsewhere. The code (body)
for the functions sq qr rt t must be specified by some other declaration, the memory for thei in nt t variable
e er rr ro or r_ _n nu um mb be er r must be allocated by some other declaration ofe er rr ro or r_ _n nu um mb be er r, and some other
declaration of the typeU Us se er r must define what that type looks like. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9 Declarations 79

d do ou ub bl le e s sq qr rt t(d do ou ub bl le e d d) { /* ... */ }
i in nt t e er rr ro or r_ _n nu um mb be er r = 1 1;

s st tr ru uc ct t U Us se er r { /* ... */ };

There must always be exactly one definition for each name in a C++ program (for the effects of
#i in nc cl lu ud de e, see §9.2.3). However, there can be many declarations. All declarations of an entity must
agree on the type of the entity referred to. So, this fragment has two errors:

i in nt t c co ou un nt t;
i in nt t c co ou un nt t; / / error: redefinition

e ex xt te er rn n i in nt t e er rr ro or r_ _n nu um mb be er r;
e ex xt te er rn n s sh ho or rt t e er rr ro or r_ _n nu um mb be er r; / / error: type mismatch

and this has none (for the use ofe ex xt te er rn n see §9.2):

e ex xt te er rn n i in nt t e er rr ro or r_ _n nu um mb be er r;
e ex xt te er rn n i in nt t e er rr ro or r_ _n nu um mb be er r;

Some definitions specify a ‘‘value’’ for the entities they define. For example:

s st tr ru uc ct t D Da at te e { i in nt t d d, m m, y y; };
t ty yp pe ed de ef f c co om mp pl le ex x<s sh ho or rt t> P Po oi in nt t;
i in nt t d da ay y(D Da at te e* p p) { r re et tu ur rn n p p-> d d; }
c co on ns st t d do ou ub bl le e p pi i = 3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5;

For types, templates, functions, and constants, the ‘‘value’’ is permanent. For nonconstant data
types, the initial value may be changed later. For example:

v vo oi id d f f()
{

i in nt t c co ou un nt t = 1 1;
c ch ha ar r* n na am me e = " B Bj ja ar rn ne e";
/ / ...
c co ou un nt t = 2 2;
n na am me e = " M Ma ar ri ia an n";

}

Of the definitions, only

c ch ha ar r c ch h;
s st tr ri in ng g s s;

do not specify values. See §4.9.5 and §10.4.2 for explanations of how and when a variable is
assigned a default value. Any declaration that specifies a value is a definition.

4.9.1 The Structure of a Declaration [dcl.parts]

A declaration consists of four parts: an optional ‘‘specifier,’’ a base type, a declarator, and an
optional initializer. Except for function and namespace definitions, a declaration is terminated by a
semicolon. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

80 Types and Declarations Chapter 4

c ch ha ar r* k ki in ng gs s[] = { " A An nt ti ig go on nu us s", " S Se el le eu uc cu us s", " P Pt to ol le em my y" };

Here, the base type isc ch ha ar r, the declarator is* k ki in ng gs s[] , and the initializer is={...} .
A specifier is an initial keyword, such asv vi ir rt tu ua al l (§2.5.5, §12.2.6) ande ex xt te er rn n (§9.2), that speci-

fies some non-type attribute of what is being declared.
A declarator is composed of a name and optionally some declarator operators. The most com-

mon declarator operators are (§A.7.1):

* p po oi in nt te er r p pr re ef fi ix x
* c co on ns st t c co on ns st ta an nt t p po oi in nt te er r p pr re ef fi ix x
& r re ef fe er re en nc ce e p pr re ef fi ix x
[] a ar rr ra ay y p po os st tf fi ix x
() f fu un nc ct ti io on n p po os st tf fi ix x

Their use would be simple if they were all either prefix or postfix. However,* , [] , and() were
designed to mirror their use in expressions (§6.2). Thus,* is prefix and[] and () are postfix.
The postfix declarator operators bind tighter than the prefix ones. Consequently,* k ki in ng gs s[] is a
vector of pointers to something, and we have to use parentheses to express types such as ‘‘pointer
to function;’’ see examples in §5.1. For full details, see the grammar in Appendix A.

Note that the type cannot be left out of a declaration. For example:

c co on ns st t c c = 7 7; / / error: no type
g gt t(i in nt t a a, i in nt t b b) { r re et tu ur rn n (a a>b b) ? a a : b b; } / / error: no return type

u un ns si ig gn ne ed d u ui i; / / ok: ‘unsigned’ is the type ‘unsigned int’
l lo on ng g l li i; / / ok: ‘long’ is the type ‘long int’

In this, standard C++ differs from earlier versions of C and C++ that allowed the first two examples
by consideringi in nt t to be the type when none were specified (§B.2). This ‘‘impliciti in nt t’’ rule was a
source of subtle errors and confusion.

4.9.2 Declaring Multiple Names [dcl.multi]

It is possible to declare several names in a single declaration. The declaration simply contains a list
of comma-separated declarators. For example, we can declare two integers like this:

i in nt t x x, y y; / / int x; int y;

Note that operators apply to individual names only– and not to any subsequent names in the same
declaration. For example:

i in nt t* p p, y y; / / int* p; int y; NOT int* y;
i in nt t x x, * q q; / / int x; int* q;
i in nt t v v[1 10 0] , * p pv v; / / int v[10]; int* pv;

Such constructs make a program less readable and should be avoided.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9.3 Names 81

4.9.3 Names [dcl.name]

A name (identifier) consists of a sequence of letters and digits. The first character must be a letter.
The underscore character_ _ is considered a letter. C++ imposes no limit on the number of charac-
ters in a name. However, some parts of an implementation are not under the control of the com-
piler writer (in particular, the linker), and those parts, unfortunately, sometimes do impose limits.
Some run-time environments also make it necessary to extend or restrict the set of characters
accepted in an identifier. Extensions (e.g., allowing the character$ in a name) yield nonportable
programs. A C++ keyword (Appendix A), such asn ne ew w and i in nt t, cannot be used as a name of a
user-defined entity. Examples of names are:

h he el ll lo o t th hi is s_ _i is s_ _a a_ _m mo os st t_ _u un nu us su ua al ll ly y_ _l lo on ng g_ _n na am me e
D DE EF FI IN NE ED D f fo oO O b bA Ar r u u_ _n na am me e H Ho or rs se eS Se en ns se e
v va ar r0 0 v va ar r1 1 C CL LA AS SS S _ _c cl la as ss s _ __ __ _

Examples of character sequences that cannot be used as identifiers are:

0 01 12 2 a a f fo oo ol l $s sy ys s c cl la as ss s 3 3v va ar r
p pa ay y. d du ue e f fo oo o~b ba ar r . n na am me e i if f

Names starting with an underscore are reserved for special facilities in the implementation and the
run-time environment, so such names should not be used in application programs.

When reading a program, the compiler always looks for the longest string of characters that
could make up a name. Hence,v va ar r1 10 0 is a single name, not the namev va ar r followed by the number
1 10 0. Also,e el ls se ei if f is a single name, not the keyworde el ls se e followed by the keywordi if f.

Uppercase and lowercase letters are distinct, soC Co ou un nt t andc co ou un nt t are different names, but it is
unwise to choose names that differ only by capitalization. In general, it is best to avoid names that
differ only in subtle ways. For example, the uppercase o (O O) and zero (0 0) can be hard to tell apart,
as can the lowercase L (l l) and one (1 1). Consequently,l l0 0, l lO O, l l1 1, andl ll l are poor choices for identi-
fier names.

Names from a large scope ought to have relatively long and reasonably obvious names, such as
v ve ec ct to or r, W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r, andD De ep pa ar rt tm me en nt t_ _n nu um mb be er r. However, code is clearer if names used
only in a small scope have short, conventional names such asx x, i i, andp p. Classes (Chapter 10) and
namespaces (§8.2) can be used to keep scopes small. It is often useful to keep frequently used
names relatively short and reserve really long names for infrequently used entities. Choose names
to reflect the meaning of an entity rather than its implementation. For example,p ph ho on ne e_ _b bo oo ok k is bet-
ter thann nu um mb be er r_ _l li is st t even if the phone numbers happen to be stored in al li is st t (§3.7). Choosing good
names is an art.

Try to maintain a consistent naming style. For example, capitalize nonstandard library user-
defined types and start nontypes with a lowercase letter (for example,S Sh ha ap pe e andc cu ur rr re en nt t_ _t to ok ke en n).
Also, use all capitals for macros (if you must use macros; for example,H HA AC CK K) and use underscores
to separate words in an identifier. However, consistency is hard to achieve because programs are
typically composed of fragments from different sources and several different reasonable styles are
in use. Be consistent in your use of abbreviations and acronyms.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

82 Types and Declarations Chapter 4

4.9.4 Scope [dcl.scope]

A declaration introduces a name into a scope; that is, a name can be used only in a specific part of
the program text. For a name declared in a function (often called alocal name), that scope extends
from its point of declaration to the end of the block in which its declaration occurs. Ablock is a
section of code delimited by a{ } pair.

A name is calledglobal if it is defined outside any function, class (Chapter 10), or namespace
(§8.2). The scope of a global name extends from the point of declaration to the end of the file in
which its declaration occurs. A declaration of a name in a block can hide a declaration in an
enclosing block or a global name. That is, a name can be redefined to refer to a different entity
within a block. After exit from the block, the name resumes its previous meaning. For example:

i in nt t x x; / / global x

v vo oi id d f f()
{

i in nt t x x; / / local x hides global x
x x = 1 1; / / assign to local x

{
i in nt t x x; / / hides first local x
x x = 2 2; / / assign to second local x

}

x x = 3 3; / / assign to first local x
}

i in nt t* p p = &x x; / / take address of global x

Hiding names is unavoidable when writing large programs. However, a human reader can easily
fail to notice that a name has been hidden. Because such errors are relatively rare, they can be very
difficult to find. Consequently, name hiding should be minimized. Using names such asi i andx x for
global variables or for local variables in a large function is asking for trouble.

A hidden global name can be referred to using the scope resolution operator: : . For example:

i in nt t x x;

v vo oi id d f f2 2()
{

i in nt t x x = 1 1; / / hide global x
: : x x = 2 2; / / assign to global x
x x = 2 2; / / assign to local x
/ / ...

}

There is no way to use a hidden local name.
The scope of a name starts at its point of declaration; that is, after the complete declarator and

before the initializer. This implies that a name can be used even to specify its own initial value.
For example:

i in nt t x x;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9.4 Scope 83

v vo oi id d f f3 3()
{

i in nt t x x = x x; / / perverse: initialize x with its own (uninitialized) value
}

This is not illegal, just silly. A good compiler will warn if a variable is used before it has been set
(see also §5.9[9]).

It is possible to use a single name to refer to two different objects in a block without using the
: : operator. For example:

i in nt t x x = 1 11 1;

v vo oi id d f f4 4() / / perverse:
{

i in nt t y y = x x; / / use global x: y = 11
i in nt t x x = 2 22 2;
y y = x x; / / use local x: y = 22

}

Function argument names are considered declared in the outermost block of a function, so

v vo oi id d f f5 5(i in nt t x x)
{

i in nt t x x; / / error
}

is an error becausex x is defined twice in the same scope. Having this be an error allows a not
uncommon, subtle mistake to be caught.

4.9.5 Initialization [dcl.init]

If an initializer is specified for an object, that initializer determines the initial value of an object. If
no initializer is specified, a global (§4.9.4), namespace (§8.2), or local static object (§7.1.2, §10.2.4)
(collectively calledstatic objects) is initialized to0 0 of the appropriate type. For example:

i in nt t a a; / / means ‘‘int a = 0;’’
d do ou ub bl le e d d; / / means ‘‘double d = 0.0;’’

Local variables (sometimes calledautomatic objects) and objects created on the free store (some-
times calleddynamic objectsor heap objects) are not initialized by default. For example:

v vo oi id d f f()
{

i in nt t x x; / / x does not have a well-defined value
/ / ...

}

Members of arrays and structures are default initialized or not depending on whether the array or
structure is static. User-defined types may have default initialization defined (§10.4.2).

More complicated objects require more than one value as an initializer. This is handled by ini-
tializer lists delimited by{ and} for C-style initialization of arrays (§5.2.1) and structures (§5.7).
For user-defined types with constructors, function-style argument lists are used (§2.5.2, §10.2.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

84 Types and Declarations Chapter 4

Note that an empty pair of parentheses() in a declaration always means ‘‘function’’ (§7.1).
For example:

i in nt t a a[] = { 1 1, 2 2 }; / / array initializer
P Po oi in nt t z z(1 1, 2 2) ; / / function-style initializer (initialization by constructor)
i in nt t f f() ; / / function declaration

4.9.6 Objects and Lvalues [dcl.objects]

We can allocate and use ‘‘variables’’ that do not have names, and it is possible to assign to
strange-looking expressions (e.g.,* p p[a a+1 10 0]= 7 7). Consequently, there is a need for a name for
‘‘something in memory.’’ This is the simplest and most fundamental notion of an object. That is,
anobject is a contiguous region of storage; anlvalue is an expression that refers to an object. The
word lvalue was originally coined to mean ‘‘something that can be on the left-hand side of an
assignment.’’ However, not every lvalue may be used on the left-hand side of an assignment; an
lvalue can refer to a constant (§5.5). An lvalue that has not been declaredc co on ns st t is often called a
modifiable lvalue. This simple and low-level notion of an object should not be confused with the
notions of class object and object of polymorphic type (§15.4.3).

Unless the programmer specifies otherwise (§7.1.2, §10.4.8), an object declared in a function is
created when its definition is encountered and destroyed when its name goes out of scope (§10.4.4).
Such objects are called automatic objects. Objects declared in global or namespace scope ands st ta at t- -
i ic cs declared in functions or classes are created and initialized once (only) and ‘‘live’’ until the pro-
gram terminates (§10.4.9). Such objects are called static objects. Array elements and nonstatic
structure or class members have their lifetimes determined by the object of which they are part.

Using then ne ew w and d de el le et te e operators, you can create objects whose lifetimes are controlled
directly (§6.2.6).

4.9.7 Typedef [dcl.typedef]

A declaration prefixed by the keywordt ty yp pe ed de ef f declares a new name for the type rather than a new
variable of the given type. For example:

t ty yp pe ed de ef f c ch ha ar r* P Pc ch ha ar r;
P Pc ch ha ar r p p1 1, p p2 2; / / p1 and p2 are char*s
c ch ha ar r* p p3 3 = p p1 1;

A name defined like this, usually called a ‘‘t ty yp pe ed de ef f,’’ can be a convenient shorthand for a type
with an unwieldy name. For example,u un ns si ig gn ne ed d c ch ha ar r is too long for really frequent use, so we
could define a synonym,u uc ch ha ar r:

t ty yp pe ed de ef f u un ns si ig gn ne ed d c ch ha ar r u uc ch ha ar r;

Another use of at ty yp pe ed de ef f is to limit the direct reference to a type to one place. For example:

t ty yp pe ed de ef f i in nt t i in nt t3 32 2;
t ty yp pe ed de ef f s sh ho or rt t i in nt t1 16 6;

If we now usei in nt t3 32 2 wherever we need a potentially large integer, we can port our program to a
machine on whichs si iz ze eo of f(i in nt t) is 2 2 by redefining the single occurrence ofi in nt t in our code:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9.7 Typedef 85

t ty yp pe ed de ef f l lo on ng g i in nt t3 32 2;

For good and bad,t ty yp pe ed de ef fs are synonyms for other types rather than distinct types. Consequently,
t ty yp pe ed de ef fs mix freely with the types for which they are synonyms. People who would like to have
distinct types with identical semantics or identical representation should look at enumerations
(§4.8) or classes (Chapter 10).

4.10 Advice[dcl.advice]

[1] Keep scopes small; §4.9.4.
[2] Don’t use the same name in both a scope and an enclosing scope; §4.9.4.
[3] Declare one name (only) per declaration; §4.9.2.
[4] Keep common and local names short, and keep uncommon and nonlocal names longer; §4.9.3.
[5] Avoid similar-looking names; §4.9.3.
[6] Maintain a consistent naming style; §4.9.3.
[7] Choose names carefully to reflect meaning rather than implementation; §4.9.3.
[8] Use at ty yp pe ed de ef f to define a meaningful name for a built-in type in cases in which the built-in

type used to represent a value might change; §4.9.7.
[9] Uset ty yp pe ed de ef fs to define synonyms for types; use enumerations and classes to define new types;

§4.9.7.
[10] Remember that every declaration must specify a type (there is no ‘‘impliciti in nt t’’); §4.9.1.
[11] Avoid unnecessary assumptions about the numeric value of characters; §4.3.1, §C.6.2.1.
[12] Avoid unnecessary assumptions about the size of integers; §4.6.
[13] Avoid unnecessary assumptions about the range of floating-point types; §4.6.
[14] Prefer a plaini in nt t over as sh ho or rt t i in nt t or al lo on ng g i in nt t; §4.6.
[15] Prefer ad do ou ub bl le eover af fl lo oa at t or al lo on ng g d do ou ub bl le e; §4.5.
[16] Prefer plainc ch ha ar r overs si ig gn ne ed d c ch ha ar r andu un ns si ig gn ne ed d c ch ha ar r; §C.3.4.
[17] Avoid making unnecessary assumptions about the sizes of objects; §4.6.
[18] Avoid unsigned arithmetic; §4.4.
[19] View s si ig gn ne ed d to u un ns si ig gn ne ed d andu un ns si ig gn ne ed d to s si ig gn ne ed d conversions with suspicion; §C.6.2.6.
[20] View floating-point to integer conversions with suspicion; §C.6.2.6.
[21] View conversions to a smaller type, such asi in nt t to c ch ha ar r, with suspicion; §C.6.2.6.

4.11 Exercises [dcl.exercises]

1. (∗2) Get the ‘‘Hello, world!’’ program (§3.2) to run. If that program doesn’t compile as writ-
ten, look at §B.3.1.

2. (∗1) For each declaration in §4.9, do the following: If the declaration is not a definition, write a
definition for it. If the declaration is a definition, write a declaration for it that is not also a defi-
nition.

3. (∗1.5) Write a program that prints the sizes of the fundamental types, a few pointer types, and a
few enumerations of your choice. Use thes si iz ze eo of f operator.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

86 Types and Declarations Chapter 4

4. (∗1.5) Write a program that prints out the letters´ a a´ ..́ z ź and the digitś 0 0´ ..́ 9 9´ and their
integer values. Do the same for other printable characters. Do the same again but use hexa-
decimal notation.

5. (∗2) What, on your system, are the largest and the smallest values of the following types:c ch ha ar r,
s sh ho or rt t, i in nt t, l lo on ng g, f fl lo oa at t, d do ou ub bl le e, l lo on ng g d do ou ub bl le e, andu un ns si ig gn ne ed d.

6. (∗1) What is the longest local name you can use in a C++ program on your system? What is the
longest external name you can use in a C++ program on your system? Are there any restrictions
on the characters you can use in a name?

7. (∗2) Draw a graph of the integer and fundamental types where a type points to another type if
all values of the first can be represented as values of the second on every standards-conforming
implementation. Draw the same graph for the types on your favorite implementation.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

5
_ __ _______________________________________

Pointers, Arrays, and Structures

The sublime and the ridiculous
are often so nearly related that

it is difficult to class them separately.
– Tom Paine

Pointers— zero— arrays— string literals— pointers into arrays— constants— point-
ers and constants— references— v vo oi id d* — data structures— advice— exercises.

5.1 Pointers[ptr.ptr]

For a typeT T, T T* is the type ‘‘pointer toT T.’’ That is, a variable of typeT T* can hold the address of
an object of typeT T. For example:

c ch ha ar r c c = ´ a a´;
c ch ha ar r* p p = &c c; / / p holds the address of c

or graphically:

&c c . .
’ a a’

p p:
c c:

Unfortunately, pointers to arrays and pointers to functions need a more complicated notation:

i in nt t* p pi i; / / pointer to int
c ch ha ar r** p pp pc c; / / pointer to pointer to char
i in nt t* a ap p[1 15 5] ; / / array of 15 pointers to ints
i in nt t (* f fp p)(c ch ha ar r*) ; / / pointer to function taking a char* argument; returns an int
i in nt t* f f(c ch ha ar r*) ; / / function taking a char* argument; returns a pointer to int

See §4.9.1 for an explanation of the declaration syntax and Appendix A for the complete grammar.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

88 Pointers, Arrays, and Structures Chapter 5

The fundamental operation on a pointer isdereferencing, that is, referring to the object pointed
to by the pointer. This operation is also calledindirection. The dereferencing operator is (prefix)
unary* . For example:

c ch ha ar r c c = ´ a a´;
c ch ha ar r* p p = &c c; / / p holds the address of c
c ch ha ar r c c2 2 = * p p; / / c2 == ’a’

The variable pointed to byp p is c c, and the value stored inc c is ´ a a´ , so the value of* p p assigned toc c2 2
is ´ a a´ .

It is possible to perform some arithmetic operations on pointers to array elements (§5.3). Point-
ers to functions can be extremely useful; they are discussed in §7.7.

The implementation of pointers is intended to map directly to the addressing mechanisms of the
machine on which the program runs. Most machines can address a byte. Those that can’t tend to
have hardware to extract bytes from words. On the other hand, few machines can directly address
an individual bit. Consequently, the smallest object that can be independently allocated and
pointed to using a built-in pointer type is ac ch ha ar r. Note that ab bo oo ol l occupies at least as much space
as ac ch ha ar r (§4.6). To store smaller values more compactly, you can use logical operations (§6.2.4)
or bit fields in structures (§C.8.1).

5.1.1 Zero [ptr.zero]

Zero (0 0) is ani in nt t. Because of standard conversions (§C.6.2.3),0 0 can be used as a constant of any
integral (§4.1.1), floating-point, pointer, or pointer-to-member type. The type of zero will be deter-
mined by context. Zero will typically (but not necessarily) be represented by the bit patternall-
zerosof the appropriate size.

No object is allocated with the address0 0. Consequently,0 0 acts as a pointer literal, indicating
that a pointer doesn’t refer to an object.

In C, it has been popular to define a macroN NU UL LL L to represent the zero pointer. Because of
C++’s tighter type checking, the use of plain0 0, rather than any suggestedN NU UL LL L macro, leads to
fewer problems. If you feel you must defineN NU UL LL L, use

c co on ns st t i in nt t N NU UL LL L = 0 0;

Thec co on ns st t qualifier (§5.4) prevents accidental redefinition ofN NU UL LL L and ensures thatN NU UL LL L can be
used where a constant is required.

5.2 Arrays [ptr.array]

For a typeT T, T T[s si iz ze e] is the type ‘‘array ofs si iz ze e elements of typeT T.’’ The elements are indexed
from 0 0 to s si iz ze e- 1 1. For example:

f fl lo oa at t v v[3 3] ; / / an array of three floats: v[0], v[1], v[2]
c ch ha ar r* a a[3 32 2] ; / / an array of 32 pointers to char: a[0] .. a[31]

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.2 Arrays 89

The number of elements of the array, the array bound, must be a constant expression (§C.5). If you
need variable bounds, use av ve ec ct to or r (§3.7.1, §16.3). For example:

v vo oi id d f f(i in nt t i i)
{

i in nt t v v1 1[i i] ; / / error: array size not a constant expression
v ve ec ct to or r<i in nt t> v v2 2(i i) ; / / ok

}

Multidimensional arrays are represented as arrays of arrays. For example:

i in nt t d d2 2[1 10 0][2 20 0] ; / / d2 is an array of 10 arrays of 20 integers

Using comma notation as used for array bounds in some other languages gives compile-time errors
because comma (,) is a sequencing operator (§6.2.2) and is not allowed in constant expressions
(§C.5). For example, try this:

i in nt t b ba ad d[5 5, 2 2] ; / / error: comma not allowed in a constant expression

Multidimensional arrays are described in §C.7. They are best avoided outside low-level code.

5.2.1 Array Initializers [ptr.array.init]

An array can be initialized by a list of values. For example:

i in nt t v v1 1[] = { 1 1, 2 2, 3 3, 4 4 };
c ch ha ar r v v2 2[] = { ´ a a´, ´ b b´, ´ c c´, 0 0 };

When an array is declared without a specific size, but with an initializer list, the size is calculated
by counting the elements of the initializer list. Consequently,v v1 1 and v v2 2 are of typei in nt t[4 4] and
c ch ha ar r[4 4] , respectively. If a size is explicitly specified, it is an error to give surplus elements in an
initializer list. For example:

c ch ha ar r v v3 3[2 2] = { ´ a a´, ´ b b´, 0 0 }; / / error: too many initializers
c ch ha ar r v v4 4[3 3] = { ´ a a´, ´ b b´, 0 0 }; / / ok

If the initializer supplies too few elements,0 0 is assumed for the remaining array elements. For
example:

i in nt t v v5 5[8 8] = { 1 1, 2 2, 3 3, 4 4 };

is equivalent to

i in nt t v v5 5[] = { 1 1, 2 2, 3 3, 4 4 , 0 0, 0 0, 0 0, 0 0 };

Note that there is no array assignment to match the initialization:

v vo oi id d f f()
{

v v4 4 = { ´ c c´, ´ d d´, 0 0 }; / / error: no array assignment
}

When you need such assignments, use av ve ec ct to or r (§16.3) or av va al la ar rr ra ay y (§22.4) instead.
An array of characters can be conveniently initialized by a string literal (§5.2.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

90 Pointers, Arrays, and Structures Chapter 5

5.2.2 String Literals [ptr.string.literal]

A string literal is a character sequence enclosed within double quotes:

" t th hi is s i is s a a s st tr ri in ng g"

A string literal contains one more character than it appears to have; it is terminated by the null char-
acter´ \ \0 0´ , with the value0 0. For example:

s si iz ze eo of f(" B Bo oh hr r")== 5 5

The type of a string literal is ‘‘array of the appropriate number ofc co on ns st t characters,’’ so" "B Bo oh hr r" " is
of typec co on ns st t c ch ha ar r[5 5] .

A string literal can be assigned to ac ch ha ar r* . This is allowed because in previous definitions of C
and C++ , the type of a string literal wasc ch ha ar r* . Allowing the assignment of a string literal to a
c ch ha ar r* ensures that millions of lines of C and C++ remain valid. It is, however, an error to try to
modify a string literal through such a pointer:

v vo oi id d f f()
{

c ch ha ar r* p p = " P Pl la at to o";
p p[4 4] = ´ e é ; / / error: assignment to const; result is undefined

}

This kind of error cannot in general be caught until run-time, and implementations differ in their
enforcement of this rule. Having string literals constant not only is obvious, but also allows imple-
mentations to do significant optimizations in the way string literals are stored and accessed.

If we want a string that we are guaranteed to be able to modify, we must copy the characters
into an array:

v vo oi id d f f()
{

c ch ha ar r p p[] = " Z Ze en no o"; / / p is an array of 5 char
p p[0 0] = ´ R Ŕ ; / / ok

}

A string literal is statically allocated so that it is safe to return one from a function. For example:

c co on ns st t c ch ha ar r* e er rr ro or r_ _m me es ss sa ag ge e(i in nt t i i)
{

/ / ...
r re et tu ur rn n " r ra an ng ge e e er rr ro or r";

}

The memory holdingr ra an ng ge e e er rr ro or r will not go away after a call ofe er rr ro or r_ _m me es ss sa ag ge e() .
Whether two identical character literals are allocated as one is implementation-defined (§C.1).

For example:

c co on ns st t c ch ha ar r* p p = " H He er ra ac cl li it tu us s";
c co on ns st t c ch ha ar r* q q = " H He er ra ac cl li it tu us s";

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.2.2 String Literals 91

v vo oi id d g g()
{

i if f (p p == q q) c co ou ut t << " o on ne e! \ \n n"; / / result is implementation-defined
/ / ...

}

Note that== compares addresses (pointer values) when applied to pointers, and not the values
pointed to.

The empty string is written as a pair of adjacent double quotes,"" , (and has the typec co on ns st t
c ch ha ar r[1 1]).

The backslash convention for representing nongraphic characters (§C.3.2) can also be used
within a string. This makes it possible to represent the double quote (") and the escape character
backslash (\ \) within a string. The most common such character by far is the newline character,
´ \ \n n´ . For example:

c co ou ut t<<" b be ee ep p a at t e en nd d o of f m me es ss sa ag ge e\ \a a\ \n n";

The escape character´ \ \a a´ is the ASCII characterB BE EL L (also known asalert), which causes some
kind of sound to be emitted.

It is not possible to have a ‘‘real’’ newline in a string:

" t th hi is s i is s n no ot t a a s st tr ri in ng g
b bu ut t a a s sy yn nt ta ax x e er rr ro or r"

Long strings can be broken by whitespace to make the program text neater. For example:

c ch ha ar r a al lp ph ha a[] = " a ab bc cd de ef fg gh hi ij jk kl lm mn no op pq qr rs st tu uv vw wx xy yz z"
" A AB BC CD DE EF FG GH HI IJ JK KL LM MN NO OP PQ QR RS ST TU UV VW WX XY YZ Z";

The compiler will concatenate adjacent strings, soa al lp ph ha a could equivalently have been initialized
by the single string:

" a ab bc cd de ef fg gh hi ij jk kl lm mn no op pq qr rs st tu uv vw wx xy yz zA AB BC CD DE EF FG GH HI IJ JK KL LM MN NO OP PQ QR RS ST TU UV VW WX XY YZ Z";

It is possible to have the null character in a string, but most programs will not suspect that there
are characters after it. For example, the string" "J Je en ns s\ \0 00 00 0M Mu un nk k" " will be treated as" "J Je en ns s" " by stan-
dard library functions such ass st tr rc cp py y() ands st tr rl le en n() ; see §20.4.1.

A string with the prefixL L, such asL L" a an ng gs st t" , is a string of wide characters (§4.3, §C.3.3). Its
type isc co on ns st t w wc ch ha ar r_ _t t[] .

5.3 Pointers into Arrays[ptr.into]

In C++, pointers and arrays are closely related. The name of an array can be used as a pointer to its
initial element. For example:

i in nt t v v[] = { 1 1, 2 2, 3 3, 4 4 };
i in nt t* p p1 1 = v v; / / pointer to initial element (implicit conversion)
i in nt t* p p2 2 = &v v[0 0] ; / / pointer to initial element
i in nt t* p p3 3 = &v v[4 4] ; / / pointer to one beyond last element

or graphically:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

92 Pointers, Arrays, and Structures Chapter 5

p p1 1 p p2 2 p p3 3

. .
1 1

. .
2 2

. .
3 3

. .
4 4 . .v v:

Taking a pointer to the element one beyond the end of an array is guaranteed to work. This is
important for many algorithms (§2.7.2, §18.3). However, since such a pointer does not in fact point
to an element of the array, it may not be used for reading or writing. The result of taking the
address of the element before the initial element is undefined and should be avoided. On some
machine architectures, arrays are often allocated on machine addressing boundaries, so ‘‘one before
the initial element’’ simply doesn’t make sense.

The implicit conversion of an array name to a pointer to the initial element of the array is exten-
sively used in function calls in C-style code. For example:

e ex xt te er rn n " C C" i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ; / / from <string.h>

v vo oi id d f f()
{

c ch ha ar r v v[] = " A An nn ne em ma ar ri ie e";
c ch ha ar r* p p = v v; / / implicit conversion of char[] to char*
s st tr rl le en n(p p) ;
s st tr rl le en n(v v) ; / / implicit conversion of char[] to char*
v v = p p; / / error: cannot assign to array

}

The same value is passed to the standard library functions st tr rl le en n() in both calls. The snag is that it
is impossible to avoid the implicit conversion. In other words, there is no way of declaring a func-
tion so that the arrayv v is copied when the function is called. Fortunately, there is no implicit or
explicit conversion from a pointer to an array.

The implicit conversion of the array argument to a pointer means that the size of the array is lost
to the called function. However, the called function must somehow determine the size to perform a
meaningful operation. Like other C standard library functions taking pointers to characters,
s st tr rl le en n() relies on zero to indicate end-of-string;s st tr rl le en n(p p) returns the number of characters up to
and not including the terminating0 0. This is all pretty low-level. The standard libraryv ve ec ct to or r
(§16.3) ands st tr ri in ng g (Chapter 20) don’t suffer from this problem.

5.3.1 Navigating Arrays [ptr.navigate]

Efficient and elegant access to arrays (and similar data structures) is the key to many algorithms
(see §3.8, Chapter 18). Access can be achieved either through a pointer to an array plus an index or
through a pointer to an element. For example, traversing a character string using an index,

v vo oi id d f fi i(c ch ha ar r v v[])
{

f fo or r (i in nt t i i = 0 0; v v[i i]!= 0 0; i i++) u us se e(v v[i i]) ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.3.1 Navigating Arrays 93

is equivalent to a traversal using a pointer:

v vo oi id d f fp p(c ch ha ar r v v[])
{

f fo or r (c ch ha ar r* p p = v v; * p p!= 0 0; p p++) u us se e(* p p) ;
}

The prefix* operator dereferences a pointer so that* p p is the character pointed to byp p, and ++
increments the pointer so that it refers to the next element of the array.

There is no inherent reason why one version should be faster than the other. With modern com-
pilers, identical code should be generated for both examples (see §5.9[8]). Programmers can
choose between the versions on logical and aesthetic grounds.

The result of applying the arithmetic operators+, - , ++, or -- to pointers depends on the type
of the object pointed to. When an arithmetic operator is applied to a pointerp p of type T T* , p p is
assumed to point to an element of an array of objects of typeT T; p p+1 1 points to the next element of
that array, andp p- 1 1 points to the previous element. This implies that the integer value ofp p+1 1 will
bes si iz ze eo of f(T T) larger than the integer value ofp p. For example, executing

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n ()
{

i in nt t v vi i[1 10 0] ;
s sh ho or rt t v vs s[1 10 0] ;

s st td d: : c co ou ut t << &v vi i[0 0] << ´ ´ << &v vi i[1 1] << ´ \ \n n´;
s st td d: : c co ou ut t << &v vs s[0 0] << ´ ´ << &v vs s[1 1] << ´ \ \n n´;

}

produced

0 0x x7 7f ff ff fa ae ef f0 0 0 0x x7 7f ff ff fa ae ef f4 4
0 0x x7 7f ff ff fa ae ed dc c 0 0x x7 7f ff ff fa ae ed de e

using a default hexadecimal notation for pointer values. This shows that on my implementation,
s si iz ze eo of f(s sh ho or rt t) is 2 2 ands si iz ze eo of f(i in nt t) is 4 4.

Subtraction of pointers is defined only when both pointers point to elements of the same array
(although the language has no fast way of ensuring that is the case). When subtracting one pointer
from another, the result is the number of array elements between the two pointers (an integer). One
can add an integer to a pointer or subtract an integer from a pointer; in both cases, the result is a
pointer value. If that value does not point to an element of the same array as the original pointer or
one beyond, the result of using that value is undefined. For example:

v vo oi id d f f()
{

i in nt t v v1 1[1 10 0] ;
i in nt t v v2 2[1 10 0] ;

i in nt t i i1 1 = &v v1 1[5 5]-& v v1 1[3 3] ; / / i1 = 2
i in nt t i i2 2 = &v v1 1[5 5]-& v v2 2[3 3] ; / / result undefined

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

94 Pointers, Arrays, and Structures Chapter 5

i in nt t* p p1 1 = v v2 2+2 2; / / p1 = &v2[2]
i in nt t* p p2 2 = v v2 2- 2 2; / / *p2 undefined

}

Complicated pointer arithmetic is usually unnecessary and often best avoided. Addition of pointers
makes no sense and is not allowed.

Arrays are not self-describing because the number of elements of an array is not guaranteed to
be stored with the array. This implies that to traverse an array that does not contain a terminator the
way character strings do, we must somehow supply the number of elements. For example:

v vo oi id d f fp p(c ch ha ar r v v[] , u un ns si ig gn ne ed d i in nt t s si iz ze e)
{

f fo or r (i in nt t i i=0 0; i i<s si iz ze e; i i++) u us se e(v v[i i]) ;

c co on ns st t i in nt t N N = 7 7;
c ch ha ar r v v2 2[N N] ;
f fo or r (i in nt t i i=0 0; i i<N N; i i++) u us se e(v v2 2[i i]) ;

}

Note that most C++ implementations offer no range checking for arrays. This array concept is
inherently low-level. A more advanced notion of arrays can be provided through the use of classes;
see §3.7.1.

5.4 Constants[ptr.const]

C++ offers the concept of a user-defined constant, ac co on ns st t, to express the notion that a value doesn’t
change directly. This is useful in several contexts. For example, many objects don’t actually have
their values changed after initialization, symbolic constants lead to more maintainable code than do
literals embedded directly in code, pointers are often read through but never written through, and
most function parameters are read but not written to.

The keywordc co on ns st t can be added to the declaration of an object to make the object declared a
constant. Because it cannot be assigned to, a constant must be initialized. For example:

c co on ns st t i in nt t m mo od de el l = 9 90 0; / / model is a const
c co on ns st t i in nt t v v[] = { 1 1, 2 2, 3 3, 4 4 }; / / v[i] is a const
c co on ns st t i in nt t x x; / / error: no initializer

Declaring somethingc co on ns st t ensures that its value will not change within its scope:

v vo oi id d f f()
{

m mo od de el l = 2 20 00 0; / / error
v v[2 2]++; / / error

}

Note thatc co on ns st t modifies a type; that is, it restricts the ways in which an object can be used, rather
than specifying how the constant is to be allocated. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.4 Constants 95

v vo oi id d g g(c co on ns st t X X* p p)
{

/ / can’t modify *p here
}

v vo oi id d h h()
{

X X v va al l; / / val can be modified
g g(& v va al l) ;
/ / ...

}

Depending on how smart it is, a compiler can take advantage of an object being a constant in sev-
eral ways. For example, the initializer for a constant is often (but not always) a constant expression
(§C.5); if it is, it can be evaluated at compile time. Further, if the compiler knows every use of the
c co on ns st t, it need not allocate space to hold it. For example:

c co on ns st t i in nt t c c1 1 = 1 1;
c co on ns st t i in nt t c c2 2 = 2 2;
c co on ns st t i in nt t c c3 3 = m my y_ _f f(3 3) ; / / don’t know the value of c3 at compile time
e ex xt te er rn n c co on ns st t i in nt t c c4 4; / / don’t know the value of c4 at compile time
c co on ns st t i in nt t* p p = &c c2 2; / / need to allocate space for c2

Given this, the compiler knows the values ofc c1 1 andc c2 2 so that they can be used in constant expres-
sions. Because the values ofc c3 3 andc c4 4 are not known at compile time (using only the information
available in this compilation unit; see §9.1), storage must be allocated forc c3 3 andc c4 4. Because the
address ofc c2 2 is taken (and presumably used somewhere), storage must be allocated forc c2 2. The
simple and common case is the one in which the value of the constant is known at compile time and
no storage needs to be allocated;c c1 1 is an example of that. The keyworde ex xt te er rn n indicates thatc c4 4 is
defined elsewhere (§9.2).

It is typically necessary to allocate store for an array of constants because the compiler cannot,
in general, figure out which elements of the array are referred to in expressions. On many
machines, however, efficiency improvements can be achieved even in this case by placing arrays of
constants in read-only storage.

Common uses forc co on ns st ts are as array bounds and case labels. For example:

c co on ns st t i in nt t a a = 4 42 2;
c co on ns st t i in nt t b b = 9 99 9;
c co on ns st t i in nt t m ma ax x = 1 12 28 8;

i in nt t v v[m ma ax x] ;

v vo oi id d f f(i in nt t i i)
{

s sw wi it tc ch h (i i) {
c ca as se e a a:

/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

96 Pointers, Arrays, and Structures Chapter 5

c ca as se e b b:
/ / ...

}
}

Enumerators (§4.8) are often an alternative toc co on ns st ts in such cases.
The wayc co on ns st t can be used with class member functions is discussed in §10.2.6 and §10.2.7.
Symbolic constants should be used systematically to avoid ‘‘magic numbers’’ in code. If a

numeric constant, such as an array bound, is repeated in code, it becomes hard to revise that code
because every occurrence of that constant must be changed to make a correct update. Using a sym-
bolic constant instead localizes information. Usually, a numeric constant represents an assumption
about the program. For example,4 4 may represent the number of bytes in an integer,1 12 28 8 the num-
ber of characters needed to buffer input, and6 6. 2 24 4 the exchange factor between Danish kroner and
U.S. dollars. Left as numeric constants in the code, these values are hard for a maintainer to spot
and understand. Often, such numeric values go unnoticed and become errors when a program is
ported or when some other change violates the assumptions they represent. Representing assump-
tions as well-commented symbolic constants minimizes such maintenance problems.

5.4.1 Pointers and Constants [ptr.pc]

When using a pointer, two objects are involved: the pointer itself and the object pointed to. ‘‘Pre-
fixing’’ a declaration of a pointer withc co on ns st t makes the object, but not the pointer, a constant. To
declare a pointer itself, rather than the object pointed to, to be a constant, we use the declarator
operator* c co on ns st t instead of plain*. For example:

v vo oi id d f f1 1(c ch ha ar r* p p)
{

c ch ha ar r s s[] = " G Go or rm m";

c co on ns st t c ch ha ar r* p pc c = s s; / / pointer to constant
p pc c[3 3] = ´ g g´; / / error: pc points to constant
p pc c = p p; / / ok

c ch ha ar r * c co on ns st t c cp p = s s; / / constant pointer
c cp p[3 3] = ´ a a´; / / ok
c cp p = p p; / / error: cp is constant

c co on ns st t c ch ha ar r * c co on ns st t c cp pc c = s s; / / const pointer to const
c cp pc c[3 3] = ´ a a´; / / error: cpc points to constant
c cp pc c = p p; / / error: cpc is constant

}

The declarator operator that makes a pointer constant is* c co on ns st t. There is noc co on ns st t* declarator
operator, so ac co on ns st t appearing before the* is taken to be part of the base type. For example:

c ch ha ar r * c co on ns st t c cp p; / / const pointer to char
c ch ha ar r c co on ns st t* p pc c; / / pointer to const char
c co on ns st t c ch ha ar r* p pc c2 2; / / pointer to const char

Some people find it helpful to read such declarations right-to-left. For example, ‘‘c cp p is a c co on ns st t
pointer to ac ch ha ar r’’ and ‘‘ p pc c2 2 is a pointer to ac ch ha ar r c co on ns st t.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.4.1 Pointers and Constants 97

An object that is a constant when accessed through one pointer may be variable when accessed
in other ways. This is particularly useful for function arguments. By declaring a pointer argument
c co on ns st t, the function is prohibited from modifying the object pointed to. For example:

c ch ha ar r* s st tr rc cp py y(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / cannot modify *q

You can assign the address of a variable to a pointer to constant because no harm can come from
that. However, the address of a constant cannot be assigned to an unrestricted pointer because this
would allow the object’s value to be changed. For example:

v vo oi id d f f4 4()
{

i in nt t a a = 1 1;
c co on ns st t i in nt t c c = 2 2;
c co on ns st t i in nt t* p p1 1 = &c c; / / ok
c co on ns st t i in nt t* p p2 2 = &a a; / / ok
i in nt t* p p3 3 = &c c; / / error: initialization of int* with const int*
* p p3 3 = 7 7; / / try to change the value of c

}

It is possible to explicitly remove the restrictions on a pointer toc co on ns st t by explicit type conversion
(§10.2.7.1 and §15.4.2.1).

5.5 References[ptr.ref]

A referenceis an alternative name for an object. The main use of references is for specifying argu-
ments and return values for functions in general and for overloaded operators (Chapter 11) in par-
ticular. The notationX X& meansreference to X X. For example:

v vo oi id d f f()
{

i in nt t i i = 1 1;
i in nt t& r r = i i; / / r and i now refer to the same int
i in nt t x x = r r; / / x = 1

r r = 2 2; / / i = 2
}

To ensure that a reference is a name for something (that is, bound to an object), we must initialize
the reference. For example:

i in nt t i i = 1 1;
i in nt t& r r1 1 = i i; / / ok: r1 initialized
i in nt t& r r2 2; / / error: initializer missing
e ex xt te er rn n i in nt t& r r3 3; / / ok: r3 initialized elsewhere

Initialization of a reference is something quite different from assignment to it. Despite appear-
ances, no operator operates on a reference. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

98 Pointers, Arrays, and Structures Chapter 5

v vo oi id d g g()
{

i in nt t i ii i = 0 0;
i in nt t& r rr r = i ii i;
r rr r++; / / ii is incremented to 1
i in nt t* p pp p = &r rr r; / / pp points to ii

}

This is legal, butr rr r++ does not increment the referencer rr r; rather,++ is applied to ani in nt t that hap-
pens to bei ii i. Consequently, the value of a reference cannot be changed after initialization; it
always refers to the object it was initialized to denote. To get a pointer to the object denoted by a
referencer rr r, we can write&r rr r.

The obvious implementation of a reference is as a (constant) pointer that is dereferenced each
time it is used. It doesn’t do much harm thinking about references that way, as long as one remem-
bers that a reference isn’t an object that can be manipulated the way a pointer is:

1 1 i ii i:

&i ii i p pp p:

r rr r:

In some cases, the compiler can optimize away a reference so that there is no object representing
that reference at run-time.

Initialization of a reference is trivial when the initializer is an lvalue (an object whose address
you can take; see §4.9.6). The initializer for a ‘‘plain’’T T& must be an lvalue of typeT T.

The initializer for ac co on ns st t T T& need not be an lvalue or even of typeT T. In such cases,
[1] first, implicit type conversion toT T is applied if necessary (see §C.6);
[2] then, the resulting value is placed in a temporary variable of typeT T; and
[3] finally, this temporary variable is used as the value of the initializer.

Consider:

d do ou ub bl le e& d dr r = 1 1; / / error: lvalue needed
c co on ns st t d do ou ub bl le e& c cd dr r = 1 1; / / ok

The interpretation of this last initialization might be:

d do ou ub bl le e t te em mp p = d do ou ub bl le e(1 1) ; / / first create a temporary with the right value
c co on ns st t d do ou ub bl le e& c cd dr r = t te em mp p; / / then use the temporary as the initializer for cdr

A temporary created to hold a reference initializer persists until the end of its reference’s scope.
References to variables and references to constants are distinguished because the introduction of

a temporary in the case of the variable is highly error-prone; an assignment to the variable would
become an assignment to the– soon to disappear– temporary. No such problem exists for refer-
ences to constants, and references to constants are often important as function arguments (§11.6).

A reference can be used to specify a function argument so that the function can change the
value of an object passed to it. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.5 References 99

v vo oi id d i in nc cr re em me en nt t(i in nt t& a aa a) { a aa a++; }

v vo oi id d f f()
{

i in nt t x x = 1 1;
i in nc cr re em me en nt t(x x) ; / / x = 2

}

The semantics of argument passing are defined to be those of initialization, so when called,
i in nc cr re em me en nt t’s argumenta aa a became another name forx x. To keep a program readable, it is often best
to avoid functions that modify their arguments. Instead, you can return a value from the function
explicitly or require a pointer argument:

i in nt t n ne ex xt t(i in nt t p p) { r re et tu ur rn n p p+1 1; }

v vo oi id d i in nc cr r(i in nt t* p p) { (* p p)++; }

v vo oi id d g g()
{

i in nt t x x = 1 1;
i in nc cr re em me en nt t(x x) ; / / x = 2
x x = n ne ex xt t(x x) ; / / x = 3
i in nc cr r(& x x) ; / / x = 4

}

The i in nc cr re em me en nt t(x x) notation doesn’t give a clue to the reader thatx x’s value is being modified, the
way x x=n ne ex xt t(x x) and i in nc cr r(& x x) does. Consequently ‘‘plain’’ reference arguments should be used
only where the name of the function gives a strong hint that the reference argument is modified.

References can also be used to define functions that can be used on both the left-hand and
right-hand sides of an assignment. Again, many of the most interesting uses of this are found in the
design of nontrivial user-defined types. As an example, let us define a simple associative array.
First, we define structP Pa ai ir r like this:

s st tr ru uc ct t P Pa ai ir r {
s st tr ri in ng g n na am me e;
d do ou ub bl le e v va al l;

};

The basic idea is that as st tr ri in ng g has a floating-point value associated with it. It is easy to define a
function, v va al lu ue e() , that maintains a data structure consisting of oneP Pa ai ir r for each different string
that has been presented to it. To shorten the presentation, a very simple (and inefficient) implemen-
tation is used:

v ve ec ct to or r<P Pa ai ir r> p pa ai ir rs s;

d do ou ub bl le e& v va al lu ue e(c co on ns st t s st tr ri in ng g& s s)
/*

maintain a set of Pairs:
search for s, return its value if found; otherwise make a new Pair and return the default value 0

*/
{

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

100 Pointers, Arrays, and Structures Chapter 5

f fo or r (i in nt t i i = 0 0; i i < p pa ai ir rs s. s si iz ze e() ; i i++)
i if f (s s == p pa ai ir rs s[i i]. n na am me e) r re et tu ur rn n p pa ai ir rs s[i i]. v va al l;

P Pa ai ir r p p = { s s, 0 0 };
p pa ai ir rs s. p pu us sh h_ _b ba ac ck k(p p) ; / / add Pair at end (§3.7.3)

r re et tu ur rn n p pa ai ir rs s[p pa ai ir rs s. s si iz ze e()- 1 1]. v va al l;
}

This function can be understood as an array of floating-point values indexed by character strings.
For a given argument string,v va al lu ue e() finds the corresponding floating-point object (not the value
of the corresponding floating-point object); it then returns a reference to it. For example:

i in nt t m ma ai in n() / / count the number of occurrences of each word on input
{

s st tr ri in ng g b bu uf f;

w wh hi il le e (c ci in n>>b bu uf f) v va al lu ue e(b bu uf f)++;

f fo or r (v ve ec ct to or r<P Pa ai ir r>: : c co on ns st t_ _i it te er ra at to or r p p = p pa ai ir rs s. b be eg gi in n() ; p p!= p pa ai ir rs s. e en nd d() ; ++p p)
c co ou ut t << p p-> n na am me e << ": " << p p-> v va al l << ´ \ \n n´;

}

Each time around, thew wh hi il le e-loop reads one word from the standard input streamc ci in n into the string
b bu uf f (§3.6) and then updates the counter associated with it. Finally, the resulting table of different
words in the input, each with its number of occurrences, is printed. For example, given the input

a aa a b bb b b bb b a aa a a aa a b bb b a aa a a aa a

this program will produce:

a aa a: 5 5
b bb b: 3 3

It is easy to refine this into a proper associative array type by using a template class with the selec-
tion operator[] overloaded (§11.8). It is even easier just to use the standard librarym ma ap p (§17.4.1).

5.6 Pointer to Void[ptr.ptrtovoid]

A pointer of any type of object can be assigned to a variable of typev vo oi id d* , av vo oi id d* can be assigned
to anotherv vo oi id d* , v vo oi id d* s can be compared for equality and inequality, and av vo oi id d* can be explicitly
converted to another type. Other operations would be unsafe because the compiler cannot know
what kind of object is really pointed to. Consequently, other operations result in compile-time
errors. To use av vo oi id d* , we must explicitly convert it to a pointer to a specific type. For example:

v vo oi id d f f(i in nt t* p pi i)
{

v vo oi id d* p pv v = p pi i; / / ok: implicit conversion of int* to void*
* p pv v; / / error: can’t dereference void*
p pv v++; / / error: can’t increment void* (the size of the object pointed to is unknown)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.6 Pointer to Void 101

i in nt t* p pi i2 2 = s st ta at ti ic c_ _c ca as st t<i in nt t*>(p pv v) ; / / explicit conversion back to int*

d do ou ub bl le e* p pd d1 1 = p pv v; / / error
d do ou ub bl le e* p pd d2 2 = p pi i; / / error
d do ou ub bl le e* p pd d3 3 = s st ta at ti ic c_ _c ca as st t<d do ou ub bl le e*>(p pv v) ; / / unsafe

}

In general, it is not safe to use a pointer that has been converted (‘‘cast’’) to a type that differs from
the type the object pointed to. For example, a machine may assume that everyd do ou ub bl le e is allocated
on an 8-byte boundary. If so, strange behavior could arise ifp pi i pointed to ani in nt t that wasn’t allo-
cated that way. This form of explicit type conversion is inherently unsafe and ugly. Consequently,
the notation used,s st ta at ti ic c_ _c ca as st t, was designed to be ugly.

The primary use forv vo oi id d* is for passing pointers to functions that are not allowed to make
assumptions about the type of the object and for returning untyped objects from functions. To use
such an object, we must use explicit type conversion.

Functions usingv vo oi id d* pointers typically exist at the very lowest level of the system, where real
hardware resources are manipulated. For example:

v vo oi id d* m my y_ _a al ll lo oc c(s si iz ze e_ _t t n n) ; / / allocate n bytes from my special heap

Occurrences ofv vo oi id d* s at higher levels of the system should be viewed with suspicion because they
are likely indicators of design errors. Where used for optimization,v vo oi id d* can be hidden behind a
type-safe interface (§13.5, §24.4.2).

Pointers to functions (§7.7) and pointers to members (§15.5) cannot be assigned tov vo oi id d* s.

5.7 Structures[ptr.struct]

An array is an aggregate of elements of the same type. As st tr ru uc ct t is an aggregate of elements of
(nearly) arbitrary types. For example:

s st tr ru uc ct t a ad dd dr re es ss s {
c ch ha ar r* n na am me e; / / "Jim Dandy"
l lo on ng g i in nt t n nu um mb be er r; / / 61
c ch ha ar r* s st tr re ee et t; / / "South St"
c ch ha ar r* t to ow wn n; / / "New Providence"
c ch ha ar r s st ta at te e[2 2] ; / / ’N’ ’J’
l lo on ng g z zi ip p; / / 7974

};

This defines a new type calleda ad dd dr re es ss s consisting of the items you need in order to send mail to
someone. Note the semicolon at the end. This is one of very few places in C++ where it is neces-
sary to have a semicolon after a curly brace, so people are prone to forget it.

Variables of typea ad dd dr re es ss s can be declared exactly as other variables, and the individual
memberscan be accessed using the. (dot) operator. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

102 Pointers, Arrays, and Structures Chapter 5

v vo oi id d f f()
{

a ad dd dr re es ss s j jd d;
j jd d. n na am me e = " J Ji im m D Da an nd dy y";
j jd d. n nu um mb be er r = 6 61 1;

}

The notation used for initializing arrays can also be used for initializing variables of structure types.
For example:

a ad dd dr re es ss s j jd d = {
" J Ji im m D Da an nd dy y",
6 61 1, " S So ou ut th h S St t",
" N Ne ew w P Pr ro ov vi id de en nc ce e", {´ N N´,´ J J´}, 7 79 97 74 4

};

Using a constructor (§10.2.3) is usually better, however. Note thatj jd d. s st ta at te e could not be initialized
by the string" "N NJ J" ". Strings are terminated by the character´ \ \0 0´ . Hence," "N NJ J" " has three characters
– one more than will fit intoj jd d. s st ta at te e.

Structure objects are often accessed through pointers using the-> (structure pointer derefer-
ence) operator. For example:

v vo oi id d p pr ri in nt t_ _a ad dd dr r(a ad dd dr re es ss s* p p)
{

c co ou ut t << p p-> n na am me e << ´ \ \n n´
<< p p-> n nu um mb be er r << ´ ´ << p p-> s st tr re ee et t << ´ \ \n n´
<< p p-> t to ow wn n << ´ \ \n n´
<< p p-> s st ta at te e[0 0] << p p-> s st ta at te e[1 1] << ´ ´ << p p-> z zi ip p << ´ \ \n n´;

}

Whenp p is a pointer,p p-> m m is equivalent to(* p p). m m.
Objects of structure types can be assigned, passed as function arguments, and returned as the

result from a function. For example:

a ad dd dr re es ss s c cu ur rr re en nt t;

a ad dd dr re es ss s s se et t_ _c cu ur rr re en nt t(a ad dd dr re es ss s n ne ex xt t)
{

a ad dd dr re es ss s p pr re ev v = c cu ur rr re en nt t;
c cu ur rr re en nt t = n ne ex xt t;
r re et tu ur rn n p pr re ev v;

}

Other plausible operations, such as comparison (== and !=), are not defined. However, the user
can define such operators (Chapter 11).

The size of an object of a structure type is not necessarily the sum of the sizes of its members.
This is because many machines require objects of certain types to be allocated on architecture-
dependent boundaries or handle such objects much more efficiently if they are. For example, inte-
gers are often allocated on word boundaries. On such machines, objects are said to have to be
aligned properly. This leads to ‘‘holes’’ in the structures. For example, on many machines,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.7 Structures 103

s si iz ze eo of f(a ad dd dr re es ss s) is 2 24 4, and not2 22 2 as might be expected. You can minimize wasted space by sim-
ply ordering members by size (largest member first). However, it is usually best to order members
for readability and sort them by size only if there is a demonstrated need to optimize.

The name of a type becomes available for use immediately after it has been encountered and not
just after the complete declaration has been seen. For example:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* p pr re ev vi io ou us s;
L Li in nk k* s su uc cc ce es ss so or r;

};

It is not possible to declare new objects of a structure type until the complete declaration has been
seen. For example:

s st tr ru uc ct t N No o_ _g go oo od d {
N No o_ _g go oo od d m me em mb be er r; / / error: recursive definition

};

This is an error because the compiler is not able to determine the size ofN No o_ _g go oo od d. To allow two
(or more) structure types to refer to each other, we can declare a name to be the name of a structure
type. For example:

s st tr ru uc ct t L Li is st t; / / to be defined later

s st tr ru uc ct t L Li in nk k {
L Li in nk k* p pr re e;
L Li in nk k* s su uc c;
L Li is st t* m me em mb be er r_ _o of f;

};

s st tr ru uc ct t L Li is st t {
L Li in nk k* h he ea ad d;

};

Without the first declaration ofL Li is st t, use ofL Li is st t in the declaration ofL Li in nk k would have caused a syn-
tax error.

The name of a structure type can be used before the type is defined as long as that use does not
require the name of a member or the size of the structure to be known. For example:

c cl la as ss s S S; / / ‘S’ is the name of some type

e ex xt te er rn n S S a a;
S S f f() ;
v vo oi id d g g(S S) ;
S S* h h(S S*) ;

However, many such declarations cannot be used unless the typeS S is defined:

v vo oi id d k k(S S* p p)
{

S S a a; / / error: S not defined; size needed to allocate

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

104 Pointers, Arrays, and Structures Chapter 5

f f() ; / / error: S not defined; size needed to return value
g g(a a) ; / / error: S not defined; size needed to pass argument
p p-> m m = 7 7; / / error: S not defined; member name not known

S S* q q = h h(p p) ; / / ok: pointers can be allocated and passed
q q-> m m = 7 7; / / error: S not defined; member name not known

}

A s st tr ru uc ct t is a simple form of ac cl la as ss s (Chapter 10).
For reasons that reach into the pre-history of C, it is possible to declare as st tr ru uc ct t and a non-

structure with the same name in the same scope. For example:

s st tr ru uc ct t s st ta at t { /* ... */ };
i in nt t s st ta at t(c ch ha ar r* n na am me e, s st tr ru uc ct t s st ta at t* b bu uf f) ;

In that case, the plain name (s st ta at t) is the name of the non-structure, and the structure must be
referred to with the prefixs st tr ru uc ct t. Similarly, the keywordsc cl la as ss s, u un ni io on n (§C.8.2), ande en nu um m (§4.8)
can be used as prefixes for disambiguation. However, it is best not to overload names to make that
necessary.

5.7.1 Type Equivalence [ptr.equiv]

Two structures are different types even when they have the same members. For example,

s st tr ru uc ct t S S1 1 { i in nt t a a; };
s st tr ru uc ct t S S2 2 { i in nt t a a; };

are two different types, so

S S1 1 x x;
S S2 2 y y = x x; / / error: type mismatch

Structure types are also different from fundamental types, so

S S1 1 x x;
i in nt t i i = x x; / / error: type mismatch

Everys st tr ru uc ct t must have a unique definition in a program (§9.2.3).

5.8 Advice[ptr.advice]

[1] Avoid nontrivial pointer arithmetic; §5.3.
[2] Take care not to write beyond the bounds of an array; §5.3.1.
[3] Use0 0 rather thanN NU UL LL L; §5.1.1.
[4] Usev ve ec ct to or r andv va al la ar rr ra ay y rather than built-in (C-style) arrays; §5.3.1.
[5] Uses st tr ri in ng g rather than zero-terminated arrays ofc ch ha ar r; §5.3.
[6] Minimize use of plain reference arguments; §5.5.
[7] Avoid v vo oi id d* except in low-level code; §5.6.
[8] Avoid nontrivial literals (‘‘magic numbers’’) in code. Instead, define and use symbolic con-

stants; §4.8, §5.4.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.9 Exercises 105

5.9 Exercises [ptr.exercises]

1. (∗1) Write declarations for the following: a pointer to a character, an array of 10 integers, a ref-
erence to an array of 10 integers, a pointer to an array of character strings, a pointer to a pointer
to a character, a constant integer, a pointer to a constant integer, and a constant pointer to an
integer. Initialize each one.

2. (∗1.5) What, on your system, are the restrictions on the pointer typesc ch ha ar r* , i in nt t* , andv vo oi id d* ?
For example, may ani in nt t* have an odd value? Hint: alignment.

3. (∗1) Uset ty yp pe ed de ef f to define the typesu un ns si ig gn ne ed d c ch ha ar r, c co on ns st t u un ns si ig gn ne ed d c ch ha ar r, pointer to integer,
pointer to pointer toc ch ha ar r, pointer to arrays ofc ch ha ar r, array of 7 pointers toi in nt t, pointer to an array
of 7 pointers toi in nt t, and array of 8 arrays of 7 pointers toi in nt t.

4. (∗1) Write a function that swaps (exchanges the values of) two integers. Usei in nt t* as the argu-
ment type. Write another swap function usingi in nt t& as the argument type.

5. (∗1.5) What is the size of the arrays st tr r in the following example:

c ch ha ar r s st tr r[] = " a a s sh ho or rt t s st tr ri in ng g";

What is the length of the string" "a a s sh ho or rt t s st tr ri in ng g" "?
6. (∗1) Define functionsf f(c ch ha ar r) , g g(c ch ha ar r&) , andh h(c co on ns st t c ch ha ar r&) . Call them with the arguments

´ a a´ , 4 49 9, 3 33 30 00 0, c c, u uc c, ands sc c, wherec c is a c ch ha ar r, u uc c is anu un ns si ig gn ne ed d c ch ha ar r, ands sc c is a s si ig gn ne ed d
c ch ha ar r. Which calls are legal? Which calls cause the compiler to introduce a temporary variable?

7. (∗1.5) Define a table of the names of months of the year and the number of days in each month.
Write out that table. Do this twice; once using an array ofc ch ha ar r for the names and an array for
the number of days and once using an array of structures, with each structure holding the name
of a month and the number of days in it.

8. (∗2) Run some tests to see if your compiler really generates equivalent code for iteration using
pointers and iteration using indexing (§5.3.1). If different degrees of optimization can be
requested, see if and how that affects the quality of the generated code.

9. (∗1.5) Find an example where it would make sense to use a name in its own initializer.
10. (∗1) Define an array of strings in which the strings contain the names of the months. Print those

strings. Pass the array to a function that prints those strings.
11. (∗2) Read a sequence of words from input. UseQ Qu ui it t as a word that terminates the input. Print

the words in the order they were entered. Don’t print a word twice. Modify the program to sort
the words before printing them.

12. (∗2) Write a function that counts the number of occurrences of a pair of letters in as st tr ri in ng g and
another that does the same in a zero-terminated array ofc ch ha ar r (a C-style string). For example,
the pair "ab" appears twice in "xabaacbaxabb".

13. (∗1.5) Define as st tr ru uc ct t D Da at te e to keep track of dates. Provide functions that readD Da at te es from
input, writeD Da at te es to output, and initialize aD Da at te ewith a date.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

106 Pointers, Arrays, and Structures Chapter 5

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

6
_ __ _______________________________________

Expressions and Statements

Premature optimization
is the root of all evil.

– D. Knuth

On the other hand,
we cannot ignore efficiency.

– Jon Bentley

Desk calculator example— input — command line arguments— expression summary
— logical and relational operators— increment and decrement— free store— explicit
type conversion— statement summary— declarations— selection statements— decla-
rations in conditions— iteration statements— the infamousg go ot to o — comments and
indentation— advice— exercises.

6.1 A Desk Calculator[expr.calculator]

Statements and expressions are introduced by presenting a desk calculator program that provides
the four standard arithmetic operations as infix operators on floating-point numbers. The user can
also define variables. For example, given the input

r r = 2 2. 5 5
a ar re ea a = p pi i * r r * r r

(pi is predefined) the calculator program will write

2 2. 5 5
1 19 9. 6 63 35 5

where2 2. 5 5 is the result of the first line of input and1 19 9. 6 63 35 5 is the result of the second.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

108 Expressions and Statements Chapter 6

The calculator consists of four main parts: a parser, an input function, a symbol table, and a
driver. Actually, it is a miniature compiler in which the parser does the syntactic analysis, the input
function handles input and lexical analysis, the symbol table holds permanent information, and the
driver handles initialization, output, and errors. We could add many features to this calculator to
make it more useful (§6.6[20]), but the code is long enough as it is, and most features would just
add code without providing additional insight into the use of C++.

6.1.1 The Parser [expr.parser]

Here is a grammar for the language accepted by the calculator:

p pr ro og gr ra am m:
E EN ND D / / END is end-of-input
e ex xp pr r_ _l li is st t E EN ND D

e ex xp pr r_ _l li is st t:
e ex xp pr re es ss si io on n P PR RI IN NT T / / PRINT is semicolon
e ex xp pr re es ss si io on n P PR RI IN NT T e ex xp pr r_ _l li is st t

e ex xp pr re es ss si io on n:
e ex xp pr re es ss si io on n + t te er rm m
e ex xp pr re es ss si io on n - t te er rm m
t te er rm m

t te er rm m:
t te er rm m / p pr ri im ma ar ry y
t te er rm m * p pr ri im ma ar ry y
p pr ri im ma ar ry y

p pr ri im ma ar ry y:
N NU UM MB BE ER R
N NA AM ME E
N NA AM ME E = e ex xp pr re es ss si io on n
- p pr ri im ma ar ry y
(e ex xp pr re es ss si io on n)

In other words, a program is a sequence of expressions separated by semicolons. The basic units of
an expression are numbers, names, and the operators* , / , +, - (both unary and binary), and=.
Names need not be declared before use.

The style of syntax analysis used is usually calledrecursive descent; it is a popular and straight-
forward top-down technique. In a language such as C++, in which function calls are relatively
cheap, it is also efficient. For each production in the grammar, there is a function that calls other
functions. Terminal symbols (for example,E EN ND D, N NU UM MB BE ER R, +, and-) are recognized by the lexi-
cal analyzer,g ge et t_ _t to ok ke en n() ; and nonterminal symbols are recognized by the syntax analyzer func-
tions,e ex xp pr r() , t te er rm m() , andp pr ri im m() . As soon as both operands of a (sub)expression are known, the
expression is evaluated; in a real compiler, code could be generated at this point.

The parser uses a functiong ge et t_ _t to ok ke en n() to get input. The value of the most recent call of
g ge et t_ _t to ok ke en n() can be found in the global variablec cu ur rr r_ _t to ok k. The type ofc cu ur rr r_ _t to ok k is the enumera-
tion T To ok ke en n_ _v va al lu ue e:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.1 The Parser 109

e en nu um m T To ok ke en n_ _v va al lu ue e {
N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k = P PR RI IN NT T;

Representing each token by the integer value of its character is convenient and efficient and can be
a help to people using debuggers. This works as long as no character used as input has a value used
as an enumerator– and no character set I know of has a printing character with a single-digit inte-
ger value. I choseP PR RI IN NT T as the initial value forc cu ur rr r_ _t to ok k because that is the value it will have
after the calculator has evaluated an expression and displayed its value. Thus, I ‘‘start the system’’
in a normal state to minimize the chance of errors and the need for special startup code.

Each parser function takes ab bo oo ol l (§4.2) argument indicating whether the function needs to call
g ge et t_ _t to ok ke en n() to get the next token. Each parser function evaluates ‘‘its’’ expression and returns the
value. The functione ex xp pr r() handles addition and subtraction. It consists of a single loop that looks
for terms to add or subtract:

d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) / / add and subtract
{

d do ou ub bl le e l le ef ft t = t te er rm m(g ge et t) ;

f fo or r (;;) / / ‘‘forever’’
s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e P PL LU US S:

l le ef ft t += t te er rm m(t tr ru ue e) ;
b br re ea ak k;

c ca as se e M MI IN NU US S:
l le ef ft t -= t te er rm m(t tr ru ue e) ;
b br re ea ak k;

d de ef fa au ul lt t:
r re et tu ur rn n l le ef ft t;

}
}

This function really does not do much itself. In a manner typical of higher-level functions in a
large program, it calls other functions to do the work.

Theswitch-statementtests the value of its condition, which is supplied in parentheses after the
s sw wi it tc ch h keyword, against a set of constants. Thebreak-statements are used to exit theswitch-
statement. The constants following thec ca as se e labels must be distinct. If the value tested does not
match anyc ca as se e label, thed de ef fa au ul lt t is chosen. The programmer need not provide ad de ef fa au ul lt t.

Note that an expression such as2 2- 3 3+4 4 is evaluated as(2 2- 3 3)+ 4 4, as specified in the grammar.
The curious notationf fo or r(;;) is the standard way to specify an infinite loop; you could pro-

nounce it ‘‘forever.’’ It is a degenerate form of afor-statement(§6.3.3);w wh hi il le e(t tr ru ue e) is an alterna-
tive. Theswitch-statementis executed repeatedly until something different from+ and- is found,
and then thereturn-statementin the default case is executed.

The operators+= and-= are used to handle the addition and subtraction;l le ef ft t=l le ef ft t+t te er rm m() and

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

110 Expressions and Statements Chapter 6

l le ef ft t=l le ef ft t- t te er rm m() could have been used without changing the meaning of the program. However,
l le ef ft t+=t te er rm m() and l le ef ft t-= t te er rm m() not only are shorter but also express the intended operation
directly. Each assignment operator is a separate lexical token, soa a + = 1 1; is a syntax error because
of the space between the+ and the=.

Assignment operators are provided for the binary operators

+ - * / % & | ^ << >>

so that the following assignment operators are possible

= += -= *= /= %= &= |= ^= <<= >>=

The %is the modulo, or remainder, operator;&, | , and^ are the bitwise logical operators AND,
OR, and exclusive OR;<< and>> are the left shift and right shift operators; §6.2 summarizes the
operators and their meanings. For a binary operator@ @ applied to operands of built-in types, an
expressionx x@ @= =y y meansx x= =x x@ @y y, except thatx x is evaluated once only.

Chapter 8 and Chapter 9 discuss how to organize a program as a set of modules. With one
exception, the declarations for this calculator example can be ordered so that everything is declared
exactly once and before it is used. The exception ise ex xp pr r() , which callst te er rm m() , which calls
p pr ri im m() , which in turn callse ex xp pr r() . This loop must be broken somehow. A declaration

d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

before the definition ofp pr ri im m() will do nicely.
Functiont te er rm m() handles multiplication and division in the same waye ex xp pr r() handles addition

and subtraction:

d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) / / multiply and divide
{

d do ou ub bl le e l le ef ft t = p pr ri im m(g ge et t) ;

f fo or r (;;)
s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e M MU UL L:

l le ef ft t *= p pr ri im m(t tr ru ue e) ;
b br re ea ak k;

c ca as se e D DI IV V:
i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {

l le ef ft t /= d d;
b br re ea ak k;

}
r re et tu ur rn n e er rr ro or r(" d di iv vi id de e b by y 0 0") ;

d de ef fa au ul lt t:
r re et tu ur rn n l le ef ft t;

}
}

The result of dividing by zero is undefined and usually disastrous. We therefore test for0 0 before
dividing and calle er rr ro or r() if we detect a zero divisor. The functione er rr ro or r() is described in §6.1.4.

The variabled d is introduced into the program exactly where it is needed and initialized immedi-
ately. The scope of a name introduced in a condition is the statement controlled by that condition,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.1 The Parser 111

and the resulting value is the value of the condition (§6.3.2.1). Consequently, the division and
assignmentl le ef ft t/= d d is done if and only ifd d is nonzero.

The functionp pr ri im m() handling aprimary is much likee ex xp pr r() andt te er rm m() , except that because
we are getting lower in the call hierarchy a bit of real work is being done and no loop is necessary:

d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) / / handle primaries
{

i if f (g ge et t) g ge et t_ _t to ok ke en n() ;

s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e N NU UM MB BE ER R: / / floating-point constant
{ d do ou ub bl le e v v = n nu um mb be er r_ _v va al lu ue e;

g ge et t_ _t to ok ke en n() ;
r re et tu ur rn n v v;

}
c ca as se e N NA AM ME E:
{ d do ou ub bl le e& v v = t ta ab bl le e[s st tr ri in ng g_ _v va al lu ue e] ;

i if f (g ge et t_ _t to ok ke en n() == A AS SS SI IG GN N) v v = e ex xp pr r(t tr ru ue e) ;
r re et tu ur rn n v v;

}
c ca as se e M MI IN NU US S: / / unary minus

r re et tu ur rn n - p pr ri im m(t tr ru ue e) ;
c ca as se e L LP P:
{ d do ou ub bl le e e e = e ex xp pr r(t tr ru ue e) ;

i if f (c cu ur rr r_ _t to ok k != R RP P) r re et tu ur rn n e er rr ro or r(") e ex xp pe ec ct te ed d") ;
g ge et t_ _t to ok ke en n() ; / / eat ’)’
r re et tu ur rn n e e;

}
d de ef fa au ul lt t:

r re et tu ur rn n e er rr ro or r(" p pr ri im ma ar ry y e ex xp pe ec ct te ed d") ;
}

}

When aN NU UM MB BE ER R (that is, an integer or floating-point literal) is seen, its value is returned. The
input routineg ge et t_ _t to ok ke en n() places the value in the global variablen nu um mb be er r_ _v va al lu ue e. Use of a global
variable in a program often indicates that the structure is not quite clean– that some sort of opti-
mization has been applied. So it is here. Ideally, a lexical token consists of two parts: a value spec-
ifying the kind of token (aT To ok ke en n_ _v va al lu ue e in this program) and (when needed) the value of the token.
Here, there is only a single, simple variable,c cu ur rr r_ _t to ok k, so the global variablen nu um mb be er r_ _v va al lu ue e is
needed to hold the value of the lastN NU UM MB BE ER R read. Eliminating this spurious global variable is left
as an exercise (§6.6[21]). Saving the value ofn nu um mb be er r_ _v va al lu ue e in the local variablev v before calling
g ge et t_ _t to ok ke en n() is not really necessary. For every legal input, the calculator always uses one number
in the computation before reading another from input. However, saving the value and displaying it
correctly after an error helps the user.

In the same way that the value of the lastN NU UM MB BE ER R is kept inn nu um mb be er r_ _v va al lu ue e, the character
string representation of the lastN NA AM ME E seen is kept ins st tr ri in ng g_ _v va al lu ue e. Before doing anything to a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

112 Expressions and Statements Chapter 6

name, the calculator must first look ahead to see if it is being assigned to or simply read. In both
cases, the symbol table is consulted. The symbol table is am ma ap p (§3.7.4, §17.4.1):

m ma ap p<s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

That is, whent ta ab bl le e is indexed by as st tr ri in ng g, the resulting value is thed do ou ub bl le e corresponding to the
s st tr ri in ng g. For example, if the user enters

r ra ad di iu us s = 6 63 37 78 8. 3 38 88 8;

the calculator will execute

d do ou ub bl le e& v v = t ta ab bl le e[" r ra ad di iu us s"] ;
/ / ... expr() calculates the value to be assigned ...
v v = 6 63 37 78 8. 3 38 88 8;

The referencev v is used to hold on to thed do ou ub bl le e associated withr ra ad di iu us s while e ex xp pr r() calculates the
value6 63 37 78 8. 3 38 88 8 from the input characters.

6.1.2 The Input Function [expr.input]

Reading input is often the messiest part of a program. This is because a program must communi-
cate with a person, it must cope with that person’s whims, conventions, and seemingly random
errors. Trying to force the person to behave in a manner more suitable for the machine is often
(rightly) considered offensive. The task of a low-level input routine is to read characters and com-
pose higher-level tokens from them. These tokens are then the units of input for higher-level rou-
tines. Here, low-level input is done byg ge et t_ _t to ok ke en n() . Writing a low-level input routine need not be
an everyday task. Many systems provide standard functions for this.

I build g ge et t_ _t to ok ke en n() in two stages. First, I provide a deceptively simple version that imposes a
burden on the user. Next, I modify it into a slightly less elegant, but much easier to use, version.

The idea is to read a character, use that character to decide what kind of token needs to be com-
posed, and then return theT To ok ke en n_ _v va al lu ue e representing the token read.

The initial statements read the first non-whitespace character intoc ch h and check that the read
operation succeeded:

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n()
{

c ch ha ar r c ch h = 0 0;
c ci in n>>c ch h;

s sw wi it tc ch h (c ch h) {
c ca as se e 0 0:

r re et tu ur rn n c cu ur rr r_ _t to ok k=E EN ND D; / / assign and return

By default, operator>> skips whitespace (that is, spaces, tabs, newlines, etc.) and leaves the value
of c ch h unchanged if the input operation failed. Consequently,c ch h==0 0 indicates end of input.

Assignment is an operator, and the result of the assignment is the value of the variable assigned
to. This allows me to assign the valueE EN ND D to c cu ur rr r_ _t to ok k and return it in the same statement. Hav-
ing a single statement rather than two is useful in maintenance. If the assignment and the return
became separated in the code, a programmer might update the one and forget to update to the other.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.2 The Input Function 113

Let us look at some of the cases separately before considering the complete function. The
expression terminator´;´ , the parentheses, and the operators are handled simply by returning their
values:

c ca as se e ´;´:
c ca as se e ´*´:
c ca as se e ´/´:
c ca as se e ´+´:
c ca as se e ´-´:
c ca as se e ´(´:
c ca as se e ´)´:
c ca as se e ´=´:

r re et tu ur rn n c cu ur rr r_ _t to ok k=T To ok ke en n_ _v va al lu ue e(c ch h) ;

Numbers are handled like this:

c ca as se e ´ 0 0´: c ca as se e ´ 1 1´: c ca as se e ´ 2 2´: c ca as se e ´ 3 3´: c ca as se e ´ 4 4´:
c ca as se e ´ 5 5´: c ca as se e ´ 6 6´: c ca as se e ´ 7 7´: c ca as se e ´ 8 8´: c ca as se e ´ 9 9´:
c ca as se e ´.´:

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n >> n nu um mb be er r_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NU UM MB BE ER R;

Stackingc ca as se e labels horizontally rather than vertically is generally not a good idea because this
arrangement is harder to read. However, having one line for each digit is tedious. Because opera-
tor >> is already defined for reading floating-point constants into ad do ou ub bl le e, the code is trivial. First
the initial character (a digit or a dot) is put back intoc ci in n. Then the constant can be read into
n nu um mb be er r_ _v va al lu ue e.

A name is handled similarly:

d de ef fa au ul lt t: / / NAME, NAME =, or error
i if f (i is sa al lp ph ha a(c ch h)) {

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n>>s st tr ri in ng g_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
e er rr ro or r(" b ba ad d t to ok ke en n") ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

The standard library functioni is sa al lp ph ha a() (§20.4.2) is used to avoid listing every character as a sepa-
ratec ca as se e label. Operator>> applied to a string (in this case,s st tr ri in ng g_ _v va al lu ue e) reads until it hits white-
space. Consequently, a user must terminate a name by a space before an operator using the name as
an operand. This is less than ideal, so we will return to this problem in §6.1.3.

Here, finally, is the complete input function:

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n()
{

c ch ha ar r c ch h = 0 0;
c ci in n>>c ch h;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

114 Expressions and Statements Chapter 6

s sw wi it tc ch h (c ch h) {
c ca as se e 0 0:

r re et tu ur rn n c cu ur rr r_ _t to ok k=E EN ND D;

c ca as se e ´;´:
c ca as se e ´*´:
c ca as se e ´/´:
c ca as se e ´+´:
c ca as se e ´-´:
c ca as se e ´(´:
c ca as se e ´)´:
c ca as se e ´=´:

r re et tu ur rn n c cu ur rr r_ _t to ok k=T To ok ke en n_ _v va al lu ue e(c ch h) ;

c ca as se e ´ 0 0´: c ca as se e ´ 1 1´: c ca as se e ´ 2 2´: c ca as se e ´ 3 3´: c ca as se e ´ 4 4´:
c ca as se e ´ 5 5´: c ca as se e ´ 6 6´: c ca as se e ´ 7 7´: c ca as se e ´ 8 8´: c ca as se e ´ 9 9´:
c ca as se e ´.´:

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n >> n nu um mb be er r_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NU UM MB BE ER R;

d de ef fa au ul lt t: / / NAME, NAME =, or error
i if f (i is sa al lp ph ha a(c ch h)) {

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n>>s st tr ri in ng g_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
e er rr ro or r(" b ba ad d t to ok ke en n") ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

}
}

The conversion of an operator to its token value is trivial because theT To ok ke en n_ _v va al lu ue e of an operator
was defined as the integer value of the operator (§4.8).

6.1.3 Low-level Input [expr.low]

Using the calculator as defined so far reveals a few inconveniences. It is tedious to remember to
add a semicolon after an expression in order to get its value printed, and having a name terminated
by whitespace only is a real nuisance. For example,x x=7 7 is an identifier– rather than the identifier
x x followed by the operator= and the number7 7. Both problems are solved by replacing the type-
oriented default input operations ing ge et t_ _t to ok ke en n() with code that reads individual characters.

First, we’ll make a newline equivalent to the semicolon used to mark the end of expression:

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n()
{

c ch ha ar r c ch h;

d do o { / / skip whitespace except ’\n’
i if f(! c ci in n. g ge et t(c ch h)) r re et tu ur rn n c cu ur rr r_ _t to ok k = E EN ND D;

} w wh hi il le e (c ch h!=´ \ \n n´ && i is ss sp pa ac ce e(c ch h)) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.3 Low-level Input 115

s sw wi it tc ch h (c ch h) {
c ca as se e ´;´:
c ca as se e ´ \ \n n´:

r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

A do-statementis used; it is equivalent to awhile-statementexcept that the controlled statement is
always executed at least once. The callc ci in n. g ge et t(c ch h) reads a single character from the standard
input stream intoc ch h. By default,g ge et t() does not skip whitespace the wayo op pe er ra at to or r >> does. The
test i if f (! c ci in n. g ge et t(c ch h)) fails if no character can be read fromc ci in n; in this case,E EN ND D is returned to
terminate the calculator session. The operator! (NOT) is used becauseg ge et t() returnst tr ru ue e in case
of success.

The standard library functioni is ss sp pa ac ce e() provides the standard test for whitespace (§20.4.2);
i is ss sp pa ac ce e(c c) returns a nonzero value ifc c is a whitespace character and zero otherwise. The test is
implemented as a table lookup, so usingi is ss sp pa ac ce e() is much faster than testing for the individual
whitespace characters. Similar functions test if a character is a digit– i is sd di ig gi it t() – a letter– i is sa al l- -
p ph ha a() – or a digit or letter– i is sa al ln nu um m() .

After whitespace has been skipped, the next character is used to determine what kind of lexical
token is coming.

The problem caused by>> reading into a string until whitespace is encountered is solved by
reading one character at a time until a character that is not a letter or a digit is found:

d de ef fa au ul lt t: / / NAME, NAME=, or error
i if f (i is sa al lp ph ha a(c ch h)) {

s st tr ri in ng g_ _v va al lu ue e = c ch h;
w wh hi il le e (c ci in n. g ge et t(c ch h) && i is sa al ln nu um m(c ch h)) s st tr ri in ng g_ _v va al lu ue e. p pu us sh h_ _b ba ac ck k(c ch h) ;
c ci in n. p pu ut tb ba ac ck k(c ch h) ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
e er rr ro or r(" b ba ad d t to ok ke en n") ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

Fortunately, these two improvements could both be implemented by modifying a single local sec-
tion of code. Constructing programs so that improvements can be implemented through local mod-
ifications only is an important design aim.

6.1.4 Error Handling [expr.error]

Because the program is so simple, error handling is not a major concern. The error function simply
counts the errors, writes out an error message, and returns:

i in nt t n no o_ _o of f_ _e er rr ro or rs s;

d do ou ub bl le e e er rr ro or r(c co on ns st t s st tr ri in ng g& s s)
{

n no o_ _o of f_ _e er rr ro or rs s++;
c ce er rr r << " e er rr ro or r: " << s s << ´ \ \n n´;
r re et tu ur rn n 1 1;

}

The streamc ce er rr r is an unbuffered output stream usually used to report errors (§21.2.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

116 Expressions and Statements Chapter 6

The reason for returning a value is that errors typically occur in the middle of the evaluation of
an expression, so we should either abort that evaluation entirely or return a value that is unlikely to
cause subsequent errors. The latter is adequate for this simple calculator. Hadg ge et t_ _t to ok ke en n() kept
track of the line numbers,e er rr ro or r() could have informed the user approximately where the error
occurred. This would be useful when the calculator is used noninteractively (§6.6[19]).

Often, a program must be terminated after an error has occurred because no sensible way of
continuing has been devised. This can be done by callinge ex xi it t() , which first cleans up things like
output streams and then terminates the program with its argument as the return value (§9.4.1.1).

More stylized error-handling mechanisms can be implemented using exceptions (see §8.3,
Chapter 14), but what we have here is quite suitable for a 150-line calculator.

6.1.5 The Driver [expr.driver]

With all the pieces of the program in place, we need only a driver to start things. In this simple
example,m ma ai in n() can do that:

i in nt t m ma ai in n()
{

t ta ab bl le e[" p pi i"] = 3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5; / / insert predefined names
t ta ab bl le e[" e e"] = 2 2. 7 71 18 82 28 81 18 82 28 84 45 59 90 04 45 52 23 35 54 4;

w wh hi il le e (c ci in n) {
g ge et t_ _t to ok ke en n() ;
i if f (c cu ur rr r_ _t to ok k == E EN ND D) b br re ea ak k;
i if f (c cu ur rr r_ _t to ok k == P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

r re et tu ur rn n n no o_ _o of f_ _e er rr ro or rs s;
}

Conventionally,m ma ai in n() should return zero if the program terminates normally and nonzero other-
wise (§3.2). Returning the number of errors accomplishes this nicely. As it happens, the only
initialization needed is to insert the predefined names into the symbol table.

The primary task of the main loop is to read expressions and write out the answer. This is
achieved by the line:

c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

The argumentf fa al ls se e tells e ex xp pr r() that it does not need to callg ge et t_ _t to ok ke en n() to get a current token on
which to work.

Testingc ci in n each time around the loop ensures that the program terminates if something goes
wrong with the input stream, and testing forE EN ND D ensures that the loop is correctly exited when
g ge et t_ _t to ok ke en n() encounters end-of-file. Abreak-statementexits its nearest enclosingswitch-statement
or loop (that is, afor-statement, while-statement, or do-statement). Testing forP PR RI IN NT T (that is, for
´ \ \n n´ and´;´) relievese ex xp pr r() of the responsibility for handling empty expressions. Acontinue-
statementis equivalent to going to the very end of a loop, so in this case

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.5 The Driver 117

w wh hi il le e (c ci in n) {
/ / ...
i if f (c cu ur rr r_ _t to ok k == P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

is equivalent to

w wh hi il le e (c ci in n) {
/ / ...
i if f (c cu ur rr r_ _t to ok k != P PR RI IN NT T)

c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;
}

6.1.6 Headers [expr.headers]

The calculator uses standard library facilities. Therefore, appropriate headers must be#i in nc cl lu ud de ed to
complete the program:

#i in nc cl lu ud de e<i io os st tr re ea am m> / / I/O
#i in nc cl lu ud de e<s st tr ri in ng g> / / strings
#i in nc cl lu ud de e<m ma ap p> / / map
#i in nc cl lu ud de e<c cc ct ty yp pe e> / / isalpha(), etc.

All of these headers provide facilities in thes st td d namespace, so to use the names they provide we
must either use explicit qualification withs st td d: : or bring the names into the global namespace by

u us si in ng g n na am me es sp pa ac ce e s st td d;

To avoid confusing the discussion of expressions with modularity issues, I did the latter. Chapter 8
and Chapter 9 discuss ways of organizing this calculator into modules using namespaces and how
to organize it into source files. On many systems, standard headers have equivalents with a. h h suf-
fix that declare the classes, functions, etc., and place them in the global namespace (§9.2.1, §9.2.4,
§B.3.1).

6.1.7 Command-Line Arguments [expr.command]

After the program was written and tested, I found it a bother to first start the program, then type the
expressions, and finally quit. My most common use was to evaluate a single expression. If that
expression could be presented as a command-line argument, a few keystrokes could be avoided.

A program starts by callingm ma ai in n() (§3.2, §9.4). When this is done,m ma ai in n() is given two
arguments specifying the number of arguments, usually calleda ar rg gc c, and an array of arguments,
usually calleda ar rg gv v. The arguments are character strings, so the type ofa ar rg gv v is c ch ha ar r*[a ar rg gc c+1 1] .
The name of the program (as it occurs on the command line) is passed asa ar rg gv v[0 0] , so a ar rg gc c is
always at least1 1. The list of arguments is zero-terminated; that is,a ar rg gv v[a ar rg gc c]== 0 0. For example,
for the command

d dc c 1 15 50 0/ 1 1. 1 19 93 34 4

the arguments have these values:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

118 Expressions and Statements Chapter 6

2a ar rg gc c:

a ar rg gv v: 0 0

. .
"d dc c"

"1 15 50 0/ /1 1. .1 19 93 34 4"

Because the conventions for callingm ma ai in n() are shared with C, C-style arrays and strings are used.
It is not difficult to get hold of a command-line argument. The problem is how to use it with

minimal reprogramming. The idea is to read from the command string in the same way that we
read from the input stream. A stream that reads from a string is unsurprisingly called an
i is st tr ri in ng gs st tr re ea am m. Unfortunately, there is no elegant way of makingc ci in n refer to ani is st tr ri in ng gs st tr re ea am m.
Therefore, we must find a way of getting the calculator input functions to refer to ani is st tr ri in ng gs st tr re ea am m.
Furthermore, we must find a way of getting the calculator input functions to refer to an
i is st tr ri in ng gs st tr re ea am m or toc ci in n depending on what kind of command-line argument we supply.

A simple solution is to introduce a global pointeri in np pu ut t that points to the input stream to be used
and have every input routine use that:

i is st tr re ea am m* i in np pu ut t; / / pointer to input stream

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

s sw wi it tc ch h (a ar rg gc c) {
c ca as se e 1 1: / / read from standard input

i in np pu ut t = &c ci in n;
b br re ea ak k;

c ca as se e 2 2: / / read argument string
i in np pu ut t = n ne ew w i is st tr ri in ng gs st tr re ea am m(a ar rg gv v[1 1]) ;
b br re ea ak k;

d de ef fa au ul lt t:
e er rr ro or r(" t to oo o m ma an ny y a ar rg gu um me en nt ts s") ;
r re et tu ur rn n 1 1;

}

t ta ab bl le e[" p pi i"] = 3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5; / / insert predefined names
t ta ab bl le e[" e e"] = 2 2. 7 71 18 82 28 81 18 82 28 84 45 59 90 04 45 52 23 35 54 4;

w wh hi il le e (* i in np pu ut t) {
g ge et t_ _t to ok ke en n() ;
i if f (c cu ur rr r_ _t to ok k == E EN ND D) b br re ea ak k;
i if f (c cu ur rr r_ _t to ok k == P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

i if f (i in np pu ut t != &c ci in n) d de el le et te e i in np pu ut t;
r re et tu ur rn n n no o_ _o of f_ _e er rr ro or rs s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.7 Command-Line Arguments 119

An i is st tr ri in ng gs st tr re ea am m is a kind of i is st tr re ea am m that reads from its character string argument (§21.5.3).
Upon reaching the end of its string, ani is st tr ri in ng gs st tr re ea am m fails exactly like other streams do when they
hit the end of input (§3.6, §21.3.3). To use ani is st tr ri in ng gs st tr re ea am m, you must include<s ss st tr re ea am m>.

It would be easy to modifym ma ai in n() to accept several command-line arguments, but this does
not appear to be necessary, especially as several expressions can be passed as a single argument:

d dc c " r ra at te e=1 1. 1 19 93 34 4; 1 15 50 0/ r ra at te e; 1 19 9. 7 75 5/ r ra at te e; 2 21 17 7/ r ra at te e"

I use quotes because; is the command separator on my UNIX systems. Other systems have differ-
ent conventions for supplying arguments to a program on startup.

It was inelegant to modify all of the input routines to use* i in np pu ut t rather thanc ci in n to gain the flex-
ibility to use alternative sources of input. The change could have been avoided had I shown fore-
sight by introducing something likei in np pu ut t from the start. A more general and useful view is to note
that the source of input really should be the parameter of a calculator module. That is, the funda-
mental problem with this calculator example is that what I refer to as ‘‘the calculator’’ is only a col-
lection of functions and data. There is no module (§2.4) or object (§2.5.2) that explicitly represents
the calculator. Had I set out to design a calculator module or a calculator type, I would naturally
have considered what its parameters should be (§8.5[3], §10.6[16]).

6.1.8 A Note on Style [expr.style]

To programmers unacquainted with associative arrays, the use of the standard librarym ma ap p as the
symbol table seems almost like cheating. It is not. The standard library and other libraries are
meant to be used. Often, a library has received more care in its design and implementation than a
programmer could afford for a handcrafted piece of code to be used in just one program.

Looking at the code for the calculator, especially at the first version, we can see that there isn’t
much traditional C-style, low-level code presented. Many of the traditional tricky details have been
replaced by uses of standard library classes such aso os st tr re ea am m, s st tr ri in ng g, andm ma ap p (§3.4, §3.5, §3.7.4,
Chapter 17).

Note the relative scarcity of arithmetic, loops, and even assignments. This is the way things
ought to be in code that doesn’t manipulate hardware directly or implement low-level abstractions.

6.2 Operator Summary[expr.operators]

This section presents a summary of expressions and some examples. Each operator is followed by
one or more names commonly used for it and an example of its use. In these tables, aclass_name
is the name of a class, amemberis a member name, anobject is an expression yielding a class
object, apointer is an expression yielding a pointer, anexpr is an expression, and anlvalue is an
expression denoting a nonconstant object. Atypecan be a fully general type name (with* , () ,
etc.) only when it appears in parentheses; elsewhere, there are restrictions (§A.5).

The syntax of expressions is independent of operand types. The meanings presented here apply
when the operands are of built-in types (§4.1.1). In addition, you can define meanings for operators
applied to operands of user-defined types (§2.5.2, Chapter 11).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

120 Expressions and Statements Chapter 6

_ __
Operator Summary_ ___ __

scope resolution class_name:: member
scope resolution namespace_name:: member
global :: name
global :: qualified-name_ __
member selection object. member
member selection pointer-> member
subscripting pointer[expr]
function call expr(expr_list)
value construction type(expr_list)
post increment lvalue++
post decrement lvalue--
type identification t ty yp pe ei id d (type)
run-time type identification t ty yp pe ei id d (expr)
run-time checked conversion d dy yn na am mi ic c_ _c ca as st t < type> (expr)
compile-time checked conversion s st ta at ti ic c_ _c ca as st t < type> (expr)
unchecked conversion r re ei in nt te er rp pr re et t_ _c ca as st t < type> (expr)
c co on ns st t conversion c co on ns st t_ _c ca as st t < type> (expr)_ __
size of object s si iz ze eo of f expr
size of type s si iz ze eo of f (type)
pre increment ++ lvalue
pre decrement -- lvalue
complement ~ expr
not ! expr
unary minus - expr
unary plus + expr
address of & lvalue
dereference ∗ expr
create (allocate) n ne ew w type
create (allocate and initialize) n ne ew w type(expr-list)
create (place) n ne ew w (expr-list) type
create (place and initialize) n ne ew w (expr-list) type(expr-list)
destroy (de-allocate) d de el le et te e pointer
destroy array d de el le et te e[] pointer
cast (type conversion) (type) expr_ __
member selection object.* pointer-to-member
member selection pointer->* pointer-to-member_ __
multiply expr∗ expr
divide expr/ expr
modulo (remainder) expr%expr_ __ 




































































































The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2 Operator Summary 121

_ _______________________________________
Operator Summary (continued)_ __ _______________________________________

add (plus) expr+ expr
subtract (minus) expr- expr_ _______________________________________
shift left expr<< expr
shift right expr>> expr_ _______________________________________
less than expr< expr
less than or equal expr<= expr
greater than expr> expr
greater than or equal expr>= expr_ _______________________________________
equal expr== expr
not equal expr!= expr_ _______________________________________
bitwise AND expr& expr_ _______________________________________
bitwise exclusive OR expr^ expr_ _______________________________________
bitwise inclusive OR expr| expr_ _______________________________________
logical AND expr&&expr_ _______________________________________
logical inclusive OR expr|| expr_ _______________________________________
simple assignment lvalue= expr
multiply and assign lvalue∗= expr
divide and assign lvalue/= expr
modulo and assign lvalue%=expr
add and assign lvalue+= expr
subtract and assign lvalue-= expr
shift left and assign lvalue<<= expr
shift right and assign lvalue>>= expr
AND and assign lvalue&= expr
inclusive OR and assign lvalue|= expr
exclusive OR and assign lvalue^= expr_ _______________________________________
conditional expression expr? expr: expr_ _______________________________________
throw exception t th hr ro ow w expr_ _______________________________________
comma (sequencing) expr, expr_ _______________________________________ 
















































































Each box holds operators with the same precedence. Operators in higher boxes have higher prece-
dence than operators in lower boxes. For example:a a+b b* c c meansa a+(b b* c c) rather than(a a+b b)* c c
because* has higher precedence than+.

Unary operators and assignment operators are right-associative; all others are left-associative.
For example,a a=b b=c c meansa a=(b b=c c) , a a+b b+c c means(a a+b b)+ c c, and * p p++ means*(p p++) , not
(* p p)++ .

A few grammar rules cannot be expressed in terms of precedence (also known as binding
strength) and associativity. For example,a a=b b<c c?d d=e e: f f=g g meansa a=((b b<c c)?(d d=e e):(f f=g g)) ,
but you need to look at the grammar (§A.5) to determine that.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

122 Expressions and Statements Chapter 6

6.2.1 Results [expr.res]

The result types of arithmetic operators are determined by a set of rules known as ‘‘the usual arith-
metic conversions’’ (§C.6.3). The overall aim is to produce a result of the ‘‘largest’’ operand type.
For example, if a binary operator has a floating-point operand, the computation is done using
floating-point arithmetic and the result is a floating-point value. If it has al lo on ng g operand, the com-
putation is done using long integer arithmetic, and the result is al lo on ng g. Operands that are smaller
than ani in nt t (such asb bo oo ol l andc ch ha ar r) are converted toi in nt t before the operator is applied.

The relational operators,==, <=, etc., produce Boolean results. The meaning and result type of
user-defined operators are determined by their declarations (§11.2).

Where logically feasible, the result of an operator that takes an lvalue operand is an lvalue
denoting that lvalue operand. For example:

v vo oi id d f f(i in nt t x x, i in nt t y y)
{

i in nt t j j = x x = y y; / / the value of x=y is the value of x after the assignment
i in nt t* p p = &++x x; / / p points to x
i in nt t* q q = &(x x++) ; / / error: x++ is not an lvalue (it is not the value stored in x)
i in nt t* p pp p = &(x x>y y?x x: y y) ; / / address of the int with the larger value

}

If both the second and third operands of?: are lvalues and have the same type, the result is of that
type and is an lvalue. Preserving lvalues in this way allows greater flexibility in using operators.
This is particularly useful when writing code that needs to work uniformly and efficiently with both
built-in and user-defined types (e.g., when writing templates or programs that generate C++ code).

The result ofs si iz ze eo of f is of an unsigned integral type calleds si iz ze e_ _t t defined in<c cs st td dd de ef f>. The
result of pointer subtraction is of a signed integral type calledp pt tr rd di if ff f_ _t t defined in<c cs st td dd de ef f>.

Implementations do not have to check for arithmetic overflow and hardly any do. For example:

v vo oi id d f f()
{

i in nt t i i = 1 1;
w wh hi il le e (0 0 < i i) i i++;
c co ou ut t << " i i h ha as s b be ec co om me e n ne eg ga at ti iv ve e!" << i i << ´ \ \n n´;

}

This will (eventually) try to increasei i past the largest integer. What happens then is undefined, but
typically the value ‘‘wraps around’’ to a negative number (on my machine- 2 21 14 47 74 48 83 36 64 48 8). Simi-
larly, the effect of dividing by zero is undefined, but doing so usually causes abrupt termination of
the program. In particular, underflow, overflow, and division by zero do not throw standard excep-
tions (§14.10).

6.2.2 Evaluation Order [expr.evaluation]

The order of evaluation of subexpressions within an expression is undefined. In particular, you
cannot assume that the expression is evaluated left to right. For example:

i in nt t x x = f f(2 2)+ g g(3 3) ; / / undefined whether f() or g() is called first

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.2 Evaluation Order 123

Better code can be generated in the absence of restrictions on expression evaluation order. How-
ever, the absence of restrictions on evaluation order can lead to undefined results. For example,

i in nt t i i = 1 1;
v v[i i] = i i++; / / undefined result

may be evaluated as eitherv v[1 1]= 1 1 or v v[2 2]= 1 1 or may cause some even stranger behavior. Com-
pilers can warn about such ambiguities. Unfortunately, most do not.

The operators, (comma),&& (logical and), and|| (logical or) guarantee that their left-hand
operand is evaluated before their right-hand operand. For example,b b=(a a=2 2, a a+1 1) assigns3 3 to b b.
Examples of the use of|| and&&can be found in §6.2.3. For built-in types, the second operand of
&& is evaluated only if its first operand ist tr ru ue e, and the second operand of|| is evaluated only if its
first operand isf fa al ls se e; this is sometimes calledshort-circuit evaluation. Note that the sequencing
operator, (comma) is logically different from the comma used to separate arguments in a function
call. Consider:

f f1 1(v v[i i] , i i++) ; / / two arguments
f f2 2((v v[i i] , i i++)) ; / / one argument

The call of f f1 1 has two arguments,v v[i i] and i i++, and the order of evaluation of the argument
expressions is undefined. Order dependence of argument expressions is very poor style and has
undefined behavior. The call off f2 2 has one argument, the comma expression(v v[i i] , i i++) , which is
equivalent toi i++.

Parentheses can be used to force grouping. For example,a a* b b/ c c means(a a* b b)/ c c so parenthe-
ses must be used to geta a*(b b/ c c) ; a a*(b b/ c c) may be evaluated as(a a* b b)/ c c only if the user cannot
tell the difference. In particular, for many floating-point computationsa a*(b b/ c c) and(a a* b b)/ c c are
significantly different, so a compiler will evaluate such expressions exactly as written.

6.2.3 Operator Precedence [expr.precedence]

Precedence levels and associativity rules reflect the most common usage. For example,

i if f (i i<=0 0 || m ma ax x<i i) / / ...

means ‘‘if i i is less than or equal to0 0 or if m ma ax x is less thani i.’’ That is, it is equivalent to

i if f ((i i<=0 0) || (m ma ax x<i i)) / / ...

and not the legal but nonsensical

i if f (i i <= (0 0|| m ma ax x) < i i) / / ...

However, parentheses should be used whenever a programmer is in doubt about those rules. Use of
parentheses becomes more common as the subexpressions become more complicated, but compli-
cated subexpressions are a source of errors. Therefore, if you start feeling the need for parentheses,
you might consider breaking up the expression by using an extra variable.

There are cases when the operator precedence does not result in the ‘‘obvious’’ interpretation.
For example:

i if f (i i&m ma as sk k == 0 0) / / oops! == expression as operand for &

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

124 Expressions and Statements Chapter 6

This does not apply a mask toi i and then test if the result is zero. Because== has higher prece-
dence than&, the expression is interpreted asi i&(m ma as sk k==0 0) . Fortunately, it is easy enough for a
compiler to warn about most such mistakes. In this case, parentheses are important:

i if f ((i i&m ma as sk k) == 0 0) / / ...

It is worth noting that the following does not work the way a mathematician might expect:

i if f (0 0 <= x x <= 9 99 9) / / ...

This is legal, but it is interpreted as(0 0<=x x)<= 9 99 9, where the result of the first comparison is either
t tr ru ue e or f fa al ls se e. This Boolean value is then implicitly converted to1 1 or 0 0, which is then compared to
9 99 9, yieldingt tr ru ue e. To test whetherx x is in the range0 0.. 9 99 9, we might use:

i if f (0 0<=x x && x x<=9 99 9) / / ...

A common mistake for novices is to use= (assignment) instead of== (equals) in a condition:

i if f (a a = 7 7) / / oops! constant assignment in condition

This is natural because= means ‘‘equals’’ in many languages. Again, it is easy for a compiler to
warn about most such mistakes– and many do.

6.2.4 Bitwise Logical Operators [expr.logical]

The bitwise logical operators&, | , ^ , ~, >>, and<< are applied to objects of integer types– that is,
b bo oo ol l, c ch ha ar r, s sh ho or rt t, i in nt t, l lo on ng g, and theiru un ns si ig gn ne ed d counterparts. The results are also integers.

A typical use of bitwise logical operators is to implement the notion of a small set (a bit vector).
In this case, each bit of an unsigned integer represents one member of the set, and the number of
bits limits the number of members. The binary operator& is interpreted as intersection,| as union,
^ as symmetric difference, and~ as complement. An enumeration can be used to name the mem-
bers of such a set. Here is a small example borrowed from an implementation ofo os st tr re ea am m:

e en nu um m i io os s_ _b ba as se e: : i io os st ta at te e {
g go oo od db bi it t=0 0, e eo of fb bi it t=1 1, f fa ai il lb bi it t=2 2, b ba ad db bi it t=4 4

};

The implementation of a stream can set and test its state like this:

s st ta at te e = g go oo od db bi it t;
/ / ...
i if f (s st ta at te e&(b ba ad db bi it t| f fa ai il lb bi it t)) / / stream no good

The extra parentheses are necessary because& has higher precedence than| .
A function that reaches the end of input might report it like this:

s st ta at te e |= e eo of fb bi it t;

The |= operator is used to add to the state. A simple assignment,s st ta at te e=e eo of fb bi it t, would have cleared
all other bits.

These stream state flags are observable from outside the stream implementation. For example,
we could see how the states of two streams differ like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.4 Bitwise Logical Operators 125

i in nt t d di if ff f = c ci in n. r rd ds st ta at te e()^ c co ou ut t. r rd ds st ta at te e() ; / / rdstate() returns the state

Computing differences of stream states is not very common. For other similar types, computing
differences is essential. For example, consider comparing a bit vector that represents the set of
interrupts being handled with another that represents the set of interrupts waiting to be handled.

Please note that this bit fiddling is taken from the implementation of iostreams rather than from
the user interface. Convenient bit manipulation can be very important, but for reliability, maintain-
ability, portability, etc., it should be kept at low levels of a system. For more general notions of a
set, see the standard librarys se et t (§17.4.3),b bi it ts se et t (§17.5.3), andv ve ec ct to or r<b bo oo ol l> (§16.3.11).

Using fields (§C.8.1) is really a convenient shorthand for shifting and masking to extract bit
fields from a word. This can, of course, also be done using the bitwise logical operators. For
example, one could extract the middle 16 bits of a 32-bitl lo on ng g like this:

u un ns si ig gn ne ed d s sh ho or rt t m mi id dd dl le e(l lo on ng g a a) { r re et tu ur rn n (a a>>8 8)& 0 0x xf ff ff ff f; }

Do not confuse the bitwise logical operators with the logical operators:&&, || , and ! . The latter
return eithert tr ru ue e or f fa al ls se e, and they are primarily useful for writing the test in ani if f, w wh hi il le e, or f fo or r
statement (§6.3.2, §6.3.3). For example,! 0 0 (not zero) is the valuet tr ru ue e, whereas~0 0 (complement
of zero) is the bit pattern all-ones, which in two’s complement representation is the value- 1 1.

6.2.5 Increment and Decrement [expr.incr]

The++ operator is used to express incrementing directly, rather than expressing it indirectly using
a combination of an addition and an assignment. By definition,++l lv va al lu ue e meansl lv va al lu ue e+=1 1, which
again meansl lv va al lu ue e=l lv va al lu ue e+1 1 provided l lv va al lu ue e has no side effects. The expression denoting the
object to be incremented is evaluated once (only). Decrementing is similarly expressed by the--
operator. The operators++ and-- can be used as both prefix and postfix operators. The value of
++x x is the new (that is, incremented) value ofx x. For example,y y=++x x is equivalent toy y=(x x+=1 1) .
The value ofx x++, however, is the old value ofx x. For example,y y=x x++ is equivalent to
y y=(t t=x x, x x+=1 1, t t) , wheret t is a variable of the same type asx x.

Like addition and subtraction of pointers,++ and-- on pointers operate in terms of elements of
the array into which the pointer points;p p++ makesp p point to the next element (§5.3.1).

The increment operators are particularly useful for incrementing and decrementing variables in
loops. For example, one can copy a zero-terminated string like this:

v vo oi id d c cp py y(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q)
{

w wh hi il le e (* p p++ = * q q++) ;
}

Like C, C++ is both loved and hated for enabling such terse, expression-oriented coding. Because

w wh hi il le e (* p p++ = * q q++) ;

is more than a little obscure to non-C programmers and because the style of coding is not uncom-
mon in C and C++, it is worth examining more closely.

Consider first a more traditional way of copying an array of characters:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

126 Expressions and Statements Chapter 6

i in nt t l le en ng gt th h = s st tr rl le en n(q q) ;
f fo or r (i in nt t i i = 0 0; i i<=l le en ng gt th h; i i++) p p[i i] = q q[i i] ;

This is wasteful. The length of a zero-terminated string is found by reading the string looking for
the terminating zero. Thus, we read the string twice: once to find its length and once to copy it. So
we try this instead:

i in nt t i i;
f fo or r (i i = 0 0; q q[i i]!= 0 0 ; i i++) p p[i i] = q q[i i] ;
p p[i i] = 0 0; / / terminating zero

The variablei i used for indexing can be eliminated becausep p andq q are pointers:

w wh hi il le e (* q q != 0 0) {
* p p = * q q;
p p++; / / point to next character
q q++; / / point to next character

}
* p p = 0 0; / / terminating zero

Because the post-increment operation allows us first to use the value and then to increment it, we
can rewrite the loop like this:

w wh hi il le e (* q q != 0 0) {
* p p++ = * q q++;

}
* p p = 0 0; / / terminating zero

The value of* p p++ = * q q++ is * q q. We can therefore rewrite the example like this:

w wh hi il le e ((* p p++ = * q q++) != 0 0) { }

In this case, we don’t notice that* q q is zero until we already have copied it into* p p and incremented
p p. Consequently, we can eliminate the final assignment of the terminating zero. Finally, we can
reduce the example further by observing that we don’t need the empty block and that the ‘‘!= 0 0’’ is
redundant because the result of a pointer or integral condition is always compared to zero anyway.
Thus, we get the version we set out to discover:

w wh hi il le e (* p p++ = * q q++) ;

Is this version less readable than the previous versions? Not to an experienced C or C++ program-
mer. Is this version more efficient in time or space than the previous versions? Except for the first
version that calleds st tr rl le en n() , not really. Which version is the most efficient will vary among
machine architectures and among compilers.

The most efficient way of copying a zero-terminated character string for your particular
machine ought to be the standard string copy function:

c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ; / / from <string.h>

For more general copying, the standardc co op py y algorithm (§2.7.2, §18.6.1) can be used. Whenever
possible, use standard library facilities in preference to fiddling with pointers and bytes. Standard
library functions may be inlined (§7.1.1) or even implemented using specialized machine

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.5 Increment and Decrement 127

instructions. Therefore, you should measure carefully before believing that some piece of hand-
crafted code outperforms library functions.

6.2.6 Free Store [expr.free]

A named object has its lifetime determined by its scope (§4.9.4). However, it is often useful to cre-
ate an object that exists independently of the scope in which it was created. In particular, it is com-
mon to create objects that can be used after returning from the function in which they were created.
The operatorn ne ew w creates such objects, and the operatord de el le et te e can be used to destroy them.
Objects allocated byn ne ew w are said to be ‘‘on the free store’’ (also, to be ‘‘heap objects,’’ or ‘‘allo-
cated in dynamic memory’’).

Consider how we might write a compiler in the style used for the desk calculator (§6.1). The
syntax analysis functions might build a tree of the expressions for use by the code generator:

s st tr ru uc ct t E En no od de e {
T To ok ke en n_ _v va al lu ue e o op pe er r;
E En no od de e* l le ef ft t;
E En no od de e* r ri ig gh ht t;
/ / ...

};

E En no od de e* e ex xp pr r(b bo oo ol l g ge et t)
{

E En no od de e* l le ef ft t = t te er rm m(g ge et t) ;

f fo or r (;;)
s sw wi it tc ch h(c cu ur rr r_ _t to ok k) {
c ca as se e P PL LU US S:
c ca as se e M MI IN NU US S:
{ E En no od de e* n n = n ne ew w E En no od de e; / / create an Enode on free store

n n-> o op pe er r = c cu ur rr r_ _t to ok k;
n n-> l le ef ft t = l le ef ft t;
n n-> r ri ig gh ht t = t te er rm m(t tr ru ue e) ;
l le ef ft t = n n;
b br re ea ak k;

}
d de ef fa au ul lt t:

r re et tu ur rn n l le ef ft t; / / return node
}

}

A code generator would then use the resulting nodes and delete them:

v vo oi id d g ge en ne er ra at te e(E En no od de e* n n)
{

s sw wi it tc ch h (n n-> o op pe er r) {
c ca as se e P PL LU US S:

/ / ...
d de el le et te e n n; / / delete an Enode from the free store

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

128 Expressions and Statements Chapter 6

An object created byn ne ew w exists until it is explicitly destroyed byd de el le et te e. Then, the space it occu-
pied can be reused byn ne ew w. A C++ implementation does not guarantee the presence of a ‘‘garbage
collector’’ that looks out for unreferenced objects and makes them available ton ne ew w for reuse. Con-
sequently, I will assume that objects created byn ne ew w are manually freed usingd de el le et te e. If a garbage
collector is present, thed de el le et te es can be omitted in most cases (§C.9.1).

The d de el le et te e operator may be applied only to a pointer returned byn ne ew w or to zero. Applying
d de el le et te e to zero has no effect.

More specialized versions of operatorn ne ew w can also be defined (§15.6).

6.2.6.1 Arrays [expr.array]

Arrays of objects can also be created usingn ne ew w. For example:

c ch ha ar r* s sa av ve e_ _s st tr ri in ng g(c co on ns st t c ch ha ar r* p p)
{

c ch ha ar r* s s = n ne ew w c ch ha ar r[s st tr rl le en n(p p)+ 1 1] ;
s st tr rc cp py y(s s, p p) ; / / copy from p to s
r re et tu ur rn n s s;

}

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

i if f (a ar rg gc c < 2 2) e ex xi it t(1 1) ;
c ch ha ar r* p p = s sa av ve e_ _s st tr ri in ng g(a ar rg gv v[1 1]) ;
/ / ...
d de el le et te e[] p p;

}

The ‘‘plain’’ operatord de el le et te e is used to delete individual objects;d de el le et te e[] is used to delete arrays.
To deallocate space allocated byn ne ew w, d de el le et te eandd de el le et te e[] must be able to determine the size of

the object allocated. This implies that an object allocated using the standard implementation of
n ne ew w will occupy slightly more space than a static object. Typically, one word is used to hold the
object’s size.

Note that av ve ec ct to or r (§3.7.1, §16.3) is a proper object and can therefore be allocated and deallo-
cated using plainn ne ew w andd de el le et te e. For example:

v vo oi id d f f(i in nt t n n)
{

v ve ec ct to or r<i in nt t>* p p = n ne ew w v ve ec ct to or r<i in nt t>(n n) ; / / individual object
i in nt t* q q = n ne ew w i in nt t[n n] ; / / array
/ / ...
d de el le et te e p p;
d de el le et te e[] q q;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.6.2 Memory Exhaustion 129

6.2.6.2 Memory Exhaustion [expr.exhaust]

The free store operatorsn ne ew w, d de el le et te e, n ne ew w[] , andd de el le et te e[] are implemented using functions:

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t) ; / / space for individual object
v vo oi id d o op pe er ra at to or r d de el le et te e(v vo oi id d*) ;

v vo oi id d* o op pe er ra at to or r n ne ew w[](s si iz ze e_ _t t) ; / / space for array
v vo oi id d o op pe er ra at to or r d de el le et te e[](v vo oi id d*) ;

When operatorn ne ew w needs to allocate space for an object, it callso op pe er ra at to or r n ne ew w() to allocate a suit-
able number of bytes. Similarly, when operatorn ne ew w needs to allocate space for an array, it calls
o op pe er ra at to or r n ne ew w[]() .

The standard implementations ofo op pe er ra at to or r n ne ew w() ando op pe er ra at to or r n ne ew w[]() do not initialize the
memory returned.

What happens whenn ne ew w can find no store to allocate? By default, the allocator throws a
b ba ad d_ _a al ll lo oc c exception. For example:

v vo oi id d f f()
{

t tr ry y {
f fo or r(;;) n ne ew w c ch ha ar r[1 10 00 00 00 0] ;

}
c ca at tc ch h(b ba ad d_ _a al ll lo oc c) {

c ce er rr r << " M Me em mo or ry y e ex xh ha au us st te ed d! \ \n n";
}

}

However much memory we have available, this will eventually invoke theb ba ad d_ _a al ll lo oc c handler.
We can specify whatn ne ew w should do upon memory exhaustion. Whenn ne ew w fails, it first calls a

function specified by a call tos se et t_ _n ne ew w_ _h ha an nd dl le er r() declared in<n ne ew w>, if any. For example:

v vo oi id d o ou ut t_ _o of f_ _s st to or re e()
{

c ce er rr r << " o op pe er ra at to or r n ne ew w f fa ai il le ed d: o ou ut t o of f s st to or re e\ \n n";
t th hr ro ow w b ba ad d_ _a al ll lo oc c() ;

}

i in nt t m ma ai in n()
{

s se et t_ _n ne ew w_ _h ha an nd dl le er r(o ou ut t_ _o of f_ _s st to or re e) ; / / make out_of_store the new_handler
f fo or r (;;) n ne ew w c ch ha ar r[1 10 00 00 00 0] ;
c co ou ut t << " d do on ne e\ \n n";

}

This will never get to writed do on ne e. Instead, it will write

o op pe er ra at to or r n ne ew w f fa ai il le ed d: o ou ut t o of f s st to or re e

See §14.4.5 for a plausible implementation of ano op pe er ra at to or r n ne ew w() that checks to see if there is a
new handler to call and that throwsb ba ad d_ _a al ll lo oc c if not. A n ne ew w_ _h ha an nd dl le er r might do something more
clever than simply terminating the program. If you know hown ne ew w andd de el le et te e work – for example,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

130 Expressions and Statements Chapter 6

because you provided your owno op pe er ra at to or r n ne ew w() and o op pe er ra at to or r d de el le et te e() – the handler might
attempt to find some memory forn ne ew w to return. In other words, a user might provide a garbage
collector, thus rendering the use ofd de el le et te e optional. Doing this is most definitely not a task for a
beginner, though. For almost everybody who needs an automatic garbage collector, the right thing
to do is to acquire one that has already been written and tested (§C.9.1).

By providing an ne ew w_ _h ha an nd dl le er r, we take care of the check for memory exhaustion for every ordi-
nary use ofn ne ew w in the program. Two alternative ways of controlling memory allocation exist. We
can either provide nonstandard allocation and deallocation functions (§15.6) for the standard uses
of n ne ew w or rely on additional allocation information provided by the user (§10.4.11, §19.4.5).

6.2.7 Explicit Type Conversion [expr.cast]

Sometimes, we have to deal with‘‘raw memory;’’ that is, memory that holds or will hold objects of
a type not known to the compiler. For example, a memory allocator may return av vo oi id d* pointing to
newly allocated memory or we might want to state that a given integer value is to be treated as the
address of an I/O device:

v vo oi id d* m ma al ll lo oc c(s si iz ze e_ _t t) ;

v vo oi id d f f()
{

i in nt t* p p = s st ta at ti ic c_ _c ca as st t<i in nt t*>(m ma al ll lo oc c(1 10 00 0)) ; / / new allocation used as ints
I IO O_ _d de ev vi ic ce e* d d1 1 = r re ei in nt te er rp pr re et t_ _c ca as st t<I IO O_ _d de ev vi ic ce e*>(0 0X Xf ff f0 00 0) ; / / device at 0Xff00
/ / ...

}

A compiler does not know the type of the object pointed to by thev vo oi id d* . Nor can it know whether
the integer0 0X Xf ff f0 00 0 is a valid address. Consequently, the correctness of the conversions are com-
pletely in the hands of the programmer. Explicit type conversion, often calledcasting, is occasion-
ally essential. However, traditionally it is seriously overused and a major source of errors.

Thes st ta at ti ic c_ _c ca as st t operator converts between related types such as one pointer type to another, an
enumeration to an integral type, or a floating-point type to an integral type. Ther re ei in nt te er rp pr re et t_ _c ca as st t
handles conversions between unrelated types such as an integer to a pointer. This distinction
allows the compiler to apply some minimal type checking fors st ta at ti ic c_ _c ca as st t and makes it easier for a
programmer to find the more dangerous conversions represented asr re ei in nt te er rp pr re et t_ _c ca as st ts. Some
s st ta at ti ic c_ _c ca as st ts are portable, but fewr re ei in nt te er rp pr re et t_ _c ca as st ts are. Hardly any guarantees are made for
r re ei in nt te er rp pr re et t_ _c ca as st t, but generally it produces a value of a new type that has the same bit pattern as its
argument. If the target has at least as many bits as the original value, we canr re ei in nt te er rp pr re et t_ _c ca as st t the
result back to its original type and use it. The result of ar re ei in nt te er rp pr re et t_ _c ca as st t is guaranteed to be
usable only if its result type is the exact type used to define the value involved. Note that
r re ei in nt te er rp pr re et t_ _c ca as st t is the kind of conversion that must be used for pointers to functions (§7.7).

If you feel tempted to use an explicit type conversion, take the time to consider if it isreally
necessary. In C++, explicit type conversion is unnecessary in most cases when C needs it (§1.6)
and also in many cases in which earlier versions of C++ needed it (§1.6.2, §B.2.3). In many pro-
grams, explicit type conversion can be completely avoided; in others, its use can be localized to a
few routines. In this book, explicit type conversion is used in realistic situations in §6.2.7, §7.7,
§13.5, §15.4, and §25.4.1, only.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.7 Explicit Type Conversion 131

A form of run-time checked conversion,d dy yn na am mi ic c_ _c ca as st t (§15.4.1), and a cast for removingc co on ns st t
qualifiers,c co on ns st t_ _c ca as st t (§15.4.2.1), are also provided.

From C, C++ inherited the notation(T T) e e, which performs any conversion that can be expressed
as a combination ofs st ta at ti ic c_ _c ca as st ts, r re ei in nt te er rp pr re et t_ _c ca as st ts, andc co on ns st t_ _c ca as st ts to make a value of typeT T
from the expressione e (§B.2.3). This C-style cast is far more dangerous than the named conversion
operators because the notation is harder to spot in a large program and the kind of conversion
intended by the programmer is not explicit. That is,(T T) e e might be doing a portable conversion
between related types, a nonportable conversion between unrelated types, or removing thec co on ns st t
modifier from a pointer type. Without knowing the exact types ofT T ande e, you cannot tell.

6.2.8 Constructors [expr.ctor]

The construction of a value of typeT T from a valuee e can be expressed by the functional notation
T T(e e) . For example:

v vo oi id d f f(d do ou ub bl le e d d)
{

i in nt t i i = i in nt t(d d) ; / / truncate d
c co om mp pl le ex x z z = c co om mp pl le ex x(d d) ; / / make a complex from d
/ / ...

}

TheT T(e e) construct is sometimes referred to as afunction-style cast. For a built-in typeT T, T T(e e) is
equivalent tos st ta at ti ic c_ _c ca as st t<T T>(e e) . Unfortunately, this implies that the use ofT T(e e) is not always
safe. For arithmetic types, values can be truncated and even explicit conversion of a longer integer
type to a shorter (such asl lo on ng g to c ch ha ar r) can result in undefined behavior. I try to use the notation
exclusively where the construction of a value is well-defined; that is, for narrowing arithmetic con-
versions (§C.6), for conversion from integers to enumerations (§4.8), and the construction of
objects of user-defined types (§2.5.2, §10.2.3).

Pointer conversions cannot be expressed directly using theT T(e e) notation. For example,
c ch ha ar r*(2 2) is a syntax error. Unfortunately, the protection that the constructor notation provides
against such dangerous conversions can be circumvented by usingt ty yp pe ed de ef f names (§4.9.7) for
pointer types.

The constructor notationT T() is used to express the default value of typeT T. For example:

v vo oi id d f f(d do ou ub bl le e d d)
{

i in nt t j j = i in nt t() ; / / default int value
c co om mp pl le ex x z z = c co om mp pl le ex x() ; / / default complex value
/ / ...

}

The value of an explicit use of the constructor for a built-in type is0 0 converted to that type (§4.9.5).
Thus,i in nt t() is another way of writing0 0. For a user-defined typeT T, T T() is defined by the default
constructor (§10.4.2), if any.

The use of the constructor notation for built-in types is particularly important when writing tem-
plates. Then, the programmer does not know whether a template parameter will refer to a built-in
type or a user-defined type (§16.3.4, §17.4.1.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

132 Expressions and Statements Chapter 6

6.3 Statement Summary[expr.stmts]

Here are a summary and some examples of C++ statements:
_ __

Statement Syntax_ ___ __
statement:

declaration
{ statement-listopt }
t tr ry y { statement-listopt } handler-list
expressionopt ;

i if f (condition) statement
i if f (condition) statement e el ls se e statement
s sw wi it tc ch h (condition) statement

w wh hi il le e (condition) statement
d do o statement w wh hi il le e (expression) ;
f fo or r (for-init-statement conditionopt ; expressionopt) statement

c ca as se e constant-expression: statement
d de ef fa au ul lt t : statement
b br re ea ak k ;
c co on nt ti in nu ue e ;

r re et tu ur rn n expressionopt ;

g go ot to o identifier ;
identifier : statement

statement-list:
statement statement-listopt

condition:
expression
type-specifier declarator= expression

handler-list:
c ca at tc ch h (exception-declaration) { statement-listopt }
handler-list handler-listopt_ __ 






















































































Note that a declaration is a statement and that there is no assignment statement or procedure call
statement; assignments and function calls are expressions. The statements for handling exceptions,
try-blocks, are described in §8.3.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.1 Declarations as Statements 133

6.3.1 Declarations as Statements [expr.dcl]

A declaration is a statement. Unless a variable is declareds st ta at ti ic c, its initializer is executed when-
ever the thread of control passes through the declaration (see also §10.4.8). The reason for allow-
ing declarations wherever a statement can be used (and a few other places; §6.3.2.1, §6.3.3.1) is to
enable the programmer to minimize the errors caused by uninitialized variables and to allow better
locality in code. There is rarely a reason to introduce a variable before there is a value for it to
hold. For example:

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& v v, i in nt t i i, c co on ns st t c ch ha ar r* p p)
{

i if f (p p==0 0) r re et tu ur rn n;
i if f (i i<0 0 || v v. s si iz ze e()<= i i) e er rr ro or r(" b ba ad d i in nd de ex x") ;
s st tr ri in ng g s s = v v[i i] ;
i if f (s s == p p) {

/ / ...
}
/ / ...

}

The ability to place declarations after executable code is essential for many constants and for
single-assignment styles of programming where a value of an object is not changed after initial-
ization. For user-defined types, postponing the definition of a variable until a suitable initializer is
available can also lead to better performance. For example,

s st tr ri in ng g s s; /* ... */ s s = " T Th he e b be es st t i is s t th he e e en ne em my y o of f t th he e g go oo od d.";

can easily be much slower than

s st tr ri in ng g s s = " V Vo ol lt ta ai ir re e";

The most common reason to declare a variable without an initializer is that it requires a statement
to initialize it. Examples are input variables and arrays.

6.3.2 Selection Statements [expr.select]

A value can be tested by either ani if f statement or as sw wi it tc ch h statement:

i if f (condition) statement
i if f (condition) statement e el ls se e statement
s sw wi it tc ch h (condition) statement

The comparison operators

== != < <= > >=

return theb bo oo ol l t tr ru ue e if the comparison is true andf fa al ls se eotherwise.
In an i if f statement, the first (or only) statement is executed if the expression is nonzero and the

second statement (if it is specified) is executed otherwise. This implies that any arithmetic or
pointer expression can be used as a condition. For example, ifx x is an integer, then

i if f (x x) / / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

134 Expressions and Statements Chapter 6

means

i if f (x x != 0 0) / / ...

For a pointerp p,

i if f (p p) / / ...

is a direct statement of the test ‘‘doesp p point to a valid object,’’ whereas

i if f (p p != 0 0) / / ...

states the same question indirectly by comparing to a value known not to point to an object. Note
that the representation of the pointer0 0 is not all-zeros on all machines (§5.1.1). Every compiler I
have checked generated the same code for both forms of the test.

The logical operators

&& || !

are most commonly used in conditions. The operators&& and || will not evaluate their second
argument unless doing so is necessary. For example,

i if f (p p && 1 1<p p-> c co ou un nt t) / / ...

first tests thatp p is nonzero. It tests1 1<p p-> c co ou un nt t only if p p is nonzero.
Someif-statements can conveniently be replaced byconditional-expressions. For example,

i if f (a a <= b b)
m ma ax x = b b;

e el ls se e
m ma ax x = a a;

is better expressed like this:

m ma ax x = (a a<=b b) ? b b : a a;

The parentheses around the condition are not necessary, but I find the code easier to read when they
are used.

A switch-statementcan alternatively be written as a set ofi if f- s st ta at te em me en nt ts. For example,

s sw wi it tc ch h (v va al l) {
c ca as se e 1 1:

f f() ;
b br re ea ak k;

c ca as se e 2 2:
g g() ;
b br re ea ak k;

d de ef fa au ul lt t:
h h() ;
b br re ea ak k;

}

could alternatively be expressed as

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.2 Selection Statements 135

i if f (v va al l == 1 1)
f f() ;

e el ls se e i if f (v va al l == 2 2)
g g() ;

e el ls se e
h h() ;

The meaning is the same, but the first (s sw wi it tc ch h) version is preferred because the nature of the opera-
tion (testing a value against a set of constants) is explicit. This makes thes sw wi it tc ch h statement easier
to read for nontrivial examples. It can also lead to the generation of better code.

Beware that a case of a switch must be terminated somehow unless you want to carry on execut-
ing the next case. Consider:

s sw wi it tc ch h (v va al l) { / / beware
c ca as se e 1 1:

c co ou ut t << " c ca as se e 1 1\ \n n";
c ca as se e 2 2:

c co ou ut t << " c ca as se e 2 2\ \n n";
d de ef fa au ul lt t:

c co ou ut t << " d de ef fa au ul lt t: c ca as se e n no ot t f fo ou un nd d\ \n n";
}

Invoked withv va al l==1 1, this prints

c ca as se e 1 1
c ca as se e 2 2
d de ef fa au ul lt t: c ca as se e n no ot t f fo ou un nd d

to the great surprise of the uninitiated. It is a good idea to comment the (rare) cases in which a
fall-through is intentional so that an uncommented fall-through can be assumed to be an error. A
b br re ea ak k is the most common way of terminating a case, but ar re et tu ur rn n is often useful (§6.1.1).

6.3.2.1 Declarations in Conditions [expr.cond]

To avoid accidental misuse of a variable, it is usually a good idea to introduce the variable into the
smallest scope possible. In particular, it is usually best to delay the definition of a local variable
until one can give it an initial value. That way, one cannot get into trouble by using the variable
before its initial value is assigned.

One of the most elegant applications of these two principles is to declare a variable in a condi-
tion. Consider:

i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {
l le ef ft t /= d d;
b br re ea ak k;

}

Here,d d is declared and initialized and the value ofd d after initialization is tested as the value of the
condition. The scope ofd d extends from its point of declaration to the end of the statement that the
condition controls. For example, had there been ane el ls se e-branch to theif-statement, d d would be in
scope on both branches.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

136 Expressions and Statements Chapter 6

The obvious and traditional alternative is to declared d before the condition. However, this
opens the scope (literally) for the use ofd d before its initialization or after its intended useful life:

d do ou ub bl le e d d;
/ / ...

d d2 2 = d d; / / oops!
/ / ...

i if f (d d = p pr ri im m(t tr ru ue e)) {
l le ef ft t /= d d;
b br re ea ak k;

}
/ / ...

d d = 2 2. 0 0; / / two unrelated uses of d

In addition to the logical benefits of declaring variables in conditions, doing so also yields the most
compact source code.

A declaration in a condition must declare and initialize a single variable orc co on ns st t.

6.3.3 Iteration Statements [expr.loop]

A loop can be expressed as af fo or r, w wh hi il le e, ord do o statement:

w wh hi il le e (c co on nd di it ti io on n) s st ta at te em me en nt t
d do o s st ta at te em me en nt t w wh hi il le e (e ex xp pr re es ss si io on n) ;
f fo or r (f fo or r- i in ni it t- s st ta at te em me en nt t c co on nd di it ti io on no op pt t ; e ex xp pr re es ss si io on no op pt t) s st ta at te em me en nt t

Each of these statements executes a statement (called thecontrolledstatement or thebody of the
loop) repeatedly until the condition becomes false or the programmer breaks out of the loop some
other way.

The for-statementis intended for expressing fairly regular loops. The loop variable, the termi-
nation condition, and the expression that updates the loop variable can be presented ‘‘up front’’ on
a single line. This can greatly increase readability and thereby decrease the frequency of errors. If
no initialization is needed, the initializing statement can be empty. If thecondition is omitted, the
for-statementwill loop forever unless the user explicitly exits it by ab br re ea ak k, r re et tu ur rn n, g go ot to o, t th hr ro ow w, or
some less obvious way such as a call ofe ex xi it t() (§9.4.1.1). If theexpressionis omitted, we must
update some form of loop variable in the body of the loop. If the loop isn’t of the simple ‘‘intro-
duce a loop variable, test the condition, update the loop variable’’ variety, it is often better
expressed as awhile-statement. A for-statementis also useful for expressing a loop without an
explicit termination condition:

f fo or r(;;) { / / ‘‘forever’’
/ / ...

}

A while-statementsimply executes its controlled statement until its condition becomesf fa al ls se e. I tend
to preferwhile-statements overfor-statements when there isn’t an obvious loop variable or where
the update of a loop variable naturally comes in the middle of the loop body. An input loop is an
example of a loop where there is no obvious loop variable:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.3 Iteration Statements 137

w wh hi il le e(c ci in n>>c ch h) / / ...

In my experience, thedo-statementis a source of errors and confusion. The reason is that its body
is always executed once before the condition is evaluated. However, for the body to work cor-
rectly, something very much like the condition must hold even the first time through. More often
than I would have guessed, I have found that condition not to hold as expected either when the pro-
gram was first written and tested or later after the code preceding it has been modified. I also prefer
the condition ‘‘up front where I can see it.’’ Consequently, I tend to avoiddo-statements.

6.3.3.1 Declarations in For-Statements [expr.for]

A variable can be declared in the initializer part of afor-statement. If that initializer is a declara-
tion, the variable (or variables) it introduces is in scope until the end of thefor-statement. For
example:

v vo oi id d f f(i in nt t v v[] , i in nt t m ma ax x)
{

f fo or r (i in nt t i i = 0 0; i i<m ma ax x; i i++) v v[i i] = i i* i i;
}

If the final value of an index needs to be known after exit from af fo or r-loop, the index variable must
be declared outside thef fo or r-loop (e.g., §6.3.4).

6.3.4 Goto [expr.goto]

C++ possesses the infamousg go ot to o:

g go ot to o identifier ;
identifier : statement

Theg go ot to o has few uses in general high-level programming, but it can be very useful when C++ code
is generated by a program rather than written directly by a person; for example,g go ot to os can be used
in a parser generated from a grammar by a parser generator. Theg go ot to o can also be important in the
rare cases in which optimal efficiency is essential, for example, in the inner loop of some real-time
application.

One of the few sensible uses ofg go ot to o in ordinary code is to break out from a nested loop or
switch-statement(a b br re ea ak k breaks out of only the innermost enclosing loop orswitch-statement).
For example:

v vo oi id d f f()
{

i in nt t i i;
i in nt t j j;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

138 Expressions and Statements Chapter 6

f fo or r (i i = 0 0; i i<n n; i i++)
f fo or r (j j = 0 0; j j<m m; j j++) i if f (n nm m[i i][j j] == a a) g go ot to o f fo ou un nd d;

/ / not found
/ / ...

f fo ou un nd d:
/ / nm[i][j] == a

}

There is also ac co on nt ti in nu ue e statement that, in effect, goes to the end of a loop statement, as explained
in §6.1.5.

6.4 Comments and Indentation[expr.comment]

Judicious use of comments and consistent use of indentation can make the task of reading and
understanding a program much more pleasant. Several different consistent styles of indentation are
in use. I see no fundamental reason to prefer one over another (although, like most programmers, I
have my preferences, and this book reflects them). The same applies to styles of comments.

Comments can be misused in ways that seriously affect the readability of a program. The com-
piler does not understand the contents of a comment, so it has no way of ensuring that a comment

[1] is meaningful,
[2] describes the program, and
[3] is up to date.

Most programs contain comments that are incomprehensible, ambiguous, and just plain wrong.
Bad comments can be worse than no comments.

If something can be statedin the language itself, it should be, and not just mentioned in a com-
ment. This remark is aimed at comments such as these:

/ / variable "v" must be initialized

/ / variable "v" must be used only by function "f()"

/ / call function "init()" before calling any other function in this file

/ / call function "cleanup()" at the end of your program

/ / don’t use function "weird()"

/ / function "f()" takes two arguments

Such comments can often be rendered unnecessary by proper use of C++. For example, one might
utilize the linkage rules (§9.2) and the visibility, initialization, and cleanup rules for classes (see
§10.4.1) to make the preceding examples redundant.

Once something has been stated clearly in the language, it should not be mentioned a second
time in a comment. For example:

a a = b b+c c; / / a becomes b+c
c co ou un nt t++; / / increment the counter

Such comments are worse than simply redundant. They increase the amount of text the reader has
to look at, they often obscure the structure of the program, and they may be wrong. Note, however,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.4 Comments and Indentation 139

that such comments are used extensively for teaching purposes in programming language textbooks
such as this. This is one of the many ways a program in a textbook differs from a real program.

My preference is for:
[1] A comment for each source file stating what the declarations in it have in common, refer-

ences to manuals, general hints for maintenance, etc.
[2] A comment for each class, template, and namespace
[3] A comment for each nontrivial function stating its purpose, the algorithm used (unless it is

obvious), and maybe something about the assumptions it makes about its environment
[4] A comment for each global and namespace variable and constant
[5] A few comments where the code is nonobvious and/or nonportable
[6] Very little else

For example:

/ / tbl.c: Implementation of the symbol table.

/*
Gaussian elimination with partial pivoting.
See Ralston: "A first course ..." pg 411.

*/

/ / swap() assumes the stack layout of an SGI R6000.

/* **********************************

Copyright (c) 1997 AT&T, Inc.
All rights reserved

*********************************** */

A well-chosen and well-written set of comments is an essential part of a good program. Writing
good comments can be as difficult as writing the program itself. It is an art well worth cultivating.

Note also that if/ / comments are used exclusively in a function, then any part of that function
can be commented out using/* */ style comments, and vice versa.

6.5 Advice[expr.advice]

[1] Prefer the standard library to other libraries and to ‘‘handcrafted code;’’ §6.1.8.
[2] Avoid complicated expressions; §6.2.3.
[3] If in doubt about operator precedence, parenthesize; §6.2.3.
[4] Avoid explicit type conversion (casts); §6.2.7.
[5] When explicit type conversion is necessary, prefer the more specific cast operators to the C-

style cast; §6.2.7.
[6] Use theT T(e e) notation exclusively for well-defined construction; §6.2.8.
[7] Avoid expressions with undefined order of evaluation; §6.2.2.
[8] Avoid g go ot to o; §6.3.4.
[9] Avoid do-statements; §6.3.3.
[10] Don’t declare a variable until you have a value to initialize it with; §6.3.1, §6.3.2.1, §6.3.3.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

140 Expressions and Statements Chapter 6

[11] Keep comments crisp; §6.4.
[12] Maintain a consistent indentation style; §6.4.
[13] Prefer defining a membero op pe er ra at to or r n ne ew w() (§15.6) to replacing the globalo op pe er ra at to or r n ne ew w() ;

§6.2.6.2.
[14] When reading input, always consider ill-formed input; §6.1.3.

6.6 Exercises[expr.exercises]

1. (∗1) Rewrite the followingf fo or r statement as an equivalentw wh hi il le estatement:

f fo or r (i i=0 0; i i<m ma ax x_ _l le en ng gt th h; i i++) i if f (i in np pu ut t_ _l li in ne e[i i] == ´?´) q qu ue es st t_ _c co ou un nt t++;

Rewrite it to use a pointer as the controlled variable, that is, so that the test is of the form
* p p==´?´.

2. (∗1) Fully parenthesize the following expressions:

a a = b b + c c * d d << 2 2 & 8 8
a a & 0 07 77 7 != 3 3
a a == b b || a a == c c && c c < 5 5
c c = x x != 0 0
0 0 <= i i < 7 7
f f(1 1, 2 2)+ 3 3
a a = - 1 1 + + b b -- - 5 5
a a = b b == c c ++
a a = b b = c c = 0 0
a a[4 4][2 2] *= * b b ? c c : * d d * 2 2
a a- b b, c c=d d

3. (∗2) Read a sequence of possibly whitespace-separated (name,value) pairs, where the name is a
single whitespace-separated word and the value is an integer or a floating-point value. Compute
and print the sum and mean for each name and the sum and mean for all names. Hint: §6.1.8.

4. (∗1) Write a table of values for the bitwise logical operations (§6.2.4) for all possible combina-
tions of0 0 and1 1 operands.

5. (∗1.5) Find 5 different C++ constructs for which the meaning is undefined (§C.2). (∗1.5) Find 5
different C++ constructs for which the meaning is implementation-defined (§C.2).

6. (∗1) Find 10 different examples of nonportable C++ code.
7. (∗2) Write 5 expressions for which the order of evaluation is undefined. Execute them to see

what one or– preferably– more implementations do with them.
8. (∗1.5) What happens if you divide by zero on your system? What happens in case of overflow

and underflow?
9. (∗1) Fully parenthesize the following expressions:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.6 Exercises 141

* p p++
*-- p p
++a a--
(i in nt t*) p p-> m m
* p p. m m
* a a[i i]

10. (*2) Write these functions:s st tr rl le en n() , which returns the length of a C-style string;s st tr rc cp py y() ,
which copies a string into another; ands st tr rc cm mp p() , which compares two strings. Consider what
the argument types and return types ought to be. Then compare your functions with the stan-
dard library versions as declared in<c cs st tr ri in ng g> (<s st tr ri in ng g. h h>) and as specified in §20.4.1.

11. (∗1) See how your compiler reacts to these errors:

v vo oi id d f f(i in nt t a a, i in nt t b b)
{

i if f (a a = 3 3) / / ...
i if f (a a&0 07 77 7 == 0 0) / / ...
a a := b b+1 1;

}

Devise more simple errors and see how the compiler reacts.
12. (∗2) Modify the program from §6.6[3] to also compute the median.
13. (∗2) Write a functionc ca at t() that takes two C-style string arguments and returns a string that is

the concatenation of the arguments. Usen ne ew w to find store for the result.
14. (∗2) Write a functionr re ev v() that takes a string argument and reverses the characters in it. That

is, afterr re ev v(p p) the last character ofp p will be the first, etc.
15. (∗1.5) What does the following example do?

v vo oi id d s se en nd d(i in nt t* t to o, i in nt t* f fr ro om m, i in nt t c co ou un nt t)
/ / Duff’s device. Helpful comment deliberately deleted.
{

i in nt t n n = (c co ou un nt t+7 7)/ 8 8;
s sw wi it tc ch h (c co ou un nt t%8 8) {
c ca as se e 0 0: d do o { * t to o++ = * f fr ro om m++;
c ca as se e 7 7: * t to o++ = * f fr ro om m++;
c ca as se e 6 6: * t to o++ = * f fr ro om m++;
c ca as se e 5 5: * t to o++ = * f fr ro om m++;
c ca as se e 4 4: * t to o++ = * f fr ro om m++;
c ca as se e 3 3: * t to o++ = * f fr ro om m++;
c ca as se e 2 2: * t to o++ = * f fr ro om m++;
c ca as se e 1 1: * t to o++ = * f fr ro om m++;

} w wh hi il le e (-- n n>0 0) ;
}

}

Why would anyone write something like that?
16. (∗2) Write a functiona at to oi i(c co on ns st t c ch ha ar r*) that takes a string containing digits and returns the

correspondingi in nt t. For example,a at to oi i(" 1 12 23 3") is 1 12 23 3. Modify a at to oi i() to handle C++ octal and
hexadecimal notation in addition to plain decimal numbers. Modifya at to oi i() to handle the C++

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

142 Expressions and Statements Chapter 6

character constant notation.
17. (∗2) Write a functioni it to oa a(i in nt t i i, c ch ha ar r b b[]) that creates a string representation ofi i in b b and

returnsb b.
18. (*2) Type in the calculator example and get it to work. Do not ‘‘save time’’ by using an already

entered text. You’ll learn most from finding and correcting ‘‘little silly errors.’’
19. (∗2) Modify the calculator to report line numbers for errors.
20. (∗3) Allow a user to define functions in the calculator. Hint: Define a function as a sequence of

operations just as a user would have typed them. Such a sequence can be stored either as a
character string or as a list of tokens. Then read and execute those operations when the function
is called. If you want a user-defined function to take arguments, you will have to invent a nota-
tion for that.

21. (∗1.5) Convert the desk calculator to use as sy ym mb bo ol l structure instead of using the static variables
n nu um mb be er r_ _v va al lu ue eands st tr ri in ng g_ _v va al lu ue e.

22. (∗2.5) Write a program that strips comments out of a C++ program. That is, read fromc ci in n,
remove both/ / comments and/* */ comments, and write the result toc co ou ut t. Do not worry
about making the layout of the output look nice (that would be another, and much harder, exer-
cise). Do not worry about incorrect programs. Beware of/ / , /* , and*/ in comments, strings,
and character constants.

23. (∗2) Look at some programs to get an idea of the variety of indentation, naming, and comment-
ing styles actually used.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

7
_ __ _______________________________________

Functions

To iterate is human,
to recurse divine.

– L. Peter Deutsch

Function declarations and definitions— argument passing— return values— function
overloading— ambiguity resolution— default arguments— s st td da ar rg gs s — pointers to
functions— macros— advice— exercises.

7.1 Function Declarations[fct.dcl]

The typical way of getting something done in a C++ program is to call a function to do it. Defining
a function is the way you specify how an operation is to be done. A function cannot be called
unless it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any) by
the function, and the number and types of the arguments that must be supplied in a call of the func-
tion. For example:

E El le em m* n ne ex xt t_ _e el le em m() ;
c ch ha ar r* s st tr rc cp py y(c ch ha ar r* t to o, c co on ns st t c ch ha ar r* f fr ro om m) ;
v vo oi id d e ex xi it t(i in nt t) ;

The semantics of argument passing are identical to the semantics of initialization. Argument types
are checked and implicit argument type conversion takes place when necessary. For example:

d do ou ub bl le e s sq qr rt t(d do ou ub bl le e) ;

d do ou ub bl le e s sr r2 2 = s sq qr rt t(2 2) ; / / call sqrt() with the argument double(2)
d do ou ub bl le e s sq q3 3 = s sq qr rt t(" t th hr re ee e") ; / / error: sqrt() requires an argument of type double

The value of such checking and type conversion should not be underestimated.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

144 Functions Chapter 7

A function declaration may contain argument names. This can be a help to the reader of a pro-
gram, but the compiler simply ignores such names. As mentioned in §4.7,v vo oi id d as a return type
means that the function does not return a value.

7.1.1 Function Definitions [fct.def]

Every function that is called in a program must be defined somewhere (once only). A function def-
inition is a function declaration in which the body of the function is presented. For example:

e ex xt te er rn n v vo oi id d s sw wa ap p(i in nt t*, i in nt t*) ; / / a declaration

v vo oi id d s sw wa ap p(i in nt t* p p, i in nt t* q q) / / a definition
{

i in nt t t t = * p p;
* p p = * q q;
* q q = t t;

}

The type of the definition and all declarations for a function must specify the same type. The argu-
ment names, however, are not part of the type and need not be identical.

It is not uncommon to have function definitions with unused arguments:

v vo oi id d s se ea ar rc ch h(t ta ab bl le e* t t, c co on ns st t c ch ha ar r* k ke ey y, c co on ns st t c ch ha ar r*)
{

/ / no use of the third argument
}

As shown, the fact that an argument is unused can be indicated by not naming it. Typically,
unnamed arguments arise from the simplification of code or from planning ahead for extensions. In
both cases, leaving the argument in place, although unused, ensures that callers are not affected by
the change.

A function can be defined to bei in nl li in ne e. For example:

i in nl li in ne e i in nt t f fa ac c(i in nt t n n)
{

r re et tu ur rn n (n n<2 2) ? 1 1 : n n* f fa ac c(n n- 1 1) ;
}

The i in nl li in ne e specifier is a hint to the compiler that it should attempt to generate code for a call of
f fa ac c() inline rather than laying down the code for the function once and then calling through the
usual function call mechanism. A clever compiler can generate the constant7 72 20 0 for a callf fa ac c(6 6) .
The possibility of mutually recursive inline functions, inline functions that recurse or not depending
on input, etc., makes it impossible to guarantee that every call of ani in nl li in ne e function is actually
inlined. The degree of cleverness of a compiler cannot be legislated, so one compiler might gener-
ate7 72 20 0, another6 6* f fa ac c(5 5) , and yet another an un-inlined callf fa ac c(6 6) .

To make inlining possible in the absence of unusually clever compilation and linking facilities,
the definition– and not just the declaration– of an inline function must be in scope (§9.2). An
i in nl li in ne e specifier does not affect the semantics of a function. In particular, an inline function still has
a unique address and so hass st ta at ti ic c variables (§7.1.2) of an inline function.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.1.2 Static Variables 145

7.1.2 Static Variables [fct.static]

A local variable is initialized when the thread of execution reaches its definition. By default, this
happens in every call of the function and each invocation of the function has its own copy of the
variable. If a local variable is declareds st ta at ti ic c, a single, statically allocated object will be used to
represent that variable in all calls of the function. It will be initialized only the first time the thread
of execution reaches its definition. For example:

v vo oi id d f f(i in nt t a a)
{

w wh hi il le e (a a--) {
s st ta at ti ic c i in nt t n n = 0 0; / / initialized once
i in nt t x x = 0 0; / / initialized n times

c co ou ut t << " n n == " << n n++ << ", x x == " << x x++ << ´ \ \n n´;
}

}

i in nt t m ma ai in n()
{

f f(3 3) ;
}

This prints:

n n == 0 0, x x == 0 0
n n == 1 1, x x == 0 0
n n == 2 2, x x == 0 0

A static variable provides a function with ‘‘a memory’’ without introducing a global variable that
might be accessed and corrupted by other functions (see also §10.2.4).

7.2 Argument Passing[fct.arg]

When a function is called, store is set aside for its formal arguments and each formal argument is
initialized by its corresponding actual argument. The semantics of argument passing are identical
to the semantics of initialization. In particular, the type of an actual argument is checked against
the type of the corresponding formal argument, and all standard and user-defined type conversions
are performed. There are special rules for passing arrays (§7.2.1), a facility for passing unchecked
arguments (§7.6), and a facility for specifying default arguments (§7.5). Consider:

v vo oi id d f f(i in nt t v va al l, i in nt t& r re ef f)
{

v va al l++;
r re ef f++;

}

When f f() is called,v va al l++ increments a local copy of the first actual argument, whereasr re ef f++
increments the second actual argument. For example,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

146 Functions Chapter 7

v vo oi id d g g()
{

i in nt t i i = 1 1;
i in nt t j j = 1 1;
f f(i i, j j) ;

}

will increment j j but not i i. The first argument,i i, is passedby value, the second argument,j j, is
passedby reference. As mentioned in §5.5, functions that modify call-by-reference arguments can
make programs hard to read and should most often be avoided (but see §21.2.1). It can, however,
be noticeably more efficient to pass a large object by reference than to pass it by value. In that
case, the argument might be declaredc co on ns st t to indicate that the reference is used for efficiency rea-
sons only and not to enable the called function to change the value of the object:

v vo oi id d f f(c co on ns st t L La ar rg ge e& a ar rg g)
{

/ / the value of "arg" cannot be changed without explicit use of type conversion
}

The absence ofc co on ns st t in the declaration of a reference argument is taken as a statement of intent to
modify the variable:

v vo oi id d g g(L La ar rg ge e& a ar rg g) ; / / assume that g() modifies arg

Similarly, declaring a pointer argumentc co on ns st t tells readers that the value of an object pointed to by
that argument is not changed by the function. For example:

i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ; / / number of characters in a C-style string
c ch ha ar r* s st tr rc cp py y(c ch ha ar r* t to o, c co on ns st t c ch ha ar r* f fr ro om m) ; / / copy a C-style string
i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r*, c co on ns st t c ch ha ar r*) ; / / compare C-style strings

The importance of usingc co on ns st t arguments increases with the size of a program.
Note that the semantics of argument passing are different from the semantics of assignment.

This is important forc co on ns st t arguments, reference arguments, and arguments of some user-defined
types (§10.4.4.1).

A literal, a constant, and an argument that requires conversion can be passed as ac co on ns st t& argu-
ment, but not as a non-c co on ns st t argument. Allowing conversions for ac co on ns st t T T& argument ensures that
such an argument can be given exactly the same set of values as aT T argument by passing the value
in a temporary, if necessary. For example:

f fl lo oa at t f fs sq qr rt t(c co on ns st t f fl lo oa at t&) ; / / Fortran-style sqrt taking a reference argument

v vo oi id d g g(d do ou ub bl le e d d)
{

f fl lo oa at t r r = f fs sq qr rt t(2 2. 0 0f f) ; / / pass ref to temp holding 2.0f
r r = f fs sq qr rt t(r r) ; / / pass ref to r
r r = f fs sq qr rt t(d d) ; / / pass ref to temp holding float(d)

}

Disallowing conversions for non-c co on ns st t reference arguments (§5.5) avoids the possibility of silly
mistakes arising from the introduction of temporaries. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.2 Argument Passing 147

v vo oi id d u up pd da at te e(f fl lo oa at t& i i) ;

v vo oi id d g g(d do ou ub bl le e d d, f fl lo oa at t r r)
{

u up pd da at te e(2 2. 0 0f f) ; / / error: const argument
u up pd da at te e(r r) ; / / pass ref to r
u up pd da at te e(d d) ; / / error: type conversion required

}

Had these calls been allowed,u up pd da at te e() would quietly have updated temporaries that immediately
were deleted. Usually, that would come as an unpleasant surprise to the programmer.

7.2.1 Array Arguments [fct.array]

If an array is used as a function argument, a pointer to its initial element is passed. For example:

i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ;

v vo oi id d f f()
{

c ch ha ar r v v[] = " a an n a ar rr ra ay y";
i in nt t i i = s st tr rl le en n(v v) ;
i in nt t j j = s st tr rl le en n(" N Ni ic ch ho ol la as s") ;

}

That is, an argument of typeT T[] will be converted to aT T* when passed as an argument. This
implies that an assignment to an element of an array argument changes the value of an element of
the argument array. In other words, arrays differ from other types in that an array is not (and can-
not be) passed by value.

The size of an array is not available to the called function. This can be a nuisance, but there are
several ways of circumventing this problem. C-style strings are zero-terminated, so their size can
be computed easily. For other arrays, a second argument specifying the size can be passed. For
example:

v vo oi id d c co om mp pu ut te e1 1(i in nt t* v ve ec c_ _p pt tr r, i in nt t v ve ec c_ _s si iz ze e) ; / / one way

s st tr ru uc ct t V Ve ec c {
i in nt t* p pt tr r;
i in nt t s si iz ze e;

};

v vo oi id d c co om mp pu ut te e2 2(c co on ns st t V Ve ec c& v v) ; / / another way

Alternatively, a type such asv ve ec ct to or r (§3.7.1, §16.3) can be used instead of an array.
Multidimensional arrays are trickier (see §C.7), but often arrays of pointers can be used instead,

and they need no special treatment. For example:

c ch ha ar r* d da ay y[] = {
" m mo on n", " t tu ue e", " w we ed d", " t th hu u", " f fr ri i", " s sa at t", " s su un n"

};

Again,v ve ec ct to or r and similar types are alternatives to the built-in, low-level arrays and pointers.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

148 Functions Chapter 7

7.3 Value Return[fct.return]

A value must be returned from a function that is not declaredv vo oi id d (however,m ma ai in n() is special; see
§3.2). Conversely, a value cannot be returned from av vo oi id d function. For example:

i in nt t f f1 1() { } / / error: no value returned
v vo oi id d f f2 2() { } / / ok

i in nt t f f3 3() { r re et tu ur rn n 1 1; } / / ok
v vo oi id d f f4 4() { r re et tu ur rn n 1 1; } / / error: return value in void function

i in nt t f f5 5() { r re et tu ur rn n; } / / error: return value missing
v vo oi id d f f6 6() { r re et tu ur rn n; } / / ok

A return value is specified by a return statement. For example:

i in nt t f fa ac c(i in nt t n n) { r re et tu ur rn n (n n>1 1) ? n n* f fa ac c(n n- 1 1) : 1 1; }

A function that calls itself is said to berecursive.
There can be more than one return statement in a function:

i in nt t f fa ac c2 2(i in nt t n n)
{

i if f (n n > 1 1) r re et tu ur rn n n n* f fa ac c2 2(n n- 1 1) ;
r re et tu ur rn n 1 1;

}

Like the semantics of argument passing, the semantics of function value return are identical to the
semantics of initialization. A return statement is considered to initialize an unnamed variable of the
returned type. The type of a return expression is checked against the type of the returned type, and
all standard and user-defined type conversions are performed. For example:

d do ou ub bl le e f f() { r re et tu ur rn n 1 1; } / / 1 is implicitly converted to double(1)

Each time a function is called, a new copy of its arguments and local (automatic) variables is cre-
ated. The store is reused after the function returns, so a pointer to a local variable should never be
returned. The contents of the location pointed to will change unpredictably:

i in nt t* f fp p() { i in nt t l lo oc ca al l = 1 1; /* ... */ r re et tu ur rn n &l lo oc ca al l; } / / bad

This error is less common than the equivalent error using references:

i in nt t& f fr r() { i in nt t l lo oc ca al l = 1 1; /* ... */ r re et tu ur rn n l lo oc ca al l; } / / bad

Fortunately, a compiler can easily warn about returning references to local variables.
A v vo oi id d function cannot return a value. However, a call of av vo oi id d function doesn’t yield a value,

so av vo oi id d function can use a call of av vo oi id d function as the expression in ar re et tu ur rn n statement. For
example:

v vo oi id d g g(i in nt t* p p) ;

v vo oi id d h h(i in nt t* p p) { /* ... */ r re et tu ur rn n g g(p p) ; } / / ok: return of ‘‘no value’’

This form of return is important when writing template functions where the return type is a tem-
plate parameter (see §18.4.4.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.4 Overloaded Function Names 149

7.4 Overloaded Function Names[fct.over]

Most often, it is a good idea to give different functions different names, but when some functions
conceptually perform the same task on objects of different types, it can be more convenient to give
them the same name. Using the same name for operations on different types is calledoverloading.
The technique is already used for the basic operations in C++. That is, there is only one name for
addition,+, yet it can be used to add values of integer, floating-point, and pointer types. This idea
is easily extended to functions defined by the programmer. For example:

v vo oi id d p pr ri in nt t(i in nt t) ; / / print an int
v vo oi id d p pr ri in nt t(c co on ns st t c ch ha ar r*) ; / / print a C-style character string

As far as the compiler is concerned, the only thing functions of the same name have in common is
that name. Presumably, the functions are in some sense similar, but the language does not con-
strain or aid the programmer. Thus overloaded function names are primarily a notational conve-
nience. This convenience is significant for functions with conventional names such ass sq qr rt t, p pr ri in nt t,
ando op pe en n. When a name is semantically significant, this convenience becomes essential. This hap-
pens, for example, with operators such as+, * , and<<, in the case of constructors (§11.7), and in
generic programming (§2.7.2, Chapter 18). When a functionf f is called, the compiler must figure
out which of the functions with the namef f is to be invoked. This is done by comparing the types of
the actual arguments with the types of the formal arguments of all functions calledf f. The idea is to
invoke the function that is the best match on the arguments and give a compile-time error if no
function is the best match. For example:

v vo oi id d p pr ri in nt t(d do ou ub bl le e) ;
v vo oi id d p pr ri in nt t(l lo on ng g) ;

v vo oi id d f f()
{

p pr ri in nt t(1 1L L) ; / / print(long)
p pr ri in nt t(1 1. 0 0) ; / / print(double)
p pr ri in nt t(1 1) ; / / error, ambiguous: print(long(1)) or print(double(1))?

}

Finding the right version to call from a set of overloaded functions is done by looking for a best
match between the type of the argument expression and the parameters (formal arguments) of the
functions. To approximate our notions of what is reasonable, a series of criteria are tried in order:

[1] Exact match; that is, match using no or only trivial conversions (for example, array name to
pointer, function name to pointer to function, andT T to c co on ns st t T T)

[2] Match using promotions; that is, integral promotions (b bo oo ol l to i in nt t, c ch ha ar r to i in nt t, s sh ho or rt t to i in nt t,
and theiru un ns si ig gn ne ed d counterparts; §C.6.1),f fl lo oa at t to d do ou ub bl le e, andd do ou ub bl le e to l lo on ng g d do ou ub bl le e

[3] Match using standard conversions (for example,i in nt t to d do ou ub bl le e, d do ou ub bl le e to i in nt t, D De er ri iv ve ed d* to
B Ba as se e* (§12.2), T* tov vo oi id d* (§5.6),i in nt t to u un ns si ig gn ne ed d i in nt t; §C.6)

[4] Match using user-defined conversions (§11.4)
[5] Match using the ellipsis... in a function declaration (§7.6)

If two matches are found at the highest level where a match is found, the call is rejected as ambigu-
ous. The resolution rules are this elaborate primarily to take into account the elaborate C and C++
rules for built-in numeric types (§C.6). For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

150 Functions Chapter 7

v vo oi id d p pr ri in nt t(i in nt t) ;
v vo oi id d p pr ri in nt t(c co on ns st t c ch ha ar r*) ;
v vo oi id d p pr ri in nt t(d do ou ub bl le e) ;
v vo oi id d p pr ri in nt t(l lo on ng g) ;
v vo oi id d p pr ri in nt t(c ch ha ar r) ;

v vo oi id d h h(c ch ha ar r c c, i in nt t i i, s sh ho or rt t s s, f fl lo oa at t f f)
{

p pr ri in nt t(c c) ; / / exact match: invoke print(char)
p pr ri in nt t(i i) ; / / exact match: invoke print(int)
p pr ri in nt t(s s) ; / / integral promotion: invoke print(int)
p pr ri in nt t(f f) ; / / float to double promotion: print(double)

p pr ri in nt t(´ a a´) ; / / exact match: invoke print(char)
p pr ri in nt t(4 49 9) ; / / exact match: invoke print(int)
p pr ri in nt t(0 0) ; / / exact match: invoke print(int)
p pr ri in nt t(" a a") ; / / exact match: invoke print(const char*)

}

The call p pr ri in nt t(0 0) invokes p pr ri in nt t(i in nt t) because0 0 is an i in nt t. The call p pr ri in nt t(´ a a´) invokes
p pr ri in nt t(c ch ha ar r) becausé a a´ is a c ch ha ar r (§4.3.1). The reason to distinguish between conversions and
promotions is that we want to prefer safe promotions, such asc ch ha ar r to i in nt t, over unsafe conversions,
such asi in nt t to c ch ha ar r.

The overloading resolution is independent of the order of declaration of the functions consid-
ered.

Overloading relies on a relatively complicated set of rules, and occasionally a programmer will
be surprised which function is called. So, why bother? Consider the alternative to overloading.
Often, we need similar operations performed on objects of several types. Without overloading, we
must define several functions with different names:

v vo oi id d p pr ri in nt t_ _i in nt t(i in nt t) ;
v vo oi id d p pr ri in nt t_ _c ch ha ar r(c ch ha ar r) ;
v vo oi id d p pr ri in nt t_ _s st tr ri in ng g(c co on ns st t c ch ha ar r*) ; / / C-style string

v vo oi id d g g(i in nt t i i, c ch ha ar r c c, c co on ns st t c ch ha ar r* p p, d do ou ub bl le e d d)
{

p pr ri in nt t_ _i in nt t(i i) ; / / ok
p pr ri in nt t_ _c ch ha ar r(c c) ; / / ok
p pr ri in nt t_ _s st tr ri in ng g(p p) ; / / ok

p pr ri in nt t_ _i in nt t(c c) ; / / ok? calls print_int(int(c))
p pr ri in nt t_ _c ch ha ar r(i i) ; / / ok? calls print_char(char(i))
p pr ri in nt t_ _s st tr ri in ng g(i i) ; / / error
p pr ri in nt t_ _i in nt t(d d) ; / / ok? calls print_int(int(d))

}

Compared to the overloadedp pr ri in nt t() , we have to remember several names and remember to use
those correctly. This can be tedious, defeats attempts to do generic programming (§2.7.2), and gen-
erally encourages the programmer to focus on relatively low-level type issues. Because there is no
overloading, all standard conversions apply to arguments to these functions. It can also lead to

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.4 Overloaded Function Names 151

errors. In the previous example, this implies that only one of the four calls with a ‘‘wrong’’ argu-
ment is caught by the compiler. Thus, overloading can increase the chances that an unsuitable
argument will be rejected by the compiler.

7.4.1 Overloading and Return Type [fct.return]

Return types are not considered in overload resolution. The reason is to keep resolution for an indi-
vidual operator (§11.2.1, §11.2.4) or function call context-independent. Consider:

f fl lo oa at t s sq qr rt t(f fl lo oa at t) ;
d do ou ub bl le e s sq qr rt t(d do ou ub bl le e) ;

v vo oi id d f f(d do ou ub bl le e d da a, f fl lo oa at t f fl la a)
{

f fl lo oa at t f fl l = s sq qr rt t(d da a) ; / / call sqrt(double)
d do ou ub bl le e d d = s sq qr rt t(d da a) ; / / call sqrt(double)
f fl l = s sq qr rt t(f fl la a) ; / / call sqrt(float)
d d = s sq qr rt t(f fl la a) ; / / call sqrt(float)

}

If the return type were taken into account, it would no longer be possible to look at a call ofs sq qr rt t()
in isolation and determine which function was called.

7.4.2 Overloading and Scopes [fct.scope]

Functions declared in different non-namespace scopes do not overload. For example:

v vo oi id d f f(i in nt t) ;

v vo oi id d g g()
{

v vo oi id d f f(d do ou ub bl le e) ;
f f(1 1) ; / / call f(double)

}

Clearly,f f(i in nt t) would have been the best match forf f(1 1) , but onlyf f(d do ou ub bl le e) is in scope. In such
cases, local declarations can be added or subtracted to get the desired behavior. As always, inten-
tional hiding can be a useful technique, but unintentional hiding is a source of surprises. When
overloading across class scopes (§15.2.2) or namespace scopes (§8.2.9.2) is wanted,using-
declarationsor u us si in ng g- d di ir re ec ct ti iv ve es s can be used (§8.2.2). See also §8.2.6 and §8.2.9.2.

7.4.3 Manual Ambiguity Resolution [fct.man.ambig]

Declaring too few (or too many) overloaded versions of a function can lead to ambiguities. For
example:

v vo oi id d f f1 1(c ch ha ar r) ;
v vo oi id d f f1 1(l lo on ng g) ;

v vo oi id d f f2 2(c ch ha ar r*) ;
v vo oi id d f f2 2(i in nt t*) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

152 Functions Chapter 7

v vo oi id d k k(i in nt t i i)
{

f f1 1(i i) ; / / ambiguous: f1(char) or f1(long)
f f2 2(0 0) ; / / ambiguous: f2(char*) or f2(int*)

}

Where possible, the thing to do in such cases is to consider the set of overloaded versions of a func-
tion as a whole and see if it makes sense according to the semantics of the function. Often the
problem can be solved by adding a version that resolves ambiguities. For example, adding

i in nl li in ne e v vo oi id d f f1 1(i in nt t n n) { f f1 1(l lo on ng g(n n)) ; }

would resolve all ambiguities similar tof f1 1(i i) in favor of the larger typel lo on ng g i in nt t.
One can also add an explicit type conversion to resolve a specific call. For example:

f f2 2(s st ta at ti ic c_ _c ca as st t<i in nt t*>(0 0)) ;

However, this is most often simply an ugly stopgap. Soon another similar call will be made and
have to be dealt with.

Some C++ novices get irritated by the ambiguity errors reported by the compiler. More experi-
enced programmers appreciate these error messages as useful indicators of design errors.

7.4.4 Resolution for Multiple Arguments [fct.fct.res]

Given the overload resolution rules, one can ensure that the simplest algorithm (function) will be
used when the efficiency or precision of computations differs significantly for the types involved.
For example:

i in nt t p po ow w(i in nt t, i in nt t) ;
d do ou ub bl le e p po ow w(d do ou ub bl le e, d do ou ub bl le e) ;

c co om mp pl le ex x p po ow w(d do ou ub bl le e, c co om mp pl le ex x) ;
c co om mp pl le ex x p po ow w(c co om mp pl le ex x, i in nt t) ;
c co om mp pl le ex x p po ow w(c co om mp pl le ex x, d do ou ub bl le e) ;
c co om mp pl le ex x p po ow w(c co om mp pl le ex x, c co om mp pl le ex x) ;

v vo oi id d k k(c co om mp pl le ex x z z)
{

i in nt t i i = p po ow w(2 2, 2 2) ; / / invoke pow(int,int)
d do ou ub bl le e d d = p po ow w(2 2. 0 0, 2 2. 0 0) ; / / invoke pow(double,double)
c co om mp pl le ex x z z2 2 = p po ow w(2 2, z z) ; / / invoke pow(double,complex)
c co om mp pl le ex x z z3 3 = p po ow w(z z, 2 2) ; / / invoke pow(complex,int)
c co om mp pl le ex x z z4 4 = p po ow w(z z, z z) ; / / invoke pow(complex,complex)

}

In the process of choosing among overloaded functions with two or more arguments, a best match
is found for each argument using the rules from §7.4. A function that is the best match for one
argument and a better than or equal match for all other arguments is called. If no such function
exists, the call is rejected as ambiguous. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.4.4 Resolution for Multiple Arguments 153

v vo oi id d g g()
{

d do ou ub bl le e d d = p po ow w(2 2. 0 0, 2 2) ; / / error: pow(int(2.0),2) or pow(2.0,double(2))?
}

The call is ambiguous because2 2. 0 0 is the best match for the first argument of
p po ow w(d do ou ub bl le e, d do ou ub bl le e) and2 2 is the best match for the second argument ofp po ow w(i in nt t, i in nt t) .

7.5 Default Arguments[fct.defarg]

A general function often needs more arguments than are necessary to handle simple cases. In par-
ticular, functions that construct objects (§10.2.3) often provide several options for flexibility. Con-
sider a function for printing an integer. Giving the user an option of what base to print it in seems
reasonable, but in most programs integers will be printed as decimal integer values. For example:

v vo oi id d p pr ri in nt t(i in nt t v va al lu ue e, i in nt t b ba as se e =1 10 0) ; / / default base is 10

v vo oi id d f f()
{

p pr ri in nt t(3 31 1) ;
p pr ri in nt t(3 31 1, 1 10 0) ;
p pr ri in nt t(3 31 1, 1 16 6) ;
p pr ri in nt t(3 31 1, 2 2) ;

}

might produce this output:

3 31 1 3 31 1 1 1f f 1 11 11 11 11 1

The effect of a default argument can alternatively be achieved by overloading:

v vo oi id d p pr ri in nt t(i in nt t v va al lu ue e, i in nt t b ba as se e) ;
i in nl li in ne e v vo oi id d p pr ri in nt t(i in nt t v va al lu ue e) { p pr ri in nt t(v va al lu ue e, 1 10 0) ; }

However, overloading makes it less obvious to the reader that the intent is to have a single print
function plus a shorthand.

A default argument is type checked at the time of the function declaration and evaluated at the
time of the call. Default arguments may be provided for trailing arguments only. For example:

i in nt t f f(i in nt t, i in nt t =0 0, c ch ha ar r* =0 0) ; / / ok
i in nt t g g(i in nt t =0 0, i in nt t =0 0, c ch ha ar r*) ; / / error
i in nt t h h(i in nt t =0 0, i in nt t, c ch ha ar r* =0 0) ; / / error

Note that the space between the* and the= is significant (*= is an assignment operator; §6.2):

i in nt t n na as st ty y(c ch ha ar r*= 0 0) ; / / syntax error

A default argument can be repeated in a subsequent declaration in the same scope but not changed.
For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

154 Functions Chapter 7

v vo oi id d f f(i in nt t x x = 7 7) ;
v vo oi id d f f(i in nt t = 7 7) ; / / ok
v vo oi id d f f(i in nt t = 8 8) ; / / error: different default arguments

v vo oi id d g g()
{

v vo oi id d f f(i in nt t x x = 9 9) ; / / ok: this declaration hides the outer one
/ / ...

}

Declaring a name in a nested scope so that the name hides a declaration of the same name in an
outer scope is error prone.

7.6 Unspecified Number of Arguments[fct.stdarg]

For some functions, it is not possible to specify the number and type of all arguments expected in a
call. Such a function is declared by terminating the list of argument declarations with the ellipsis
(...), which means ‘‘and maybe some more arguments.’’ For example:

i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* ...) ;

This specifies that a call of the C standard library functionp pr ri in nt tf f() (§21.8) must have at least one
argument, ac ch ha ar r* , but may or may not have others. For example:

p pr ri in nt tf f(" H He el ll lo o, w wo or rl ld d! \ \n n") ;
p pr ri in nt tf f(" M My y n na am me e i is s %s s %s s\ \n n", f fi ir rs st t_ _n na am me e, s se ec co on nd d_ _n na am me e) ;
p pr ri in nt tf f("% d d + %d d = %d d\ \n n", 2 2, 3 3, 5 5) ;

Such a function must rely on information not available to the compiler when interpreting its argu-
ment list. In the case ofp pr ri in nt tf f() , the first argument is a format string containing special character
sequences that allowp pr ri in nt tf f() to handle other arguments correctly;%s s means ‘‘expect ac ch ha ar r*
argument’’ and%d d means ‘‘expect ani in nt t argument.’’ However, the compiler cannot in general
know that, so it cannot ensure that the expected arguments are really there or that an argument is of
the proper type. For example,

#i in nc cl lu ud de e <s st td di io o. h h>

i in nt t m ma ai in n()
{

p pr ri in nt tf f(" M My y n na am me e i is s %s s %s s\ \n n", 2 2) ;
}

will compile and (at best) cause some strange-looking output (try it!).
Clearly, if an argument has not been declared, the compiler does not have the information

needed to perform the standard type checking and type conversion for it. In that case, ac ch ha ar r or a
s sh ho or rt t is passed as ani in nt t and af fl lo oa at t is passed as ad do ou ub bl le e. This is not necessarily what the pro-
grammer expects.

A well-designed program needs at most a few functions for which the argument types are not
completely specified. Overloaded functions and functions using default arguments can be used to

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.6 Unspecified Number of Arguments 155

take care of type checking in most cases when one would otherwise consider leaving argument
types unspecified. Only when both the number of argumentsand the type of arguments vary is the
ellipsis necessary. The most common use of the ellipsis is to specify an interface to C library func-
tions that were defined before C++ provided alternatives:

i in nt t f fp pr ri in nt tf f(F FI IL LE E*, c co on ns st t c ch ha ar r* ...) ; / / from <cstdio>
i in nt t e ex xe ec cl l(c co on ns st t c ch ha ar r* ...) ; / / from UNIX header

A standard set of macros for accessing the unspecified arguments in such functions can be found in
<c cs st td da ar rg g>. Consider writing an error function that takes one integer argument indicating the
severity of the error followed by an arbitrary number of strings. The idea is to compose the error
message by passing each word as a separate string argument. The list of string arguments should
be terminated by a null pointer toc ch ha ar r:

e ex xt te er rn n v vo oi id d e er rr ro or r(i in nt t ...) ;
e ex xt te er rn n c ch ha ar r* i it to oa a(i in nt t, c ch ha ar r[]) ; / / see §6.6[17]

c co on ns st t c ch ha ar r* N Nu ul ll l_ _c cp p = 0 0;

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

s sw wi it tc ch h (a ar rg gc c) {
c ca as se e 1 1:

e er rr ro or r(0 0, a ar rg gv v[0 0] , N Nu ul ll l_ _c cp p) ;
b br re ea ak k;

c ca as se e 2 2:
e er rr ro or r(0 0, a ar rg gv v[0 0] , a ar rg gv v[1 1] , N Nu ul ll l_ _c cp p) ;
b br re ea ak k;

d de ef fa au ul lt t:
c ch ha ar r b bu uf ff fe er r[8 8] ;
e er rr ro or r(1 1, a ar rg gv v[0 0] , " w wi it th h", i it to oa a(a ar rg gc c- 1 1, b bu uf ff fe er r) ," a ar rg gu um me en nt ts s", N Nu ul ll l_ _c cp p) ;

}
/ / ...

}

The functioni it to oa a() returns the character string representing its integer argument.
Note that using the integer0 0 as the terminator would not have been portable: on some imple-

mentations, the integer zero and the null pointer do not have the same representation. This illus-
trates the subtleties and extra work that face the programmer once type checking has been sup-
pressed using the ellipsis.

The error function could be defined like this:

v vo oi id d e er rr ro or r(i in nt t s se ev ve er ri it ty y ...) / / "severity" followed by a zero-terminated list of char*s
{

v va a_ _l li is st t a ap p;
v va a_ _s st ta ar rt t(a ap p, s se ev ve er ri it ty y) ; / / arg startup

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

156 Functions Chapter 7

f fo or r (;;) {
c ch ha ar r* p p = v va a_ _a ar rg g(a ap p, c ch ha ar r*) ;
i if f (p p == 0 0) b br re ea ak k;
c ce er rr r << p p << ´ ´;

}

v va a_ _e en nd d(a ap p) ; / / arg cleanup

c ce er rr r << ´ \ \n n´;
i if f (s se ev ve er ri it ty y) e ex xi it t(s se ev ve er ri it ty y) ;

}

First, av va a_ _l li is st t is defined and initialized by a call ofv va a_ _s st ta ar rt t() . The macrov va a_ _s st ta ar rt t takes the
name of thev va a_ _l li is st t and the name of the last formal argument as arguments. The macrov va a_ _a ar rg g()
is used to pick the unnamed arguments in order. In each call, the programmer must supply a type;
v va a_ _a ar rg g() assumes that an actual argument of that type has been passed, but it typically has no way
of ensuring that. Before returning from a function in whichv va a_ _s st ta ar rt t() has been used,v va a_ _e en nd d()
must be called. The reason is thatv va a_ _s st ta ar rt t() may modify the stack in such a way that a return
cannot successfully be done;v va a_ _e en nd d() undoes any such modifications.

7.7 Pointer to Function[fct.pf]

There are only two things one can do to a function: call it and take its address. The pointer
obtained by taking the address of a function can then be used to call the function. For example:

v vo oi id d e er rr ro or r(s st tr ri in ng g s s) { /* ... */ }

v vo oi id d (* e ef fc ct t)(s st tr ri in ng g) ; / / pointer to function

v vo oi id d f f()
{

e ef fc ct t = &e er rr ro or r; / / efct points to error
e ef fc ct t(" e er rr ro or r") ; / / call error through efct

}

The compiler will discover thate ef fc ct t is a pointer and call the function pointed to. That is, derefer-
encing of a pointer to function using* is optional. Similarly, using& to get the address of a func-
tion is optional:

v vo oi id d (* f f1 1)(s st tr ri in ng g) = &e er rr ro or r; / / ok
v vo oi id d (* f f2 2)(s st tr ri in ng g) = e er rr ro or r; / / also ok; same meaning as &error

v vo oi id d g g()
{

f f1 1(" V Va as sa a") ; / / ok
(* f f1 1)(" M Ma ar ry y R Ro os se e") ; / / also ok

}

Pointers to functions have argument types declared just like the functions themselves. In pointer
assignments, the complete function type must match exactly. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.7 Pointer to Function 157

v vo oi id d (* p pf f)(s st tr ri in ng g) ; / / pointer to void(string)
v vo oi id d f f1 1(s st tr ri in ng g) ; / / void(string)
i in nt t f f2 2(s st tr ri in ng g) ; / / int(string)
v vo oi id d f f3 3(i in nt t*) ; / / void(int*)

v vo oi id d f f()
{

p pf f = &f f1 1; / / ok
p pf f = &f f2 2; / / error: bad return type
p pf f = &f f3 3; / / error: bad argument type

p pf f(" H He er ra a") ; / / ok
p pf f(1 1) ; / / error: bad argument type

i in nt t i i = p pf f(" Z Ze eu us s") ; / / error: void assigned to int
}

The rules for argument passing are the same for calls directly to a function and for calls to a func-
tion through a pointer.

It is often convenient to define a name for a pointer-to-function type to avoid using the some-
what nonobvious declaration syntax all the time. Here is an example from a UNIX system header:

t ty yp pe ed de ef f v vo oi id d (* S SI IG G_ _T TY YP P)(i in nt t) ; / / from <signal.h>
t ty yp pe ed de ef f v vo oi id d (* S SI IG G_ _A AR RG G_ _T TY YP P)(i in nt t) ;
S SI IG G_ _T TY YP P s si ig gn na al l(i in nt t, S SI IG G_ _A AR RG G_ _T TY YP P) ;

An array of pointers to functions is often useful. For example, the menu system for my mouse-
based editor is implemented using arrays of pointers to functions to represent operations. The sys-
tem cannot be described in detail here, but this is the general idea:

t ty yp pe ed de ef f v vo oi id d (* P PF F)() ;

P PF F e ed di it t_ _o op ps s[] = { / / edit operations
&c cu ut t, &p pa as st te e, &c co op py y, &s se ea ar rc ch h

};

P PF F f fi il le e_ _o op ps s[] = { / / file management
&o op pe en n, &a ap pp pe en nd d, &c cl lo os se e, &w wr ri it te e

};

We can then define and initialize the pointers that control actions selected from a menu associated
with the mouse buttons:

P PF F* b bu ut tt to on n2 2 = e ed di it t_ _o op ps s;
P PF F* b bu ut tt to on n3 3 = f fi il le e_ _o op ps s;

In a complete implementation, more information is needed to define each menu item. For example,
a string specifying the text to be displayed must be stored somewhere. As the system is used, the
meaning of mouse buttons changes frequently with the context. Such changes are performed
(partly) by changing the value of the button pointers. When a user selects a menu item, such as
item 3 for button 2, the associated operation is executed:

b bu ut tt to on n2 2[2 2]() ; / / call button2’s 3rd function

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

158 Functions Chapter 7

One way to gain appreciation of the expressive power of pointers to functions is to try to write such
code without them– and without using their better-behaved cousins, the virtual functions
(§12.2.6). A menu can be modified at run-time by inserting new functions into the operator table.
It is also easy to construct new menus at run-time.

Pointers to functions can be used to provide a simple form of polymorphic routines, that is, rou-
tines that can be applied to objects of many different types:

t ty yp pe ed de ef f i in nt t (* C CF FT T)(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ;

v vo oi id d s ss so or rt t(v vo oi id d* b ba as se e, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, C CF FT T c cm mp p)
/*

Sort the "n" elements of vector "base" into increasing order
using the comparison function pointed to by "cmp".
The elements are of size "sz".

Shell sort (Knuth, Vol3, pg84)
*/

{
f fo or r (i in nt t g ga ap p=n n/ 2 2; 0 0<g ga ap p; g ga ap p/= 2 2)

f fo or r (i in nt t i i=g ga ap p; i i<n n; i i++)
f fo or r (i in nt t j j=i i- g ga ap p; 0 0<=j j; j j-= g ga ap p) {

c ch ha ar r* b b = s st ta at ti ic c_ _c ca as st t<c ch ha ar r*>(b ba as se e) ; / / necessary cast
c ch ha ar r* p pj j = b b+j j* s sz z; / / &base[j]
c ch ha ar r* p pj jg g = b b+(j j+g ga ap p)* s sz z; / / &base[j+gap]

i if f (c cm mp p(p pj j, p pj jg g)< 0 0) { / / swap base[j] and base[j+gap]:
f fo or r (i in nt t k k=0 0; k k<s sz z; k k++) {

c ch ha ar r t te em mp p = p pj j[k k] ;
p pj j[k k] = p pj jg g[k k] ;
p pj jg g[k k] = t te em mp p;

}
}

}
}

Thes ss so or rt t() routine does not know the type of the objects it sorts, only the number of elements (the
array size), the size of each element, and the function to call to perform a comparison. The type of
s ss so or rt t() was chosen to be the same as the type of the standard C library sort routine,q qs so or rt t() . Real
programs useq qs so or rt t() , the C++ standard library algorithms so or rt t (§18.7.1), or a specialized sort rou-
tine. This style of code is common in C, but it is not the most elegant way of expressing this algo-
rithm in C++ (see §13.3, §13.5.2).

Such a sort function could be used to sort a table such as this:

s st tr ru uc ct t U Us se er r {
c ch ha ar r* n na am me e;
c ch ha ar r* i id d;
i in nt t d de ep pt t;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.7 Pointer to Function 159

U Us se er r h he ea ad ds s[] = {
" R Ri it tc ch hi ie e D D. M M", " d dm mr r", 1 11 12 27 71 1,
" S Se et th hi i R R.", " r ra av vi i", 1 11 12 27 72 2,
" S Sz zy ym ma an ns sk ki i T T. G G.", " t tg gs s", 1 11 12 27 73 3,
" S Sc ch hr ry ye er r N N. L L.", " n nl ls s", 1 11 12 27 74 4,
" S Sc ch hr ry ye er r N N. L L.", " n nl ls s", 1 11 12 27 75 5,
" K Ke er rn ni ig gh ha an n B B. W W.", " b bw wk k", 1 11 12 27 76 6

};

v vo oi id d p pr ri in nt t_ _i id d(U Us se er r* v v, i in nt t n n)
{

f fo or r (i in nt t i i=0 0; i i<n n; i i++)
c co ou ut t << v v[i i]. n na am me e << ´ \ \t t´ << v v[i i]. i id d << ´ \ \t t´ << v v[i i]. d de ep pt t << ´ \ \n n´;

}

To be able to sort, we must first define appropriate comparison functions. A comparison function
must return a negative value if its first argument is less than the second, zero if the arguments are
equal, and a positive number otherwise:

i in nt t c cm mp p1 1(c co on ns st t v vo oi id d* p p, c co on ns st t v vo oi id d* q q) / / Compare name strings
{

r re et tu ur rn n s st tr rc cm mp p(s st ta at ti ic c_ _c ca as st t<c co on ns st t U Us se er r*>(p p)-> n na am me e, s st ta at ti ic c_ _c ca as st t<c co on ns st t U Us se er r*>(q q)-> n na am me e) ;
}

i in nt t c cm mp p2 2(c co on ns st t v vo oi id d* p p, c co on ns st t v vo oi id d* q q) / / Compare dept numbers
{

r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<c co on ns st t U Us se er r*>(p p)-> d de ep pt t - s st ta at ti ic c_ _c ca as st t<c co on ns st t U Us se er r*>(q q)-> d de ep pt t;
}

This program sorts and prints:

i in nt t m ma ai in n()
{

c co ou ut t << " H He ea ad ds s i in n a al lp ph ha ab be et ti ic ca al l o or rd de er r: \ \n n";
s ss so or rt t(h he ea ad ds s, 6 6, s si iz ze eo of f(U Us se er r) , c cm mp p1 1) ;
p pr ri in nt t_ _i id d(h he ea ad ds s, 6 6) ;
c co ou ut t << " \ \n n";

c co ou ut t << " H He ea ad ds s i in n o or rd de er r o of f d de ep pa ar rt tm me en nt t n nu um mb be er r: \ \n n";
s ss so or rt t(h he ea ad ds s, 6 6, s si iz ze eo of f(U Us se er r) , c cm mp p2 2) ;
p pr ri in nt t_ _i id d(h he ea ad ds s, 6 6) ;

}

You can take the address of an overloaded function by assigning to or initializing a pointer to func-
tion. In that case, the type of the target is used to select from the set of overloaded functions. For
example:

v vo oi id d f f(i in nt t) ;
i in nt t f f(c ch ha ar r) ;

v vo oi id d (* p pf f1 1)(i in nt t) = &f f; / / void f(int)
i in nt t (* p pf f2 2)(c ch ha ar r) = &f f; / / int f(char)
v vo oi id d (* p pf f3 3)(c ch ha ar r) = &f f; / / error: no void f(char)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

160 Functions Chapter 7

A function must be called through a pointer to function with exactly the right argument and return
types. There is no implicit conversion of argument or return types when pointers to functions are
assigned or initialized. This means that

i in nt t c cm mp p3 3(c co on ns st t m my yt ty yp pe e*, c co on ns st t m my yt ty yp pe e*) ;

is not a suitable argument fors ss so or rt t() . The reason is that acceptingc cm mp p3 3 as an argument to
s ss so or rt t() would violate the guarantee thatc cm mp p3 3 will be called with arguments of typem my yt ty yp pe e* (see
also §9.2.5).

7.8 Macros[fct.macro]

Macros are very important in C but have far fewer uses in C++. The first rule about macros is:
Don’t use them unless you have to. Almost every macro demonstrates a flaw in the programming
language, in the program, or in the programmer. Because they rearrange the program text before
the compiler proper sees it, macros are also a major problem for many programming tools. So
when you use macros, you should expect inferior service from tools such as debuggers, cross-
reference tools, and profilers. If you must use macros, please read the reference manual for your
own implementation of the C++ preprocessor carefully and try not to be too clever. Also to warn
readers, follow the convention to name macros using lots of capital letters. The syntax of macros is
presented in §A.11.

A simple macro is defined like this:

#d de ef fi in ne e N NA AM ME E r re es st t o of f l li in ne e

WhereN NA AM ME E is encountered as a token, it is replaced byr re es st t o of f l li in ne e. For example,

n na am me ed d = N NA AM ME E

will expand into

n na am me ed d = r re es st t o of f l li in ne e

A macro can also be defined to take arguments. For example:

#d de ef fi in ne e M MA AC C(x x, y y) a ar rg gu um me en nt t1 1: x x a ar rg gu um me en nt t2 2: y y

When M MA AC C is used, two argument strings must be presented. They will replacex x and y y when
M MA AC C() is expanded. For example,

e ex xp pa an nd de ed d = M MA AC C(f fo oo o b ba ar r, y yu uk k y yu uk k)

will be expanded into

e ex xp pa an nd de ed d = a ar rg gu um me en nt t1 1: f fo oo o b ba ar r a ar rg gu um me en nt t2 2: y yu uk k y yu uk k

Macro names cannot be overloaded, and the macro preprocessor cannot handle recursive calls:

#d de ef fi in ne e P PR RI IN NT T(a a, b b) c co ou ut t<<(a a)<<(b b)
#d de ef fi in ne e P PR RI IN NT T(a a, b b, c c) c co ou ut t<<(a a)<<(b b)<<(c c) /* trouble?: redefines, does not overload*/

#d de ef fi in ne e F FA AC C(n n) (n n>1 1)? n n* F FA AC C(n n- 1 1): 1 1 /* trouble: recursive macro*/

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.8 Macros 161

Macros manipulate character strings and know little about C++ syntax and nothing about C++ types
or scope rules. Only the expanded form of a macro is seen by the compiler, so an error in a macro
will be reported when the macro is expanded, not when it is defined. This leads to very obscure
error messages.

Here are some plausible macros:

#d de ef fi in ne e C CA AS SE E b br re ea ak k; c ca as se e
#d de ef fi in ne e F FO OR RE EV VE ER R f fo or r(;;)

Here are some completely unnecessary macros:

#d de ef fi in ne e P PI I 3 3. 1 14 41 15 59 93 3
#d de ef fi in ne e B BE EG GI IN N {
#d de ef fi in ne e E EN ND D }

Here are some dangerous macros:

#d de ef fi in ne e S SQ QU UA AR RE E(a a) a a* a a
#d de ef fi in ne e I IN NC CR R_ _x xx x (x xx x)++

To see why they are dangerous, try expanding this:

i in nt t x xx x = 0 0; / / global counter

v vo oi id d f f()
{

i in nt t x xx x = 0 0; / / local variable
i in nt t y y = S SQ QU UA AR RE E(x xx x+2 2) ; / / y=xx+2*xx+2; that is y=xx+(2*xx)+2
I IN NC CR R_ _x xx x; / / increments local xx

}

If you must use a macro, use the scope resolution operator: : when referring to global names
(§4.9.4) and enclose occurrences of a macro argument name in parentheses whenever possible. For
example:

#d de ef fi in ne e M MI IN N(a a, b b) (((a a)<(b b))?(a a):(b b))

If you must write macros complicated enough to require comments, it is wise to use/* */ com-
ments because C preprocessors that do not know about/ / comments are sometimes used as part of
C++ tools. For example:

#d de ef fi in ne e M M2 2(a a) s so om me et th hi in ng g(a a) /* thoughtful comment*/

Using macros, you can design your own private language. Even if you prefer this ‘‘enhanced lan-
guage’’ to plain C++, it will be incomprehensible to most C++ programmers. Furthermore, the C
preprocessor is a very simple macro processor. When you try to do something nontrivial, you are
likely to find it either impossible or unnecessarily hard to do. Thec co on ns st t, i in nl li in ne e, t te em mp pl la at te e, and
n na am me es sp pa ac ce e mechanisms are intended as alternatives to many traditional uses of preprocessor con-
structs. For example:

c co on ns st t i in nt t a an ns sw we er r = 4 42 2;
t te em mp pl la at te e<c cl la as ss s T T> i in nl li in ne e T T m mi in n(T T a a, T T b b) { r re et tu ur rn n (a a<b b)? a a: b b; }

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

162 Functions Chapter 7

When writing a macro, it is not unusual to need a new name for something. A string can be created
by concatenating two strings using the## macro operator. For example,

#d de ef fi in ne e N NA AM ME E2 2(a a, b b) a a##b b

i in nt t N NA AM ME E2 2(h ha ac ck k, c ca ah h)() ;

will produce

i in nt t h ha ac ck kc ca ah h() ;

for the compiler to read.
The directive

#u un nd de ef f X X

ensures that no macro calledX X is defined– whether or not one was before the directive. This
affords some protection against undesired macros. However, it is not always easy to know what the
effects ofX X on a piece of code were supposed to be.

7.8.1 Conditional Compilation [fct.cond]

One use of macros is almost impossible to avoid. The directive#i if fd de ef f i id de en nt ti if fi ie er r conditionally
causes all input to be ignored until a#e en nd di if f directive is seen. For example,

i in nt t f f(i in nt t a a
#i if fd de ef f a ar rg g_ _t tw wo o
, i in nt t b b
#e en nd di if f
) ;

produces

i in nt t f f(i in nt t a a
) ;

for the compiler to see unless a macro calleda ar rg g_ _t tw wo o has been#d de ef fi in ne ed. This example confuses
tools that assume sane behavior from the programmer.

Most uses of#i if fd de ef f are less bizarre, and when used with restraint,#i if fd de ef f does little harm. See
also §9.3.3.

Names of the macros used to control#i if fd de ef f should be chosen carefully so that they don’t clash
with ordinary identifiers. For example:

s st tr ru uc ct t C Ca al ll l_ _i in nf fo o {
N No od de e* a ar rg g_ _o on ne e;
N No od de e* a ar rg g_ _t tw wo o;
/ / ...

};

This innocent-looking source text will cause some confusion should someone write:

#d de ef fi in ne e a ar rg g_ _t tw wo o x x

Unfortunately, common and unavoidable headers contain many dangerous and unnecessary macros.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.9 Advice 163

7.9 Advice[dcl.advice]

[1] Be suspicious of non-c co on ns st t reference arguments; if you want the function to modify its argu-
ments, use pointers and value return instead; §5.5.

[2] Usec co on ns st t reference arguments when you need to minimize copying of arguments; §5.5.
[3] Usec co on ns st t extensively and consistently; §7.2.
[4] Avoid macros; §7.8.
[5] Avoid unspecified numbers of arguments; §7.6.
[6] Don’t return pointers or references to local variables; §7.3.
[7] Use overloading when functions perform conceptually the same task on different types; §7.4.
[8] When overloading on integers, provide functions to eliminate common ambiguities; §7.4.3.
[9] When considering the use of a pointer to function, consider whether a virtual function

(§2.5.5) or a template (§2.7.2) would be a better alternative; §7.7.
[10] If you must use macros, use ugly names with lots of capital letters; §7.8.

7.10 Exercises[fct.exercises]

1. (∗1) Write declarations for the following: a function taking arguments of type pointer to charac-
ter and reference to integer and returning no value; a pointer to such a function; a function tak-
ing such a pointer as an argument; and a function returning such a pointer. Write the definition
of a function that takes such a pointer as an argument and returns its argument as the return
value. Hint: Uset ty yp pe ed de ef f.

2. (∗1) What does the following mean? What would it be good for?

t ty yp pe ed de ef f i in nt t (& r ri if fi ii i) (i in nt t, i in nt t) ;

3. (∗1.5) Write a program like ‘‘Hello, world!’’ that takes a name as a command-line argument
and writes ‘‘Hello,name! ’’. Modify this program to take any number of names as arguments
and to say hello to each.

4. (∗1.5) Write a program that reads an arbitrary number of files whose names are given as
command-line arguments and writes them one after another onc co ou ut t. Because this program
concatenates its arguments to produce its output, you might call itc ca at t.

5. (∗2) Convert a small C program to C++. Modify the header files to declare all functions called
and to declare the type of every argument. Where possible, replace#d de ef fi in ne es withe en nu um m, c co on ns st t,
or i in nl li in ne e. Removee ex xt te er rn n declarations from. c c files and if necessary convert all function defi-
nitions to C++ function definition syntax. Replace calls ofm ma al ll lo oc c() andf fr re ee e() with n ne ew w and
d de el le et te e. Remove unnecessary casts.

6. (∗2) Implements ss so or rt t() (§7.7) using a more efficient sorting algorithm. Hint:q qs so or rt t() .
7. (∗2.5) Consider:

s st tr ru uc ct t T Tn no od de e {
s st tr ri in ng g w wo or rd d;
i in nt t c co ou un nt t;
T Tn no od de e* l le ef ft t;
T Tn no od de e* r ri ig gh ht t;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

164 Functions Chapter 7

Write a function for entering new words into a tree ofT Tn no od de es. Write a function to write out a
tree ofT Tn no od de es. Write a function to write out a tree ofT Tn no od de es with the words in alphabetical
order. ModifyT Tn no od de e so that it stores (only) a pointer to an arbitrarily long word stored as an
array of characters on free store usingn ne ew w. Modify the functions to use the new definition of
T Tn no od de e.

8. (∗2.5) Write a function to invert a two-dimensional array. Hint: §C.7.
9. (∗2) Write an encryption program that reads fromc ci in n and writes the encoded characters toc co ou ut t.

You might use this simple encryption scheme: the encrypted form of a characterc c is c c^k ke ey y[i i] ,
wherek ke ey y is a string passed as a command-line argument. The program uses the characters in
k ke ey y in a cyclic manner until all the input has been read. Re-encrypting encoded text with the
same key produces the original text. If no key (or a null string) is passed, then no encryption is
done.

10. (∗3.5) Write a program to help decipher messages encrypted with the method described in
§7.10[9] without knowing the key. Hint: See David Kahn:The Codebreakers, Macmillan,
1967, New York, pp. 207-213.

11. (∗3) Write ane er rr ro or r function that takes ap pr ri in nt tf f-style format string containing%s s, %c c, and%d d
directives and an arbitrary number of arguments. Don’t usep pr ri in nt tf f() . Look at §21.8 if you
don’t know the meaning of%s s, %c c, and%d d. Use<c cs st td da ar rg g>.

12. (∗1) How would you choose names for pointer to function types defined usingt ty yp pe ed de ef f?
13. (∗2) Look at some programs to get an idea of the diversity of styles of names actually used.

How are uppercase letters used? How is the underscore used? When are short names such asi i
andx x used?

14. (∗1) What is wrong with these macro definitions?

#d de ef fi in ne e P PI I = 3 3. 1 14 41 15 59 93 3;
#d de ef fi in ne e M MA AX X(a a, b b) a a>b b?a a: b b
#d de ef fi in ne e f fa ac c(a a) (a a)* f fa ac c((a a)- 1 1)

15. (∗3) Write a macro processor that defines and expands simple macros (like the C preprocessor
does). Read fromc ci in n and write toc co ou ut t. At first, don’t try to handle macros with arguments.
Hint: The desk calculator (§6.1) contains a symbol table and a lexical analyzer that you could
modify.

16. (∗2) Implementp pr ri in nt t() from §7.5.
17. (∗2) Add functions such ass sq qr rt t() , l lo og g() , ands si in n() to the desk calculator from §6.1. Hint:

Predefine the names and call the functions through an array of pointers to functions. Don’t for-
get to check the arguments in a function call.

18. (∗1) Write a factorial function that does not use recursion. See also §11.14[6].
19. (∗2) Write functions to add one day, one month, and one year to aD Da at te e as defined in §5.9[13].

Write a function that gives the day of the week for a givenD Da at te e. Write a function that gives the
D Da at te eof the first Monday following a givenD Da at te e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

8
_ __ _______________________________________

Namespaces and Exceptions

The year is 787!
A.D.?

– Monty Python

No rule is so general,
which admits not some exception.

– Robert Burton

Modularity, interfaces, and exceptions— namespaces— u us si in ng g — u us si in ng g n na am me es sp pa ac ce e —
avoiding name clashes— name lookup— namespace composition— namespace aliases
— namespaces and C code— exceptions— t th hr ro ow w and c ca at tc ch h — exceptions and pro-
gram structure— advice— exercises.

8.1 Modularization and Interfaces[name.module]

Any realistic program consists of a number of separate parts. For example, even the simple ‘‘Hello,
world!’’ program involves at least two parts: the user code requestsH He el ll lo o, w wo or rl ld d! to be printed,
and the I/O system does the printing.

Consider the desk calculator example from §6.1. It can be viewed as being composed of five
parts:

[1] The parser, doing syntax analysis
[2] The lexer, composing tokens out of characters
[3] The symbol table, holding (string,value) pairs
[4] The driver,m ma ai in n()
[5] The error handler

This can be represented graphically:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

166 Namespaces and Exceptions Chapter 8

driver

parser

lexer

symbol table

error handler

where an arrow means ‘‘using.’’ To simplify the picture, I have not represented the fact that every
part relies on error handling. In fact, the calculator was conceived as three parts, with the driver
and error handler added for completeness.

When one module uses another, it doesn’t need to know everything about the module used.
Ideally, most of the details of a module are unknown to its users. Consequently, we make a distinc-
tion between a module and its interface. For example, the parser directly relies on the lexer’s inter-
face (only), rather than on the complete lexer. The lexer simply implements the services advertised
in its interface. This can be presented graphically like this:

driver

parser interface

lexer interface

symbol table interface

parser implementation

lexer implementation

symbol table implementation

error handler

Dashed lines means ‘‘implements.’’ I consider this to be the real structure of the program, and our
job as programmers is to represent this faithfully in code. That done, the code will be simple, effi-
cient, comprehensible, maintainable, etc., because it will directly reflect our fundamental design.

The following sections show how the logical structure of the desk calculator program can be
made clear, and §9.3 shows how the program source text can be physically organized to take advan-
tage of it. The calculator is a tiny program, so in ‘‘real life’’ I wouldn’t bother using namespaces
and separate compilation (§2.4.1, §9.1) to the extent I do here. It is simply used to present tech-
niques useful for larger programs without our drowning in code. In real programs, each ‘‘module’’
represented by a separate namespace will often have hundreds of functions, classes, templates, etc.

To demonstrate a variety of techniques and language features, I develop the modularization of

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.1 Modularization and Interfaces 167

the calculator in stages. In ‘‘real life,’’ a program is unlikely to grow through all of these stages.
An experienced programmer might pick a design that is ‘‘about right’’ from the start. However, as
a program evolves over the years, dramatic structural changes are not uncommon.

Error handling permeates the structure of a program. When breaking up a program into mod-
ules or (conversely) when composing a program out of modules, we must take care to minimize
dependencies between modules caused by error handling. C++ provides exceptions to decouple the
detection and reporting of errors from the handling of errors. Therefore, the discussion of how to
represent modules as namespaces (§8.2) is followed by a demonstration of how we can use excep-
tions to further improve modularity (§8.3).

There are many more notions of modularity than the ones discussed in this chapter and the next.
For example, we might use concurrently executing and communicating processes to represent
important aspects of modularity. Similarly, the use of separate address spaces and the communica-
tion of information between address spaces are important topics not discussed here. I consider
these notions of modularity largely independent and orthogonal. Interestingly, in each case, sepa-
rating a system into modules is easy. The hard problem is to provide safe, convenient, and efficient
communication across module boundaries.

8.2 Namespaces[name.namespace]

A namespace is a mechanism for expressing logical grouping. That is, if some declarations logi-
cally belong together according to some criteria, they can be put in a common namespace to
express that fact. For example, the declarations of the parser from the desk calculator (§6.1.1) may
be placed in a namespaceP Pa ar rs se er r:

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;
d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) { /* ... */ }

}

The functione ex xp pr r() must be declared first and then later defined to break the dependency loop
described in §6.1.1.

The input part of the desk calculator could be also placed in its own namespace:

n na am me es sp pa ac ce e L Le ex xe er r {
e en nu um m T To ok ke en n_ _v va al lu ue e {

N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k;
d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() { /* ... */ }
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

168 Namespaces and Exceptions Chapter 8

This use of namespaces makes it reasonably obvious what the lexer and the parser provide to a
user. However, had I included the source code for the functions, this structure would have been
obscured. If function bodies are included in the declaration of a realistically-sized namespace, you
typically have to wade through pages or screenfuls of information to find what services are offered,
that is, to find the interface.

An alternative to relying on separately specified interfaces is to provide a tool that extracts an
interface from a module that includes implementation details. I don’t consider that a good solution.
Specifying interfaces is a fundamental design activity (see §23.4.3.4), a module can provide differ-
ent interfaces to different users, and often an interface is designed long before the implementation
details are made concrete.

Here is a version of theP Pa ar rs se er r with the interface separated from the implementation:

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e p pr ri im m(b bo oo ol l) ;
d do ou ub bl le e t te er rm m(b bo oo ol l) ;
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

}

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : e ex xp pr r(b bo oo ol l g ge et t) { /* ... */ }

Note that as a result of separating the implementation of the interface, each function now has
exactly one declaration and one definition. Users will see only the interface containing declarations.
The implementation– in this case, the function bodies– will be placed ‘‘somewhere else’’ where a
user need not look.

As shown, a member can be declared within a namespace definition and defined later using the
namespace-name:: member-namenotation.

Members of a namespace must be introduced using this notation:

n na am me es sp pa ac ce e n na am me es sp pa ac ce e- n na am me e {
/ / declaration and definitions

}

We cannot declare a new member of a namespace outside a namespace definition using the quali-
fier syntax. For example:

v vo oi id d P Pa ar rs se er r: : l lo og gi ic ca al l(b bo oo ol l) ; / / error: no logical() in Parser

The idea is to make it reasonably easy to find all names in a namespace declaration and also to
catch errors such as misspellings and type mismatches. For example:

d do ou ub bl le e P Pa ar rs se er r: : t tr re em m(b bo oo ol l) ; / / error: no trem() in Parser
d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(i in nt t) ; / / error: Parser::prim() takes a bool argument

A namespace is a scope. Thus, ‘‘namespace’’ is a very fundamental and relatively simple concept.
The larger a program is, the more useful namespaces are to express logical separations of its parts.
Ordinary local scopes, global scopes, and classes are namespaces (§C.10.3).

Ideally, every entity in a program belongs to some recognizable logical unit (‘‘module’’).
Therefore, every declaration in a nontrivial program should ideally be in some namespace named to

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2 Namespaces 169

indicate its logical role in the program. The exception ism ma ai in n() , which must be global in order
for the run-time environment to recognize it as special (§8.3.3).

8.2.1 Qualified Names [name.qualified]

A namespace is a scope. The usual scope rules hold for namespaces, so if a name is previously
declared in the namespace or in an enclosing scope, it can be used without further fuss. A name
from another namespace can be used when qualified by the name of its namespace. For example:

d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) / / note Parser:: qualification
{

d do ou ub bl le e l le ef ft t = p pr ri im m(g ge et t) ; / / no qualification needed

f fo or r (;;)
s sw wi it tc ch h (L Le ex xe er r: : c cu ur rr r_ _t to ok k) { / / note Lexer:: qualification
c ca as se e L Le ex xe er r: : M MU UL L: / / note Lexer:: qualification

l le ef ft t *= p pr ri im m(t tr ru ue e) ; / / no qualification needed
/ / ...
}

/ / ...
}

The P Pa ar rs se er r qualifier is necessary to state that thist te er rm m() is the one declared inP Pa ar rs se er r and not
some unrelated global function. Becauset te er rm m() is a member ofP Pa ar rs se er r, it need not use a qualifier
for p pr ri im m() . However, had theL Le ex xe er r qualifier not been present,c cu ur rr r_ _t to ok k would have been consid-
ered undeclared because the members of namespaceL Le ex xe er r are not in scope from within theP Pa ar rs se er r
namespace.

8.2.2 Using Declarations [name.using.dcl]

When a name is frequently used outside its namespace, it can be a bother to repeatedly qualify it
with its namespace name. Consider:

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) / / handle primaries
{

i if f (g ge et t) L Le ex xe er r: : g ge et t_ _t to ok ke en n() ;

s sw wi it tc ch h (L Le ex xe er r: : c cu ur rr r_ _t to ok k) {
c ca as se e L Le ex xe er r: : N NU UM MB BE ER R: / / floating-point constant

L Le ex xe er r: : g ge et t_ _t to ok ke en n() ;
r re et tu ur rn n L Le ex xe er r: : n nu um mb be er r_ _v va al lu ue e;

c ca as se e L Le ex xe er r: : N NA AM ME E:
{ d do ou ub bl le e& v v = t ta ab bl le e[L Le ex xe er r: : s st tr ri in ng g_ _v va al lu ue e] ;

i if f (L Le ex xe er r: : g ge et t_ _t to ok ke en n() == L Le ex xe er r: : A AS SS SI IG GN N) v v = e ex xp pr r(t tr ru ue e) ;
r re et tu ur rn n v v;

}

c ca as se e L Le ex xe er r: : M MI IN NU US S: / / unary minus
r re et tu ur rn n - p pr ri im m(t tr ru ue e) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

170 Namespaces and Exceptions Chapter 8

c ca as se e L Le ex xe er r: : L LP P:
{ d do ou ub bl le e e e = e ex xp pr r(t tr ru ue e) ;

i if f (L Le ex xe er r: : c cu ur rr r_ _t to ok k != L Le ex xe er r: : R RP P) r re et tu ur rn n E Er rr ro or r: : e er rr ro or r(") e ex xp pe ec ct te ed d") ;
L Le ex xe er r: : g ge et t_ _t to ok ke en n() ; / / eat ’)’
r re et tu ur rn n e e;

}
c ca as se e L Le ex xe er r: : E EN ND D:

r re et tu ur rn n 1 1;
d de ef fa au ul lt t:

r re et tu ur rn n E Er rr ro or r: : e er rr ro or r(" p pr ri im ma ar ry y e ex xp pe ec ct te ed d") ;
}

}

The repeated qualificationL Le ex xe er r is tedious and distracting. This redundancy can be eliminated by
a using-declarationto state in one place that theg ge et t_ _t to ok ke en n used in this scope isL Le ex xe er r’s g ge et t_ _t to ok ke en n.
For example:

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) / / handle primaries
{

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n; / / use Lexer’s get_token
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k; / / use Lexer’s curr_tok
u us si in ng g E Er rr ro or r: : e er rr ro or r; / / use Error’s error

i if f (g ge et t) g ge et t_ _t to ok ke en n() ;

s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e L Le ex xe er r: : N NU UM MB BE ER R: / / floating-point constant

g ge et t_ _t to ok ke en n() ;
r re et tu ur rn n L Le ex xe er r: : n nu um mb be er r_ _v va al lu ue e;

c ca as se e L Le ex xe er r: : N NA AM ME E:
{ d do ou ub bl le e& v v = t ta ab bl le e[L Le ex xe er r: : s st tr ri in ng g_ _v va al lu ue e] ;

i if f (g ge et t_ _t to ok ke en n() == L Le ex xe er r: : A AS SS SI IG GN N) v v = e ex xp pr r(t tr ru ue e) ;
r re et tu ur rn n v v;

}
c ca as se e L Le ex xe er r: : M MI IN NU US S: / / unary minus

r re et tu ur rn n - p pr ri im m(t tr ru ue e) ;
c ca as se e L Le ex xe er r: : L LP P:
{ d do ou ub bl le e e e = e ex xp pr r(t tr ru ue e) ;

i if f (c cu ur rr r_ _t to ok k != L Le ex xe er r: : R RP P) r re et tu ur rn n e er rr ro or r(") e ex xp pe ec ct te ed d") ;
g ge et t_ _t to ok ke en n() ; / / eat ’)’
r re et tu ur rn n e e;

}
c ca as se e L Le ex xe er r: : E EN ND D:

r re et tu ur rn n 1 1;
d de ef fa au ul lt t:

r re et tu ur rn n e er rr ro or r(" p pr ri im ma ar ry y e ex xp pe ec ct te ed d") ;
}

}

A using-declarationintroduces a local synonym.
It is often a good idea to keep local synonyms as local as possible to avoid confusion.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.2 Using Declarations 171

However, all parser functions use similar sets of names from other modules. We can therefore
place theusing-declarations in theP Pa ar rs se er r’s namespace definition:

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e p pr ri im m(b bo oo ol l) ;
d do ou ub bl le e t te er rm m(b bo oo ol l) ;
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n; / / use Lexer’s get_token
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k; / / use Lexer’s curr_tok
u us si in ng g E Er rr ro or r: : e er rr ro or r; / / use Error’s error

}

This allows us to simplify theP Pa ar rs se er r functions almost to our original version (§6.1.1):

d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) / / multiply and divide
{

d do ou ub bl le e l le ef ft t = p pr ri im m(g ge et t) ;

f fo or r (;;)
s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e L Le ex xe er r: : M MU UL L:

l le ef ft t *= p pr ri im m(t tr ru ue e) ;
b br re ea ak k;

c ca as se e L Le ex xe er r: : D DI IV V:
i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {

l le ef ft t /= d d;
b br re ea ak k;

}
r re et tu ur rn n e er rr ro or r(" d di iv vi id de e b by y 0 0") ;

d de ef fa au ul lt t:
r re et tu ur rn n l le ef ft t;

}
}

I could have introduced the token names into theP Pa ar rs se er r’s namespace. However, I left them
explicitly qualified as a reminder ofP Pa ar rs se er r’s dependency onL Le ex xe er r.

8.2.3 Using Directives [name.using.dir]

What if our aim were to simplify theP Pa ar rs se er r functions to beexactlyour original versions? This
would be a reasonable aim for a large program that was being converted to using namespaces from
a previous version with less explicit modularity.

A using-directivemakes names from a namespace available almost as if they had been declared
outside their namespace (§8.2.8). For example:

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e p pr ri im m(b bo oo ol l) ;
d do ou ub bl le e t te er rm m(b bo oo ol l) ;
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

172 Namespaces and Exceptions Chapter 8

u us si in ng g n na am me es sp pa ac ce e L Le ex xe er r; / / make all names from Lexer available
u us si in ng g n na am me es sp pa ac ce e E Er rr ro or r; / / make all names from Error available

}

This allows us to writeP Pa ar rs se er r’s functions exactly as we originally did (§6.1.1):

d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) / / multiply and divide
{

d do ou ub bl le e l le ef ft t = p pr ri im m(g ge et t) ;

f fo or r (;;)
s sw wi it tc ch h (c cu ur rr r_ _t to ok k) { / / Lexer’s curr_tok
c ca as se e M MU UL L: / / Lexer’s MUL

l le ef ft t *= p pr ri im m(t tr ru ue e) ;
b br re ea ak k;

c ca as se e D DI IV V: / / Lexer’s DIV
i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {

l le ef ft t /= d d;
b br re ea ak k;

}
r re et tu ur rn n e er rr ro or r(" d di iv vi id de e b by y 0 0") ; / / Error’s error

d de ef fa au ul lt t:
r re et tu ur rn n l le ef ft t;

}
}

Globalusing-directives are a tool for transition (§8.2.9) and are otherwise best avoided. In a name-
space, au us si in ng g- d di ir re ec ct ti iv ve e is a tool for namespace composition (§8.2.8). In a function (only), a
u us si in ng g- d di ir re ec ct ti iv ve ecan be safely used as a notational convenience (§8.3.3.1).

8.2.4 Multiple Interfaces [name.multi]

It should be clear that the namespace definition we evolved forP Pa ar rs se er r is not the interface that the
P Pa ar rs se er r presents to its users. Instead, it is the set of declarations that is needed to write the individ-
ual parser functions conveniently. TheP Pa ar rs se er r’s interface to its users should be far simpler:

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

}

Fortunately, the twonamespace-definitions forP Pa ar rs se er r can coexist so that each can be used where it
is most appropriate. We see the namespaceP Pa ar rs se er r used to provide two things:

[1] The common environment for the functions implementing the parser
[2] The external interface offered by the parser to its users

Thus, the driver code,m ma ai in n() , should see only:

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for users
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

}

The functions implementing the parser should see whichever interface we decided on as the best for
expressing those functions’ shared environment. That is:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.4 Multiple Interfaces 173

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for implementers
d do ou ub bl le e p pr ri im m(b bo oo ol l) ;
d do ou ub bl le e t te er rm m(b bo oo ol l) ;
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n; / / use Lexer’s get_token
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k; / / use Lexer’s curr_tok
u us si in ng g E Er rr ro or r: : e er rr ro or r; / / use Error’s error

}

or graphically:

P Pa ar rs se er r’

D Dr ri iv ve er r

P Pa ar rs se er r

. .
P Pa ar rs se er r implementation

The arrows represent ‘‘relies on the interface provided by’’ relations.
P Pa ar rs se er r´ is the small interface offered to users. The nameP Pa ar rs se er r´ (Parser prime) is not a C++

identifier. It was chosen deliberately to indicate that this interface doesn’t have a separate name in
the program. The lack of a separate name need not lead to confusion because programmers natu-
rally invent different and obvious names for the different interfaces and because the physical layout
of the program (see §9.3.2) naturally provides separate (file) names.

The interface offered to implementers is larger than the interface offered to users. Had this
interface been for a realistically-sized module in a real system, it would change more often than the
interface seen by users. It is important that the users of a module (in this case,m ma ai in n() using
P Pa ar rs se er r) are insulated from such changes.

We don’t need to use two separate namespaces to express the two different interfaces, but if we
wanted to, we could. Designing interfaces is one of the most fundamental design activities and one
in which major benefits can be gained and lost. Consequently, it is worthwhile to consider what we
are really trying to achieve and to discuss a number of alternatives.

Please keep in mind that the solution presented is the simplest of those we consider, and often
the best. Its main weaknesses are that the two interfaces don’t have separate names and that the
compiler doesn’t necessarily have sufficient information to check the consistency of the two defini-
tions of the namespace. However, even though the compiler doesn’t always get the opportunity to
check the consistency, it usually does. Furthermore, the linker catches most errors missed by the
compiler.

The solution presented here is the one I use for the discussion of physical modularity (§9.3) and
the one I recommend in the absence of further logical constraints (see also §8.2.7).

8.2.4.1 Interface Design Alternatives [name.alternatives]

The purpose of interfaces is to minimize dependencies between different parts of a program. Mini-
mal interfaces lead to systems that are easier to understand, have better data hiding properties, are
easier to modify, and compile faster.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

174 Namespaces and Exceptions Chapter 8

When dependencies are considered, it is important to remember that compilers and program-
mers tend to take a somewhat simple-minded approach to them: ‘‘If a definition is in scope at point
X, then anything written at point X depends on anything stated in that definition.’’ Typically,
things are not really that bad because most definitions are irrelevant to most code. Given the defi-
nitions we have used, consider:

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for implementers
/ / ...
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;
/ / ...

}

i in nt t m ma ai in n()
{

/ / ...
P Pa ar rs se er r: : e ex xp pr r(f fa al ls se e) ;
/ / ...

}

The functionm ma ai in n() depends onP Pa ar rs se er r: : e ex xp pr r() only, but it takes time, brain power, computa-
tion, etc., to figure that out. Consequently, for realistically-sized programs people and compilation
systems often play it safe and assume that where there might be a dependency, there is one. This is
typically a perfectly reasonable approach.

Thus, our aim is to express our program so that the set of potential dependencies is reduced to
the set of actual dependencies.

First, we try the obvious: define a user interface to the parser in terms of the implementer inter-
face we already have:

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for implementers
/ / ...
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;
/ / ...

}

n na am me es sp pa ac ce e P Pa ar rs se er r_ _i in nt te er rf fa ac ce e { / / interface for users
u us si in ng g P Pa ar rs se er r: : e ex xp pr r;

}

Clearly, users ofP Pa ar rs se er r_ _i in nt te er rf fa ac ce e depend only, and indirectly, onP Pa ar rs se er r: : e ex xp pr r() . However, a
crude look at the dependency graph gives us this:

P Pa ar rs se er r_ _i in nt te er rf fa ac ce e

. .
D Dr ri iv ve er r

P Pa ar rs se er r

. .
P Pa ar rs se er r implementation

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.4.1 Interface Design Alternatives 175

Now thed dr ri iv ve er r appears vulnerable to any change in theP Pa ar rs se er r interface from which it was sup-
posed to be insulated. Even this appearance of a dependency is undesirable, so we explicitly
restrictP Pa ar rs se er r_ _i in nt te er rf fa ac ce e’s dependency onP Pa ar rs se er r by having only the relevant part of the imple-
menter interface to parser (that was calledP Pa ar rs se er r´ earlier) in scope where we define
P Pa ar rs se er r_ _i in nt te er rf fa ac ce e:

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for users
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

}

n na am me es sp pa ac ce e P Pa ar rs se er r_ _i in nt te er rf fa ac ce e { / / separately named interface for users
u us si in ng g P Pa ar rs se er r: : e ex xp pr r;

}

or graphically:

P Pa ar rs se er r’ P Pa ar rs se er r

P Pa ar rs se er r_ _i in nt te er rf fa ac ce e

. .
D Dr ri iv ve er r

. .
P Pa ar rs se er r implementation

To ensure the consistency ofP Pa ar rs se er r andP Pa ar rs se er r´ , we again rely on the compilation system as a
whole, rather than on just the compiler working on a single compilation unit. This solution differs
from the one in §8.2.4 only by the extra namespaceP Pa ar rs se er r_ _i in nt te er rf fa ac ce e. If we wanted to, we could
giveP Pa ar rs se er r_ _i in nt te er rf fa ac ce ea concrete representation by giving it its owne ex xp pr r() function:

n na am me es sp pa ac ce e P Pa ar rs se er r_ _i in nt te er rf fa ac ce e {
d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

}

Now P Pa ar rs se er r need not be in scope in order to defineP Pa ar rs se er r_ _i in nt te er rf fa ac ce e. It needs to be in scope only
whereP Pa ar rs se er r_ _i in nt te er rf fa ac ce e: : e ex xp pr r() is defined:

d do ou ub bl le e P Pa ar rs se er r_ _i in nt te er rf fa ac ce e: : e ex xp pr r(b bo oo ol l g ge et t)
{

r re et tu ur rn n P Pa ar rs se er r: : e ex xp pr r(g ge et t) ;
}

This last variant can be represented graphically like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

176 Namespaces and Exceptions Chapter 8

P Pa ar rs se er r_ _i in nt te er rf fa ac ce e P Pa ar rs se er r

. .
D Dr ri iv ve er r

. .
P Pa ar rs se er r implementation

P Pa ar rs se er r_ _i in nt te er rf fa ac ce e
implementation

Now all dependencies are minimized. Everything is concrete and properly named. However, for
most problems I face, this solution is also massive overkill.

8.2.5 Avoiding Name Clashes [name.clash]

Namespaces are intended to express logical structure. The simplest such structure is the distinction
between code written by one person vs. code written by someone else. This simple distinction can
be of great practical importance.

When we use only a single global scope, it is unnecessarily difficult to compose a program out
of separate parts. The problem is that the supposedly-separate parts each define the same names.
When combined into the same program, these names clash. Consider:

/ / my.h:
c ch ha ar r f f(c ch ha ar r) ;
i in nt t f f(i in nt t) ;
c cl la as ss s S St tr ri in ng g { /* ... */ };

/ / your.h:
c ch ha ar r f f(c ch ha ar r) ;
d do ou ub bl le e f f(d do ou ub bl le e) ;
c cl la as ss s S St tr ri in ng g { /* ... */ };

Given these definitions, a third party cannot easily use bothm my y. h h andy yo ou ur r. h h. The obvious solu-
tion is to wrap each set of declarations in its own namespace:

n na am me es sp pa ac ce e M My y {
c ch ha ar r f f(c ch ha ar r) ;
i in nt t f f(i in nt t) ;
c cl la as ss s S St tr ri in ng g { /* ... */ };

}

n na am me es sp pa ac ce e Y Yo ou ur r {
c ch ha ar r f f(c ch ha ar r) ;
d do ou ub bl le e f f(d do ou ub bl le e) ;
c cl la as ss s S St tr ri in ng g { /* ... */ };

}

Now we can use declarations fromM My y and Y Yo ou ur r through explicit qualification (§8.2.1),using-
declarations(§8.2.2), orusing-directives(§8.2.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.5.1 Unnamed Namespaces 177

8.2.5.1 Unnamed Namespaces [name.unnamed]

It is often useful to wrap a set of declarations in a namespace simply to protect against the possibil-
ity of name clashes. That is, the aim is to preserve locality of code rather than to present an inter-
face to users. For example:

#i in nc cl lu ud de e " h he ea ad de er r. h h"
n na am me es sp pa ac ce e M Mi in ne e {

i in nt t a a;
v vo oi id d f f() { /* ... */ }
i in nt t g g() { /* ... */ }

}

Since we don’t want the nameM Mi in ne e to be known outside a local context, it simply becomes a
bother to invent a redundant global name that might accidentally clash with someone else’s names.
In that case, we can simply leave the namespace without a name:

#i in nc cl lu ud de e " h he ea ad de er r. h h"
n na am me es sp pa ac ce e {

i in nt t a a;
v vo oi id d f f() { /* ... */ }
i in nt t g g() { /* ... */ }

}

Clearly, there has to be some way of accessing members of an unnamed namespace from the out-
side. Consequently, an unnamed namespace has an impliedusing-directive. The previous declara-
tion is equivalent to

n na am me es sp pa ac ce e $$$ {
i in nt t a a;
v vo oi id d f f() { /* ... */ }
i in nt t g g() { /* ... */ }

}
u us si in ng g n na am me es sp pa ac ce e $$$;

where$$$ is some name unique to the scope in which the namespace is defined. In particular,
unnamed namespaces in different translation units are different. As desired, there is no way of
naming a member of an unnamed namespace from another translation unit.

8.2.6 Name Lookup [name.koenig]

A function taking an argument of typeT T is more often than not defined in the same namespace as
T T. Consequently, if a function isn’t found in the context of its use, we look in the namespaces of its
arguments. For example:

n na am me es sp pa ac ce e C Ch hr ro on no o {
c cl la as ss s D Da at te e { /* ... */ };

b bo oo ol l o op pe er ra at to or r==(c co on ns st t D Da at te e&, c co on ns st t s st td d: : s st tr ri in ng g&) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

178 Namespaces and Exceptions Chapter 8

s st td d: : s st tr ri in ng g f fo or rm ma at t(c co on ns st t D Da at te e&) ; / / make string representation
/ / ...

}

v vo oi id d f f(C Ch hr ro on no o: : D Da at te e d d, i in nt t i i)
{

s st td d: : s st tr ri in ng g s s = f fo or rm ma at t(d d) ; / / Chrono::format()
s st td d: : s st tr ri in ng g t t = f fo or rm ma at t(i i) ; / / error: no format() in scope

}

This lookup rule saves the programmer a lot of typing compared to using explicit qualification, yet
it doesn’t pollute the namespace the way ausing-directive(§8.2.3) can. It is especially useful for
operator operands (§11.2.4) and template arguments (§C.13.8.4), where explicit qualification can
be quite cumbersome.

Note that the namespace itself needs to be in scope and the function must be declared before it
can be found and used.

Naturally, a function can take arguments from more than one namespace. For example:

v vo oi id d f f(C Ch hr ro on no o: : D Da at te e d d, s st td d: : s st tr ri in ng g s s)
{

i if f (d d == s s) {
/ / ...

}
e el ls se e i if f (d d == " A Au ug gu us st t 4 4, 1 19 91 14 4") {

/ / ...
}

}

In such cases, we look for the function in the scope of the call (as ever) and in the namespaces of
every argument (including each argument’s class and base classes) and do the usual overload reso-
lution (§7.4) of all functions we find. In particular, for the calld d==s s, we look foro op pe er ra at to or r== in
the scope surroundingf f() , in the s st td d namespace (where== is defined fors st tr ri in ng g), and in the
C Ch hr ro on no o namespace. There is as st td d: : o op pe er ra at to or r==() , but it doesn’t take aD Da at te e argument, so we
useC Ch hr ro on no o: : o op pe er ra at to or r==() , which does. See also §11.2.4.

When a class member invokes a function, other members of the same class and its base classes
are preferred over functions potentially found based on the argument types (§11.2.4).

8.2.7 Namespace Aliases [name.alias]

If users give their namespaces short names, the names of different namespaces will clash:

n na am me es sp pa ac ce e A A { / / short name, will clash (eventually)
/ / ...

}

A A: : S St tr ri in ng g s s1 1 = " G Gr ri ie eg g";
A A: : S St tr ri in ng g s s2 2 = " N Ni ie el ls se en n";

However, long namespace names can be impractical in real code:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.7 Namespace Aliases 179

n na am me es sp pa ac ce e A Am me er ri ic ca an n_ _T Te el le ep ph ho on ne e_ _a an nd d_ _T Te el le eg gr ra ap ph h { / / too long
/ / ...

}

A Am me er ri ic ca an n_ _T Te el le ep ph ho on ne e_ _a an nd d_ _T Te el le eg gr ra ap ph h: : S St tr ri in ng g s s3 3 = " G Gr ri ie eg g";
A Am me er ri ic ca an n_ _T Te el le ep ph ho on ne e_ _a an nd d_ _T Te el le eg gr ra ap ph h: : S St tr ri in ng g s s4 4 = " N Ni ie el ls se en n";

This dilemma can be resolved by providing a short alias for a longer namespace name:

/ / use namespace alias to shorten names:

n na am me es sp pa ac ce e A AT TT T = A Am me er ri ic ca an n_ _T Te el le ep ph ho on ne e_ _a an nd d_ _T Te el le eg gr ra ap ph h;

A AT TT T: : S St tr ri in ng g s s3 3 = " G Gr ri ie eg g";
A AT TT T: : S St tr ri in ng g s s4 4 = " N Ni ie el ls se en n";

Namespace aliases also allow a user to refer to ‘‘the library’’ and have a single declaration defining
what library that really is. For example:

n na am me es sp pa ac ce e L Li ib b = F Fo ou un nd da at ti io on n_ _l li ib br ra ar ry y_ _v v2 2r r1 11 1;

/ / ...

L Li ib b: : s se et t s s;
L Li ib b: : S St tr ri in ng g s s5 5 = " S Si ib be el li iu us s";

This can immensely simplify the task of replacing one version of a library with another. By using
L Li ib b rather thanF Fo ou un nd da at ti io on n_ _l li ib br ra ar ry y_ _v v2 2r r1 11 1 directly, you can update to version ‘‘v3r02’’ by chang-
ing the initialization of the aliasL Li ib b and recompiling. The recompile will catch source level incom-
patibilities. On the other hand, overuse of aliases (of any kind) can lead to confusion.

8.2.8 Namespace Composition [name.compose]

Often, we want to compose an interface out of existing interfaces. For example:

n na am me es sp pa ac ce e H Hi is s_ _s st tr ri in ng g {
c cl la as ss s S St tr ri in ng g { /* ... */ };
S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t S St tr ri in ng g&) ;
S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t c ch ha ar r*) ;
v vo oi id d f fi il ll l(c ch ha ar r) ;
/ / ...

}

n na am me es sp pa ac ce e H He er r_ _v ve ec ct to or r {
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { /* ... */ };
/ / ...

}

n na am me es sp pa ac ce e M My y_ _l li ib b {
u us si in ng g n na am me es sp pa ac ce e H Hi is s_ _s st tr ri in ng g;
u us si in ng g n na am me es sp pa ac ce e H He er r_ _v ve ec ct to or r;
v vo oi id d m my y_ _f fc ct t(S St tr ri in ng g&) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

180 Namespaces and Exceptions Chapter 8

Given this, we can now write the program in terms ofM My y_ _l li ib b:

v vo oi id d f f()
{

M My y_ _l li ib b: : S St tr ri in ng g s s = " B By yr ro on n"; / / finds My_lib::His_string::String
/ / ...

}

u us si in ng g n na am me es sp pa ac ce e M My y_ _l li ib b;

v vo oi id d g g(V Ve ec ct to or r<S St tr ri in ng g>& v vs s)
{

/ / ...
m my y_ _f fc ct t(v vs s[5 5]) ;
/ / ...

}

If an explicitly qualified name (such asM My y_ _l li ib b: : S St tr ri in ng g) isn’t declared in the namespace men-
tioned, the compiler looks in namespaces mentioned inusing-directives (such asH Hi is s_ _s st tr ri in ng g).

Only if we need to define something, do we need to know the real namespace of an entity:

v vo oi id d M My y_ _l li ib b: : f fi il ll l() / / error: no fill() declared in My_lib
{

/ / ...
}

v vo oi id d H Hi is s_ _s st tr ri in ng g: : f fi il ll l() / / ok: fill() declared in His_string
{

/ / ...
}

v vo oi id d M My y_ _l li ib b: : m my y_ _f fc ct t(M My y_ _l li ib b: : V Ve ec ct to or r<M My y_ _l li ib b: : S St tr ri in ng g>& v v) / / ok
{

/ / ...
}

Ideally, a namespace should
[1] express a logically coherent set of features,
[2] not give users access to unrelated features, and
[3] not impose a significant notational burden on users.

The composition techniques presented here and in the following subsections– together with the
#i in nc cl lu ud de emechanism (§9.2.1)– provide strong support for this.

8.2.8.1 Selection [name.select]

Occasionally, we want access to only a few names from a namespace. We could do that by writing
a namespace declaration containing only those names we want. For example, we could declare a
version ofH Hi is s_ _s st tr ri in ng g that provided theS St tr ri in ng g itself and the concatenation operator only:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.8.1 Selection 181

n na am me es sp pa ac ce e H Hi is s_ _s st tr ri in ng g { / / part of His_string only
c cl la as ss s S St tr ri in ng g { /* ... */ };
S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t S St tr ri in ng g&) ;
S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t c ch ha ar r*) ;

}

However, unless I am the designer or maintainer ofH Hi is s_ _s st tr ri in ng g, this can easily get messy. A
change to the ‘‘real’’ definition ofH Hi is s_ _s st tr ri in ng g will not be reflected in this declaration. Selection of
features from a namespace is more explicitly made withusing-declarations:

n na am me es sp pa ac ce e M My y_ _s st tr ri in ng g {
u us si in ng g H Hi is s_ _s st tr ri in ng g: : S St tr ri in ng g;
u us si in ng g H Hi is s_ _s st tr ri in ng g: : o op pe er ra at to or r+; / / use any + from His_string

}

A using-declarationbrings every declaration with a given name into scope. In particular, a single
using-declarationcan bring in every variant of an overloaded function.

In this way, if the maintainer ofH Hi is s_ _s st tr ri in ng g adds a member function toS St tr ri in ng g or an overloaded
version of the concatenation operator, that change will automatically become available to users of
M My y_ _s st tr ri in ng g. Conversely, if a feature is removed fromH Hi is s_ _s st tr ri in ng g or has its interface changed,
affected uses ofM My y_ _s st tr ri in ng g will be detected by the compiler (see also §15.2.2).

8.2.8.2 Composition and Selection [name.comp]

Combining composition (byusing-directives) with selection (byusing-declarations) yields the
flexibility needed for most real-world examples. With these mechanisms, we can provide access to
a variety of facilities in such a way that we resolve name clashes and ambiguities arising from their
composition. For example:

n na am me es sp pa ac ce e H Hi is s_ _l li ib b {
c cl la as ss s S St tr ri in ng g { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { /* ... */ };
/ / ...

}

n na am me es sp pa ac ce e H He er r_ _l li ib b {
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { /* ... */ };
c cl la as ss s S St tr ri in ng g { /* ... */ };
/ / ...

}

n na am me es sp pa ac ce e M My y_ _l li ib b {
u us si in ng g n na am me es sp pa ac ce e H Hi is s_ _l li ib b; / / everything from His_lib
u us si in ng g n na am me es sp pa ac ce e H He er r_ _l li ib b; / / everything from Her_lib

u us si in ng g H Hi is s_ _l li ib b: : S St tr ri in ng g; / / resolve potential clash in favor of His_lib
u us si in ng g H He er r_ _l li ib b: : V Ve ec ct to or r; / / resolve potential clash in favor of Her_lib

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { /* ... */ }; / / additional stuff
/ / ...

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

182 Namespaces and Exceptions Chapter 8

When looking into a namespace, names explicitly declared there (including names declared by
using-declarations) take priority over names made accessible in another scope by ausing-directive
(see also §C.10.1). Consequently, a user ofM My y_ _l li ib b will see the name clashes forS St tr ri in ng g andV Ve ec ct to or r
resolved in favor ofH Hi is s_ _l li ib b: : S St tr ri in ng g andH He er r_ _l li ib b: : V Ve ec ct to or r. Also, M My y_ _l li ib b: : L Li is st t will be used by
default independently of whetherH Hi is s_ _l li ib b or H He er r_ _l li ib b are providing aL Li is st t.

Usually, I prefer to leave a name unchanged when including it into a new namespace. In that
way, I don’t have to remember two different names for the same entity. However, sometimes a
new name is needed or simply nice to have. For example:

n na am me es sp pa ac ce e L Li ib b2 2 {
u us si in ng g n na am me es sp pa ac ce e H Hi is s_ _l li ib b; / / everything from His_lib
u us si in ng g n na am me es sp pa ac ce e H He er r_ _l li ib b; / / everything from Her_lib

u us si in ng g H Hi is s_ _l li ib b: : S St tr ri in ng g; / / resolve potential clash in favor of His_lib
u us si in ng g H He er r_ _l li ib b: : V Ve ec ct to or r; / / resolve potential clash in favor of Her_lib

t ty yp pe ed de ef f H He er r_ _l li ib b: : S St tr ri in ng g H He er r_ _s st tr ri in ng g; / / rename

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s H Hi is s_ _v ve ec c / / ‘‘rename’’
: p pu ub bl li ic c H Hi is s_ _l li ib b: : V Ve ec ct to or r<T T> { /* ... */ };

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { /* ... */ }; / / additional stuff
/ / ...

}

There is no specific language mechanism for renaming. Instead, the general mechanisms for defin-
ing new entities are used.

8.2.9 Namespaces and Old Code [name.get]

Millions of lines of C and C++ code rely on global names and existing libraries. How can we use
namespaces to alleviate problems in such code? Redesigning existing code isn’t always a viable
option. Fortunately, it is possible to use C libraries as if they were defined in a namespace. How-
ever, this cannot be done for libraries written in C++ (§9.2.4). On the other hand, namespaces are
designed so that they can be introduced with minimal disruption into an older C++ program.

8.2.9.1 Namespaces and C [name.c]

Consider the canonical first C program:

#i in nc cl lu ud de e <s st td di io o. h h>

i in nt t m ma ai in n()
{

p pr ri in nt tf f(" H He el ll lo o, w wo or rl ld d! \ \n n") ;
}

Breaking this program wouldn’t be a good idea. Making standard libraries special cases isn’t a
good idea either. Consequently, the language rules for namespaces are designed to make it rela-
tively easy to take a program written without namespaces and turn it into a more explicitly struc-
tured one using namespaces. In fact, the calculator program (§6.1) is an example of this.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.9.1 Namespaces and C 183

Theusing-directiveis the key to achieving this. For example, the declarations of the standard C
I/O facilities from the C headers st td di io o. h h are wrapped in a namespace like this:

/ / stdio.h:

n na am me es sp pa ac ce e s st td d {
/ / ...
i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* ...) ;
/ / ...

}
u us si in ng g n na am me es sp pa ac ce e s st td d;

This achieves backwards compatibility. Also, a new header filec cs st td di io o is defined for people who
don’t want the names implicitly available:

/ / cstdio:

n na am me es sp pa ac ce e s st td d {
/ / ...
i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* ...) ;
/ / ...

}

C++ standard library implementers who worry about replication of declarations will, of course,
defines st td di io o. h h by includingc cs st td di io o:

/ / stdio.h:

#i in nc cl lu ud de e<c cs st td di io o>
u us si in ng g n na am me es sp pa ac ce e s st td d;

I consider nonlocalusing-directives primarily a transition tool. Most code referring to names from
other namespaces can be expressed more clearly with explicit qualification andusing-declarations.

The relationship between namespaces and linkage is described in §9.2.4.

8.2.9.2 Namespaces and Overloading [name.over]

Overloading (§7.4) works across namespaces. This is essential to allow us to migrate existing
libraries to use namespaces with minimal source code changes. For example:

/ / old A.h:

v vo oi id d f f(i in nt t) ;
/ / ...

/ / old B.h:

v vo oi id d f f(c ch ha ar r) ;
/ / ...

/ / old user.c:

#i in nc cl lu ud de e " A A. h h"
#i in nc cl lu ud de e " B B. h h"

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

184 Namespaces and Exceptions Chapter 8

v vo oi id d g g()
{

f f(´ a a´) ; / / calls the f() from B.h
}

This program can be upgraded to a version using namespaces without changing the actual code:

/ / new A.h:

n na am me es sp pa ac ce e A A {
v vo oi id d f f(i in nt t) ;
/ / ...

}

/ / new B.h:

n na am me es sp pa ac ce e B B {
v vo oi id d f f(c ch ha ar r) ;
/ / ...

}

/ / new user.c:

#i in nc cl lu ud de e " A A. h h"
#i in nc cl lu ud de e " B B. h h"

u us si in ng g n na am me es sp pa ac ce e A A;
u us si in ng g n na am me es sp pa ac ce e B B;

v vo oi id d g g()
{

f f(´ a a´) ; / / calls the f() from B.h
}

Had we wanted to keepu us se er r. c c completely unchanged, we would have placed theusing-directives
in the header files.

8.2.9.3 Namespaces Are Open [name.open]

A namespace is open; that is, you can add names to it from several namespace declarations. For
example:

n na am me es sp pa ac ce e A A {
i in nt t f f() ; / / now A has member f()

}

n na am me es sp pa ac ce e A A {
i in nt t g g() ; / / now A has two members, f() and g()

}

In this way, we can support large program fragments within a single namespace the way an older
library or application lives within the single global namespace. To do this, we must distribute the
namespace definition over several header and source code files. As shown by the calculator exam-
ple (§8.2.4), the openness of namespaces allows us to present different interfaces to different kinds

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.9.3 Namespaces Are Open 185

of users by presenting different parts of a namespace. This openness is also an aid to transition.
For example,

/ / my header:
v vo oi id d f f() ; / / my function
/ / ...
#i in nc cl lu ud de e<s st td di io o. h h>
i in nt t g g() ; / / my function
/ / ...

can be rewritten without reordering of the declarations:

/ / my header:

n na am me es sp pa ac ce e M Mi in ne e {
v vo oi id d f f() ; / / my function
/ / ...

}

#i in nc cl lu ud de e<s st td di io o. h h>

n na am me es sp pa ac ce e M Mi in ne e {
i in nt t g g() ; / / my function
/ / ...

}

When writing new code, I prefer to use many smaller namespaces (see §8.2.8) rather than putting
really major pieces of code into a single namespace. However, that is often impractical when con-
verting major pieces of software to use namespaces.

When defining a previously declared member of a namespace, it is safer to use theM Mi in ne e: : syn-
tax than to re-openM Mi in ne e. For example:

v vo oi id d M Mi in ne e: : f ff f() / / error: no ff() declared in Mine
{

/ / ...
}

A compiler catches this error. However, because new functions can be defined within a namespace,
a compiler cannot catch the equivalent error in a re-opened namespace:

n na am me es sp pa ac ce e M Mi in ne e { / / re-opening Mine to define functions

v vo oi id d f ff f() / / oops! no ff() declared in Mine; ff() is added to Mine by this definition
{

/ / ...
}

/ / ...
}

The compiler has no way of knowing that you didn’t want that newf ff f() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

186 Namespaces and Exceptions Chapter 8

8.3 Exceptions[name.except]

When a program is composed of separate modules, and especially when those modules come from
separately developed libraries, error handling needs to be separated into two distinct parts:

[1] The reporting of error conditions that cannot be resolved locally
[2] The handling of errors detected elsewhere

The author of a library can detect run-time errors but does not in general have any idea what to do
about them. The user of a library may know how to cope with such errors but cannot detect them–
or else they would be handled in the user’s code and not left for the library to find.

In the calculator example, we bypassed this problem by designing the program as a whole. By
doing that, we could fit error handling into our overall framework. However, when we separate the
logical parts of the calculator into separate namespaces, we see that every namespace depends on
namespaceE Er rr ro or r (§8.2.2) and that the error handling inE Er rr ro or r relies on every module behaving
appropriately after an error. Let’s assume that we don’t have the freedom to design the calculator as
a whole and don’t want the tight coupling betweenE Er rr ro or r and all other modules. Instead, assume
that the parser, etc., are written without knowledge of how a driver might like to handle errors.

Even thoughe er rr ro or r() was very simple, it embodied a strategy for error handling:

n na am me es sp pa ac ce e E Er rr ro or r {
i in nt t n no o_ _o of f_ _e er rr ro or rs s;

d do ou ub bl le e e er rr ro or r(c co on ns st t c ch ha ar r* s s)
{

s st td d: : c ce er rr r << " e er rr ro or r: " << s s << ´ \ \n n´;
n no o_ _o of f_ _e er rr ro or rs s++;
r re et tu ur rn n 1 1;

}
}

Thee er rr ro or r() function writes out an error message, supplies a default value that allows its caller to
continue a computation, and keeps track of a simple error state. Importantly, every part of the pro-
gram knows thate er rr ro or r() exists, how to call it, and what to expect from it. For a program com-
posed of separately-developed libraries, that would be too much to assume.

Exceptions are C++’s means of separating error reporting from error handling. In this section,
exceptions are briefly described in the context of their use in the calculator example. Chapter 14
provides a more extensive discussion of exceptions and their uses.

8.3.1 Throw and Catch [name.throw]

The notion of anexceptionis provided to help deal with error reporting. For example:

s st tr ru uc ct t R Ra an ng ge e_ _e er rr ro or r {
i in nt t i i;
R Ra an ng ge e_ _e er rr ro or r(i in nt t i ii i) { i i = i ii i; } / / constructor (§2.5.2, §10.2.3)

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.1 Throw and Catch 187

c ch ha ar r t to o_ _c ch ha ar r(i in nt t i i)
{

i if f (i i<n nu um me er ri ic c_ _l li im mi it ts s<c ch ha ar r>: : m mi in n() || n nu um me er ri ic c_ _l li im mi it ts s<c ch ha ar r>: : m ma ax x()< i i)/ / see §22.2
t th hr ro ow w R Ra an ng ge e_ _E Er rr ro or r() ;

r re et tu ur rn n c c;
}

The t to o_ _c ch ha ar r() function either returns thec ch ha ar r with the numeric valuei i or throws aR Ra an ng ge e_ _e er rr ro or r.
The fundamental idea is that a function that finds a problem it cannot cope withthrowsan excep-
tion, hoping that its (direct or indirect) caller can handle the problem. A function that wants to han-
dle a problem can indicate that it is willing tocatchexceptions of the type used to report the prob-
lem. For example, to callt to o_ _c ch ha ar r() and catch the exception it might throw, we could write:

v vo oi id d g g(i in nt t i i)
{

t tr ry y {
c ch ha ar r c c = t to o_ _c ch ha ar r(i i) ;
/ / ...

}
c ca at tc ch h (R Ra an ng ge e_ _e er rr ro or r) {

c ce er rr r << " o oo op ps s\ \n n";
}

}

The construct

c ca at tc ch h (/* ... */) {
/ / ...

}

is called anexception handler. It can be used only immediately after a block prefixed with the key-
word t tr ry y or immediately after another exception handler;c ca at tc ch h is also a keyword. The parentheses
contain a declaration that is used in a way similar to how a function argument declaration is used.
That is, it specifies the type of the objects that can be caught by this handler and optionally names
the object caught. For example, if we wanted to know the value of theR Ra an ng ge e_ _e er rr ro or r thrown, we
would provide a name for the argument toc ca at tc ch h exactly the way we name function arguments. For
example:

v vo oi id d h h(i in nt t i i)
{

t tr ry y {
c ch ha ar r c c = t to o_ _c ch ha ar r(i i) ;
/ / ...

}
c ca at tc ch h (R Ra an ng ge e_ _e er rr ro or r x x) {

c ce er rr r << " o oo op ps s: t to o_ _c ch ha ar r(" << x x. i i << ") \ \n n";
}

}

If any code in atry-block– or called from it– throws an exception, the try-block’s handlers will be

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

188 Namespaces and Exceptions Chapter 8

examined. If the exception thrown is of a type specified for a handler, that handler is executed. If
not, the exception handlers are ignored and thetry-blockacts just like an ordinary block.

Basically, C++ exception handling is a way to transfer control to designated code in a calling
function. Where needed, some information about the error can be passed along to the caller. C
programmers can think of exception handling as a well-behaved mechanism replacing
s se et tj jm mp p/l lo on ng gj jm mp p (§16.1.2). The important interaction between exception handling and classes is
described in Chapter 14.

8.3.2 Discrimination of Exceptions [name.discrimination]

Typically, a program will have several different possible run-time errors. Such errors can be
mapped into exceptions with distinct names. I prefer to define types with no other purpose than
exception handling. This minimizes confusion about their purpose. In particular, I never use a
built-in type, such asi in nt t, as an exception. In a large program, I would have no effective way to
find unrelated uses ofi in nt t exceptions. Thus, I could never be sure that such other uses didn’t inter-
fere with my use.

Our calculator (§6.1) must handle two kinds of run-time errors: syntax errors and attempts to
divide by zero. No values need to be passed to a handler from the code that detects an attempt to
divide by zero, so zero divide can be represented by a simple empty type:

s st tr ru uc ct t Z Ze er ro o_ _d di iv vi id de e { };

On the other hand, a handler would most likely prefer to get an indication of what kind of syntax
error occurred. Here, we pass a string along:

s st tr ru uc ct t S Sy yn nt ta ax x_ _e er rr ro or r {
c co on ns st t c ch ha ar r* p p;
S Sy yn nt ta ax x_ _e er rr ro or r(c co on ns st t c ch ha ar r* q q) { p p = q q; }

};

For notational convenience, I added a constructor (§2.5.2, §10.2.3) to thes st tr ru uc ct t.
A user of the parser can discriminate between the two exceptions by adding handlers for both to

a t tr ry y block. Where needed, the appropriate handler will be entered. If we ‘‘fall through the bot-
tom’’ of a handler, the execution continues at the end of the list of handlers:

t tr ry y {
/ / ...
e ex xp pr r(f fa al ls se e) ;
/ / we get here if and only if expr() didn’t cause an exception
/ / ...

}

c ca at tc ch h (S Sy yn nt ta ax x_ _e er rr ro or r) {
/ / handle syntax error

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.2 Discrimination of Exceptions 189

c ca at tc ch h (Z Ze er ro o_ _d di iv vi id de e) {
/ / handle divide by zero

}
/ / we get here if expr didn’t cause an exception or if a Syntax_error
/ / or Zero_divide exception was caught (and its handler didn’t return,
/ / throw an exception, or in some other way alter the flow of control).

A list of handlers looks a bit like as sw wi it tc ch h statement, but there is no need forb br re ea ak k statements. The
syntax of a list of handlers differs from the syntax of a list of cases partly for that reason and partly
to indicate that each handler is a scope (§4.9.4).

A function need not catch all possible exceptions. For example, the previoustry-block didn’t
try to catch exceptions potentially generated by the parser’s input operations. Those exceptions
simply ‘‘pass through,’’ searching for a caller with an appropriate handler.

From the language’s point of view, an exception is considered handled immediately upon entry
into its handler so that any exceptions thrown while executing a handler must be dealt with by the
callers of thetry-block. For example, this does not cause an infinite loop:

c cl la as ss s i in np pu ut t_ _o ov ve er rf fl lo ow w { /* ... */ };

v vo oi id d f f()
{

t tr ry y {
/ / ...

}
c ca at tc ch h (i in np pu ut t_ _o ov ve er rf fl lo ow w) {

/ / ...
t th hr ro ow w i in np pu ut t_ _o ov ve er rf fl lo ow w() ;

}
}

Exception handlers can be nested. For example:

c cl la as ss s X XX XI II I { /* ... */ };

v vo oi id d f f()
{

/ / ...
t tr ry y {

/ / ...
}
c ca at tc ch h (X XX XI II I) {

t tr ry y {
/ / something complicated

}
c ca at tc ch h (X XX XI II I) {

/ / complicated handler code failed
}

}
/ / ...

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

190 Namespaces and Exceptions Chapter 8

However, such nesting is rare in human-written code and is more often than not an indication of
poor style.

8.3.3 Exceptions in the Calculator [name.calc]

Given the basic exception-handling mechanism, we can rework the calculator example from §6.1 to
separate the handling of errors found at run-time from the main logic of the calculator. This will
result in an organization of the program that more realistically matches what is found in programs
built from separate, loosely connected parts.

First,e er rr ro or r() can be eliminated. Instead, the parser functions know only the types used to sig-
nal errors:

n na am me es sp pa ac ce e E Er rr ro or r {
s st tr ru uc ct t Z Ze er ro o_ _d di iv vi id de e { };

s st tr ru uc ct t S Sy yn nt ta ax x_ _e er rr ro or r {
c co on ns st t c ch ha ar r* p p;
S Sy yn nt ta ax x_ _e er rr ro or r(c co on ns st t c ch ha ar r* q q) { p p = q q; }

};
}

The parser detects three syntax errors:

T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n()
{

u us si in ng g n na am me es sp pa ac ce e s st td d; / / to use cin, isalpha(), etc.

/ / ...

d de ef fa au ul lt t: / / NAME, NAME =, or error
i if f (i is sa al lp ph ha a(c ch h)) {

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n >> s st tr ri in ng g_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
t th hr ro ow w E Er rr ro or r: : S Sy yn nt ta ax x_ _e er rr ro or r(" b ba ad d t to ok ke en n") ;

}
}

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) / / handle primaries
{

/ / ...

c ca as se e L Le ex xe er r: : L LP P:
{ d do ou ub bl le e e e = e ex xp pr r(t tr ru ue e) ;

i if f (c cu ur rr r_ _t to ok k != L Le ex xe er r: : R RP P) t th hr ro ow w E Er rr ro or r: : S Sy yn nt ta ax x_ _e er rr ro or r("‘)´ e ex xp pe ec ct te ed d") ;
g ge et t_ _t to ok ke en n() ; / / eat ’)’
r re et tu ur rn n e e;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.3 Exceptions in the Calculator 191

c ca as se e L Le ex xe er r: : E EN ND D:
r re et tu ur rn n 1 1;

d de ef fa au ul lt t:
t th hr ro ow w E Er rr ro or r: : S Sy yn nt ta ax x_ _e er rr ro or r(" p pr ri im ma ar ry y e ex xp pe ec ct te ed d") ;

}
}

When a syntax error is detected,t th hr ro ow w is used to transfer control to a handler defined in some
(direct or indirect) caller. Thet th hr ro ow w operator also passes a value to the handler. For example,

t th hr ro ow w S Sy yn nt ta ax x_ _e er rr ro or r(" p pr ri im ma ar ry y e ex xp pe ec ct te ed d") ;

passes aS Sy yn nt ta ax x_ _e er rr ro or r object containing a pointer to the stringp pr ri im ma ar ry y e ex xp pe ec ct te ed d to the handler.
Reporting a divide-by-zero error doesn’t require any data to be passed along:

d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) / / multiply and divide
{

/ / ...
c ca as se e L Le ex xe er r: : D DI IV V:

i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {
l le ef ft t /= d d;
b br re ea ak k;

}
t th hr ro ow w E Er rr ro or r: : Z Ze er ro o_ _d di iv vi id de e() ;

/ / ...
}

The driver can now be defined to handleZ Ze er ro o_ _d di iv vi id de eandS Sy yn nt ta ax x_ _e er rr ro or r exceptions. For example:

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

/ / ...
w wh hi il le e (* i in np pu ut t) {

t tr ry y {
L Le ex xe er r: : g ge et t_ _t to ok ke en n() ;
i if f (L Le ex xe er r: : c cu ur rr r_ _t to ok k == L Le ex xe er r: : E EN ND D) b br re ea ak k;
i if f (L Le ex xe er r: : c cu ur rr r_ _t to ok k == L Le ex xe er r: : P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << P Pa ar rs se er r: : e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}
c ca at tc ch h(E Er rr ro or r: : Z Ze er ro o_ _d di iv vi id de e) {

c ce er rr r << " a at tt te em mp pt t t to o d di iv vi id de e b by y z ze er ro o\ \n n";
s sk ki ip p() ;

}
c ca at tc ch h(E Er rr ro or r: : S Sy yn nt ta ax x_ _e er rr ro or r e e) {

c ce er rr r << " s sy yn nt ta ax x e er rr ro or r:" << e e. p p << " \ \n n";
s sk ki ip p() ;

}
}

i if f (i in np pu ut t != &c ci in n) d de el le et te e i in np pu ut t;
r re et tu ur rn n n no o_ _o of f_ _e er rr ro or rs s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

192 Namespaces and Exceptions Chapter 8

The functions sk ki ip p() tries to bring the parser into a well-defined state after an error by skipping
tokens until it finds an end-of-line or a semicolon. It,n no o_ _o of f_ _e er rr ro or rs s, and i in np pu ut t are obvious candi-
dates for aD Dr ri iv ve er r namespace:

n na am me es sp pa ac ce e D Dr ri iv ve er r {
i in nt t n no o_ _o of f_ _e er rr ro or rs s;
s st td d: : i is st tr re ea am m* i in np pu ut t;
v vo oi id d s sk ki ip p() ;

}

v vo oi id d D Dr ri iv ve er r: : s sk ki ip p()
{

n no o_ _o of f_ _e er rr ro or rs s++;

w wh hi il le e (* i in np pu ut t) {
c ch ha ar r c ch h;
i in np pu ut t-> g ge et t(c ch h) ;

s sw wi it tc ch h (c ch h) {
c ca as se e ´ \ \n n´:
c ca as se e ´;´:

i in np pu ut t-> g ge et t(c ch h) ;
r re et tu ur rn n;

}
}

}

The code fors sk ki ip p() is deliberately written at a lower level of abstraction than the parser code so as
to avoid being caught by exceptions from the parser while handling parser exceptions.

I retained the idea of counting the number of errors and reporting that number as the program’s
return value. It is often useful to know if a program encountered an error even if it was able to
recover from it.

I did not putm ma ai in n() in theD Dr ri iv ve er r namespace. The globalm ma ai in n() is the initial function of a
program (§3.2); am ma ai in n() in another namespace has no special meaning.

8.3.3.1 Alternative Error-Handling Strategies [name.strategy]

The original error-handling code was shorter and more elegant than the version using exceptions.
However, it achieved that elegance by tightly coupling all parts of the program. That approach
doesn’t scale well to programs composed of separately developed libraries.

We could consider eliminating the separate error-handling functions sk ki ip p() by introducing a
state variable inm ma ai in n() . For example:

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) / / example of poor style
{

/ / ...

b bo oo ol l i in n_ _e er rr ro or r = f fa al ls se e;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.3.1 Alternative Error-Handling Strategies 193

w wh hi il le e (* D Dr ri iv ve er r: : i in np pu ut t) {
t tr ry y {

L Le ex xe er r: : g ge et t_ _t to ok ke en n() ;
i if f (L Le ex xe er r: : c cu ur rr r_ _t to ok k == L Le ex xe er r: : E EN ND D) b br re ea ak k;
i if f (L Le ex xe er r: : c cu ur rr r_ _t to ok k == L Le ex xe er r: : P PR RI IN NT T) {

i in n_ _e er rr ro or r = f fa al ls se e;
c co on nt ti in nu ue e;

}
i if f (i in n_ _e er rr ro or r == f fa al ls se e) c co ou ut t << P Pa ar rs se er r: : e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

c ca at tc ch h(E Er rr ro or r: : Z Ze er ro o_ _d di iv vi id de e) {
c ce er rr r << " a at tt te em mp pt t t to o d di iv vi id de e b by y z ze er ro o\ \n n";
i in n_ _e er rr ro or r = t tr ru ue e;

}
c ca at tc ch h(E Er rr ro or r: : S Sy yn nt ta ax x_ _e er rr ro or r e e) {

c ce er rr r << " s sy yn nt ta ax x e er rr ro or r:" << e e. p p << " \ \n n";
i in n_ _e er rr ro or r = t tr ru ue e;

}
}

i if f (D Dr ri iv ve er r: : i in np pu ut t != s st td d: : c ci in n) d de el le et te e D Dr ri iv ve er r: : i in np pu ut t;
r re et tu ur rn n D Dr ri iv ve er r: : n no o_ _o of f_ _e er rr ro or rs s;

}

I consider this a bad idea for several reasons:
[1] State variables are a common source of confusion and errors, especially if they are allowed

to proliferate and affect larger sections of a program. In particular, I consider the version of
m ma ai in n() usingi in n_ _e er rr ro or r less readable than the version usings sk ki ip p() .

[2] It is generally a good strategy to keep error handling and ‘‘normal’’ code separate.
[3] Doing error handling using the same level of abstraction as the code that caused the error is

hazardous; the error-handling code might repeat the same error that triggered the error han-
dling in the first place. I leave it as an exercise to find how that can happen for the version
of m ma ai in n() usingi in n_ _e er rr ro or r (§8.5[7]).

[4] It is more work to modify the ‘‘normal’’ code to add error-handling code than to add sepa-
rate error-handling routines.

Exception handling is intended for dealing with nonlocal problems. If an error can be handled
locally, it almost always should be. For example, there is no reason to use an exception to handle
the too-many-arguments error:

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

u us si in ng g n na am me es sp pa ac ce e s st td d;
u us si in ng g n na am me es sp pa ac ce e D Dr ri iv ve er r;

s sw wi it tc ch h (a ar rg gc c) {
c ca as se e 1 1: / / read from standard input

i in np pu ut t = &c ci in n;
b br re ea ak k;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

194 Namespaces and Exceptions Chapter 8

c ca as se e 2 2: / / read argument string
i in np pu ut t = n ne ew w i is st tr ri in ng gs st tr re ea am m(a ar rg gv v[1 1]) ;
b br re ea ak k;

d de ef fa au ul lt t:
c ce er rr r << " t to oo o m ma an ny y a ar rg gu um me en nt ts s\ \n n";
r re et tu ur rn n 1 1;

}

/ / as before
}

Exceptions are discussed further in Chapter 14.

8.4 Advice[name.advice]

[1] Use namespaces to express logical structure; §8.2.
[2] Place every nonlocal name, exceptm ma ai in n() , in some namespace; §8.2.
[3] Design a namespace so that you can conveniently use it without accidentally gaining access to

unrelated namespaces; §8.2.4.
[4] Avoid very short names for namespaces; §8.2.7.
[5] If necessary, use namespace aliases to abbreviate long namespaces names; §8.2.7.
[6] Avoid placing heavy notational burdens on users of your namespaces; §8.2.2, §8.2.3.
[7] Use theN Na am me es sp pa ac ce e: : m me em mb be er r notation when defining namespace members; §8.2.8.
[8] Useu us si in ng g n na am me es sp pa ac ce eonly for transition or within a local scope; §8.2.9.
[9] Use exceptions to decouple the treatment of ‘‘errors’’ from the code dealing with the ordinary

processing; §8.3.3.
[10] Use user-defined rather than built-in types as exceptions; §8.3.2.
[11] Don’t use exceptions when local control structures are sufficient; §8.3.3.1.

8.5 Exercises[name.exercises]

1. (∗2.5) Write a doubly-linked list ofs st tr ri in ng g module in the style of theS St ta ac ck k module from §2.4.
Exercise it by creating a list of names of programming languages. Provide as so or rt t() function
for that list, and provide a function that reverses the order of the strings in it.

2. (∗2) Take some not-too-large program that uses at least one library that does not use name-
spaces and modify it to use a namespace for that library. Hint: §8.2.9.

3. (∗2) Modify the desk calculator program into a module in the style of §2.4 using namespaces.
Don’t use any globalusing-directives. Keep a record of the mistakes you made. Suggest ways
of avoiding such mistakes in the future.

4. (∗1) Write a program that throws an exception in one function and catches it in another.
5. (∗2) Write a program consisting of functions calling each other to a calling depth of 10. Give

each function an argument that determines at which level an exception is thrown. Have
m ma ai in n() catch these exceptions and print out which exception is caught. Don’t forget the case
in which an exception is caught in the function that throws it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.5 Exercises 195

6. (∗2) Modify the program from §8.5[5] to measure if there is a difference in the cost of catching
exceptions depending on where in a class stack the exception is thrown. Add a string object to
each function and measure again.

7. (∗1) Find the error in the first version ofm ma ai in n() in §8.3.3.1.
8. (∗2) Write a function that either returns a value or that throws that value based on an argument.

Measure the difference in run-time between the two ways.
9. (∗2) Modify the calculator version from §8.5[3] to use exceptions. Keep a record of the mis-

takes you make. Suggest ways of avoiding such mistakes in the future.
10. (∗2.5) Write p pl lu us s() , m mi in nu us s() , m mu ul lt ti ip pl ly y() , and d di iv vi id de e() functions that check for possible

overflow and underflow and that throw exceptions if such errors happen.
11. (∗2) Modify the calculator to use the functions from §8.5[10].

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

196 Namespaces and Exceptions Chapter 8

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

9
_ __ _______________________________________

Source Files and Programs

Form must follow function.
– Le Corbusier

Separate compilation— linking — header files— standard library headers— the one-
definition rule— linkage to non-C++ code— linkage and pointers to functions— using
headers to express modularity— single-header organization— multiple-header organi-
zation— include guards— programs— advice— exercises.

9.1 Separate Compilation[file.separate]

A file is the traditional unit of storage (in a file system) and the traditional unit of compilation.
There are systems that do not store, compile, and present C++ programs to the programmer as sets
of files. However, the discussion here will concentrate on systems that employ the traditional use
of files.

Having a complete program in one file is usually impossible. In particular, the code for the
standard libraries and the operating system is typically not supplied in source form as part of a
user’s program. For realistically-sized applications, even having all of the user’s own code in a sin-
gle file is both impractical and inconvenient. The way a program is organized into files can help
emphasize its logical structure, help a human reader understand the program, and help the compiler
to enforce that logical structure. Where the unit of compilation is a file, all of a file must be recom-
piled whenever a change (however small) has been made to it or to something on which it depends.
For even a moderately sized program, the amount of time spent recompiling can be significantly
reduced by partitioning the program into files of suitable size.

A user presents asource fileto the compiler. The file is then preprocessed; that is, macro pro-
cessing (§7.8) is done and#i in nc cl lu ud de e directives bring in headers (§2.4.1, §9.2.1). The result of pre-
processing is called atranslation unit. This unit is what the compiler proper works on and what the
C++ language rules describe. In this book, I differentiate between source file and translation unit

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

198 Source Files and Programs Chapter 9

only where necessary to distinguish what the programmer sees from what the compiler considers.
To enable separate compilation, the programmer must supply declarations providing the type

information needed to analyze a translation unit in isolation from the rest of the program. The
declarations in a program consisting of many separately compiled parts must be consistent in
exactly the same way the declarations in a program consisting of a single source file must be. Your
system will have tools to help ensure this. In particular, the linker can detect many kinds of incon-
sistencies. Thelinker is the program that binds together the separately compiled parts. A linker is
sometimes (confusingly) called aloader. Linking can be done completely before a program starts
to run. Alternatively, new code can be added to the program (‘‘dynamically linked’’) later.

The organization of a program into source files is commonly called thephysical structureof a
program. The physical separation of a program into separate files should be guided by the logical
structure of the program. The same dependency concerns that guide the composition of programs
out of namespaces guide its composition into source files. However, the logical and physical struc-
ture of a program need not be identical. For example, it can be useful to use several source files to
store the functions from a single namespace, to store a collection of namespace definitions in a sin-
gle file, and to scatter the definition of a namespace over several files (§8.2.4).

Here, we will first consider some technicalities relating to linking and then discuss two ways of
breaking the desk calculator (§6.1, §8.2) into files.

9.2 Linkage[file.link]

Names of functions, classes, templates, variables, namespaces, enumerations, and enumerators
must be used consistently across all translation units unless they are explicitly specified to be local.

It is the programmer’s task to ensure that every namespace, class, function, etc. is properly
declared in every translation unit in which it appears and that all declarations referring to the same
entity are consistent. For example, consider two files:

/ / file1.c:
i in nt t x x = 1 1;
i in nt t f f() { /* do something*/ }

/ / file2.c:
e ex xt te er rn n i in nt t x x;
i in nt t f f() ;
v vo oi id d g g() { x x = f f() ; }

Thex x andf f() used byg g() in f fi il le e2 2. c c are the ones defined inf fi il le e1 1. c c. The keyworde ex xt te er rn n indi-
cates that the declaration ofx x in f fi il le e2 2. c c is (just) a declaration and not a definition (§4.9). Hadx x
been initialized,e ex xt te er rn n would simply be ignored because a declaration with an initializer is always
a definition. An object must be defined exactly once in a program. It may be declared many times,
but the types must agree exactly. For example:

/ / file1.c:
i in nt t x x = 1 1;
i in nt t b b = 1 1;
e ex xt te er rn n i in nt t c c;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2 Linkage 199

/ / file2.c:
i in nt t x x; / / meaning int x = 0;
e ex xt te er rn n d do ou ub bl le e b b;
e ex xt te er rn n i in nt t c c;

There are three errors here:x x is defined twice,b b is declared twice with different types, andc c is
declared twice but not defined. These kinds of errors (linkage errors) cannot be detected by a com-
piler that looks at only one file at a time. Most, however, are detectable by the linker. Note that a
variable defined without an initializer in the global or a namespace scope is initialized by default.
This isnot the case for local variables (§4.9.5, §10.4.2) or objects created on the free store (§6.2.6).
For example, the following program fragment contains two errors:

/ / file1.c:
i in nt t x x;
i in nt t f f() { r re et tu ur rn n x x; }

/ / file2.c:
i in nt t x x;
i in nt t g g() { r re et tu ur rn n f f() ; }

The call off f() in f fi il le e2 2. c c is an error becausef f() has not been declared inf fi il le e2 2. c c. Also, the pro-
gram will not link becausex x is defined twice. Note that these are not errors in C (§B.2.2).

A name that can be used in translation units different from the one in which it was defined is
said to haveexternal linkage. All the names in the previous examples have external linkage. A
name that can be referred to only in the translation unit in which it is defined is said to have
internal linkage.

An i in nl li in ne e function (§7.1.1, §10.2.9) must be defined– by identical definitions (§9.2.3)– in
every translation unit in which it is used. Consequently, the following example isn’t just bad taste;
it is illegal:

/ / file1.c:
i in nl li in ne e i in nt t f f(i in nt t i i) { r re et tu ur rn n i i; }

/ / file2.c:
i in nl li in ne e i in nt t f f(i in nt t i i) { r re et tu ur rn n i i+1 1; }

Unfortunately, this error is hard for an implementation to catch, and the following– otherwise per-
fectly logical – combination of external linkage and inlining is banned to make life simpler for
compiler writers:

/ / file1.c:
e ex xt te er rn n i in nl li in ne e i in nt t g g(i in nt t i i) ;
i in nt t h h(i in nt t i i) { r re et tu ur rn n g g(i i) ; } / / error: g() undefined in this translation unit

/ / file2.c:
e ex xt te er rn n i in nl li in ne e i in nt t g g(i in nt t i i) { r re et tu ur rn n i i+1 1; }

By default,c co on ns st ts (§5.4) andt ty yp pe ed de ef fs (§4.9.7) have internal linkage. Consequently, this example
is legal (although potentially confusing):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

200 Source Files and Programs Chapter 9

/ / file1.c:
t ty yp pe ed de ef f i in nt t T T;
c co on ns st t i in nt t x x = 7 7;

/ / file2.c:
t ty yp pe ed de ef f v vo oi id d T T;
c co on ns st t i in nt t x x = 8 8;

Global variables that are local to a single compilation unit are a common source of confusion and
are best avoided. To ensure consistency, you should usually place globalc co on ns st ts andi in nl li in ne es in
header files only (§9.2.1).

A c co on ns st t can be given external linkage by an explicit declaration:

/ / file1.c:
e ex xt te er rn n c co on ns st t i in nt t a a = 7 77 7;

/ / file2.c:
e ex xt te er rn n c co on ns st t i in nt t a a;

v vo oi id d g g()
{

c co ou ut t << a a << ´ \ \n n´;
}

Here,g g() will print 7 77 7.
An unnamed namespace (§8.2.5) can be used to make names local to a compilation unit. The

effect of an unnamed namespace is very similar to that of internal linkage. For example:

/ / file 1.c:
n na am me es sp pa ac ce e {

c cl la as ss s X X { /* ... */ };
v vo oi id d f f() ;
i in nt t i i;
/ / ...

}

/ / file2.c:
c cl la as ss s X X { /* ... */ };
v vo oi id d f f() ;
i in nt t i i;
/ / ...

The functionf f() in f fi il le e1 1. c c is not the same function as thef f() in f fi il le e2 2. c c. Having a name local to
a translation unit and also using that same name elsewhere for an entity with external linkage is
asking for trouble.

In C and older C++ programs, the keywords st ta at ti ic c is (confusingly) used to mean ‘‘use internal
linkage’’ (§B.2.3). Don’t uses st ta at ti ic c except inside functions (§7.1.2) and classes (§10.2.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.1 Header Files 201

9.2.1 Header Files [file.header]

The types in all declarations of the same object, function, class, etc., must be consistent. Conse-
quently, the source code submitted to the compiler and later linked together must be consistent.
One imperfect but simple method of achieving consistency for declarations in different translation
units is to#i in nc cl lu ud de e header filescontaining interface information in source files containing exe-
cutable code and/or data definitions.

The#i in nc cl lu ud de e mechanism is a text manipulation facility for gathering source program fragments
together into a single unit (file) for compilation. The directive

#i in nc cl lu ud de e " t to o_ _b be e_ _i in nc cl lu ud de ed d"

replaces the line in which the#i in nc cl lu ud de e appears with the contents of the filet to o_ _b be e_ _i in nc cl lu ud de ed d. The
content should be C++ source text because the compiler will proceed to read it.

To include standard library headers, use the angle brackets< and> around the name instead of
quotes. For example:

#i in nc cl lu ud de e <i io os st tr re ea am m> / / from standard include directory
#i in nc cl lu ud de e " m my yh he ea ad de er r. h h" / / from current directory

Unfortunately, spaces are significant within the< > or " " of an include directive:

#i in nc cl lu ud de e < i io os st tr re ea am m > / / will not find <iostream>

It may seem extravagant to recompile a file each time it is included somewhere, but the included
files typically contain only declarations and not code needing extensive analysis by the compiler.
Furthermore, most modern C++ implementations provide some form of precompiling of header
files to minimize the work needed to handle repeated compilation of the same header.

As a rule of thumb, a header may contain:
_ ___
Named namespaces n na am me es sp pa ac ce e N N { /* */ }
Type definitions s st tr ru uc ct t P Po oi in nt t { i in nt t x x, y y; };
Template declarations t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s Z Z;
Template definitions t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V V { /* */ };
Function declarations e ex xt te er rn n i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*);
Inline function definitions i in nl li in ne e c ch ha ar r g ge et t(c ch ha ar r* p p) { r re et tu ur rn n * p p++; }
Data declarations e ex xt te er rn n i in nt t a a;
Constant definitions c co on ns st t f fl lo oa at t p pi i = 3 3. .1 14 41 15 59 93 3;
Enumerations e en nu um m L Li ig gh ht t { r re ed d, y ye el ll lo ow w, g gr re ee en n };
Name declarations c cl la as ss s M Ma at tr ri ix x;
Include directives #i in nc cl lu ud de e <a al lg go or ri it th hm m>
Macro definitions #d de ef fi in ne e V VE ER RS SI IO ON N 1 12 2
Conditional compilation directives #i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
Comments /* c ch he ec ck k f fo or r e en nd d o of f f fi il le e */_ ___ 




































This rule of thumb for what may be placed in a header is not a language requirement. It is simply a
reasonable way of using the#i in nc cl lu ud de e mechanism to express the physical structure of a program.
Conversely, a header should never contain:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

202 Source Files and Programs Chapter 9

_ ___
Ordinary function definitions c ch ha ar r g ge et t(c ch ha ar r* p p) { r re et tu ur rn n * p p++; }
Data definitions i in nt t a a;
Aggregate definitions s sh ho or rt t t tb bl l[] = { 1 1, 2 2, 3 3 };
Unnamed namespaces n na am me es sp pa ac ce e { /* */ }
Exported template definitions e ex xp po or rt t t te em mp pl la at te e<c cl la as ss s T T> f f(T T t t) { /* */ }_ ___ 














Header files are conventionally suffixed by. h h, and files containing function or data definitions are
suffixed by . c c. They are therefore often referred to as ‘‘.h files’’ and ‘‘.c files,’’ respectively.
Other conventions, such as. C C, . c cx xx x, . c cp pp p, and. c cc c, are also found. The manual for your com-
piler will be quite specific about this issue.

The reason for recommending that the definition of simple constants, but not the definition of
aggregates, be placed in header files is that it is hard for implementations to avoid replication of
aggregates presented in several translation units. Furthermore, the simple cases are far more com-
mon and therefore more important for generating good code.

It is wise not to be too clever about the use of#i in nc cl lu ud de e. My recommendation is to#i in nc cl lu ud de e
only complete declarations and definitions and to do so only in the global scope, in linkage specifi-
cation blocks, and in namespace definitions when converting old code (§9.2.2). As usual, it is wise
to avoid macro magic. One of my least favorite activities is tracking down an error caused by a
name being macro-substituted into something completely different by a macro defined in an indi-
rectly#i in nc cl lu ud de ed header that I have never even heard of.

9.2.2 Standard Library Headers [file.std.header]

The facilities of the standard library are presented through a set of standard headers (§16.1.2). No
suffix is needed for standard library headers; they are known to be headers because they are
included using the#i in nc cl lu ud de e<...> syntax rather than#i in nc cl lu ud de e"..." . The absence of a. h h suf-
fix does not imply anything about how the header is stored. A header such as<m ma ap p> may be
stored as a text file calledm ma ap p. h h in a standard directory. On the other hand, standard headers are
not required to be stored in a conventional manner. An implementation is allowed to take advan-
tage of knowledge of the standard library definition to optimize the standard library implementation
and the way standard headers are handled. For example, an implementation might have knowledge
of the standard math library (§22.3) built in and treat#i in nc cl lu ud de e<c cm ma at th h> as a switch that makes the
standard math functions available without reading any file.

For each C standard-library header<X X. h h>, there is a corresponding standard C++ header<c cX X>.
For example,#i in nc cl lu ud de e<c cs st td di io o> provides what#i in nc cl lu ud de e<s st td di io o. h h> does. A typicals st td di io o. h h will
look something like this:

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s / / for C++ compliers only (§9.2.4)
n na am me es sp pa ac ce e s st td d { / / the standard library is defined in namespace std (§8.2.9)

e ex xt te er rn n " C C" { / / stdio functions have C linkage (§9.2.4)
#e en nd di if f

/ / ...
i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* ...) ;
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.2 Standard Library Headers 203

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
}
}
u us si in ng g n na am me es sp pa ac ce e s st td d; / / make stdio available in global namespace
#e en nd di if f

That is, the actual declarations are (most likely) shared, but linkage and namespace issues must be
addressed to allow C and C++ to share a header.

9.2.3 The One-Definition Rule [file.odr]

A given class, enumeration, and template, etc., must be defined exactly once in a program.
From a practical point of view, this means that there must be exactly one definition of, say, a

class residing in a single file somewhere. Unfortunately, the language rule cannot be that simple.
For example, the definition of a class may be composed through macro expansion (ugh!), while a
definition of a class may be textually included in two source files by#i in nc cl lu ud de e directives (§9.2.1).
Worse, a ‘‘file’’ isn’t a concept that is part of the C and C++ language definitions; there exist imple-
mentations that do not store programs in source files.

Consequently, the rule in the standard that says that there must be a unique definition of a class,
template, etc., is phrased in a somewhat more complicated and subtle manner. This rule is com-
monly referred to as ‘‘the one-definition rule,’’ the ODR. That is, two definitions of a class, tem-
plate, or inline function are accepted as examples of the same unique definition if and only if

[1] they appear in different translation units, and
[2] they are token-for-token identical, and
[3] the meanings of those tokens are the same in both translation units.

For example:

/ / file1.c:
s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S*) ;

/ / file2.c:
s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S* p p) { /* ... */ }

The ODR says that this example is valid and thatS S refers to the same class in both source files.
However, it is unwise to write out a definition twice like that. Someone maintainingf fi il le e2 2. c c will
naturally assume that the definition ofS S in f fi il le e2 2. c c is the only definition ofS S and so feel free to
change it. This could introduce a hard-to-detect error.

The intent of the ODR is to allow inclusion of a class definition in different translation units
from a common source file. For example:

/ / file s.h:
s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S*) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

204 Source Files and Programs Chapter 9

/ / file1.c:
#i in nc cl lu ud de e " s s. h h"
/ / use f() here

/ / file2.c:
#i in nc cl lu ud de e " s s. h h"
v vo oi id d f f(S S* p p) { /* ... */ }

or graphically:

s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S*);

#i in nc cl lu ud de e " "s s. .h h" "
// use f() here

#i in nc cl lu ud de e " "s s. .h h" "
v vo oi id d f f(S S* p p) { /* */ }

s s. .h h: :

f fi il le e1 1. .c c: : f fi il le e2 2. .c c: :

Here are examples of the three ways of violating the ODR:

/ / file1.c:
s st tr ru uc ct t S S1 1 { i in nt t a a; c ch ha ar r b b; };

s st tr ru uc ct t S S1 1 { i in nt t a a; c ch ha ar r b b; }; / / error: double definition

This is an error because as st tr ru uc ct t may not be defined twice in a single translation unit.

/ / file1.c:
s st tr ru uc ct t S S2 2 { i in nt t a a; c ch ha ar r b b; };

/ / file2.c:
s st tr ru uc ct t S S2 2 { i in nt t a a; c ch ha ar r b bb b; }; / / error

This is an error becauseS S2 2 is used to name classes that differ in a member name.

/ / file1.c:
t ty yp pe ed de ef f i in nt t X X;
s st tr ru uc ct t S S3 3 { X X a a; c ch ha ar r b b; };

/ / file2.c:
t ty yp pe ed de ef f c ch ha ar r X X;
s st tr ru uc ct t S S3 3 { X X a a; c ch ha ar r b b; }; / / error

Here the two definitions ofS S3 3 are token-for-token identical, but the example is an error because the
meaning of the nameX X has sneakily been made to differ in the two files.

Checking against inconsistent class definitions in separate translation units is beyond the ability
of most C++ implementations. Consequently, declarations that violate the ODR can be a source of
subtle errors. Unfortunately, the technique of placing shared definitions in headers and#i in nc cl lu ud di in ng g
them doesn’t protect against this last form of ODR violation. Local typedefs and macros can
change the meaning of#i in nc cl lu ud de ed declarations:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.3 The One-Definition Rule 205

/ / file s.h:
s st tr ru uc ct t S S { P Po oi in nt t a a; c ch ha ar r b b; };

/ / file1.c:
#d de ef fi in ne e P Po oi in nt t i in nt t
#i in nc cl lu ud de e " s s. h h"
/ / ...

/ / file2.c:
c cl la as ss s P Po oi in nt t { /* ... */ };
#i in nc cl lu ud de e " s s. h h"
/ / ...

The best defense against this kind of hackery is to make headers as self-contained as possible. For
example, if classP Po oi in nt t had been declared in thes s. h h header the error would have been detected.

A template definition can be#i in nc cl lu ud de ed in several translation units as long as the ODR is
adhered to. In addition, an exported template can be used given only a declaration:

/ / file1.c:
e ex xp po or rt t t te em mp pl la at te e<c cl la as ss s T T> T T t tw wi ic ce e(T T t t) { r re et tu ur rn n t t+t t; }

/ / file2.c:
t te em mp pl la at te e<c cl la as ss s T T> T T t tw wi ic ce e(T T t t) ; / / declaration
i in nt t g g(i in nt t i i) { r re et tu ur rn n t tw wi ic ce e(i i) ; }

The keyworde ex xp po or rt t means ‘‘accessible from another translation unit’’ (§13.7).

9.2.4 Linkage to Non-C++ Code [file.c]

Typically, a C++ program contains parts written in other languages. Similarly, it is common for
C++ code fragments to be used as parts of programs written mainly in some other language. Coop-
eration can be difficult between program fragments written in different languages and even between
fragments written in the same language but compiled with different compilers. For example, differ-
ent languages and different implementations of the same language may differ in their use of
machine registers to hold arguments, the layout of arguments put on a stack, the layout of built-in
types such as strings and integers, the form of names passed by the compiler to the linker, and the
amount of type checking required from the linker. To help, one can specify alinkageconvention to
be used in ane ex xt te er rn n declaration. For example, this declares the C and C++ standard library func-
tion s st tr rc cp py y() and specifies that it should be linked according to the C linkage conventions:

e ex xt te er rn n " C C" c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;

The effect of this declaration differs from the effect of the ‘‘plain’’ declaration

e ex xt te er rn n c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;

only in the linkage convention used for callings st tr rc cp py y() .
Thee ex xt te er rn n " "C C" " directive is particularly useful because of the close relationship between C and

C++. Note that theC C in e ex xt te er rn n " "C C" " names a linkage convention and not a language. Often,e ex xt te er rn n
" "C C" " is used to link to Fortran and assembler routines that happen to conform to the conventions of a
C implementation.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

206 Source Files and Programs Chapter 9

An e ex xt te er rn n " "C C" " directive specifies the linkage convention (only) and does not affect the seman-
tics of calls to the function. In particular, a function declarede ex xt te er rn n " "C C" " still obeys the C++ type
checking and argument conversion rules and not the weaker C rules. For example:

e ex xt te er rn n " C C" i in nt t f f() ;

i in nt t g g()
{

r re et tu ur rn n f f(1 1) ; / / error: no argument expected
}

Adding e ex xt te er rn n " "C C" " to a lot of declarations can be a nuisance. Consequently, there is a mechanism
to specify linkage to a group of declarations. For example:

e ex xt te er rn n " C C" {
c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ;
/ / ...

}

This construct, commonly called alinkage block, can be used to enclose a complete C header to
make a header suitable for C++ use. For example:

e ex xt te er rn n " C C" {
#i in nc cl lu ud de e <s st tr ri in ng g. h h>
}

This technique is commonly used to produce a C++ header from a C header. Alternatively, condi-
tional compilation (§7.8.1) can be used to create a common C and C++ header:

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
e ex xt te er rn n " C C" {
#e en nd di if f

c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ;
/ / ...

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
}
#e en nd di if f

The predefined macro name_ __ _c cp pl lu us sp pl lu us s is used to ensure that the C++ constructs are edited out
when the file is used as a C header.

Any declaration can appear within a linkage block:

e ex xt te er rn n " C C" { / / any declaration here, for example:
i in nt t g g1 1; / / definition
e ex xt te er rn n i in nt t g g2 2; / / declaration, not definition

}

In particular, the scope and storage class of variables are not affected, sog g1 1 is still a global variable

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.4 Linkage to Non-C++ Code 207

– and is still defined rather than just declared. To declare but not define a variable, you must apply
the keyworde ex xt te er rn n directly in the declaration. For example:

e ex xt te er rn n " C C" i in nt t g g3 3; / / declaration, not definition

This looks odd at first glance. However, it is a simple consequence of keeping the meaning
unchanged when adding" "C C" " to an extern declaration and the meaning of a file unchanged when
enclosing it in a linkage block.

A name with C linkage can be declared in a namespace. The namespace will affect the way the
name is accessed in the C++ program, but not the way a linker sees it. Thep pr ri in nt tf f() from s st td d is a
typical example:

#i in nc cl lu ud de e<c cs st td di io o>

v vo oi id d f f()
{

s st td d: : p pr ri in nt tf f(" H He el ll lo o, ") ; / / ok
p pr ri in nt tf f(" w wo or rl ld d! \ \n n") ; / / error: no global printf()

}

Even when calleds st td d: : p pr ri in nt tf f, it is still the same old Cp pr ri in nt tf f() (§21.8).
Note that this allows us to include libraries with C linkage into a namespace of our choice rather

than polluting the global namespace. Unfortunately, the same flexibility is not available to us for
headers defining functions with C++ linkage in the global namespace. The reason is that linkage of
C++ entities must take namespaces into account so that the object files generated will reflect the use
or lack of use of namespaces.

9.2.5 Linkage and Pointers to Functions [file.ptof]

When mixing C and C++ code fragments in one program, we sometimes want to pass pointers to
functions defined in one language to functions defined in the other. If the two implementations of
the two languages share linkage conventions and function-call mechanisms, such passing of point-
ers to functions is trivial. However, such commonality cannot in general be assumed, so care must
be taken to ensure that a function is called the way it expects to be called.

When linkage is specified for a declaration, the specified linkage applies to all function types,
function names, and variable names introduced by the declaration(s). This makes all kinds of
strange– and occasionally essential– combinations of linkage possible. For example:

t ty yp pe ed de ef f i in nt t (* F FT T)(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / FT has C++ linkage

e ex xt te er rn n " C C" {
t ty yp pe ed de ef f i in nt t (* C CF FT T)(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / CFT has C linkage
v vo oi id d q qs so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, C CF FT T c cm mp p) ; / / cmp has C linkage

}

v vo oi id d i is so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, F FT T c cm mp p) ; / / cmp has C++ linkage
v vo oi id d x xs so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, C CF FT T c cm mp p) ; / / cmp has C linkage
e ex xt te er rn n " C C" v vo oi id d y ys so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, F FT T c cm mp p) ; / / cmp has C++ linkage

i in nt t c co om mp pa ar re e(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / compare() has C++ linkage
e ex xt te er rn n " C C" i in nt t c cc cm mp p(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / ccmp() has C linkage

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

208 Source Files and Programs Chapter 9

v vo oi id d f f(c ch ha ar r* v v, i in nt t s sz z)
{

q qs so or rt t(v v, s sz z, 1 1,& c co om mp pa ar re e) ; / / error
q qs so or rt t(v v, s sz z, 1 1,& c cc cm mp p) ; / / ok

i is so or rt t(v v, s sz z, 1 1,& c co om mp pa ar re e) ; / / ok
i is so or rt t(v v, s sz z, 1 1,& c cc cm mp p) ; / / error

}

An implementation in which C and C++ use the same calling conventions might accept the cases
markederror as a language extension.

9.3 Using Header Files[file.using]

To illustrate the use of headers, I present a few alternative ways of expressing the physical structure
of the calculator program (§6.1, §8.2).

9.3.1 Single Header File [file.single]

The simplest solution to the problem of partitioning a program into several files is to put the defini-
tions in a suitable number of. c c files and to declare the types needed for them to communicate in a
single. h h file that each. c c file #i in nc cl lu ud de es. For the calculator program, we might use five. c c files –
l le ex xe er r. c c, p pa ar rs se er r. c c, t ta ab bl le e. c c, e er rr ro or r. c c, andm ma ai in n. c c – to hold function and data definitions, plus the
headerd dc c. h h to hold the declarations of every name used in more than one. c c file.

The headerd dc c. h h would look like this:

/ / dc.h:

n na am me es sp pa ac ce e E Er rr ro or r {
s st tr ru uc ct t Z Ze er ro o_ _d di iv vi id de e { };

s st tr ru uc ct t S Sy yn nt ta ax x_ _e er rr ro or r {
c co on ns st t c ch ha ar r* p p;
S Sy yn nt ta ax x_ _e er rr ro or r(c co on ns st t c ch ha ar r* q q) { p p = q q; }

};
}

#i in nc cl lu ud de e <s st tr ri in ng g>

n na am me es sp pa ac ce e L Le ex xe er r {

e en nu um m T To ok ke en n_ _v va al lu ue e {
N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

e ex xt te er rn n T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k;
e ex xt te er rn n d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
e ex xt te er rn n s st td d: : s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.1 Single Header File 209

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() ;
}

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) ; / / handle primaries
d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) ; / / multiply and divide
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) ; / / add and subtract

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n;
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k;

}

#i in nc cl lu ud de e <m ma ap p>

e ex xt te er rn n s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

n na am me es sp pa ac ce e D Dr ri iv ve er r {
e ex xt te er rn n i in nt t n no o_ _o of f_ _e er rr ro or rs s;
e ex xt te er rn n s st td d: : i is st tr re ea am m* i in np pu ut t;
v vo oi id d s sk ki ip p() ;

}

The keyworde ex xt te er rn n is used for every declaration of a variable to ensure that multiple definitions do
not occur as we#i in nc cl lu ud de e d dc c. h h in the various. c c files. The corresponding definitions are found in
the appropriate. c c files.

Leaving out the actual code,l le ex xe er r. c c will look something like this:

/ / lexer.c:

#i in nc cl lu ud de e " d dc c. h h"
#i in nc cl lu ud de e <i io os st tr re ea am m>
#i in nc cl lu ud de e <c cc ct ty yp pe e>

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : c cu ur rr r_ _t to ok k;
d do ou ub bl le e L Le ex xe er r: : n nu um mb be er r_ _v va al lu ue e;
s st td d: : s st tr ri in ng g L Le ex xe er r: : s st tr ri in ng g_ _v va al lu ue e;

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n() { /* ... */ }

Using headers in this manner ensures that every declaration in a header will at some point be
included in the file containing its definition. For example, when compilingl le ex xe er r. c c the compiler
will be presented with:

n na am me es sp pa ac ce e L Le ex xe er r { / / from dc.h
/ / ...
T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() ;

}

/ / ...

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n() { /* ... */ }

This ensures that the compiler will detect any inconsistencies in the types specified for a name. For
example, hadg ge et t_ _t to ok ke en n() been declared to return aT To ok ke en n_ _v va al lu ue e, but defined to return ani in nt t, the
compilation ofl le ex xe er r. c c would have failed with a type-mismatch error. If a definition is missing,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

210 Source Files and Programs Chapter 9

the linker will catch the problem. If a declaration is missing, some. c c file will fail to compile.
File p pa ar rs se er r. c c will look like this:

/ / parser.c:

#i in nc cl lu ud de e " d dc c. h h"

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : e ex xp pr r(b bo oo ol l g ge et t) { /* ... */ }

File t ta ab bl le e. c c will look like this:

/ / table.c:

#i in nc cl lu ud de e " d dc c. h h"

s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

The symbol table is simply a variable of the standard librarym ma ap p type. This definest ta ab bl le e to be
global. In a realistically-sized program, this kind of minor pollution of the global namespace builds
up and eventually causes problems. I left this sloppiness here simply to get an opportunity to warn
against it.

Finally, file m ma ai in n. c c will look like this:

/ / main.c:

#i in nc cl lu ud de e " d dc c. h h"
#i in nc cl lu ud de e <s ss st tr re ea am m>

i in nt t D Dr ri iv ve er r: : n no o_ _o of f_ _e er rr ro or rs s = 0 0;
s st td d: : i is st tr re ea am m* D Dr ri iv ve er r: : i in np pu ut t = 0 0;

v vo oi id d D Dr ri iv ve er r: : s sk ki ip p() { /* ... */ }

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) { /* ... */ }

To be recognized asthe m ma ai in n() of the program,m ma ai in n() must be a global function, so no name-
space is used here.

The physical structure of the system can be presented like this:

t ta ab bl le e. .c c
. .

p pa ar rs se er r. .c c
. .

d dr ri iv ve er r. .c c
. .

l le ex xe er r. .c c

. .
dc.h

< <s st tr ri in ng g> >
. .

< <m ma ap p> >
. .

< <c cc ct ty yp pe e> >
. .
< <i io os st tr re ea am m> >

. .
< <s ss st tr re ea am m> > ..

Note that the headers on the top are all headers for standard library facilities. For many forms of
program analysis, these libraries can be ignored because they are well known and stable. For tiny

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.1 Single Header File 211

programs, the structure can be simplified by moving all#i in nc cl lu ud de edirectives to the common header.
This single-header style of physical partitioning is most useful when the program is small and

its parts are not intended to be used separately. Note that when namespaces are used, the logical
structure of the program is still represented withind dc c. h h. If namespaces are not used, the structure
is obscured, although comments can be a help.

For larger programs, the single header file approach is unworkable in a conventional file-based
development environment. A change to the common header forces recompilation of the whole pro-
gram, and updates of that single header by several programmers are error-prone. Unless strong
emphasis is placed on programming styles relying heavily on namespaces and classes, the logical
structure deteriorates as the program grows.

9.3.2 Multiple Header Files [file.multi]

An alternative physical organization lets each logical module have its own header defining the
facilities it provides. Each. c c file then has a corresponding. h h file specifying what it provides (its
interface). Each. c c file includes its own. h h file and usually also other. h h files that specify what it
needs from other modules in order to implement the services advertised in the interface. This phys-
ical organization corresponds to the logical organization of a module. The interface for users is put
into its . h h file, the interface for implementers is put into a file suffixed_ _i im mp pl l. h h, and the module’s
definitions of functions, variables, etc. are placed in. c c files. In this way, the parser is represented
by three files. The parser’s user interface is provided byp pa ar rs se er r. h h:

/ / parser.h:

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for users
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) ;

}

The shared environment for the functions implementing the parser is presented byp pa ar rs se er r_ _i im mp pl l. h h:

/ / parser_impl.h:

#i in nc cl lu ud de e " p pa ar rs se er r. h h"
#i in nc cl lu ud de e " e er rr ro or r. h h"
#i in nc cl lu ud de e " l le ex xe er r. h h"

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for implementers
d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) ;
d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) ;
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) ;

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n;
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k;

}

The user’s headerp pa ar rs se er r. h h is #i in nc cl lu ud de ed to give the compiler a chance to check consistency
(§9.3.1).

The functions implementing the parser are stored inp pa ar rs se er r. c c together with#i in nc cl lu ud de e directives
for the headers that theP Pa ar rs se er r functions need:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

212 Source Files and Programs Chapter 9

/ / parser.c:

#i in nc cl lu ud de e " p pa ar rs se er r_ _i im mp pl l. h h"
#i in nc cl lu ud de e " t ta ab bl le e. h h"

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : e ex xp pr r(b bo oo ol l g ge et t) { /* ... */ }

Graphically, the parser and the driver’s use of it look like this:

p pa ar rs se er r. .h h
. .

l le ex xe er r. .h h
. .

e er rr ro or r. .h h
. .

t ta ab bl le e. .h h

. .
p pa ar rs se er r_ _i im mp pl l. .h h

. .
d dr ri iv ve er r. .c c

. .
p pa ar rs se er r. .c c

..

As intended, this is a rather close match to the logical structure described in §8.3.3. To simplify
this structure, we could have#i in nc cl lu ud de ed t ta ab bl le e. h h in p pa ar rs se er r_ _i im mp pl l. h h rather than inp pa ar rs se er r. c c. How-
ever,t ta ab bl le e. h h is an example of something that is not necessary to express the shared context of the
parser functions; it is needed only by their implementation. In fact, it is used by just one function,
e ex xp pr r() , so if we were really keen on minimizing dependencies we could placee ex xp pr r() in its own
. c c file and#i in nc cl lu ud de e t ta ab bl le e. h h there only:

p pa ar rs se er r. .h h
. .

l le ex xe er r. .h h
. .

e er rr ro or r. .h h
. .

t ta ab bl le e. .h h

. .
p pa ar rs se er r_ _i im mp pl l. .h h

. .
p pa ar rs se er r. .c c

..

e ex xp pr r. .c c

..

Such elaboration is not appropriate except for larger modules. For realistically-sized modules, it is
common to#i in nc cl lu ud de e extra files where needed for individual functions. Furthermore, it is not
uncommon to have more than one_ _i im mp pl l. h h, since different subsets of the module’s functions need
different shared contexts.

Please note that the_ _i im mp pl l. h h notation is not a standard or even a common convention; it is sim-
ply the way I like to name things.

Why bother with this more complicated scheme of multiple header files? It clearly requires far
less thought simply to throw every declaration into a single header, as was done ford dc c. h h.

The multiple-header organization scales to modules several magnitudes larger than our toy
parser and to programs several magnitudes larger than our calculator. The fundamental reason for
using this type of organization is that it provides a better localization of concerns. When analyzing

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.2 Multiple Header Files 213

and modifying a large program, it is essential for a programmer to focus on a relatively small chunk
of code. The multiple-header organization makes it easy to determine exactly what the parser code
depends on and to ignore the rest of the program. The single-header approach forces us to look at
every declaration used by any module and decide if it is relevant. The simple fact is that mainte-
nance of code is invariably done with incomplete information and from a local perspective. The
multiple-header organization allows us to work successfully ‘‘from the inside out’’ with only a
local perspective. The single-header approach– like every other organization centered around a
global repository of information– requires a top-down approach and will forever leave us wonder-
ing exactly what depends on what.

The better localization leads to less information needed to compile a module, and thus to faster
compiles. The effect can be dramatic. I have seen compile times drop by a factor of ten as the
result of a simple dependency analysis leading to a better use of headers.

9.3.2.1 Other Calculator Modules [file.multi.etc]

The remaining calculator modules can be organized similarly to the parser. However, those mod-
ules are so small that they don’t require their own_ _i im mp pl l. h h files. Such files are needed only where
a logical module consists of many functions that need a shared context.

The error handler was reduced to the set of exception types so that noe er rr ro or r. c c was needed:

/ / error.h:

n na am me es sp pa ac ce e E Er rr ro or r {
s st tr ru uc ct t Z Ze er ro o_ _d di iv vi id de e { };

s st tr ru uc ct t S Sy yn nt ta ax x_ _e er rr ro or r {
c co on ns st t c ch ha ar r* p p;
S Sy yn nt ta ax x_ _e er rr ro or r(c co on ns st t c ch ha ar r* q q) { p p = q q; }

};
}

The lexer provides a rather large and messy interface:

/ / lexer.h:

#i in nc cl lu ud de e <s st tr ri in ng g>

n na am me es sp pa ac ce e L Le ex xe er r {

e en nu um m T To ok ke en n_ _v va al lu ue e {
N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

e ex xt te er rn n T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k;
e ex xt te er rn n d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
e ex xt te er rn n s st td d: : s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

214 Source Files and Programs Chapter 9

In addition tol le ex xe er r. h h, the implementation of the lexer depends one er rr ro or r. h h, <i io os st tr re ea am m>, and the
functions determining the kinds of characters declared in<c cc ct ty yp pe e>:

/ / lexer.c:

#i in nc cl lu ud de e " l le ex xe er r. h h"
#i in nc cl lu ud de e " e er rr ro or r. h h"
#i in nc cl lu ud de e <i io os st tr re ea am m>
#i in nc cl lu ud de e <c cc ct ty yp pe e>

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : c cu ur rr r_ _t to ok k;
d do ou ub bl le e L Le ex xe er r: : n nu um mb be er r_ _v va al lu ue e;
s st td d: : s st tr ri in ng g L Le ex xe er r: : s st tr ri in ng g_ _v va al lu ue e;

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n() { /* ... */ }

We could have factored out the#i in nc cl lu ud de e statements fore er rr ro or r. h h as theL Le ex xe er r’s _ _i im mp pl l. h h file.
However, I considered that excessive for this tiny program.

As usual, we#i in nc cl lu ud de e the interface offered by the module– in this case,l le ex xe er r. h h – in the
module’s implementation to give the compiler a chance to check consistency.

The symbol table is essentially self-contained, although the standard library header<m ma ap p>
could drag in all kinds of interesting stuff to implement an efficientm ma ap p template class:

/ / table.h:

#i in nc cl lu ud de e <m ma ap p>
#i in nc cl lu ud de e <s st tr ri in ng g>

e ex xt te er rn n s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

Because we assume that every header may be#i in nc cl lu ud de ed in several. c c files, we must separate the
declaration oft ta ab bl le e from its definition, even though the difference betweent ta ab bl le e. c c andt ta ab bl le e. h h is
the single keyworde ex xt te er rn n:

/ / table.c:

#i in nc cl lu ud de e " t ta ab bl le e. h h"

s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

Basically, the driver depends on everything:

/ / main.c:

#i in nc cl lu ud de e " p pa ar rs se er r. h h"
#i in nc cl lu ud de e " l le ex xe er r. h h"
#i in nc cl lu ud de e " e er rr ro or r. h h"
#i in nc cl lu ud de e " t ta ab bl le e. h h"

n na am me es sp pa ac ce e D Dr ri iv ve er r {
i in nt t n no o_ _o of f_ _e er rr ro or rs s;
s st td d: : i is st tr re ea am m* i in np pu ut t;
v vo oi id d s sk ki ip p() ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.2.1 Other Calculator Modules 215

#i in nc cl lu ud de e <s ss st tr re ea am m>

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) { /* ... */ }

Because theD Dr ri iv ve er r namespace is used exclusively bym ma ai in n() , I placed it inm ma ai in n. c c. Alterna-
tively, I could have factored it out asd dr ri iv ve er r. h h and#i in nc cl lu ud de ed it.

For a larger system, it is usually worthwhile organizing things so that the driver has fewer direct
dependencies. Often, is it also worth minimizing what is done inm ma ai in n() by havingm ma ai in n() call a
driver function placed in a separate source file. This is particularly important for code intended to
be used as a library. Then, we cannot rely on code inm ma ai in n() and must be prepared to be called
from a variety of functions (§9.6[8]).

9.3.2.2 Use of Headers [file.multi.use]

The number of headers to use for a program is a function of many factors. Many of these factors
have more to do with the way files are handled on your system than with C++. For example, if your
editor does not have facilities for looking at several files at the same time, then using many headers
becomes less attractive. Similarly, if opening and reading 20 files of 50 lines each is noticeably
more time-consuming than reading a single file of 1000 lines, you might think twice before using
the multiple-header style for a small project.

A word of caution: a dozen headers plus the standard headers for the program’s execution envi-
ronment (which can often be counted in the hundreds) are usually manageable. However, if you
partition the declarations of a large program into the logically minimal-sized headers (putting each
structure declaration in its own file, etc.), you can easily get an unmanageable mess of hundreds of
files even for minor projects. I find that excessive.

For large projects, multiple headers are unavoidable. In such projects, hundreds of files (not
counting standard headers) are the norm. The real confusion starts when they start to be counted in
the thousands. At that scale, the basic techniques discussed here still apply, but their management
becomes a Herculean task. Remember that for realistically-sized programs, the single-header style
is not an option. Such programs will have multiple headers. The choice between the two styles of
organization occurs (repeatedly) for the parts that make up the program.

The single-header style and the multiple-header style are not really alternatives to each other.
They are complementary techniques that must be considered whenever a significant module is
designed and must be reconsidered as a system evolves. It’s crucial to remember that one interface
doesn’t serve all equally well. It is usually worthwhile to distinguish between the implementers’
interface and the users’ interface. In addition, many larger systems are structured so that providing
a simple interface for the majority of users and a more extensive interface for expert users is a good
idea. The expert users’ interfaces (‘‘complete interfaces’’) tend to#i in nc cl lu ud de e many more features
than the average user would ever want to know about. In fact, the average users’ interface can
often be identified by eliminating features that require the inclusion of headers that define facilities
that would be unknown to the average user. The term ‘‘average user’’ is not derogatory. In the
fields in which I don’thaveto be an expert, I strongly prefer to be an average user. In that way, I
minimize hassles.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

216 Source Files and Programs Chapter 9

9.3.3 Include Guards [file.guards]

The idea of the multiple-header approach is to represent each logical module as a consistent, self-
contained unit. Viewed from the program as a whole, many of the declarations needed to make
each logical module complete are redundant. For larger programs, such redundancy can lead to
errors, as a header containing class definitions or inline functions gets#i in nc cl lu ud de ed twice in the same
compilation unit (§9.2.3).

We have two choices. We can
[1] reorganize our program to remove the redundancy, or
[2] find a way to allow repeated inclusion of headers.

The first approach– which led to the final version of the calculator– is tedious and impractical for
realistically-sized programs. We also need that redundancy to make the individual parts of the pro-
gram comprehensible in isolation.

The benefits of an analysis of redundant#i in nc cl lu ud de es and the resulting simplifications of the pro-
gram can be significant both from a logical point of view and by reducing compile times. How-
ever, it can rarely be complete, so some method of allowing redundant#i in nc cl lu ud de es must be applied.
Preferably, it must be applied systematically, since there is no way of knowing how thorough an
analysis a user will find worthwhile.

The traditional solution is to insertinclude guardsin headers. For example:

/ / error.h:

#i if fn nd de ef f C CA AL LC C_ _E ER RR RO OR R_ _H H
#d de ef fi in ne e C CA AL LC C_ _E ER RR RO OR R_ _H H

n na am me es sp pa ac ce e E Er rr ro or r {
/ / ...

}

#e en nd di if f / / CALC_ERROR_H

The contents of the file between the#i if fn nd de ef f and #e en nd di if f are ignored by the compiler if
C CA AL LC C_ _E ER RR RO OR R_ _H H is defined. Thus, the first timee er rr ro or r. h h is seen during a compilation, its con-
tents are read andC CA AL LC C_ _E ER RR RO OR R_ _H H is given a value. Should the compiler be presented with
e er rr ro or r. h h again during the compilation, the contents are ignored. This is a piece of macro hackery,
but it works and it is pervasive in the C and C++ worlds. The standard headers all have include
guards.

Header files are included in essentially arbitrary contexts, and there is no namespace protection
against macro name clashes. Consequently, I choose rather long and ugly names as my include
guards.

Once people get used to headers and include guards, they tend to includelots of headers directly
and indirectly. Even with C++ implementations that optimize the processing of headers, this can be
undesirable. It can cause unnecessarily long compile time, and it can bringl lo ot ts s of declarations and
macros into scope. The latter might affect the meaning of the program in unpredictable and adverse
ways. Headers should be included only when necessary.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.4 Programs 217

9.4 Programs[file.programs]

A program is a collection of separately compiled units combined by a linker. Every function,
object, type, etc., used in this collection must have a unique definition (§4.9, §9.2.3). The program
must contain exactly one function calledm ma ai in n() (§3.2). The main computation performed by the
program starts with the invocation ofm ma ai in n() and ends with a return fromm ma ai in n() . The i in nt t
returned bym ma ai in n() is passed to whatever system invokedm ma ai in n() as the result of the program.

This simple story must be elaborated on for programs that contain global variables (§10.4.9) or
that throw an uncaught exception (§14.7).

9.4.1 Initialization of Nonlocal Variables [file.nonlocal]

In principle, a variable defined outside any function (that is, global, namespace, and classs st ta at ti ic c
variables) is initialized beforem ma ai in n() is invoked. Such nonlocal variables in a translation unit are
initialized in their declaration order (§10.4.9). If such a variable has no explicit initializer, it is by
default initialized to the default for its type (§10.4.2). The default initializer value for built-in types
and enumerations is0 0. For example:

d do ou ub bl le e x x = 2 2; / / nonlocal variables
d do ou ub bl le e y y;
d do ou ub bl le e s sq qx x = s sq qr rt t(x x+y y) ;

Here,x x andy y are initialized befores sq qx x, sos sq qr rt t(2 2) is called.
There is no guaranteed order of initialization of global variables in different translation units.

Consequently, it is unwise to create order dependencies between initializers of global variables in
different compilation units. In addition, it is not possible to catch an exception thrown by the ini-
tializer of a global variable (§14.7). It is generally best to minimize the use of global variables and
in particular to limit the use of global variables requiring complicated initialization.

Several techniques exist for enforcing an order of initialization of global variables in different
translation units. However, none are both portable and efficient. In particular, dynamically linked
libraries do not coexist happily with global variables that have complicated dependencies.

Often, a function returning a reference is a good alternative to a global variable. For example:

i in nt t& u us se e_ _c co ou un nt t()
{

s st ta at ti ic c i in nt t u uc c = 0 0;
r re et tu ur rn n u uc c;

}

A call u us se e_ _c co ou un nt t() now acts as a global variable except that it is initialized at its first use (§5.5).
For example:

v vo oi id d f f()
{

c co ou ut t << ++u us se e_ _c co ou un nt t() ; / / read and increment
/ / ...

}

The initialization of nonlocal static variables is controlled by whatever mechanism an

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

218 Source Files and Programs Chapter 9

implementation uses to start up a C++ program. This mechanism is guaranteed to work properly
only if m ma ai in n() is executed. Consequently, one should avoid nonlocal variables that require run-
time initialization in C++ code intended for execution as a fragment of a non-C++ program.

Note that variables initialized by constant expressions (§C.5) cannot depend on the value of
objects from other translation units and do not require run-time initialization. Such variables are
therefore safe to use in all cases.

9.4.1.1 Program Termination [file.termination]

A program can terminate in several ways:
– By returning fromm ma ai in n()
– By callinge ex xi it t()
– By callinga ab bo or rt t()
– By throwing an uncaught exception

In addition, there are a variety of ill-behaved and implementation-dependent ways of making a pro-
gram crash.

If a program is terminated using the standard library functione ex xi it t() , the destructors for con-
structed static objects are called (§10.4.9, §10.2.4). However, if the program is terminated using
the standard library functiona ab bo or rt t() , they are not. Note that this implies thate ex xi it t() does not ter-
minate a program immediately. Callinge ex xi it t() in a destructor may cause an infinite recursion. The
type ofe ex xi it t() is

v vo oi id d e ex xi it t(i in nt t) ;

Like the return value ofm ma ai in n() (§3.2),e ex xi it t() ’s argument is returned to ‘‘the system’’ as the value
of the program. Zero indicates successful completion.

Calling e ex xi it t() means that the local variables of the calling function and its callers will not have
their destructors invoked. Throwing an exception and catching it ensures that local objects are
properly destroyed (§14.4.7). Also, a call ofe ex xi it t() terminates the program without giving the
caller of the function that callede ex xi it t() a chance to deal with the problem. It is therefore often best
to leave a context by throwing an exception and letting a handler decide what to do next.

The C (and C++) standard library functiona at te ex xi it t() offers the possibility to have code executed
at program termination. For example:

v vo oi id d m my y_ _c cl le ea an nu up p() ;

v vo oi id d s so om me ew wh he er re e()
{

i if f (a at te ex xi it t(& m my y_ _c cl le ea an nu up p)== 0 0) {
/ / my_cleanup will be called at normal termination

}
e el ls se e {

/ / oops: too many atexit functions
}

}

This strongly resembles the automatic invocation of destructors for global variables at program ter-
mination (§10.4.9, §10.2.4). Note that an argument toa at te ex xi it t() cannot take arguments or return a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.4.1.1 Program Termination 219

result. Also, there is an implementation-defined limit to the number of atexit functions;a at te ex xi it t()
indicates when that limit is reached by returning a nonzero value. These limitations makea at te ex xi it t()
less useful than it appears at first glance.

The destructor of an object created before a call ofa at te ex xi it t(f f) will be invoked afterf f is invoked.
The destructor of an object created after a call ofa at te ex xi it t(f f) will be invoked beforef f is invoked.

Thee ex xi it t() , a ab bo or rt t() , anda at te ex xi it t() functions are declared in<c cs st td dl li ib b>.

9.5 Advice[file.advice]

[1] Use header files to represent interfaces and to emphasize logical structure; §9.1, §9.3.2.
[2] #i in nc cl lu ud de ea header in the source file that implements its functions; §9.3.1.
[3] Don’t define global entities with the same name and similar-but-different meanings in differ-

ent translation units; §9.2.
[4] Avoid non-inline function definitions in headers; §9.2.1.
[5] Use#i in nc cl lu ud de eonly at global scope and in namespaces; §9.2.1.
[6] #i in nc cl lu ud de eonly complete declarations; §9.2.1.
[7] Use include guards; §9.3.3.
[8] #i in nc cl lu ud de eC headers in namespaces to avoid global names; §9.3.2.
[9] Make headers self-contained; §9.2.3.
[10] Distinguish between users’ interfaces and implementers’ interfaces; §9.3.2.
[11] Distinguish between average users’ interfaces and expert users’ interfaces; §9.3.2.
[12] Avoid nonlocal objects that require run-time initialization in code intended for use as part of

non-C++ programs; §9.4.1.

9.6 Exercises[file.exercises]

1. (∗2) Find where the standard library headers are kept on your system. List their names. Are
any nonstandard headers kept together with the standard ones? Can any nonstandard headers be
#i in nc cl lu ud de ed using the<> notation?

2. (∗2) Where are the headers for nonstandard library ‘‘foundation’’ libraries kept?
3. (∗2.5) Write a program that reads a source file and writes out the names of files#i in nc cl lu ud de ed.

Indent file names to show files#i in nc cl lu ud de ed d by included files. Try this program on some real
source files (to get an idea of the amount of information included).

4. (∗3) Modify the program from the previous exercise to print the number of comment lines, the
number of non-comment lines, and the number of non-comment, whitespace-separated words
for each file#i in nc cl lu ud de ed.

5. (∗2.5) An external include guard is a construct that tests outside the file it is guarding and
i in nc cl lu ud de es only once per compilation. Define such a construct, devise a way of testing it, and dis-
cuss its advantages and disadvantages compared to the include guards described in §9.3.3. Is
there any significant run-time advantage to external include guards on your system.

6. (∗3) How is dynamic linking achieved on your system. What restrictions are placed on dynami-
cally linked code? What requirements are placed on code for it to be dynamically linked?

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

220 Source Files and Programs Chapter 9

7. (∗3) Open and read 100 files containing 1500 characters each. Open and read one file contain-
ing 150,000 characters. Hint: See example in §21.5.1. Is there a performance difference?
What is the highest number of files that can be simultaneously open on your system? Consider
these questions in relation to the use of#i in nc cl lu ud de e files.

8. (∗2) Modify the desk calculator so that it can be invoked fromm ma ai in n() or from other functions
as a simple function call.

9. (∗2) Draw the ‘‘module dependency diagrams’’ (§9.3.2) for the version of the calculator that
usede er rr ro or r() instead of exceptions (§8.2.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Part II

Abstraction Mechanisms

This part describes C++’s facilities for defining and using new types. Techniques com-
monly called object-oriented programming and generic programming are presented.

Chapters

10 Classes
11 Operator Overloading
12 Derived Classes
13 Templates
14 Exception Handling
15 Class Hierarchies

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

222 Abstraction Mechanisms Part II

‘‘... there is nothing more difficult to carry out, nor more doubtful of success, nor more
dangerous to handle, than to initiate a new order of things. For the reformer makes
enemies of all those who profit by the old order, and only lukewarm defenders in all
those who would profit by the new order...’’

— Nicollo Machiavelli (‘‘The Prince’’ §vi)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

10
_ __ _______________________________________

Classes

Those types are not "abstract";
they are as real asint andfloat .

– Doug McIlroy

Concepts and classes— class members— access control— constructors— s st ta at ti ic c
members— default copy— c co on ns st t member functions— t th hi is s — s st tr ru uc ct ts — in-class func-
tion definition — concrete classes— member functions and helper functions— over-
loaded operators— use of concrete classes— destructors— default construction—
local variables— user-defined copy— n ne ew w andd de el le et te e — member objects— arrays—
static storage— temporary variables— unions— advice— exercises.

10.1 Introduction [class.intro]

The aim of the C++ class concept is to provide the programmer with a tool for creating new types
that can be used as conveniently as the built-in types. In addition, derived classes (Chapter 12) and
templates (Chapter 13) provide ways of organizing related classes that allow the programmer to
take advantage of their relationships.

A type is a concrete representation of a concept. For example, the C++ built-in type f fl lo oa at t with
its operations+, - , * , etc., provides a concrete approximation of the mathematical concept of a real
number. A class is a user-defined type. We design a new type to provide a definition of a concept
that has no direct counterpart among the built-in types. For example, we might provide a type
T Tr ru un nk k_ _l li in ne e in a program dealing with telephony, a typeE Ex xp pl lo os si io on n for a videogame, or a type
l li is st t<P Pa ar ra ag gr ra ap ph h> for a text-processing program. A program that provides types that closely match
the concepts of the application tends to be easier to understand and easier to modify than a program
that does not. A well-chosen set of user-defined types makes a program more concise. In addition,
it makes many sorts of code analysis feasible. In particular, it enables the compiler to detect illegal
uses of objects that would otherwise remain undetected until the program is thoroughly tested.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

224 Classes Chapter 10

The fundamental idea in defining a new type is to separate the incidental details of the imple-
mentation (e.g., the layout of the data used to store an object of the type) from the properties essen-
tial to the correct use of it (e.g., the complete list of functions that can access the data). Such a sep-
aration is best expressed by channeling all uses of the data structure and internal housekeeping rou-
tines through a specific interface.

This chapter focuses on relatively simple ‘‘concrete’’ user-defined types that logically don’t dif-
fer much from built-in types. Ideally, such types should not differ from built-in types in the way
they are used, only in the way they are created.

10.2 Classes[class.class]

A classis a user-defined type. This section introduces the basic facilities for defining a class, creat-
ing objects of a class, and manipulating such objects.

10.2.1 Member Functions [class.member]

Consider implementing the concept of a date using as st tr ru uc ct t to define the representation of aD Da at te e
and a set of functions for manipulating variables of this type:

s st tr ru uc ct t D Da at te e { / / representation
i in nt t d d, m m, y y;

};

v vo oi id d i in ni it t_ _d da at te e(D Da at te e& d d, i in nt t, i in nt t, i in nt t) ; / / initialize d
v vo oi id d a ad dd d_ _y ye ea ar r(D Da at te e& d d, i in nt t n n) ; / / add n years to d
v vo oi id d a ad dd d_ _m mo on nt th h(D Da at te e& d d, i in nt t n n) ; / / add n months to d
v vo oi id d a ad dd d_ _d da ay y(D Da at te e& d d, i in nt t n n) ; / / add n days to d

There is no explicit connection between the data type and these functions. Such a connection can
be established by declaring the functions as members:

s st tr ru uc ct t D Da at te e {
i in nt t d d, m m, y y;

v vo oi id d i in ni it t(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ; / / initialize
v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
v vo oi id d a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
v vo oi id d a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

};

Functions declared within a class definition (as st tr ru uc ct t is a kind of class; §10.2.8) are called member
functions and can be invoked only for a specific variable of the appropriate type using the standard
syntax for structure member access. For example:

D Da at te e m my y_ _b bi ir rt th hd da ay y;

v vo oi id d f f()
{

D Da at te e t to od da ay y;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.1 Member Functions 225

t to od da ay y. i in ni it t(1 16 6, 1 10 0, 1 19 99 96 6) ;
m my y_ _b bi ir rt th hd da ay y. i in ni it t(3 30 0, 1 12 2, 1 19 95 50 0) ;

D Da at te e t to om mo or rr ro ow w = t to od da ay y;
t to om mo or rr ro ow w. a ad dd d_ _d da ay y(1 1) ;
/ / ...

}

Because different structures can have member functions with the same name, we must specify the
structure name when defining a member function:

v vo oi id d D Da at te e: : i in ni it t(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y)
{

d d = d dd d;
m m = m mm m;
y y = y yy y;

}

In a member function, member names can be used without explicit reference to an object. In that
case, the name refers to that member of the object for which the function was invoked. For exam-
ple, whenD Da at te e: : i in ni it t() is invoked fort to od da ay y, m m=m mm m assigns tot to od da ay y. m m. On the other hand,
when D Da at te e: : i in ni it t() is invoked for m my y_ _b bi ir rt th hd da ay y, m m=m mm m assigns tom my y_ _b bi ir rt th hd da ay y. m m. A class
member function always ‘‘knows’’ for which object it was invoked.

The construct

c cl la as ss s X X { ... };

is called aclass definitionbecause it defines a new type. For historical reasons, a class definition is
often referred to as aclass declaration. Also, like declarations that are not definitions, a class defi-
nition can be replicated in different source files using#i in nc cl lu ud de e without violating the one-definition
rule (§9.2.3).

10.2.2 Access Control [class.access]

The declaration ofD Da at te e in the previous subsection provides a set of functions for manipulating a
D Da at te e. However, it does not specify that those functions should be the only ones to depend directly
on D Da at te e’s representation and the only ones to directly access objects of classD Da at te e. This restriction
can be expressed by using ac cl la as ss s instead of as st tr ru uc ct t:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
v vo oi id d i in ni it t(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ; / / initialize

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
v vo oi id d a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
v vo oi id d a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

};

Thep pu ub bl li ic c label separates the class body into two parts. The names in the first,private, part can be
used only by member functions. The second,public, part constitutes the public interface to objects

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

226 Classes Chapter 10

of the class. As st tr ru uc ct t is simply ac cl la as ss s whose members are public by default (§10.2.8); member
functions can be defined and used exactly as before. For example:

i in nl li in ne e v vo oi id d D Da at te e: : a ad dd d_ _y ye ea ar r(i in nt t n n)
{

y y += n n;
}

However, nonmember functions are barred from using private members. For example:

v vo oi id d t ti im me ew wa ar rp p(D Da at te e& d d)
{

d d. y y -= 2 20 00 0; / / error: Date::y is private
}

There are several benefits to be obtained from restricting access to a data structure to an explicitly
declared list of functions. For example, any error causing aD Da at te e to take on an illegal value (for
example, December 36, 1985) must be caused by code in a member function. This implies that the
first stage of debugging– localization– is completed before the program is even run. This is a
special case of the general observation that any change to the behavior of the typeD Da at te e can and
must be effected by changes to its members. In particular, if we change the representation of a
class, we need only change the member functions to take advantage of the new representation.
User code directly depends only on the public interface and need not be rewritten (although it may
need to be recompiled). Another advantage is that a potential user need examine only the definition
of the member functions in order to learn to use a class.

The protection of private data relies on restriction of the use of the class member names. It can
therefore be circumvented by address manipulation and explicit type conversion. But this, of
course, is cheating. C++ protects against accident rather than deliberate circumvention (fraud).
Only hardware can protect against malicious use of a general-purpose language, and even that is
hard to do in realistic systems.

The i in ni it t() function was added partially because it is generally useful to have a function that
sets the value of an object and partly because making the data private forces us to provide it.

10.2.3 Constructors [class.ctor]

The use of functions such asi in ni it t() to provide initialization for class objects is inelegant and error-
prone. Because it is nowhere stated that an object must be initialized, a programmer can forget to
do so– or do so twice (often with equally disastrous results). A better approach is to allow the pro-
grammer to declare a function with the explicit purpose of initializing objects. Because such a
function constructs values of a given type, it is called aconstructor. A constructor is recognized by
having the same name as the class itself. For example:

c cl la as ss s D Da at te e {
/ / ...
D Da at te e(i in nt t, i in nt t, i in nt t) ; / / constructor

};

When a class has a constructor, all objects of that class will be initialized. If the constructor
requires arguments, these arguments must be supplied:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.3 Constructors 227

D Da at te e t to od da ay y = D Da at te e(2 23 3, 6 6, 1 19 98 83 3) ;
D Da at te e x xm ma as s(2 25 5, 1 12 2, 1 19 99 90 0) ; / / abbreviated form
D Da at te e m my y_ _b bi ir rt th hd da ay y; / / error: initializer missing
D Da at te e r re el le ea as se e1 1_ _0 0(1 10 0, 1 12 2) ; / / error: 3rd argument missing

It is often nice to provide several ways of initializing a class object. This can be done by providing
several constructors. For example:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
/ / ...
D Da at te e(i in nt t, i in nt t, i in nt t) ; / / day, month, year
D Da at te e(i in nt t, i in nt t) ; / / day, month, today’s year
D Da at te e(i in nt t) ; / / day, today’s month and year
D Da at te e() ; / / default Date: today
D Da at te e(c co on ns st t c ch ha ar r*) ; / / date in string representation

};

Constructors obey the same overloading rules as do other functions (§7.4). As long as the construc-
tors differ sufficiently in their argument types, the compiler can select the correct one for each use:

D Da at te e t to od da ay y(4 4) ;
D Da at te e j ju ul ly y4 4(" J Ju ul ly y 4 4, 1 19 98 83 3") ;
D Da at te e g gu uy y(" 5 5 N No ov v") ;
D Da at te e n no ow w; / / default initialized as today

The proliferation of constructors in theD Da at te e example is typical. When designing a class, a pro-
grammer is always tempted to add features just because somebody might want them. It takes more
thought to carefully decide what features are really needed and to include only those. However,
that extra thought typically leads to smaller and more comprehensible programs. One way of
reducing the number of related functions is to use default arguments (§7.5). In theD Da at te e, each argu-
ment can be given a default value interpreted as ‘‘pick the default:t to od da ay y.’’

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
D Da at te e(i in nt t d dd d =0 0, i in nt t m mm m =0 0, i in nt t y yy y =0 0) ;
/ / ...

};

D Da at te e: : D Da at te e(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y)
{

d d = d dd d ? d dd d : t to od da ay y. d d;
m m = m mm m ? m mm m : t to od da ay y. m m;
y y = y yy y ? y yy y : t to od da ay y. y y;

/ / check that the Date is valid
}

When an argument value is used to indicate ‘‘pick the default,’’ the value chosen must be outside
the set of possible values for the argument. Ford da ay y andm mo on nt th h, this is clearly so, but fory ye ea ar r, zero

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

228 Classes Chapter 10

may not be an obvious choice. Fortunately, there is no year zero on the European calendar; 1AD
(y ye ea ar r==1 1) comes immediately after 1BC (y ye ea ar r==- 1 1).

10.2.4 Static Members [class.static]

The convenience of a default value forD Da at te es was bought at the cost of a significant hidden prob-
lem. OurD Da at te e class became dependent on the global variablet to od da ay y. ThisD Da at te e class can be used
only in a context in whicht to od da ay y is defined and correctly used by every piece of code. This is the
kind of constraint that causes a class to be useless outside the context in which it was first written.
Users get too many unpleasant surprises trying to use such context-dependent classes, and mainte-
nance becomes messy. Maybe ‘‘just one little global variable’’ isn’t too unmanageable, but that
style leads to code that is useless except to its original programmer. It should be avoided.

Fortunately, we can get the convenience without the encumbrance of a publicly accessible glo-
bal variable. A variable that is part of a class, yet is not part of an object of that class, is called a
s st ta at ti ic c member. There is exactly one copy of as st ta at ti ic c member instead of one copy per object, as for
ordinary non-s st ta at ti ic c members. Similarly, a function that needs access to members of a class, yet
doesn’t need to be invoked for a particular object, is called as st ta at ti ic c member function.

Here is a redesign that preserves the semantics of default constructor values forD Da at te e without
the problems stemming from reliance on a global:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;
s st ta at ti ic c D Da at te e d de ef fa au ul lt t_ _d da at te e;

p pu ub bl li ic c:
D Da at te e(i in nt t d dd d =0 0, i in nt t m mm m =0 0, i in nt t y yy y =0 0) ;
/ / ...
s st ta at ti ic c v vo oi id d s se et t_ _d de ef fa au ul lt t(i in nt t, i in nt t, i in nt t) ;

};

We can now define theD Da at te econstructor like this:

D Da at te e: : D Da at te e(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y)
{

d d = d dd d ? d dd d : d de ef fa au ul lt t_ _d da at te e. d d;
m m = m mm m ? m mm m : d de ef fa au ul lt t_ _d da at te e. m m;
y y = y yy y ? y yy y : d de ef fa au ul lt t_ _d da at te e. y y;

/ / check that the Date is valid
}

We can change the default date when appropriate. A static member can be referred to like any
other member. In addition, a static member can be referred to without mentioning an object.
Instead, its name is qualified by the name of its class. For example:

v vo oi id d f f()
{

D Da at te e: : s se et t_ _d de ef fa au ul lt t(4 4, 5 5, 1 19 94 45 5) ;
}

Static members– both function and data members– must be defined somewhere. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.4 Static Members 229

D Da at te e D Da at te e: : d de ef fa au ul lt t_ _d da at te e(1 16 6, 1 12 2, 1 17 77 70 0) ;

v vo oi id d D Da at te e: : s se et t_ _d de ef fa au ul lt t(i in nt t d d, i in nt t m m, i in nt t y y)
{

D Da at te e: : d de ef fa au ul lt t_ _d da at te e = D Da at te e(d d, m m, y y) ;
}

Now the default value is Beethoven’s birth date– until someone decides otherwise.
Note thatD Da at te e() serves as a notation for the value ofD Da at te e: : d de ef fa au ul lt t_ _d da at te e. For example:

D Da at te e c co op py y_ _o of f_ _d de ef fa au ul lt t_ _d da at te e = D Da at te e() ;

Consequently, we don’t need a separate function for reading the default date.

10.2.5 Copying Class Objects [class.default.copy]

By default, class objects can be copied. In particular, a class object can be initialized with a copy
of another object of the same class. This can be done even where constructors have been declared.
For example:

D Da at te e d d = t to od da ay y; / / initialization by copy

By default, the copy of a class object is a copy of each member. If that default is not the behavior
wanted for a classX X, a more appropriate behavior can be provided by defining a copy constructor,
X X: : X X(c co on ns st t X X&) . This is discussed further in §10.4.4.1.

Similarly, class objects can by default be copied by assignment. For example:

v vo oi id d f f(D Da at te e& d d)
{

d d = t to od da ay y;
}

Again, the default semantics is memberwise copy. If that is not the right choice for a classX X, the
user can define an appropriate assignment operator (§10.4.4.1).

10.2.6 Constant Member Functions [class.constmem]

The D Da at te e defined so far provides member functions for giving aD Da at te e a value and changing it.
Unfortunately, we didn’t provide a way of examining the value of aD Da at te e. This problem can easily
be remedied by adding functions for reading the day, month, and year:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
i in nt t d da ay y() c co on ns st t { r re et tu ur rn n d d; }
i in nt t m mo on nt th h() c co on ns st t { r re et tu ur rn n m m; }
i in nt t y ye ea ar r() c co on ns st t;
/ / ...

};

Note thec co on ns st t after the (empty) argument list in the function declarations. It indicates that these
functions do not modify the state of aD Da at te e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

230 Classes Chapter 10

Naturally, the compiler will catch accidental attempts to violate this promise. For example:

i in nl li in ne e i in nt t D Da at te e: : y ye ea ar r() c co on ns st t
{

r re et tu ur rn n y y++; / / error: attempt to change member value in const function
}

When ac co on ns st t member function is defined outside its class, thec co on ns st t suffix is required:

i in nl li in ne e i in nt t D Da at te e: : y ye ea ar r() c co on ns st t / / correct
{

r re et tu ur rn n y y;
}

i in nl li in ne e i in nt t D Da at te e: : y ye ea ar r() / / error: const missing in member function type
{

r re et tu ur rn n y y;
}

In other words, thec co on ns st t is part of the type ofD Da at te e: : d da ay y() andD Da at te e: : y ye ea ar r() .
A c co on ns st t member function can be invoked for bothc co on ns st t and non-c co on ns st t objects, whereas a non-

c co on ns st t member function can be invoked only for non-c co on ns st t objects. For example:

v vo oi id d f f(D Da at te e& d d, c co on ns st t D Da at te e& c cd d)
{

i in nt t i i = d d. y ye ea ar r() ; / / ok
d d. a ad dd d_ _y ye ea ar r(1 1) ; / / ok

i in nt t j j = c cd d. y ye ea ar r() ; / / ok
c cd d. a ad dd d_ _y ye ea ar r(1 1) ; / / error: cannot change value of const cd

}

10.2.7 Self-Reference [class.this]

The state update functionsa ad dd d_ _y ye ea ar r() , a ad dd d_ _m mo on nt th h() , anda ad dd d_ _d da ay y() were defined not to return
values. For such a set of related update functions, it is often useful to return a reference to the
updated object so that the operations can be chained. For example, we would like to write

v vo oi id d f f(D Da at te e& d d)
{

/ / ...
d d. a ad dd d_ _d da ay y(1 1). a ad dd d_ _m mo on nt th h(1 1). a ad dd d_ _y ye ea ar r(1 1) ;
/ / ...

}

to add a day, a month, and a year tod d. To do this, each function must be declared to return a refer-
ence to aD Da at te e:

c cl la as ss s D Da at te e {
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.7 Self-Reference 231

D Da at te e& a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
D Da at te e& a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
D Da at te e& a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

};

Each (nonstatic) member function knows what object it was invoked for and can explictly refer to
it. For example:

D Da at te e& D Da at te e: : a ad dd d_ _y ye ea ar r(i in nt t n n)
{

i if f (d d==2 29 9 && m m==2 2 && ! l le ea ap py ye ea ar r(y y+n n)) { / / beware of February 29
d d = 1 1;
m m = 3 3;

}
y y += n n;
r re et tu ur rn n * t th hi is s;

}

The expression* t th hi is s refers to the object for which a member function is invoked. It is equivalent
to Simula’sT TH HI IS Sand Smalltalk’ss se el lf f.

In a nonstatic member function, the keywordt th hi is s is a pointer to the object for which the func-
tion was invoked. In a non-c co on ns st t member function of classX X, the type oft th hi is s is X X * c co on ns st t. The
c co on ns st t makes it clear that the user is not supposed to change the value oft th hi is s. In ac co on ns st t member
function of classX X, the type oft th hi is s is c co on ns st t X X * c co on ns st t to prevent modification of the object itself
(see also §5.4.1).

Most uses oft th hi is s are implicit. In particular, every reference to a nonstatic member from within
a class relies on an implicit use oft th hi is s to get the member of the appropriate object. For example,
thea ad dd d_ _y ye ea ar r function could equivalently, but tediously, have been defined like this:

D Da at te e& D Da at te e: : a ad dd d_ _y ye ea ar r(i in nt t n n)
{

i if f (t th hi is s-> d d==2 29 9 && t th hi is s-> m m==2 2 && ! l le ea ap py ye ea ar r(t th hi is s-> y y+n n)) {
t th hi is s-> d d = 1 1;
t th hi is s-> m m = 3 3;

}
t th hi is s-> y y += n n;
r re et tu ur rn n * t th hi is s;

}

One common explicit use oft th hi is s is in linked-list manipulation (e.g., §24.3.7.4).

10.2.7.1 Physical and Logical Constness [class.const]

Occasionally, a member function is logicallyc co on ns st t, but it still needs to change the value of a mem-
ber. To a user, the function appears not to change the state of its object. However, some detail that
the user cannot directly observe is updated. This is often calledlogical constness. For example,
theD Da at te e class might have a function returning a string representation that a user could use for out-
put. Constructing this representation could be a relatively expensive operation. Therefore, it would
make sense to keep a copy so that repeated requests would simply return the copy, unless the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

232 Classes Chapter 10

D Da at te e’s value had been changed. Caching values like that is more common for more complicated
data structures, but let’s see how it can be achieved for aD Da at te e:

c cl la as ss s D Da at te e {
b bo oo ol l c ca ac ch he e_ _v va al li id d;
s st tr ri in ng g c ca ac ch he e;
v vo oi id d c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ; / / fill cache
/ / ...

p pu ub bl li ic c:
/ / ...
s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation

};

From a user’s point of view,s st tr ri in ng g_ _r re ep p doesn’t change the state of itsD Da at te e, so it clearly should be
a c co on ns st t member function. On the other hand, the cache needs to be filled before it can be used.
This can be achieved through brute force:

s st tr ri in ng g D Da at te e: : s st tr ri in ng g_ _r re ep p() c co on ns st t
{

i if f (c ca ac ch he e_ _v va al li id d == f fa al ls se e) {
D Da at te e* t th h = c co on ns st t_ _c ca as st t<D Da at te e*>(t th hi is s) ; / / cast away const
t th h-> c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ;
t th h-> c ca ac ch he e_ _v va al li id d = t tr ru ue e;

}
r re et tu ur rn n c ca ac ch he e;

}

That is, thec co on ns st t_ _c ca as st t operator (§15.4.2.1) is used to obtain a pointer of typeD Da at te e* to t th hi is s. This
is hardly elegant, and it is not guaranteed to work when applied to an object that was originally
declared as ac co on ns st t. For example:

D Da at te e d d1 1;
c co on ns st t D Da at te e d d2 2;
s st tr ri in ng g s s1 1 = d d1 1. s st tr ri in ng g_ _r re ep p() ;
s st tr ri in ng g s s2 2 = d d2 2. s st tr ri in ng g_ _r re ep p() ; / / undefined behavior

In the case ofd d1 1, s st tr ri in ng g_ _r re ep p() simply casts back tod d1 1’s original type so that the call will work.
However,d d2 2 was defined as ac co on ns st t and the implementation could have applied some form of
memory protection to ensure that its value wasn’t corrupted. Consequently,d d2 2. s st tr ri in ng g_ _r re ep p() is
not guaranteed to give a single predictable result on all implementations.

10.2.7.2 Mutable [class.mutable]

The explicit type conversion ‘‘casting awayc co on ns st t’’ and its consequent implementation-dependent
behavior can be avoided by declaring the data involved in the cache management to bem mu ut ta ab bl le e:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.7.2 Mutable 233

c cl la as ss s D Da at te e {
m mu ut ta ab bl le e b bo oo ol l c ca ac ch he e_ _v va al li id d;
m mu ut ta ab bl le e s st tr ri in ng g c ca ac ch he e;
v vo oi id d c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() c co on ns st t; / / fill (mutable) cache
/ / ...

p pu ub bl li ic c:
/ / ...
s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation

};

The storage specifierm mu ut ta ab bl le e specifies that a member should be stored in a way that allows updat-
ing – even when it is a member of ac co on ns st t object. In other words,m mu ut ta ab bl le e means ‘‘can never be
c co on ns st t.’’ This can be used to simplify the definition ofs st tr ri in ng g_ _r re ep p() :

s st tr ri in ng g D Da at te e: : s st tr ri in ng g_ _r re ep p() c co on ns st t
{

i if f (! c ca ac ch he e_ _v va al li id d) {
c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ;
c ca ac ch he e_ _v va al li id d = t tr ru ue e;

}
r re et tu ur rn n c ca ac ch he e;

}

and makes reasonable uses ofs st tr ri in ng g_ _r re ep p() valid. For example:

D Da at te e d d3 3;
c co on ns st t D Da at te e d d4 4;
s st tr ri in ng g s s3 3 = d d3 3. s st tr ri in ng g_ _r re ep p() ;
s st tr ri in ng g s s4 4 = d d4 4. s st tr ri in ng g_ _r re ep p() ; / / ok!

Declaring membersm mu ut ta ab bl le e is most appropriate when (only) part of a representation is allowed to
change. If most of an object changes while the object remains logicallyc co on ns st t, it is often better to
place the changing data in a separate object and access it indirectly. If that technique is used, the
string-with-cache example becomes:

s st tr ru uc ct t c ca ac ch he e {
b bo oo ol l v va al li id d;
s st tr ri in ng g r re ep p;

};

c cl la as ss s D Da at te e {
c ca ac ch he e* c c; / / initialize in constructor (§10.4.6)
v vo oi id d c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() c co on ns st t; / / fill what cache refers to
/ / ...

p pu ub bl li ic c:
/ / ...
s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

234 Classes Chapter 10

s st tr ri in ng g D Da at te e: : s st tr ri in ng g_ _r re ep p() c co on ns st t
{

i if f (! c c-> v va al li id d) {
c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ;
c c-> v va al li id d = t tr ru ue e;

}
r re et tu ur rn n c c-> r re ep p;

}

The programming techniques that support a cache generalize to various forms of lazy evaluation.

10.2.8 Structures and Classes [class.struct]

By definition, as st tr ru uc ct t is a class in which members are by default public; that is,

s st tr ru uc ct t s s { ...

is simply shorthand for

c cl la as ss s s s { p pu ub bl li ic c: ...

The access specifierp pr ri iv va at te e: can be used to say that the members following are private, just as
p pu ub bl li ic c: says that the members following are public. Except for the different names, the following
declarations are equivalent:

c cl la as ss s D Da at te e1 1 {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
D Da at te e1 1(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
};

s st tr ru uc ct t D Da at te e2 2 {
p pr ri iv va at te e:

i in nt t d d, m m, y y;
p pu ub bl li ic c:

D Da at te e2 2(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
};

Which style you use depends on circumstances and taste. I usually prefer to uses st tr ru uc ct t for classes
that have all data public. I think of such classes as ‘‘not quite proper types, just data structures.’’
Constructors and access functions can be quite useful even for such structures, but as a shorthand
rather than guarantors of properties of the type (invariants, see §24.3.7.1).

It is not a requirement to declare data first in a class. In fact, it often makes sense to place data
members last to emphasize the functions providing the public user interface. For example:

c cl la as ss s D Da at te e3 3 {
p pu ub bl li ic c:

D Da at te e3 3(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.8 Structures and Classes 235

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
p pr ri iv va at te e:

i in nt t d d, m m, y y;
};

In real code, where both the public interface and the implementation details typically are more
extensive than in tutorial examples, I usually prefer the style used forD Da at te e3 3.

Access specifiers can be used many times in a single class declaration. For example:

c cl la as ss s D Da at te e4 4 {
p pu ub bl li ic c:

D Da at te e4 4(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;
p pr ri iv va at te e:

i in nt t d d, m m, y y;
p pu ub bl li ic c:

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
};

Having more than one public section, as inD Da at te e4 4, tends to be messy. So does having more than
one private section. However, allowing many access specifiers in a class is useful for machine-
generated code.

10.2.9 In-Class Function Definitions [class.inline]

A member function defined within the class definition– rather than simply declared there– is
taken to be an inline member function. That is, in-class definition of member functions is for small,
frequently-used functions. Like the class definition it is part of, a member function defined in-class
can be replicated in several translation units using#i in nc cl lu ud de e. Like the class itself, its meaning must
be the same wherever it is used (§9.2.3).

The style of placing the definition of data members last in a class can lead to a minor problem
with public inline functions that refer to the representation. Consider:

c cl la as ss s D Da at te e { / / potentially confusing
p pu ub bl li ic c:

i in nt t d da ay y() c co on ns st t { r re et tu ur rn n d d; } / / return Date::d
/ / ...

p pr ri iv va at te e:
i in nt t d d, m m, y y;

};

This is perfectly good C++ code because a member function declared within a class can refer to
every member of the class as if the class were completely defined before the member function bod-
ies were considered. However, this can confuse human readers.

Consequently, I usually either place the data first or define the inline member functions after the
class itself. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

236 Classes Chapter 10

c cl la as ss s D Da at te e {
p pu ub bl li ic c:

i in nt t d da ay y() c co on ns st t;
/ / ...

p pr ri iv va at te e:
i in nt t d d, m m, y y;

};

i in nl li in ne e i in nt t D Da at te e: : d da ay y() c co on ns st t { r re et tu ur rn n d d; }

10.3 Efficient User-Defined Types[class.concrete]

The previous section discussed bits and pieces of the design of aD Da at te e class in the context of intro-
ducing the basic language features for defining classes. Here, I reverse the emphasis and discuss
the design of a simple and efficientD Da at te e class and show how the language features support this
design.

Small, heavily-used abstractions are common in many applications. Examples are Latin charac-
ters, Chinese characters, integers, floating-point numbers, complex numbers, points, pointers, coor-
dinates, transforms, (pointer,offset) pairs, dates, times, ranges, links, associations, nodes,
(value,unit) pairs, disk locations, source code locations,B BC CD D characters, currencies, lines, rectan-
gles, scaled fixed-point numbers, numbers with fractions, character strings, vectors, and arrays.
Every application uses several of these. Often, a few of these simple concrete types are used heav-
ily. A typical application uses a few directly and many more indirectly from libraries.

C++ and other programming languages directly support a few of these abstractions. However,
most are not, and cannot be, supported directly because there are too many of them. Furthermore,
the designer of a general-purpose programming language cannot foresee the detailed needs of every
application. Consequently, mechanisms must be provided for the user to define small concrete
types. Such types are called concrete types or concrete classes to distinguish them from abstract
classes (§12.3) and classes in class hierarchies (§12.2.4, §12.4).

It was an explicit aim of C++ to support the definition and efficient use of such user-defined
data types very well. They are a foundation of elegant programming. As usual, the simple and
mundane is statistically far more significant than the complicated and sophisticated.

In this light, let us build a better date class:

c cl la as ss s D Da at te e {
p pu ub bl li ic c: / / public interface:

e en nu um m M Mo on nt th h { j ja an n=1 1, f fe eb b, m ma ar r, a ap pr r, m ma ay y, j ju un n, j ju ul l, a au ug g, s se ep p, o oc ct t, n no ov v, d de ec c };

c cl la as ss s B Ba ad d_ _d da at te e { }; / / exception class

D Da at te e(i in nt t d dd d =0 0, M Mo on nt th h m mm m =M Mo on nt th h(0 0) , i in nt t y yy y =0 0) ; / / 0 means ‘‘pick a default’’

/ / functions for examining the Date:
i in nt t d da ay y() c co on ns st t;
M Mo on nt th h m mo on nt th h() c co on ns st t;
i in nt t y ye ea ar r() c co on ns st t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3 Efficient User-Defined Types 237

s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation
v vo oi id d c ch ha ar r_ _r re ep p(c ch ha ar r s s[]) c co on ns st t; / / C-style string representation

s st ta at ti ic c v vo oi id d s se et t_ _d de ef fa au ul lt t(i in nt t, M Mo on nt th h, i in nt t) ;

/ / functions for changing the Date:
D Da at te e& a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
D Da at te e& a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
D Da at te e& a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

p pr ri iv va at te e:
i in nt t d d, m m, y y; / / representation
s st ta at ti ic c D Da at te e d de ef fa au ul lt t_ _d da at te e;

};

This set of operations is fairly typical for a user-defined type:
[1] A constructor specifying how objects/variables of the type are to be initialized.
[2] A set of functions allowing a user to examine aD Da at te e. These functions are markedc co on ns st t to

indicate that they don’t modify the state of the object/variable for which they are called.
[3] A set of functions allowing the user to manipulateD Da at te es without actually having to know

the details of the representation or fiddle with the intricacies of the semantics.
[4] A set of implicitly defined operations to allowD Da at te es to be freely copied.
[5] A class,B Ba ad d_ _d da at te e, to be used for reporting errors as exceptions.

I defined aM Mo on nt th h type to cope with the problem of remembering, for example, whether the 7th of
June is writtenD Da at te e(6 6, 7 7) (American style) orD Da at te e(7 7, 6 6) (European style). I also added a
mechanism for dealing with default arguments.

I considered introducing separate typesD Da ay y and Y Ye ea ar r to cope with possible confusion of
D Da at te e(1 19 99 95 5, j ju ul l, 2 27 7) andD Da at te e(2 27 7, j ju ul l, 1 19 99 95 5) . However, these types would not be as useful as
theM Mo on nt th h type. Almost all such errors are caught at run-time anyway– the 26th of July year 27 is
not a common date in my work. How to deal with historical dates before year 1800 or so is a tricky
issue best left to expert historians. Furthermore, the day of the month can’t be properly checked in
isolation from its month and year. See §11.7.1 for a way of defining a convenientY Ye ea ar r type.

The default date must be defined as a validD Da at te esomewhere. For example:

D Da at te e D Da at te e: : d de ef fa au ul lt t_ _d da at te e(2 22 2, j ja an n, 1 19 90 01 1) ;

I omitted the cache technique from §10.2.7.1 as unnecessary for a type this simple. If needed, it
can be added as an implementation detail without affecting the user interface.

Here is a small– and contrived– example of howD Da at te es can be used:

v vo oi id d f f(D Da at te e& d d)
{

D Da at te e l lv vb b_ _d da ay y = D Da at te e(1 16 6, D Da at te e: : d de ec c, d d. y ye ea ar r()) ;

i if f (d d. d da ay y()== 2 29 9 && d d. m mo on nt th h()== D Da at te e: : f fe eb b) {
/ / ...

}

i if f (m mi id dn ni ig gh ht t()) d d. a ad dd d_ _d da ay y(1 1) ;

c co ou ut t << " d da ay y a af ft te er r:" << d d+1 1 << ´ \ \n n´;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

238 Classes Chapter 10

This assumes that the output operator<< and the addition operator+ have been declared forD Da at te es.
I do that in §10.3.3.

Note theD Da at te e: : f fe eb b notation. The functionf f() is not a member ofD Da at te e, so it must specify that
it is referring toD Da at te e’s f fe eb b and not to some other entity.

Why is it worthwhile to define a specific type for something as simple as a date? After all, we
could define a structure:

s st tr ru uc ct t D Da at te e {
i in nt t d da ay y, m mo on nt th h, y ye ea ar r;

};

and let programmers decide what to do with it. If we did that, though, every user would either have
to manipulate the components ofD Da at te es directly or provide separate functions for doing so. In
effect, the notion of a date would be scattered throughout the system, which would make it hard to
understand, document, or change. Inevitably, providing a concept as only a simple structure causes
extra work for every user of the structure.

Also, even though theD Da at te e type seems simple, it takes some thought to get right. For example,
incrementing aD Da at te e must deal with leap years, with the fact that months are of different lengths,
and so on (note: §10.6[1]). Also, the day-month-and-year representation is rather poor for many
applications. If we decided to change it, we would need to modify only a designated set of func-
tions. For example, to represent aD Da at te e as the number of days before or after January 1, 1970, we
would need to change onlyD Da at te e’s member functions (§10.6[2]).

10.3.1 Member Functions [class.memfct]

Naturally, an implementation for each member function must be provided somewhere. For exam-
ple, here is the definition ofD Da at te e’s constructor:

D Da at te e: : D Da at te e(i in nt t d dd d, M Mo on nt th h m mm m, i in nt t y yy y)
{

i if f (y yy y == 0 0) y yy y = d de ef fa au ul lt t_ _d da at te e. y ye ea ar r() ;
i if f (m mm m == 0 0) m mm m = d de ef fa au ul lt t_ _d da at te e. m mo on nt th h() ;
i if f (d dd d == 0 0) d dd d = d de ef fa au ul lt t_ _d da at te e. d da ay y() ;

i in nt t m ma ax x;

s sw wi it tc ch h (m mm m) {
c ca as se e f fe eb b:

m ma ax x = 2 28 8+l le ea ap py ye ea ar r(y yy y) ;
b br re ea ak k;

c ca as se e a ap pr r: c ca as se e j ju un n: c ca as se e s se ep p: c ca as se e n no ov v:
m ma ax x = 3 30 0;
b br re ea ak k;

c ca as se e j ja an n: c ca as se e m ma ar r: c ca as se e m ma ay y: c ca as se e j ju ul l: c ca as se e a au ug g: c ca as se e o oc ct t: c ca as se e d de ec c:
m ma ax x = 3 31 1;
b br re ea ak k;

d de ef fa au ul lt t:
t th hr ro ow w B Ba ad d_ _d da at te e() ; / / someone cheated

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3.1 Member Functions 239

i if f (d dd d<1 1 || m ma ax x<d dd d) t th hr ro ow w B Ba ad d_ _d da at te e() ;

y y = y yy y;
m m = m mm m;
d d = d dd d;

}

The constructor checks that the data supplied denotes a validD Da at te e. If not, say for
D Da at te e(3 30 0, D Da at te e: : f fe eb b, 1 19 99 94 4) , it throws an exception (§8.3, Chapter 14), which indicates that
something went wrong in a way that cannot be ignored. If the data supplied is acceptable, the obvi-
ous initialization is done. Initialization is a relatively complicated operation because it involves
data validation. This is fairly typical. On the other hand, once aD Da at te e has been created, it can be
used and copied without further checking. In other words, the constructor establishes the invariant
for the class (in this case, that it denotes a valid date). Other member functions can rely on that
invariant and must maintain it. This design technique can simplify code immensely (see §24.3.7.1).

I’m using the valueM Mo on nt th h(0 0) – which doesn’t represent a month– to represent ‘‘pick the
default month.’’ I could have defined an enumerator inM Mo on nt th h specifically to represent that. But I
decided that it was better to use an obviously anomalous value to represent ‘‘pick the default
month’’ rather than give the appearance that there were 13 months in a year. Note that0 0 can be
used because it is within the range guaranteed for the enumerationM Mo on nt th h (§4.8).

I considered factoring out the data validation in a separate functioni is s_ _d da at te e() . However, I
found the resulting user code more complicated and less robust than code relying on catching the
exception. For example, assuming that>> is defined forD Da at te e:

v vo oi id d f fi il ll l(v ve ec ct to or r<D Da at te e>& a aa a)
{

w wh hi il le e (c ci in n) {
D Da at te e d d;
t tr ry y {

c ci in n >> d d;
}

c ca at tc ch h (D Da at te e: : B Ba ad d_ _d da at te e) {
/ / my error handling
c co on nt ti in nu ue e;

}
a aa a. p pu us sh h_ _b ba ac ck k(d d) ; / / see §3.7.3

}
}

As is common for such simple concrete types, the definitions of member functions vary between
the trivial and the not-too-complicated. For example:

i in nl li in ne e i in nt t D Da at te e: : d da ay y() c co on ns st t
{

r re et tu ur rn n d d;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

240 Classes Chapter 10

D Da at te e& D Da at te e: : a ad dd d_ _m mo on nt th h(i in nt t n n)
{

i if f (n n==0 0) r re et tu ur rn n * t th hi is s;

i if f (n n>0 0) {
i in nt t d de el lt ta a_ _y y = n n/ 1 12 2;
i in nt t m mm m = m m+n n%1 12 2;
i if f (1 12 2 < m mm m) { / / note: int(dec)==12

d de el lt ta a_ _y y++;
m mm m -= 1 12 2;

}

/ / handle the cases where Month(mm) doesn’t have day d

y y += d de el lt ta a_ _y y;
m m = M Mo on nt th h(m mm m) ;
r re et tu ur rn n * t th hi is s;

}

/ / handle negative n

r re et tu ur rn n * t th hi is s;
}

10.3.2 Helper Functions [class.helper]

Typically, a class has a number of functions associated with it that need not be defined in the class
itself because they don’t need direct access to the representation. For example:

i in nt t d di if ff f(D Da at te e a a, D Da at te e b b) ; / / number of days in the range [a,b) or [b,a)
b bo oo ol l l le ea ap py ye ea ar r(i in nt t y y) ;
D Da at te e n ne ex xt t_ _w we ee ek kd da ay y(D Da at te e d d) ;
D Da at te e n ne ex xt t_ _s sa at tu ur rd da ay y(D Da at te e d d) ;

Defining such functions in the class itself would complicate the class interface and increase the
number of functions that would potentially need to be examined when a change to the representa-
tion was considered.

How are such functions ‘‘associated’’ with classD Da at te e? Traditionally, their declarations were
simply placed in the same file as the declaration of classD Da at te e, and users who neededD Da at te es would
make them all available by including the file that defined the interface (§9.2.1). For example:

#i in nc cl lu ud de e " D Da at te e. h h"

In addition to using a specificD Da at te e. h h header, or as an alternative, we can make the association
explicit by enclosing the class and its helper functions in a namespace (§8.2):

n na am me es sp pa ac ce e C Ch hr ro on no o { / / facilities for dealing with time

c cl la as ss s D Da at te e { /* ... */};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3.2 Helper Functions 241

i in nt t d di if ff f(D Da at te e a a, D Da at te e b b) ;
b bo oo ol l l le ea ap py ye ea ar r(i in nt t y y) ;
D Da at te e n ne ex xt t_ _w we ee ek kd da ay y(D Da at te e d d) ;
D Da at te e n ne ex xt t_ _s sa at tu ur rd da ay y(D Da at te e d d) ;
/ / ...

}

TheC Ch hr ro on no o namespace would naturally also contain related classes, such asT Ti im me e andS St to op pw wa at tc ch h,
and their helper functions. Using a namespace to hold a single class is usually an over-elaboration
that leads to inconvenience.

10.3.3 Overloaded Operators [class.over]

It is often useful to add functions to enable conventional notation. For example, theo op pe er ra at to or r==
function defines the equality operator== to work forD Da at te es:

i in nl li in ne e b bo oo ol l o op pe er ra at to or r==(D Da at te e a a, D Da at te e b b) / / equality
{

r re et tu ur rn n a a. d da ay y()== b b. d da ay y() && a a. m mo on nt th h()== b b. m mo on nt th h() && a a. y ye ea ar r()== b b. y ye ea ar r() ;
}

Other obvious candidates are:

b bo oo ol l o op pe er ra at to or r!=(D Da at te e, D Da at te e) ; / / inequality
b bo oo ol l o op pe er ra at to or r<(D Da at te e, D Da at te e) ; / / less than
b bo oo ol l o op pe er ra at to or r>(D Da at te e, D Da at te e) ; / / greater than
/ / ...

D Da at te e& o op pe er ra at to or r++(D Da at te e& d d) ; / / increase Date by one day
D Da at te e& o op pe er ra at to or r--(D Da at te e& d d) ; / / decrease Date by one day

D Da at te e& o op pe er ra at to or r+=(D Da at te e& d d, i in nt t n n) ; / / add n days
D Da at te e& o op pe er ra at to or r-=(D Da at te e& d d, i in nt t n n) ; / / subtract n days

D Da at te e o op pe er ra at to or r+(D Da at te e d d, i in nt t n n) ; / / add n days
D Da at te e o op pe er ra at to or r-(D Da at te e d d, i in nt t n n) ; / / subtract n days

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, D Da at te e d d) ; / / output d
i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m&, D Da at te e& d d) ; / / read into d

For D Da at te e, these operators can be seen as mere conveniences. However, for many types– such as
complex numbers (§11.3), vectors (§3.7.1), and function-like objects (§18.4)– the use of conven-
tional operators is so firmly entrenched in people’s minds that their definition is almost mandatory.
Operator overloading is discussed in Chapter 11.

10.3.4 The Significance of Concrete Classes [class.significance]

I call simple user-defined types, such asD Da at te e, concrete typesto distinguish them from abstract
classes (§2.5.4) and class hierarchies (§12.3) and also to emphasize their similarity to built-in types
such asi in nt t and c ch ha ar r. They have also been calledvalue types, and their usevalue-oriented
programming. Their model of use and the ‘‘philosophy’’ behind their design are quite different
from what is often advertised as object-oriented programming (§2.6.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

242 Classes Chapter 10

The intent of a concrete type is to do a single, relatively small thing well and efficiently. It is
not usually the aim to provide the user with facilities to modify the behavior of a concrete type. In
particular, concrete types are not intended to display polymorphic behavior (see §2.5.5, §12.2.6).

If you don’t like some detail of a concrete type, you build a new one with the desired behavior.
If you want to ‘‘reuse’’ a concrete type, you use it in the implementation of your new type exactly
as you would have used ani in nt t. For example:

c cl la as ss s D Da at te e_ _a an nd d_ _t ti im me e {
p pr ri iv va at te e:

D Da at te e d d;
T Ti im me e t t;

p pu ub bl li ic c:
D Da at te e_ _a an nd d_ _t ti im me e(D Da at te e d d, T Ti im me e t t) ;
D Da at te e_ _a an nd d_ _t ti im me e(i in nt t d d, D Da at te e: : M Mo on nt th h m m, i in nt t y y, T Ti im me e t t) ;
/ / ...

};

The derived class mechanism discussed in Chapter 12 can be used to define new types from a con-
crete class by describing the desired differences. The definition ofV Ve ec c from v ve ec ct to or r (§3.7.2) is an
example of this.

With a reasonably good compiler, a concrete class such asD Da at te e incurs no hidden overhead in
time or space. The size of a concrete type is known at compile time so that objects can be allocated
on the run-time stack (that is, without free-store operations). The layout of each object is known at
compile time so that inlining of operations is trivially achieved. Similarly, layout compatibility
with other languages, such as C and Fortran, comes without special effort.

A good set of such types can provide a foundation for applications. Lack of suitable ‘‘small
efficient types’’ in an application can lead to gross run-time and space inefficiencies when overly
general and expensive classes are used. Alternatively, lack of concrete types can lead to obscure
programs and time wasted when each programmer writes code to directly manipulate ‘‘simple and
frequently used’’ data structures.

10.4 Objects[class.objects]

Objects can be created in several ways. Some are local variables, some are global variables, some
are members of classes, etc. This section discusses these alternatives, the rules that govern them,
the constructors used to initialize objects, and the destructors used to clean up objects before they
become unusable.

10.4.1 Destructors [class.dtor]

A constructor initializes an object. In other words, it creates the environment in which the member
functions operate. Sometimes, creating that environment involves acquiring a resource– such as a
file, a lock, or some memory– that must be released after use (§14.4.7). Thus, some classes need a
function that is guaranteed to be invoked when an object is destroyed in a manner similar to the
way a constructor is guaranteed to be invoked when an object is created. Inevitably, such functions
are calleddestructors. They typically clean up and release resources. Destructors are called

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.1 Destructors 243

implicitly when an automatic variable goes out of scope, an object on the free store is deleted, etc.
Only in very unusual circumstances does the user need to call a destructor explicitly (§10.4.11).

The most common use of a destructor is to release memory acquired in a constructor. Consider
a simple table of elements of some typeN Na am me e. The constructor forT Ta ab bl le e must allocate memory to
hold the elements. When the table is somehow deleted, we must ensure that this memory is
reclaimed for further use elsewhere. We do this by providing a special function to complement the
constructor:

c cl la as ss s N Na am me e {
c co on ns st t c ch ha ar r* s s;
/ / ...

};

c cl la as ss s T Ta ab bl le e {
N Na am me e* p p;
s si iz ze e_ _t t s sz z;

p pu ub bl li ic c:
T Ta ab bl le e(s si iz ze e_ _t t s s = 1 15 5) { p p = n ne ew w N Na am me e[s sz z = s s] ; }/ / constructor

~T Ta ab bl le e() { d de el le et te e[] p p; } / / destructor

N Na am me e* l lo oo ok ku up p(c co on ns st t c ch ha ar r *) ;
b bo oo ol l i in ns se er rt t(N Na am me e*) ;

};

The destructor notation~T Ta ab bl le e() uses the complement symbol~ to hint at the destructor’s rela-
tion to theT Ta ab bl le e() constructor.

A matching constructor/destructor pair is the usual mechanism for implementing the notion of a
variably-sized object in C++. Standard library containers, such asm ma ap p, use a variant of this tech-
nique for providing storage for their elements, so the following discussion illustrates techniques
you rely on every time you use a standard container (including a standards st tr ri in ng g). The discussion
applies to types without a destructor, also. Such types are seen simply as having a destructor that
does nothing.

10.4.2 Default Constructors [class.default]

Similarly, most types can be considered to have a default constructor. A default constructor is a
constructor that can be called without supplying an argument. Because of the default argument1 15 5,
T Ta ab bl le e: : T Ta ab bl le e(s si iz ze e_ _t t) is a default constructor. If a user has declared a default constructor, that
one will be used; otherwise, the compiler will try to generate one if needed and if the user hasn’t
declared other constructors. A compiler-generated default constructor implicitly calls the default
constructors for a class’ members of class type and bases (§12.2.2). For example:

s st tr ru uc ct t T Ta ab bl le es s {
i in nt t i i;
i in nt t v vi i[1 10 0] ;

T Ta ab bl le e t t1 1;
T Ta ab bl le e v vt t[1 10 0] ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

244 Classes Chapter 10

T Ta ab bl le es s t tt t;

Here,t tt t will be initialized using a generated default constructor that callsT Ta ab bl le e(1 15 5) for t tt t. t t1 1 and
each element oft tt t. v vt t. On the other hand,t tt t. i i and the elements oft tt t. v vi i are not initialized because
those objects are not of a class type. The reasons for the dissimilar treatment of classes and built-in
types are C compatibility and fear of run-time overhead.

Becausec co on ns st ts and references must be initialized (§5.5, §5.4), a class containingc co on ns st t or refer-
ence members cannot be default-constructed unless the programmer explicitly supplies a construc-
tor (§10.4.6.1). For example:

s st tr ru uc ct t X X {
c co on ns st t i in nt t a a;
c co on ns st t i in nt t& r r;

};

X X x x; / / error: no default constructor for X

Default constructors can be invoked explicitly (§10.4.10). Built-in types also have default con-
structors (§6.2.8).

10.4.3 Construction and Destruction [class.ctor.dtor]

Consider the different ways an object can be created and how it gets destroyed afterwards. An
object can be created as:

§10.4.4 A named automatic object, which is created each time its declaration is encountered
in the execution of the program and destroyed each time the program exits the block
in which it occurs

§10.4.5 A free-store object, which is created using then ne ew w operator and destroyed using the
d de el le et te eoperator

§10.4.6 A nonstatic member object, which is created as a member of another class object and
created and destroyed when the object of which it is a member is created and
destroyed

§10.4.7 An array element, which is created and destroyed when the array of which it is an ele-
ment is created and destroyed

§10.4.8 A local static object, which is created the first time its declaration is encountered in
the execution of the program and destroyed once at the termination of the program

§10.4.9 A global, namespace, or class static object, which is created once ‘‘at the start of the
program’’ and destroyed once at the termination of the program

§10.4.10 A temporary object, which is created as part of the evaluation of an expression and
destroyed at the end of the full expression in which it occurs

§10.4.11 An object placed in memory obtained from a user-supplied function guided by argu-
ments supplied in the allocation operation

§10.4.12 Au un ni io on n member, which may not have a constructor or a destructor
This list is roughly sorted in order of importance. The following subsections explain these various
ways of creating objects and their uses.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.4 Local Variables 245

10.4.4 Local Variables [class.local]

The constructor for a local variable is executed each time the thread of control passes through the
declaration of the local variable. The destructor for a local variable is executed each time the local
variable’s block is exited. Destructors for local variables are executed in reverse order of their con-
struction. For example:

v vo oi id d f f(i in nt t i i)
{

T Ta ab bl le e a aa a;
T Ta ab bl le e b bb b;
i if f (i i>0 0) {

T Ta ab bl le e c cc c;
/ / ...

}
T Ta ab bl le e d dd d;
/ / ...

}

Here,a aa a, b bb b, andd dd d are constructed (in that order) each timef f() is called, andd dd d, b bb b, anda aa a are
destroyed (in that order) each time we return fromf f() . If i i>0 0 for a call,c cc c will be constructed after
b bb b and destroyed befored dd d is constructed.

10.4.4.1 Copying Objects [class.copy]

If t t1 1 andt t2 2 are objects of a classT Ta ab bl le e, t t2 2=t t1 1 by default means a memberwise copy oft t1 1 into t t2 2
(§10.2.5). Having assignment interpreted this way can cause a surprising (and usually undesired)
effect when used on objects of a class with pointer members. Memberwise copy is usually the
wrong semantics for copying objects containing resources managed by a constructor/destructor
pair. For example:

v vo oi id d h h()
{

T Ta ab bl le e t t1 1;
T Ta ab bl le e t t2 2 = t t1 1; / / copy initialization: trouble
T Ta ab bl le e t t3 3;

t t3 3 = t t2 2; / / copy assignment: trouble
}

Here, theT Ta ab bl le e default constructor is called twice: once each fort t1 1 and t t3 3. It is not called fort t2 2
because that variable was initialized by copying. However, theT Ta ab bl le e destructor is called three
times: once each fort t1 1, t t2 2, andt t3 3! The default interpretation of assignment is memberwise copy, so
t t1 1, t t2 2, andt t3 3 will, at the end ofh h() , each contain a pointer to the array of names allocated on the
free store whent t1 1 was created. No pointer to the array of names allocated whent t3 3 was created
remains because it was overwritten by thet t3 3=t t2 2 assignment. Thus, in the absence of automatic
garbage collection (§10.4.5), its storage will be lost to the program forever. On the other hand, the
array created fort t1 1 appears int t1 1, t t2 2, andt t3 3, so it will be deleted thrice. The result of that is unde-
fined and probably disastrous.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

246 Classes Chapter 10

Such anomalies can be avoided by defining what it means to copy aT Ta ab bl le e:

c cl la as ss s T Ta ab bl le e {
/ / ...
T Ta ab bl le e(c co on ns st t T Ta ab bl le e&) ; / / copy constructor
T Ta ab bl le e& o op pe er ra at to or r=(c co on ns st t T Ta ab bl le e&) ; / / copy assignment

};

The programmer can define any suitable meaning for these copy operations, but the traditional one
for this kind of container is to copy the contained elements (or at least to give the user of the con-
tainer the appearance that a copy has been done; see §11.12). For example:

T Ta ab bl le e: : T Ta ab bl le e(c co on ns st t T Ta ab bl le e& t t) / / copy constructor
{

p p = n ne ew w N Na am me e[s sz z=t t. s sz z] ;
f fo or r (i in nt t i i = 0 0; i i<s sz z; i i++) p p[i i] = t t. p p[i i] ;

}

T Ta ab bl le e& T Ta ab bl le e: : o op pe er ra at to or r=(c co on ns st t T Ta ab bl le e& t t) / / assignment
{

i if f (t th hi is s != &t t) { / / beware of self-assignment: t = t
d de el le et te e[] p p;
p p = n ne ew w N Na am me e[s sz z=t t. s sz z] ;
f fo or r (i in nt t i i = 0 0; i i<s sz z; i i++) p p[i i] = t t. p p[i i] ;

}
r re et tu ur rn n * t th hi is s;

}

As is almost always the case, the copy constructor and the copy assignment differ considerably.
The fundamental reason is that a copy constructor initializes uninitialized memory, whereas the
copy assignment operator must correctly deal with a well-constructed object.

Assignment can be optimized in some cases, but the general strategy for an assignment operator
is simple: protect against self-assignment, delete old elements, initialize, and copy in new elements.
Usually every nonstatic member must be copied (§10.4.6.3).

10.4.5 Free Store [class.free]

An object created on the free store has its constructor invoked by then ne ew w operator and exists until
thed de el le et te eoperator is applied to a pointer to it. Consider:

i in nt t m ma ai in n()
{

T Ta ab bl le e* p p = n ne ew w T Ta ab bl le e;
T Ta ab bl le e* q q = n ne ew w T Ta ab bl le e;

d de el le et te e p p;
d de el le et te e p p; / / probably causes run-time error

}

The constructorT Ta ab bl le e: : T Ta ab bl le e() is called twice. So is the destructorT Ta ab bl le e: :~ T Ta ab bl le e() . Unfor-
tunately, then ne ew ws and thed de el le et te es in this example don’t match, so the object pointed to byp p is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.5 Free Store 247

deleted twice and the object pointed to byq q not at all. Not deleting an object is typically not an
error as far as the language is concerned; it is only a waste of space. However, in a program that is
meant to run for a long time, such a memory leak is a serious and hard-to-find error. There are
tools available for detecting such leaks. Deletingp p twice is a serious error; the behavior is unde-
fined and most likely disastrous.

Some C++ implementations automatically recycle the storage occupied by unreachable objects
(garbage collecting implementations), but their behavior is not standardized. Even when a garbage
collector is running,d de el le et te e will invoke a destructor if one is defined, so it is still a serious error to
delete an object twice. In many cases, that is only a minor inconvenience. In particular, where a
garbage collector is known to exist, destructors that do memory management only can be elimi-
nated. This simplification comes at the cost of portability and for some programs, a possible
increase in run time and a loss of predictability of run-time behavior (§C.9.1).

After d de el le et te ehas been applied to an object, it is an error to access that object in any way. Unfor-
tunately, implementations cannot reliably detect such errors.

The user can specify hown ne ew w does allocation and howd de el le et te e does deallocation (see §6.2.6.2
and §15.6). It is also possible to specify the way an allocation, initialization (construction), and
exceptions interact (see §14.4.5 and §19.4.5). Arrays on the free store are discussed in §10.4.7.

10.4.6 Class Objects as Members [class.m]

Consider a class that might be used to hold information for a small organization:

c cl la as ss s C Cl lu ub b {
s st tr ri in ng g n na am me e;
T Ta ab bl le e m me em mb be er rs s;
T Ta ab bl le e o of ff fi ic ce er rs s;
D Da at te e f fo ou un nd de ed d;
/ / ...
C Cl lu ub b(c co on ns st t s st tr ri in ng g& n n, D Da at te e f fd d) ;

};

TheC Cl lu ub b’s constructor takes the name of the club and its founding date as arguments. Arguments
for a member’s constructor are specified in a member initializer list in the definition of the con-
structor of the containing class. For example:

C Cl lu ub b: : C Cl lu ub b(c co on ns st t s st tr ri in ng g& n n, D Da at te e f fd d)
: n na am me e(n n) , m me em mb be er rs s() , o of ff fi ic ce er rs s() , f fo ou un nd de ed d(f fd d)

{
/ / ...

}

The member initializers are preceded by a colon and the individual member initializers are sepa-
rated by commas.

The members’ constructors are called before the body of the containing class’ own constructor
is executed. The constructors are called in the order in which they are declared in the class rather
than the order in which they appear in the initializer list. To avoid confusion, it is best to specify
the initializers in declaration order. The member destructors are called in the reverse order of con-
struction.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

248 Classes Chapter 10

If a member constructor needs no arguments, the member need not be mentioned in the member
initializer list, so

C Cl lu ub b: : C Cl lu ub b(c co on ns st t s st tr ri in ng g& n n, D Da at te e f fd d)
: n na am me e(n n) , f fo ou un nd de ed d(f fd d)

{
/ / ...

}

is equivalent to the previous version. In each case,C Cl lu ub b: : o of ff fi ic ce er rs s is constructed byT Ta ab bl le e: : T Ta ab bl le e
with the default argument1 15 5.

When a class object containing class objects is destroyed, the body of that object’s own
destructor (if one is specified) is executed first and then the members’ destructors are executed in
reverse order of declaration. A constructor assembles the execution environment for the member
functions for a class from the bottom up (members first). The destructor disassembles it from the
top down (members last).

10.4.6.1 Necessary Member Initialization [class.ref.init]

Member initializers are essential for types for which initialization differs from assignment– that is,
for member objects of classes without default constructors, forc co on ns st t members, and for reference
members. For example:

c cl la as ss s X X {
c co on ns st t i in nt t i i;
C Cl lu ub b c c;
C Cl lu ub b& p pc c;
/ / ...
X X(i in nt t i ii i, c co on ns st t s st tr ri in ng g& n n, D Da at te e d d, C Cl lu ub b& c c) : i i(i ii i) , c c(n n, d d) , p pc c(c c) { }

};

There isn’t any other way to initialize such members, and it is an error not to initialize objects of
those types. For most types, however, the programmer has a choice between using an initializer
and using an assignment. In that case, I usually prefer to use the member initializer syntax, thus
making explicit the fact that initialization is being done. Often, there also is an efficiency advan-
tage to using the initializer syntax. For example:

c cl la as ss s P Pe er rs so on n {
s st tr ri in ng g n na am me e;
s st tr ri in ng g a ad dd dr re es ss s;
/ / ...
P Pe er rs so on n(c co on ns st t P Pe er rs so on n&) ;
P Pe er rs so on n(c co on ns st t s st tr ri in ng g& n n, c co on ns st t s st tr ri in ng g& a a) ;

};

P Pe er rs so on n: : P Pe er rs so on n(c co on ns st t s st tr ri in ng g& n n, c co on ns st t s st tr ri in ng g& a a)
: n na am me e(n n)

{
a ad dd dr re es ss s = a a;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.6.1 Necessary Member Initialization 249

Here n na am me e is initialized with a copy ofn n. On the other hand,a ad dd dr re es ss s is first initialized to the
empty string and then a copy ofa a is assigned.

10.4.6.2 Member Constants [class.memconst]

It is also possible to initialize a static integral constant member by adding aconstant-expressionini-
tializer to its member declaration. For example:

c cl la as ss s C Cu ur ri io ou us s {
p pu ub bl li ic c:

s st ta at ti ic c c co on ns st t i in nt t c c1 1 = 7 7; / / ok, but remember definition
s st ta at ti ic c i in nt t c c2 2 = 1 11 1; / / error: not const
c co on ns st t i in nt t c c3 3 = 1 13 3; / / error: not static
s st ta at ti ic c c co on ns st t i in nt t c c4 4 = f f(1 17 7) ; / / error: in-class initializer not constant
s st ta at ti ic c c co on ns st t f fl lo oa at t c c5 5 = 7 7. 0 0; / / error: in-class not integral
/ / ...

};

If (and only if) you use an initialized member in a way that requires it to be stored as an object in
memory, the member must be (uniquely) defined somewhere. The initializer may not be repeated:

c co on ns st t i in nt t C Cu ur ri io ou us s: : c c1 1; / / necessary, but don’t repeat initializer here

c co on ns st t i in nt t* p p = &C Cu ur ri io ou us s: : c c1 1; / / ok: Curious::c1 has been defined

Alternatively, you can use an enumerator (§4.8, §14.4.6, §15.3) as a symbolic constant within a
class declaration. For example:

c cl la as ss s X X {
e en nu um m { c c1 1 = 7 7, c c2 2 = 1 11 1, c c3 3 = 1 13 3, c c4 4 = 1 17 7 };
/ / ...

};

In that way, you are not tempted to initialize variables, floating-point numbers, etc. within a class.

10.4.6.3 Copying Members [class.mem.copy]

A default copy constructor or default copy assignment (§10.4.4.1) copies all elements of a class. If
this copy cannot be done, it is an error to try to copy an object of such a class. For example:

c cl la as ss s U Un ni iq qu ue e_ _h ha an nd dl le e {
p pr ri iv va at te e: / / copy operations are private to prevent copying (§11.2.2)

U Un ni iq qu ue e_ _h ha an nd dl le e(c co on ns st t U Un ni iq qu ue e_ _h ha an nd dl le e&) ;
U Un ni iq qu ue e_ _h ha an nd dl le e& o op pe er ra at to or r=(c co on ns st t U Un ni iq qu ue e_ _h ha an nd dl le e&) ;

p pu ub bl li ic c:
/ / ...

};

s st tr ru uc ct t Y Y {
/ / ...
U Un ni iq qu ue e_ _h ha an nd dl le e a a; / / requires explicit initialization

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

250 Classes Chapter 10

Y Y y y1 1;
Y Y y y2 2 = y y1 1; / / error: cannot copy Y::a

In addition, a default assignment cannot be generated if a nonstatic member is a reference, ac co on ns st t,
or a user-defined type without a copy assignment.

Note that the default copy constructor leaves a reference member referring to the same object in
both the original and the copied object. This can be a problem if the object referred to is supposed
to be deleted.

When writing a copy constructor, we must take care to copy every element that needs to be
copied. By default, elements are default-initialized, but that is often not what is desired in a copy
constructor. For example:

P Pe er rs so on n: : P Pe er rs so on n(c co on ns st t P Pe er rs so on n& a a) : n na am me e(a a. n na am me e) { } / / beware!

Here, I forgot to copy thea ad dd dr re es ss s, soa ad dd dr re es ss s is initialized to the empty string by default. When
adding a new member to a class, always check if there are user-defined constructors that need to be
updated in order to initialize and copy the new member.

10.4.7 Arrays [class.array]

If an object of a class can be constructed without supplying an explicit initializer, then arrays of that
class can be defined. For example:

T Ta ab bl le e t tb bl l[1 10 0] ;

This will create an array of1 10 0 T Ta ab bl le es and initialize eachT Ta ab bl le e by a call ofT Ta ab bl le e: : T Ta ab bl le e() with
the default argument1 15 5.

There is no way to specify explicit arguments for a constructor in an array declaration. If you
absolutely must initialize members of an array with different values, you can write a default con-
structor that directly or indirectly reads and writes nonlocal data. For example:

c cl la as ss s I Ib bu uf ff fe er r {
s st tr ri in ng g b bu uf f;

p pu ub bl li ic c:
I Ib bu uf ff fe er r() { c ci in n>>b bu uf f; }
/ / ...

};

v vo oi id d f f()
{

I Ib bu uf ff fe er r w wo or rd ds s[1 10 00 0] ; / / each word initialized from cin
/ / ...

}

It is usually best to avoid such subtleties.
The destructor for each constructed element of an array is invoked when that array is destroyed.

This is done implicitly for arrays that are not allocated usingn ne ew w. Like C, C++ doesn’t distinguish
between a pointer to an individual object and a pointer to the initial element of an array (§5.3).
Consequently, the programmer must state whether an array or an individual object is being deleted.
For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.7 Arrays 251

v vo oi id d f f(i in nt t s sz z)
{

T Ta ab bl le e* t t1 1 = n ne ew w T Ta ab bl le e;
T Ta ab bl le e* t t2 2 = n ne ew w T Ta ab bl le e[s sz z] ;
T Ta ab bl le e* t t3 3 = n ne ew w T Ta ab bl le e;
T Ta ab bl le e* t t4 4 = n ne ew w T Ta ab bl le e[s sz z] ;

d de el le et te e t t1 1; / / right
d de el le et te e[] t t2 2; / / right
d de el le et te e[] t t3 3; / / wrong: trouble
d de el le et te e t t4 4; / / wrong: trouble

}

Exactly how arrays and individual objects are allocated is implementation-dependent. Therefore,
different implementations will react differently to incorrect uses of thed de el le et te e andd de el le et te e[] opera-
tors. In simple and uninteresting cases like the previous one, a compiler can detect the problem, but
generally something nasty will happen at run time.

The special destruction operator for arrays,d de el le et te e[] , isn’t logically necessary. However, sup-
pose the implementation of the free store had been required to hold sufficient information for every
object to tell if it was an individual or an array. The user could have been relieved of a burden, but
that obligation would have imposed significant time and space overheads on some C++ implemen-
tations.

As always, if you find C-style arrays too cumbersome, use a class such asv ve ec ct to or r (§3.7.1, §16.3)
instead. For example:

v vo oi id d g g()
{

v ve ec ct to or r<T Ta ab bl le e>* p p1 1 = n ne ew w v ve ec ct to or r<T Ta ab bl le e>(1 10 0) ;
T Ta ab bl le e* p p2 2 = n ne ew w T Ta ab bl le e;

d de el le et te e p p1 1;
d de el le et te e p p2 2;

}

10.4.8 Local Static Store [class.obj.static]

The constructor for a local static object (§7.1.2) is called the first time the thread of control passes
through the object’s definition. Consider this:

v vo oi id d f f(i in nt t i i)
{

s st ta at ti ic c T Ta ab bl le e t tb bl l;
/ / ...
i if f (i i) {

s st ta at ti ic c T Ta ab bl le e t tb bl l2 2;
/ / ...

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

252 Classes Chapter 10

i in nt t m ma ai in n()
{

f f(0 0) ;
f f(1 1) ;
f f(2 2) ;
/ / ...

}

Here, the constructor is called fort tb bl l once the first timef f() is called. Becauset tb bl l is declared
s st ta at ti ic c, it does not get destroyed on return fromf f() and it does not get constructed a second time
whenf f() is called again. Because the block containing the declaration oft tb bl l2 2 doesn’t get executed
for the callf f(0 0) , t tb bl l2 2 doesn’t get constructed until the callf f(1 1) . It does not get constructed again
when its block is entered a second time.

The destructors for local static objects are invoked in the reverse order of their construction
when the program terminates (§9.4.1.1). Exactly when is unspecified.

10.4.9 Nonlocal Store [class.global]

A variable defined outside any function (that is, global, namespace, and classs st ta at ti ic c variables) is
initialized (constructed) beforem ma ai in n() is invoked, and any such variable that has been constructed
will have its destructor invoked after exit fromm ma ai in n() . Dynamic linking complicates this picture
slightly by delaying the initialization until the code is linked into the running program.

Constructors for nonlocal objects in a translation unit are executed in the order their definitions
occur. Consider:

c cl la as ss s X X {
/ / ...
s st ta at ti ic c T Ta ab bl le e m me em mt tb bl l;

};

T Ta ab bl le e t tb bl l;

T Ta ab bl le e X X: : m me em mt tb bl l;

n na am me es sp pa ac ce e Z Z {
T Ta ab bl le e t tb bl l2 2;

}

The order of construction ist tb bl l, thenX X: : m me em mt tb bl l, and thenZ Z: : t tb bl l2 2. Note that a declaration (as
opposed to a definition), such as the declaration ofm me em mt tb bl l in X X, doesn’t affect the order of con-
struction. The destructors are called in the reverse order of construction:Z Z: : t tb bl l2 2, then
X X: : m me em mt tb bl l, and thent tb bl l.

No implementation-independent guarantees are made about the order of construction of nonlo-
cal objects in different compilation units. For example:

/ / file1.c:
T Ta ab bl le e t tb bl l1 1;

/ / file2.c:
T Ta ab bl le e t tb bl l2 2;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.9 Nonlocal Store 253

Whethert tb bl l1 1 is constructed beforet tb bl l2 2 or vice versa is implementation-dependent. The order isn’t
even guaranteed to be fixed in every particular implementation. Dynamic linking, or even a small
change in the compilation process, can alter the sequence. The order of destruction is similarly
implementation-dependent.

Sometimes when you design a library, it is necessary, or simply convenient, to invent a type
with a constructor and a destructor with the sole purpose of initialization and cleanup. Such a type
would be used once only: to allocate a static object so that the constructor and the destructor are
called. For example:

c cl la as ss s Z Zl li ib b_ _i in ni it t {
Z Zl li ib b_ _i in ni it t() ; / / get Zlib ready for use
~Z Zl li ib b_ _i in ni it t() ; / / clean up after Zlib

};

c cl la as ss s Z Zl li ib b {
s st ta at ti ic c Z Zl li ib b_ _i in ni it t x x;
/ / ...

};

Unfortunately, it is not guaranteed that such an object is initialized before its first use and destroyed
after its last use in a program consisting of separately compiled units. A particular C++ implemen-
tation may provide such a guarantee, but most don’t. A programmer may ensure proper initial-
ization by implementing the strategy that the implementations usually employ for local static
objects: a first-time switch. For example:

c cl la as ss s Z Zl li ib b {
s st ta at ti ic c b bo oo ol l i in ni it ti ia al li iz ze ed d;
s st ta at ti ic c v vo oi id d i in ni it ti ia al li iz ze e() { /* initialize */ i in ni it ti ia al li iz ze ed d = t tr ru ue e; }

p pu ub bl li ic c:
/ / no constructor

v vo oi id d f f()
{

i if f (i in ni it ti ia al li iz ze ed d == f fa al ls se e) i in ni it ti ia al li iz ze e() ;
/ / ...

}
/ / ...

};

If there are many functions that need to test the first-time switch, this can be tedious, but it is often
manageable. This technique relies on the fact that statically allocated objects without constructors
are initialized to0 0. The really difficult case is the one in which the first operation may be time-
critical so that the overhead of testing and possible initialization can be serious. In that case, further
trickery is required (§21.5.2).

An alternative approach for a simple object is to present it as a function (§9.4.1):

i in nt t& o ob bj j() { s st ta at ti ic c i in nt t x x = 0 0; r re et tu ur rn n x x; } / / initialized upon first use

First-time switches do not handle every conceivable situation. For example, it is possible to create
objects that refer to each other during construction. Such examples are best avoided. If such

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

254 Classes Chapter 10

objects are necessary, they must be constructed carefully in stages. Also, there is no similarly sim-
ple last-time switch construct. Instead, see §9.4.1.1 and §21.5.2.

10.4.10 Temporary Objects [class.temp]

Temporary objects most often are the result of arithmetic expressions. For example, at some point
in the evaluation ofx x* y y+z z the partial resultx x* y y must exist somewhere. Except when performance
is the issue (§11.6), temporary objects rarely become the concern of the programmer. However, it
happens (§11.6, §22.4.7).

Unless bound to a reference or used to initialize a named object, a temporary object is destroyed
at the end of the full expression in which it was created. Afull expressionis an expression that is
not a subexpression of some other expression.

The standards st tr ri in ng g class has a member functionc c_ _s st tr r() that returns a C-style, zero-terminated
array of characters (§3.5.1, §20.4.1). Also, the operator+ is defined to mean string concatenation.
These are very useful facilities fors st tr ri in ng gs s. However, in combination they can cause obscure prob-
lems. For example:

v vo oi id d f f(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2, s st tr ri in ng g& s s3 3)
{

c co on ns st t c ch ha ar r* c cs s = (s s1 1+s s2 2). c c_ _s st tr r() ;
c co ou ut t << c cs s;
i if f (s st tr rl le en n(c cs s=(s s2 2+s s3 3). c c_ _s st tr r())< 8 8 && c cs s[0 0]==´ a a´) {

/ / cs used here
}

}

Probably, your first reaction is ‘‘but don’t do that,’’ and I agree. However, such code does get writ-
ten, so it is worth knowing how it is interpreted.

A temporary object of classs st tr ri in ng g is created to holds s1 1+s s2 2. Next, a pointer to a C-style string
is extracted from that object. Then– at the end of the expression– the temporary object is deleted.
Now, where was the C-style string allocated? Probably as part of the temporary object holding
s s1 1+s s2 2, and that storage is not guaranteed to exist after that temporary is destroyed. Consequently,
c cs s points to deallocated storage. The output operationc co ou ut t<<c cs s might work as expected, but that
would be sheer luck. A compiler can detect and warn against many variants of this problem.

The example with theif-statementis a bit more subtle. The condition will work as expected
because the full expression in which the temporary holdings s2 2+s s3 3 is created is the condition itself.
However, that temporary is destroyed before the controlled statement is entered, so any use ofc cs s
there is not guaranteed to work.

Please note that in this case, as in many others, the problems with temporaries arose from using
a high-level data type in a low-level way. A cleaner programming style would have not only
yielded a more understandable program fragment, but also avoided the problems with temporaries
completely. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.10 Temporary Objects 255

v vo oi id d f f(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2, s st tr ri in ng g& s s3 3)
{

c co ou ut t << s s1 1+s s2 2;
s st tr ri in ng g s s = s s2 2+s s3 3;

i if f (s s. l le en ng gt th h()< 8 8 && s s[0 0]==´ a a´) {
/ / use s here

}
}

A temporary can be used as an initializer for ac co on ns st t reference or a named object. For example:

v vo oi id d g g(c co on ns st t s st tr ri in ng g&, c co on ns st t s st tr ri in ng g&) ;

v vo oi id d h h(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2)
{

c co on ns st t s st tr ri in ng g& s s = s s1 1+s s2 2;
s st tr ri in ng g s ss s = s s1 1+s s2 2;

g g(s s, s ss s) ; / / we can use s and ss here
}

This is fine. The temporary is destroyed when ‘‘its’’ reference or named object go out of scope.
Remember that returning a reference to a local variable is an error (§7.3) and that a temporary
object cannot be bound to a non-c co on ns st t reference (§5.5).

A temporary object can also be created by explicitly invoking a constructor. For example:

v vo oi id d f f(S Sh ha ap pe e& s s, i in nt t x x, i in nt t y y)
{

s s. m mo ov ve e(P Po oi in nt t(x x, y y)) ; / / construct Point to pass to Shape::move()
/ / ...

}

Such temporaries are destroyed in exactly the same way as the implicitly generated temporaries.

10.4.11 Placement of Objects [class.placement]

Operatorn ne ew w creates its object on the free store by default. What if we wanted the object allocated
elsewhere? Consider a simple class:

c cl la as ss s X X {
p pu ub bl li ic c:

X X(i in nt t) ;
/ / ...

};

We can place objects anywhere by providing an allocator function with extra arguments and then
supplying such extra arguments when usingn ne ew w:

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t, v vo oi id d* p p) { r re et tu ur rn n p p; } / / explicit placement operator

v vo oi id d* b bu uf f = r re ei in nt te er rp pr re et t_ _c ca as st t<v vo oi id d*>(0 0x xF F0 00 0F F) ; / / significant address
X X* p p2 2 = n ne ew w(b bu uf f) X X; / / construct an X at ‘buf;’ invokes: operator new(sizeof(X),buf)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

256 Classes Chapter 10

Because of this usage, then ne ew w(b bu uf f) X X syntax for supplying extra arguments too op pe er ra at to or r n ne ew w() is
known as theplacement syntax. Note that everyo op pe er ra at to or r n ne ew w() takes a size as its first argument
and that the size of the object allocated is implicitly supplied (§15.6). Theo op pe er ra at to or r n ne ew w() used
by then ne ew w operator is chosen by the usual argument matching rules (§7.4); everyo op pe er ra at to or r n ne ew w()
has as si iz ze e_ _t t as its first argument.

The ‘‘placement’’o op pe er ra at to or r n ne ew w() is the simplest such allocator. It is defined in the standard
header<n ne ew w>.

The r re ei in nt te er rp pr re et t_ _c ca as st t is the crudest and potentially nastiest of the type conversion operators
(§6.2.7). In most cases, it simply yields a value with the same bit pattern as its argument with the
type required. Thus, it can be used for the inherently implementation-dependent, dangerous, and
occasionally absolutely necessary activity of converting integer values to pointers and vice versa.

The placementn ne ew w construct can also be used to allocate memory from a specific arena:

c cl la as ss s A Ar re en na a {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d* a al ll lo oc c(s si iz ze e_ _t t) =0 0;
v vi ir rt tu ua al l v vo oi id d f fr re ee e(v vo oi id d*) =0 0;
/ / ...

};

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t s sz z, A Ar re en na a* a a)
{

r re et tu ur rn n a a-> a al ll lo oc c(s sz z) ;
}

Now objects of arbitrary types can be allocated from differentA Ar re en na as as needed. For example:

e ex xt te er rn n A Ar re en na a* P Pe er rs si is st te en nt t;
e ex xt te er rn n A Ar re en na a* S Sh ha ar re ed d;

v vo oi id d g g(i in nt t i i)
{

X X* p p = n ne ew w(P Pe er rs si is st te en nt t) X X(i i) ; / / X in persistent storage
X X* q q = n ne ew w(S Sh ha ar re ed d) X X(i i) ; / / X in shared memory
/ / ...

}

Placing an object in an area that is not (directly) controlled by the standard free-store manager
implies that some care is required when destroying the object. The basic mechanism for that is an
explicit call of a destructor:

v vo oi id d d de es st tr ro oy y(X X* p p, A Ar re en na a* a a)
{

p p->~ X X() ; / / call destructor
a a-> f fr re ee e(p p) ; / / free memory

}

Note that explicit calls of destructors, like the use of special-purposeglobal allocators, should be
avoided wherever possible. Occasionally, they are essential. For example, it would be hard to
implement an efficient general container along the lines of the standard libraryv ve ec ct to or r (§3.7.1,
§16.3.8) without using explicit destructor class. However, a novice should think thrice before

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.11 Placement of Objects 257

calling a destructor explicitly and also should ask a more experienced colleague before doing so.
See §14.4.7 for an explanation of how placement new interacts with exception handling.
There is no special syntax for placement of arrays. Nor need there be, since arbitrary types can

be allocated by placement new. However, a specialo op pe er ra at to or r d de el le et te e() can be defined for arrays
(§19.4.5).

10.4.12 Unions [class.union]

A named union is defined as as st tr ru uc ct t, where every member has the same address (see §C.8.2). A
union can have member functions but not static members.

In general, a compiler cannot know what member of a union is used; that is, the type of the
object stored in a union is unknown. Consequently, a union may not have members with construc-
tors or destructors. It wouldn’t be possible to protect that object against corruption or to guarantee
that the right destructor is called when the union goes out of scope.

Unions are best used in low-level code, or as part of the implementation of classes that keep
track of what is stored in the union (see §10.6[20]).

10.5 Advice[class.advice]

[1] Represent concepts as classes; §10.1.
[2] Use public data (s st tr ru uc ct ts) only when it really is just data and no invariant is meaningful for the

data members; §10.2.8.
[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over

more complicated classes and over plain data structures; §10.3.
[4] Make a function a member only if it needs direct access to the representation of a class;

§10.3.2.
[5] Use a namespace to make the association between a class and its helper functions explicit;

§10.3.2.
[6] Make a member function that doesn’t modify the value of its object ac co on ns st t member function;

§10.2.6.
[7] Make a function that needs access to the representation of a class but needn’t be called for a

specific object as st ta at ti ic c member function; §10.2.4.
[8] Use a constructor to establish an invariant for a class; §10.3.1.
[9] If a constructor acquires a resource, its class needs a destructor to release the resource;

§10.4.1.
[10] If a class has a pointer member, it needs copy operations (copy constructor and copy assign-

ment); §10.4.4.1.
[11] If a class has a reference member, it probably needs copy operations (copy constructor and

copy assignment); §10.4.6.3.
[12] If a class needs a copy operation or a destructor, it probably needs a constructor, a destructor, a

copy assignment, and a copy constructor; §10.4.4.1.
[13] Check for self-assignment in copy assignments; §10.4.4.1.
[14] When writing a copy constructor, be careful to copy every element that needs to be copied

(beware of default initializers); §10.4.4.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

258 Classes Chapter 10

[15] When adding a new member to a class, always check to see if there are user-defined construc-
tors that need to be updated to initialize the member; §10.4.6.3.

[16] Use enumerators when you need to define integer constants in class declarations; §10.4.6.1.
[17] Avoid order dependencies when constructing global and namespace objects; §10.4.9.
[18] Use first-time switches to minimize order dependencies; §10.4.9.
[19] Remember that temporary objects are destroyed at the end of the full expression in which they

are created; §10.4.10.

10.6 Exercises[class.exercises]

1. (∗1) Find the error inD Da at te e: : a ad dd d_ _y ye ea ar r() in §10.2.2. Then find two additional errors in the
version in §10.2.7.

2. (∗2.5) Complete and testD Da at te e. Reimplement it with ‘‘number of days after 1/1/1970’’ repre-
sentation.

3. (∗2) Find aD Da at te e class that is in commercial use. Critique the facilities it offers. If possible,
then discuss thatD Da at te ewith a real user.

4. (∗1) How do you accesss se et t_ _d de ef fa au ul lt t from classD Da at te e from namespaceC Ch hr ro on no o (§10.3.2)? Give
at least three different ways.

5. (∗2) Define a classH Hi is st to og gr ra am m that keeps count of numbers in some intervals specified as argu-
ments toH Hi is st to og gr ra am m’s constructor. Provide functions to print out the histogram. Handle out-
of-range values.

6. (∗2) Define some classes for providing random numbers of certain distributions (for example,
uniform and exponential). Each class has a constructor specifying parameters for the distribu-
tion and a functiond dr ra aw w that returns the next value.

7. (∗2.5) Complete classT Ta ab bl le e to hold (name,value) pairs. Then modify the desk calculator pro-
gram from §6.1 to use classT Ta ab bl le e instead ofm ma ap p. Compare and contrast the two versions.

8. (∗2) RewriteT Tn no od de e from §7.10[7] as a class with constructors, destructors, etc. Define a tree of
T Tn no od de es as a class with constructors, destructors, etc.

9. (∗3) Define, implement, and test a set of integers, classI In nt ts se et t. Provide union, intersection, and
symmetric difference operations.

10. (∗1.5) Modify classI In nt ts se et t into a set of nodes, whereN No od de e is a structure you define.
11. (∗3) Define a class for analyzing, storing, evaluating, and printing simple arithmetic expressions

consisting of integer constants and the operators+, - , * , and/ . The public interface should
look like this:

c cl la as ss s E Ex xp pr r {
/ / ...

p pu ub bl li ic c:
E Ex xp pr r(c ch ha ar r*) ;
i in nt t e ev va al l() ;
v vo oi id d p pr ri in nt t() ;

};

The string argument for the constructorE Ex xp pr r: : E Ex xp pr r() is the expression. The function
E Ex xp pr r: : e ev va al l() returns the value of the expression, andE Ex xp pr r: : p pr ri in nt t() prints a representation

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.6 Exercises 259

of the expression onc co ou ut t. A program might look like this:

E Ex xp pr r x x(" 1 12 23 3/ 4 4+1 12 23 3* 4 4- 3 3") ;
c co ou ut t << " x x = " << x x. e ev va al l() << " \ \n n";
x x. p pr ri in nt t() ;

Define classE Ex xp pr r twice: once using a linked list of nodes as the representation and once using a
character string as the representation. Experiment with different ways of printing the expres-
sion: fully parenthesized, postfix notation, assembly code, etc.

12. (∗2) Define a classC Ch ha ar r_ _q qu ue eu ue e so that the public interface does not depend on the representa-
tion. ImplementC Ch ha ar r_ _q qu ue eu ue e (a) as a linked list and (b) as a vector. Do not worry about con-
currency.

13. (∗3) Design a symbol table class and a symbol table entry class for some language. Have a look
at a compiler for that language to see what the symbol table really looks like.

14. (∗2) Modify the expression class from §10.6[11] to handle variables and the assignment opera-
tor =. Use the symbol table class from §10.6[13].

15. (∗1) Given this program:

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: : c co ou ut t << " H He el ll lo o, w wo or rl ld d! \ \n n";
}

modify it to produce this output:

I In ni it ti ia al li iz ze e
H He el ll lo o, w wo or rl ld d!
C Cl le ea an n u up p

Do not changem ma ai in n() in any way.
16. (∗2) Define aC Ca al lc cu ul la at to or r class for which the calculator functions from §6.1 provide most of the

implementation. CreateC Ca al lc cu ul la at to or rs and invoke them for input fromc ci in n, from command-line
arguments, and for strings in the program. Allow output to be delivered to a variety of targets
similar to the way input can be obtained from a variety of sources.

17. (∗2) Define two classes, each with as st ta at ti ic c member, so that the construction of eachs st ta at ti ic c
member involves a reference to the other. Where might such constructs appear in real code?
How can these classes be modified to eliminate the order dependence in the constructors?

18. (∗2.5) Compare classD Da at te e (§10.3) with your solution to §5.9[13] and §7.10[19]. Discuss errors
found and likely differences in maintenance of the two solutions.

19. (∗3) Write a function that, given ani is st tr re ea am m and a v ve ec ct to or r<s st tr ri in ng g>, produces a
m ma ap p<s st tr ri in ng g, v ve ec ct to or r<i in nt t>> holding each string and the numbers of the lines on which the string
appears. Run the program on a text-file with no fewer than 1,000 lines looking for no fewer
than 10 words.

20. (∗2) Take classE En nt tr ry y from §C.8.2 and modify it so that each union member is always used
according to its type.

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

260 Classes Chapter 10

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

11
_ __ _______________________________________

Operator Overloading

WhenI use a word it means just what
I choose it to mean– neither more nor less.

– Humpty Dumpty

Notation — operator functions— binary and unary operators— predefined meanings
for operators— user-defined meanings for operators— operators and namespaces— a
complex type— member and nonmember operators— mixed-mode arithmetic—
initialization — copying — conversions— literals — helper functions— conversion
operators— ambiguity resolution— friends— members and friends— large objects—
assignment and initialization— subscripting— function call— dereferencing— incre-
ment and decrement— a string class— advice— exercises.

11.1 Introduction [over.intro]

Every technical field– and most nontechnical fields– have developed conventional shorthand
notation to make convenient the presentation and discussion involving frequently-used concepts.
For example, because of long acquaintance

x x+y y* z z

is clearer to us than

m mu ul lt ti ip pl ly y y y b by y z z a an nd d a ad dd d t th he e r re es su ul lt t t to o x x

It is hard to overestimate the importance of concise notation for common operations.
Like most languages, C++ supports a set of operators for its built-in types. However, most con-

cepts for which operators are conventionally used are not built-in types in C++, so they must be rep-
resented as user-defined types. For example, if you need complex arithmetic, matrix algebra, logic
signals, or character strings in C++, you use classes to represent these notions. Defining operators

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

262 Operator Overloading Chapter 11

for such classes sometimes allows a programmer to provide a more conventional and convenient
notation for manipulating objects than could be achieved using only the basic functional notation.
For example,

c cl la as ss s c co om mp pl le ex x { / / very simplified complex
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r, d do ou ub bl le e i i) : r re e(r r) , i im m(i i) { }
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x) ;
c co om mp pl le ex x o op pe er ra at to or r*(c co om mp pl le ex x) ;

};

defines a simple implementation of the concept of complex numbers. Ac co om mp pl le ex x is represented by
a pair of double-precision floating-point numbers manipulated by the operators+ and* . The pro-
grammer definesc co om mp pl le ex x: : o op pe er ra at to or r+() andc co om mp pl le ex x: : o op pe er ra at to or r*() to provide meanings for+
and * , respectively. For example, ifb b andc c are of typec co om mp pl le ex x, b b+c c meansb b. o op pe er ra at to or r+(c c) .
We can now approximate the conventional interpretation ofc co om mp pl le ex x expressions:

v vo oi id d f f()
{

c co om mp pl le ex x a a = c co om mp pl le ex x(1 1, 3 3. 1 1) ;
c co om mp pl le ex x b b = c co om mp pl le ex x(1 1. 2 2, 2 2) ;
c co om mp pl le ex x c c = b b;

a a = b b+c c;
b b = b b+c c* a a;
c c = a a* b b+c co om mp pl le ex x(1 1, 2 2) ;

}

The usual precedence rules hold, so the second statement meansb b=b b+(c c* a a) , notb b=(b b+c c)* a a.
Many of the most obvious uses of operator overloading are for concrete types (§10.3). How-

ever, the usefulness of user-defined operators is not restricted to concrete types. For example, the
design of general and abstract interfaces often leads to the use of operators such as-> , [] , and() .

11.2 Operator Functions[over.oper]

Functions defining meanings for the following operators (§6.2) can be declared:

+ - * / % ^ &
| ~ ! = < > +=
-= *= /= %= ^= &= |=
<< >> >>= <<= == != <=
>= && || ++ -- ->* ,
-> [] () n ne ew w n ne ew w[] d de el le et te e d de el le et te e[]

The following operators cannot be defined by a user:
:: (scope resolution; §4.9.4, §10.2.4),
. (member selection; §5.7), and
.* (member selection through pointer to function; §15.5).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.2 Operator Functions 263

They take a name, rather than a value, as their second operand and provide the primary means of
referring to members. Allowing them to be overloaded would lead to subtleties [Stroustrup,1994].

It is not possible to define new operator tokens, but you can use the function-call notation when
this set of operators is not adequate. For example, usep po ow w() , not ** . These restrictions may
seem Draconian, but more flexible rules can easily lead to ambiguities. For example, defining an
operator** to mean exponentiation may seem an obvious and easy task at first glance, but think
again. Should** bind to the left (as in Fortran) or to the right (as in Algol)? Should the expres-
siona a** p p be interpreted asa a*(* p p) or as(a a)**(p p) ?

The name of an operator function is the keywordo op pe er ra at to or r followed by the operator itself; for
example,o op pe er ra at to or r<<. An operator function is declared and can be called like any other function.
A use of the operator is only a shorthand for an explicit call of the operator function. For example:

v vo oi id d f f(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x c c = a a + b b; / / shorthand
c co om mp pl le ex x d d = a a. o op pe er ra at to or r+(b b) ; / / explicit call

}

Given the previous definition ofc co om mp pl le ex x, the two initializers are synonymous.

11.2.1 Binary and Unary Operators [over.binary]

A binary operator can be defined by either a nonstatic member function taking one argument or a
nonmember function taking two arguments. For any binary operator@, a aa a@b bb b can be interpreted as
eithera aa a. o op pe er ra at to or r@(b bb b) or o op pe er ra at to or r@(a aa a, b bb b) . If both are defined, overload resolution (§7.4)
determines which, if any, interpretation is used. For example:

c cl la as ss s X X {
p pu ub bl li ic c:

v vo oi id d o op pe er ra at to or r+(i in nt t) ;
X X(i in nt t) ;

};

v vo oi id d o op pe er ra at to or r+(X X, X X) ;
v vo oi id d o op pe er ra at to or r+(X X, d do ou ub bl le e) ;

v vo oi id d f f(X X a a)
{

a a+1 1; / / a.operator+(1)
1 1+a a; / / ::operator+(X(1),a)
a a+1 1. 0 0; / / ::operator+(a,1.0)

}

A unary operator, whether prefix or postfix, can be defined by either a nonstatic member function
taking no arguments or a nonmember function taking one argument. For any prefix unary operator
@, @a aa a can be interpreted as eithera aa a. o op pe er ra at to or r@() or o op pe er ra at to or r@(a aa a) . If both are defined, over-
load resolution (§7.4) determines which, if any, interpretation is used. For any postfix unary opera-
tor @, a aa a@can be interpreted as eithera aa a. o op pe er ra at to or r@(i in nt t) or o op pe er ra at to or r@(a aa a, i in nt t) . This is
explained further in §11.11. If both are defined, overload resolution (§7.4) determines which, if

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

264 Operator Overloading Chapter 11

any, interpretation is used. An operator can be declared only for the syntax defined for it in the
grammar (§A.5). For example, a user cannot define a unary%or a ternary+. Consider:

c cl la as ss s X X {
/ / members (with implicit ‘this’ pointer):

X X* o op pe er ra at to or r&() ; / / prefix unary & (address of)
X X o op pe er ra at to or r&(X X) ; / / binary & (and)
X X o op pe er ra at to or r++(i in nt t) ; / / postfix increment (see §11.11)
X X o op pe er ra at to or r&(X X, X X) ; / / error: ternary
X X o op pe er ra at to or r/() ; / / error: unary /

};

/ / nonmember functions :

X X o op pe er ra at to or r-(X X) ; / / prefix unary minus
X X o op pe er ra at to or r-(X X, X X) ; / / binary minus
X X o op pe er ra at to or r--(X X&, i in nt t) ; / / postfix decrement
X X o op pe er ra at to or r-() ; / / error: no operand
X X o op pe er ra at to or r-(X X, X X, X X) ; / / error: ternary
X X o op pe er ra at to or r%(X X) ; / / error: unary %

Operator[] is described in §11.8, operator() in §11.9, operator-> in §11.10, operators++ and
-- in §11.11, and the allocation and deallocation operators in §6.2.6.2, §10.4.11, and §15.6.

11.2.2 Predefined Meanings for Operators [over.predefined]

Only a few assumptions are made about the meaning of a user-defined operator. In particular,
o op pe er ra at to or r=, o op pe er ra at to or r[] , o op pe er ra at to or r() , ando op pe er ra at to or r-> must be nonstatic member functions; this
ensures that their first operands will be lvalues (§4.9.6).

The meanings of some built-in operators are defined to be equivalent to some combination of
other operators on the same arguments. For example, ifa a is an int,++a a meansa a+=1 1, which in turn
meansa a=a a+1 1. Such relations do not hold for user-defined operators unless the user happens to
define them that way. For example, a compiler will not generate a definition ofZ Z: : o op pe er ra at to or r+=()
from the definitions ofZ Z: : o op pe er ra at to or r+() andZ Z: : o op pe er ra at to or r=() .

Because of historical accident, the operators= (assignment),& (address-of), and, (sequencing;
§6.2.2) have predefined meanings when applied to class objects. These predefined meanings can
be made inaccessible to general users by making them private:

c cl la as ss s X X {
p pr ri iv va at te e:

v vo oi id d o op pe er ra at to or r=(c co on ns st t X X&) ;
v vo oi id d o op pe er ra at to or r&() ;
v vo oi id d o op pe er ra at to or r,(c co on ns st t X X&) ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.2.2 Predefined Meanings for Operators 265

v vo oi id d f f(X X a a, X X b b)
{

a a = b b; / / error: operator= private
&a a; / / error: operator& private
a a, b b; / / error: operator, private

}

Alternatively, they can be given new meanings by suitable definitions.

11.2.3 Operators and User-Defined Types [over.user]

An operator function must either be a member or take at least one argument of a user-defined type
(functions redefining then ne ew w andd de el le et te e operators need not). This rule ensures that a user cannot
change the meaning of an expression unless the expression contains an object of a user-defined
type. In particular, it is not possible to define an operator function that operates exclusively on
pointers. This ensures that C++ is extensible but not mutable (with the exception of operators=, &,
and, for class objects).

An operator function intended to accept a basic type as its first operand cannot be a member
function. For example, consider adding a complex variablea aa a to the integer2 2: a aa a+2 2 can, with a
suitably declared member function, be interpreted asa aa a. o op pe er ra at to or r+(2 2) , but 2 2+a aa a cannot because
there is no classi in nt t for which to define+ to mean2 2. o op pe er ra at to or r+(a aa a) . Even if there were, two dif-
ferent member functions would be needed to cope with2 2+a aa a anda aa a+2 2. Because the compiler does
not know the meaning of a user-defined+, it cannot assume that it is commutative and so interpret
2 2+a aa a asa aa a+2 2. This example is trivially handled using nonmember functions (§11.3.2, §11.5).

Enumerations are user-defined types so that we can define operators for them. For example:

e en nu um m D Da ay y { s su un n, m mo on n, t tu ue e, w we ed d, t th hu u, f fr ri i, s sa at t };

D Da ay y& o op pe er ra at to or r++(D Da ay y& d d)
{

r re et tu ur rn n d d = (s sa at t==d d) ? s su un n : D Da ay y(d d+1 1) ;
}

Every expression is checked for ambiguities. Where a user-defined operator provides a possible
interpretation, the expression is checked according to the rules in §7.4.

11.2.4 Operators in Namespaces [over.namespace]

An operator is either a member of a class or defined in some namespace (possibly the global name-
space). Consider this simplified version of string I/O from the standard library:

n na am me es sp pa ac ce e s st td d { / / simplified std

c cl la as ss s o os st tr re ea am m {
/ / ...
o os st tr re ea am m& o op pe er ra at to or r<<(c co on ns st t c ch ha ar r*) ;

};

e ex xt te er rn n o os st tr re ea am m c co ou ut t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

266 Operator Overloading Chapter 11

c cl la as ss s s st tr ri in ng g {
/ / ...

};

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co on ns st t s st tr ri in ng g&) ;
}

i in nt t m ma ai in n()
{

c ch ha ar r* p p = " H He el ll lo o";
s st td d: : s st tr ri in ng g s s = " w wo or rl ld d";
s st td d: : c co ou ut t << p p << ", " << s s << "! \ \n n";

}

Naturally, this writes outH He el ll lo o, w wo or rl ld d! But why? Note that I didn’t make everything froms st td d
accessible by writing:

u us si in ng g n na am me es sp pa ac ce e s st td d;

Instead, I used thes st td d: : prefix for s st tr ri in ng g andc co ou ut t. In other words, I was at my best behavior and
didn’t pollute the global namespace or in other ways introduce unnecessary dependencies.

The output operator for C-style strings (c ch ha ar r*) is a member ofs st td d: : o os st tr re ea am m, so by definition

s st td d: : c co ou ut t << p p

means

s st td d: : c co ou ut t. o op pe er ra at to or r<<(p p)

However,s st td d: : o os st tr re ea am m doesn’t have a member function to output as st td d: : s st tr ri in ng g, so

s st td d: : c co ou ut t << s s

means

o op pe er ra at to or r<<(s st td d: : c co ou ut t, s s)

Operators defined in namespaces can be found based on their operand types just like functions can
be found based on their argument types (§8.2.6). In particular,c co ou ut t is in namespaces st td d, sos st td d is
considered when looking for a suitable definition of<<. In that way, the compiler finds and uses:

s st td d: : o op pe er ra at to or r<<(s st td d: : o os st tr re ea am m&, c co on ns st t s st td d: : s st tr ri in ng g&)

For a binary operator@, x x@y y wherex x is of typeX X andy y is of typeY Y is resolved like this:
[1] If X X is a class, determine whether classX X or a base ofX X defineso op pe er ra at to or r@as a member; if

so, that is the@to try to use.
[2] Otherwise,

– look for declarations of@in the context surroundingx x@y y; and
– if X X is defined in namespaceN N, look for declarations of@in N N; and
– if Y Y is defined in namespaceM M, look for declarations of@in M M.

If declarations ofo op pe er ra at to or r@are found in the surrounding context, inN N, or in M M, we try to use
those operators.

In either case, declarations for severalo op pe er ra at to or r@s may be found and overload resolution rules

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.2.4 Operators in Namespaces 267

(§7.4) are used to find the best match, if any. This lookup mechanism is applied only if the opera-
tor has at least one operand of a user-defined type. Therefore, user-defined conversions (§11.3.2,
§11.4) will be considered. Note that at ty yp pe ed de ef f name is just a synonym and not a user-defined type
(§4.9.7).

11.3 A Complex Number Type[over.complex]

The implementation of complex numbers presented in the introduction is too restrictive to please
anyone. For example, from looking at a math textbook we would expect this to work:

v vo oi id d f f()
{

c co om mp pl le ex x a a = c co om mp pl le ex x(1 1, 2 2) ;
c co om mp pl le ex x b b = 3 3;
c co om mp pl le ex x c c = a a+2 2. 3 3;
c co om mp pl le ex x d d = 2 2+b b;
c co om mp pl le ex x e e = - b b- c c;
b b = c c* 2 2* c c;

}

In addition, we would expect to be provided with a few additional operators, such as== for com-
parison and<< for output, and a suitable set of mathematical functions, such ass si in n() ands sq qr rt t() .

Classc co om mp pl le ex x is a concrete type, so its design follows the guidelines from §10.3. In addition,
users of complex arithmetic rely so heavily on operators that the definition ofc co om mp pl le ex x brings into
play most of the basic rules for operator overloading.

11.3.1 Member and Nonmember Operators [over.member]

I prefer to minimize the number of functions that directly manipulate the representation of an
object. This can be achieved by defining only operators that inherently modify the value of their
first argument, such as+=, in the class itself. Operators that simply produce a new value based on
the values of its arguments, such as+, are then defined outside the class and use the essential opera-
tors in their implementation:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x& o op pe er ra at to or r+=(c co om mp pl le ex x a a) ; / / needs access to representation
/ / ...

};

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x r r = a a;
r re et tu ur rn n r r += b b; / / access representation through +=

}

Given these declarations, we can write:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

268 Operator Overloading Chapter 11

v vo oi id d f f(c co om mp pl le ex x x x, c co om mp pl le ex x y y, c co om mp pl le ex x z z)
{

c co om mp pl le ex x r r1 1 = x x+y y+z z; / / r1 = operator+(x,operator+(y,z))
c co om mp pl le ex x r r2 2 = x x; / / r2 = x
r r2 2 += y y; / / r2.operator+=(y)
r r2 2 += z z; / / r2.operator+=(z)

}

Except for possible efficiency differences, the computations ofr r1 1 andr r2 2 are equivalent.
Composite assignment operators such as+= and *= tend to be simpler to define than their

‘‘simple’’ counterparts+ and* . This surprises most people at first, but it follows from the fact that
three objects are involved in a+ operation (the two operands and the result), whereas only two
objects are involved in a+= operation. In the latter case, run-time efficiency is improved by elimi-
nating the need for temporary variables. For example:

i in nl li in ne e c co om mp pl le ex x& c co om mp pl le ex x: : o op pe er ra at to or r+=(c co om mp pl le ex x a a)
{

r re e += a a. r re e;
i im m += a a. i im m;
r re et tu ur rn n * t th hi is s;

}

does not require a temporary variable to hold the result of the addition and is simple for a compiler
to inline perfectly.

A good optimizer will generate close to optimal code for uses of the plain+ operator also.
However, we don’t always have a good optimizer and not all types are as simple asc co om mp pl le ex x, so
§11.5 discusses ways of defining operators with direct access to the representation of classes.

11.3.2 Mixed-Mode Arithmetic [over.mixed]

To cope with

c co om mp pl le ex x d d = 2 2+b b;

we need to define operator+ to accept operands of different types. In Fortran terminology, we
needmixed-mode arithmetic. We can achieve that simply by adding appropriate versions of the
operators:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x& o op pe er ra at to or r+=(c co om mp pl le ex x a a) {

r re e += a a. r re e;
i im m += a a. i im m;
r re et tu ur rn n * t th hi is s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.3.2 Mixed-Mode Arithmetic 269

c co om mp pl le ex x& o op pe er ra at to or r+=(d do ou ub bl le e a a) {
r re e += a a;
r re et tu ur rn n * t th hi is s;

}

/ / ...
};

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x r r = a a;
r re et tu ur rn n r r += b b; / / calls complex::operator+=(complex)

}

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a, d do ou ub bl le e b b)
{

c co om mp pl le ex x r r = a a;
r re et tu ur rn n r r += b b; / / calls complex::operator+=(double)

}

c co om mp pl le ex x o op pe er ra at to or r+(d do ou ub bl le e a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x r r = b b;
r re et tu ur rn n r r += a a; / / calls complex::operator+=(double)

}

Adding a d do ou ub bl le e to a complex number is a simpler operation than adding ac co om mp pl le ex x. This is
reflected in these definitions. The operations takingd do ou ub bl le e operands do not touch the imaginary
part of a complex number and thus will be more efficient.

Given these declarations, we can write:

v vo oi id d f f(c co om mp pl le ex x x x, c co om mp pl le ex x y y)
{

c co om mp pl le ex x r r1 1 = x x+y y; / / calls operator+(complex,complex)
c co om mp pl le ex x r r2 2 = x x+2 2; / / calls operator+(complex,double)
c co om mp pl le ex x r r3 3 = 2 2+x x; / / calls operator+(double,complex)

}

11.3.3 Initialization [over.ctor]

To cope with assignments and initialization ofc co om mp pl le ex x variables with scalars, we need a conver-
sion of a scalar (integer or floating-point number) to ac co om mp pl le ex x. For example:

c co om mp pl le ex x b b = 3 3; / / should mean b.re=3, b.im=0

A constructor taking a single argument specifies a conversion from its argument type to the
constructor’s type. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

270 Operator Overloading Chapter 11

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r) : r re e(r r) , i im m(0 0) { }
/ / ...

};

The constructor specifies the traditional embedding of the real line in the complex plane.
A constructor is a prescription for creating a value of a given type. The constructor is used

when a value of a type is expected and when such a value can be created by a constructor from the
value supplied as an initializer or assigned value. Thus, a constructor requiring a single argument
need not be called explicitly. For example,

c co om mp pl le ex x b b = 3 3;

means

c co om mp pl le ex x b b = c co om mp pl le ex x(3 3) ;

A user-defined conversion is implicitly applied only if it is unique (§7.4). See §11.7.1 for a way of
specifying constructors that can only be explicitly invoked.

Naturally, we still need the constructor that takes two doubles, and a default constructor initial-
izing ac co om mp pl le ex x to (0 0, 0 0) is also useful:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x() : r re e(0 0) , i im m(0 0) { }
c co om mp pl le ex x(d do ou ub bl le e r r) : r re e(r r) , i im m(0 0) { }
c co om mp pl le ex x(d do ou ub bl le e r r, d do ou ub bl le e i i) : r re e(r r) , i im m(i i) { }
/ / ...

};

Using default arguments, we can abbreviate:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r =0 0, d do ou ub bl le e i i =0 0) : r re e(r r) , i im m(i i) { }
/ / ...

};

When a constructor is explicitly declared for a type, it is not possible to use an initializer list (§5.7,
§4.9.5) as the initializer. For example:

c co om mp pl le ex x z z1 1 = { 3 3 }; / / error: complex has a constructor
c co om mp pl le ex x z z2 2 = { 3 3, 4 4 }; / / error: complex has a constructor

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.3.4 Copying 271

11.3.4 Copying [over.copy]

In addition to the explicitly declared constructors,c co om mp pl le ex x by default gets a copy constructor
defined (§10.2.5). A default copy constructor simply copies all members. To be explicit, we could
equivalently have written:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x& c c) : r re e(c c. r re e) , i im m(c c. i im m) { }
/ / ...

};

However, for types where the default copy constructor has the right semantics, I prefer to rely on
that default. It is less verbose than anything I can write, and people should understand the default.
Also, compilers know about the default and its possible optimization opportunities. Furthermore,
writing out the memberwise copy by hand is tedious and error-prone for classes with many data
members (§10.4.6.3).

I use a reference argument for the copy constructor because I must. The copy constructor
defines what copying means– including what copying an argument means– so writing

c co om mp pl le ex x: : c co om mp pl le ex x(c co om mp pl le ex x c c) : r re e(c c. r re e) , i im m(c c. i im m) { } / / error

is an error because any call would have involved an infinite recursion.
For other functions takingc co om mp pl le ex x arguments, I use value arguments rather than reference

arguments. Here, the designer has a choice. From a user’s point of view, there is little difference
between a function that takes ac co om mp pl le ex x argument and one that takes ac co on ns st t c co om mp pl le ex x& argument.
This issue is discussed further in §11.6.

In principle, copy constructors are used in simple initializations such as

c co om mp pl le ex x x x = 2 2; / / create complex(2); then initialize x with it
c co om mp pl le ex x y y = c co om mp pl le ex x(2 2, 0 0) ; / / create complex(2,0); then initialize y with it

However, the calls to the copy constructor are trivially optimized away. We could equivalently
have written:

c co om mp pl le ex x x x(2 2) ; / / initialize x by 2
c co om mp pl le ex x y y(2 2, 0 0) ; / / initialize x by (2,0)

For arithmetic types, such asc co om mp pl le ex x, I like the look of the version using= better. It is possible to
restrict the set of values accepted by the= style of initialization compared to the() style by making
the copy constructor private (§11.2.2) or by declaring a constructore ex xp pl li ic ci it t (§11.7.1).

Similar to initialization, assignment of two objects of the same class is by default defined as
memberwise assignment (§10.2.5). We could explicitly definec co om mp pl le ex x: : o op pe er ra at to or r= to do that.
However, for a simple type likec co om mp pl le ex x there is no reason to do so. The default is just right.

The copy constructor– whether user-defined or compiler-generated– is used not only for the
initialization of variables, but also for argument passing, value return, and exception handling (see
§11.7). The semantics of these operations is defined to be the semantics of initialization (§7.1,
§7.3, §14.2.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

272 Operator Overloading Chapter 11

11.3.5 Constructors and Conversions [over.conv]

We defined three versions of each of the four standard arithmetic operators:

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, c co om mp pl le ex x) ;
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, d do ou ub bl le e) ;
c co om mp pl le ex x o op pe er ra at to or r+(d do ou ub bl le e, c co om mp pl le ex x) ;
/ / ...

This can get tedious, and what is tedious easily becomes error-prone. What if we had three alterna-
tives for the type of each argument for each function? We would need three versions of each
single-argument function, nine versions of each two-argument function, twenty-seven versions of
each three-argument function, etc. Often these variants are very similar. In fact, almost all variants
involve a simple conversion of arguments to a common type followed by a standard algorithm.

The alternative to providing different versions of a function for each combination of arguments
is to rely on conversions. For example, ourc co om mp pl le ex x class provides a constructor that converts a
d do ou ub bl le e to a c co om mp pl le ex x. Consequently, we could simply declare only one version of the equality
operator forc co om mp pl le ex x:

b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x, c co om mp pl le ex x) ;

v vo oi id d f f(c co om mp pl le ex x x x, c co om mp pl le ex x y y)
{

x x==y y; / / means operator==(x,y)
x x==3 3; / / means operator==(x,complex(3))
3 3==y y; / / means operator==(complex(3),y)

}

There can be reasons for preferring to define separate functions. For example, in some cases the
conversion can impose overheads, and in other cases, a simpler algorithm can be used for specific
argument types. Where such issues are not significant, relying on conversions and providing only
the most general variant of a function– plus possibly a few critical variants– contains the combi-
natorial explosion of variants that can arise from mixed-mode arithmetic.

Where several variants of a function or an operator exist, the compiler must pick ‘‘the right’’
variant based on the argument types and the available (standard and user-defined) conversions.
Unless a best match exists, an expression is ambiguous and is an error (see §7.4).

An object constructed by explicit or implicit use of a constructor is automatic and will be
destroyed at the first opportunity (see §10.4.10).

No implicit user-defined conversions are applied to the left-hand side of a. (or a->). This is
the case even when the. is implicit. For example:

v vo oi id d g g(c co om mp pl le ex x z z)
{

3 3+z z; / / ok: complex(3)+z
3 3. o op pe er ra at to or r+=(z z) ; / / error: 3 is not a class object
3 3+=z z; / / error: 3 is not a class object

}

Thus, you can express the notion that an operator requires an lvalue as their left-hand operand by
making that operator a member.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.3.6 Literals 273

11.3.6 Literals [over.literals]

It is not possible to define literals of a class type in the sense that1 1. 2 2 and1 12 2e e3 3 are literals of type
d do ou ub bl le e. However, literals of the basic types can often be used instead if class member functions are
used to provide an interpretation for them. Constructors taking a single argument provide a general
mechanism for this. When constructors are simple and inline, it is quite reasonable to think of con-
structor invocations with literal arguments as literals. For example, I think ofc co om mp pl le ex x(3 3) as a lit-
eral of typec co om mp pl le ex x, even though technically it isn’t.

11.3.7 Additional Member Functions [over.additional]

So far, we have provided classc co om mp pl le ex x with constructors and arithmetic operators only. That is
not quite sufficient for real use. In particular, we often need to be able to examine the value of the
real and imaginary parts:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
d do ou ub bl le e r re ea al l() c co on ns st t { r re et tu ur rn n r re e; }
d do ou ub bl le e i im ma ag g() c co on ns st t { r re et tu ur rn n i im m; }
/ / ...

};

Unlike the other members ofc co om mp pl le ex x, r re ea al l() andi im ma ag g() do not modify the value of ac co om mp pl le ex x,
so they can be declaredc co on ns st t.

Given r re ea al l() and i im ma ag g() , we can define all kinds of useful operations without granting them
direct access to the representation ofc co om mp pl le ex x. For example:

i in nl li in ne e b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

r re et tu ur rn n a a. r re ea al l()== b b. r re ea al l() && a a. i im ma ag g()== b b. i im ma ag g() ;
}

Note that we need only to be able to read the real and imaginary parts; writing them is less often
needed. If we must do a ‘‘partial update,’’ we can:

v vo oi id d f f(c co om mp pl le ex x& z z, d do ou ub bl le e d d)
{

/ / ...
z z = c co om mp pl le ex x(z z. r re ea al l() , d d) ; / / assign d to z.im

}

A good optimizer generates a single assignment for that statement.

11.3.8 Helper Functions [over.helpers]

If we put all the bits and pieces together, thec co om mp pl le ex x class becomes:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

274 Operator Overloading Chapter 11

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r =0 0, d do ou ub bl le e i i =0 0) : r re e(r r) , i im m(i i) { }

d do ou ub bl le e r re ea al l() c co on ns st t { r re et tu ur rn n r re e; }
d do ou ub bl le e i im ma ag g() c co on ns st t { r re et tu ur rn n i im m; }

c co om mp pl le ex x& o op pe er ra at to or r+=(c co om mp pl le ex x) ;
c co om mp pl le ex x& o op pe er ra at to or r+=(d do ou ub bl le e) ;
/ / – =, *=, and /=

};

In addition, we must provide a number of helper functions:

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, c co om mp pl le ex x) ;
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, d do ou ub bl le e) ;
c co om mp pl le ex x o op pe er ra at to or r+(d do ou ub bl le e, c co om mp pl le ex x) ;

/ / – , *, and /

c co om mp pl le ex x o op pe er ra at to or r-(c co om mp pl le ex x) ; / / unary minus
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x) ; / / unary plus

b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x, c co om mp pl le ex x) ;
b bo oo ol l o op pe er ra at to or r!=(c co om mp pl le ex x, c co om mp pl le ex x) ;

i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m&, c co om mp pl le ex x&) ; / / input
o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co om mp pl le ex x) ; / / output

Note that the membersr re ea al l() andi im ma ag g() are essential for defining the comparisons. The defini-
tion of most of the following helper functions similarly relies onr re ea al l() andi im ma ag g() .

We might provide functions to allow users to think in terms of polar coordinates:

c co om mp pl le ex x p po ol la ar r(d do ou ub bl le e r rh ho o, d do ou ub bl le e t th he et ta a) ;
c co om mp pl le ex x c co on nj j(c co om mp pl le ex x) ;

d do ou ub bl le e a ab bs s(c co om mp pl le ex x) ;
d do ou ub bl le e a ar rg g(c co om mp pl le ex x) ;
d do ou ub bl le e n no or rm m(c co om mp pl le ex x) ;

d do ou ub bl le e r re ea al l(c co om mp pl le ex x) ; / / for notational convenience
d do ou ub bl le e i im ma ag g(c co om mp pl le ex x) ; / / for notational convenience

Finally, we must provide an appropriate set of standard mathematical functions:

c co om mp pl le ex x a ac co os s(c co om mp pl le ex x) ;
c co om mp pl le ex x a as si in n(c co om mp pl le ex x) ;
c co om mp pl le ex x a at ta an n(c co om mp pl le ex x) ;
/ / ...

From a user’s point of view, the complex type presented here is almost identical to the
c co om mp pl le ex x<d do ou ub bl le e> found in<c co om mp pl le ex x> in the standard library (§22.5).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.4 Conversion Operators 275

11.4 Conversion Operators[over.conversion]

Using a constructor to specify type conversion is convenient but has implications that can be unde-
sirable. A constructor cannot specify

[1] an implicit conversion from a user-defined type to a basic type (because the basic types are
not classes), or

[2] a conversion from a new class to a previously defined class (without modifying the decla-
ration for the old class).

These problems can be handled by defining aconversion operatorfor the source type. A member
functionX X: : o op pe er ra at to or r T T() , whereT T is a type name, defines a conversion fromX X to T T. For exam-
ple, one could define a 6-bit non-negative integer,T Ti in ny y, that can mix freely with integers in arith-
metic operations:

c cl la as ss s T Ti in ny y {
c ch ha ar r v v;
v vo oi id d a as ss si ig gn n(i in nt t i i) { i if f (i i&~0 07 77 7) t th hr ro ow w B Ba ad d_ _r ra an ng ge e() ; v v=i i; }

p pu ub bl li ic c:
c cl la as ss s B Ba ad d_ _r ra an ng ge e { };

T Ti in ny y(i in nt t i i) { a as ss si ig gn n(i i) ; }
T Ti in ny y& o op pe er ra at to or r=(i in nt t i i) { a as ss si ig gn n(i i) ; r re et tu ur rn n * t th hi is s; }

o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n v v; } / / conversion to int function
};

The range is checked whenever aT Ti in ny y is initialized by ani in nt t and whenever ani in nt t is assigned to
one. No range check is needed when we copy aT Ti in ny y, so the default copy constructor and assign-
ment are just right.

To enable the usual integer operations onT Ti in ny y variables, we define the implicit conversion from
T Ti in ny y to i in nt t, T Ti in ny y: : o op pe er ra at to or r i in nt t() . Note that the type being converted to is part of the name of the
operator and cannot be repeated as the return value of the conversion function:

T Ti in ny y: : o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n v v; } / / right
i in nt t T Ti in ny y: : o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n v v; } / / error

In this respect also, a conversion operator resembles a constructor.
Whenever aT Ti in ny y appears where ani in nt t is needed, the appropriatei in nt t is used. For example:

i in nt t m ma ai in n()
{

T Ti in ny y c c1 1 = 2 2;
T Ti in ny y c c2 2 = 6 62 2;
T Ti in ny y c c3 3 = c c2 2- c c1 1; / / c3 = 60
T Ti in ny y c c4 4 = c c3 3; / / no range check (not necessary)
i in nt t i i = c c1 1+c c2 2; / / i = 64

c c1 1 = c c1 1+c c2 2; / / range error: c1 can’t be 64
i i = c c3 3- 6 64 4; / / i = – 4
c c2 2 = c c3 3- 6 64 4; / / range error: c2 can’t be– 4
c c3 3 = c c4 4; / / no range check (not necessary)

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

276 Operator Overloading Chapter 11

Conversion functions appear to be particularly useful for handling data structures when reading
(implemented by a conversion operator) is trivial, while assignment and initialization are distinctly
less trivial.

The i is st tr re ea am m ando os st tr re ea am m types rely on a conversion function to enable statements such as

w wh hi il le e (c ci in n>>x x) c co ou ut t<<x x;

The input operationc ci in n>>x x returns ani is st tr re ea am m&. That value is implicitly converted to a value indi-
cating the state ofc ci in n. This value can then be tested by thew wh hi il le e (see §21.3.3). However, it is typ-
ically not a good idea to define an implicit conversion from one type to another in such a way that
information is lost in the conversion.

In general, it is wise to be sparing in the introduction of conversion operators. When used in
excess, they lead to ambiguities. Such ambiguities are caught by the compiler, but they can be a
nuisance to resolve. Probably the best idea is initially to do conversions by named functions, such
asX X: : m ma ak ke e_ _i in nt t() . If such a function becomes popular enough to make explicit use inelegant, it
can be replaced by a conversion operatorX X: : o op pe er ra at to or r i in nt t() .

If both user-defined conversions and user-defined operators are defined, it is possible to get
ambiguities between the user-defined operators and the built-in operators. For example:

i in nt t o op pe er ra at to or r+(T Ti in ny y, T Ti in ny y) ;

v vo oi id d f f(T Ti in ny y t t, i in nt t i i)
{

t t+i i; / / error, ambiguous: operator+(t,Tiny(i)) or int(t)+i ?
}

It is therefore often best to rely on user-defined conversions or user-defined operators for a given
type, but not both.

11.4.1 Ambiguities [over.ambig]

An assignment of a value of typeV V to an object of classX X is legal if there is an assignment operator
X X: : o op pe er ra at to or r=(Z Z) so thatV V is Z Z or there is a unique conversion ofV V to Z Z. Initialization is treated
equivalently.

In some cases, a value of the desired type can be constructed by repeated use of constructors or
conversion operators. This must be handled by explicit conversions; only one level of user-defined
implicit conversion is legal. In some cases, a value of the desired type can be constructed in more
than one way; such cases are illegal. For example:

c cl la as ss s X X { /* ... */ X X(i in nt t) ; X X(c ch ha ar r*) ; };
c cl la as ss s Y Y { /* ... */ Y Y(i in nt t) ; };
c cl la as ss s Z Z { /* ... */ Z Z(X X) ; };

X X f f(X X) ;
Y Y f f(Y Y) ;

Z Z g g(Z Z) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.4.1 Ambiguities 277

v vo oi id d k k1 1()
{

f f(1 1) ; / / error: ambiguous f(X(1)) or f(Y(1))?
f f(X X(1 1)) ; / / ok
f f(Y Y(1 1)) ; / / ok

g g(" M Ma ac ck k") ; / / error: two user-defined conversions needed; g(Z(X("Mack"))) not tried
g g(X X(" D Do oc c")) ; / / ok: g(Z(X("Doc")))
g g(Z Z(" S Su uz zy y")) ; / / ok: g(Z(X("Suzy")))

}

User-defined conversions are considered only if they are necessary to resolve a call. For example:

c cl la as ss s X XX X { /* ... */ X XX X(i in nt t) ; };

v vo oi id d h h(d do ou ub bl le e) ;
v vo oi id d h h(X XX X) ;

v vo oi id d k k2 2()
{

h h(1 1) ; / / h(double(1)) or h(XX(1))? h(double(1))!
}

The call h h(1 1) meansh h(d do ou ub bl le e(1 1)) because that alternative uses only a standard conversion
rather than a user-defined conversion (§7.4).

The rules for conversion are neither the simplest to implement, the simplest to document, nor
the most general that could be devised. They are, however, considerably safer, and the resulting
resolutions are less surprising. It is far easier to manually resolve an ambiguity than to find an error
caused by an unsuspected conversion.

The insistence on strict bottom-up analysis implies that the return type is not used in overload-
ing resolution. For example:

c cl la as ss s Q Qu ua ad d {
p pu ub bl li ic c:

Q Qu ua ad d(d do ou ub bl le e) ;
/ / ...

};

Q Qu ua ad d o op pe er ra at to or r+(Q Qu ua ad d, Q Qu ua ad d) ;

v vo oi id d f f(d do ou ub bl le e a a1 1, d do ou ub bl le e a a2 2)
{

Q Qu ua ad d r r1 1 = a a1 1+a a2 2; / / double-precision add
Q Qu ua ad d r r2 2 = Q Qu ua ad d(a a1 1)+ a a2 2; / / force quad arithmetic

}

The reason for this design choice is partly that strict bottom-up analysis is more comprehensible
and partly that it is not considered the compiler’s job to decide which precision the programmer
might want for the addition.

Once the types of both sides of an initialization or assignment have been determined, both types
are used to resolve the initialization or assignment. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

278 Operator Overloading Chapter 11

c cl la as ss s R Re ea al l {
p pu ub bl li ic c:

o op pe er ra at to or r d do ou ub bl le e() ;
o op pe er ra at to or r i in nt t() ;
/ / ...

};

v vo oi id d g g(R Re ea al l a a)
{

d do ou ub bl le e d d = a a; / / d = a.double();
i in nt t i i = a a; / / i = a.int();

d d = a a; / / d = a.double();
i i = a a; / / i = a.int();

}

In these cases, the type analysis is still bottom-up, with only a single operator and its argument
types considered at any one time.

11.5 Friends[over.friends]

An ordinary member function declaration specifies three logically distinct things:
[1] The function can access the private part of the class declaration, and
[2] the function is in the scope of the class, and
[3] the function must be invoked on an object (has at th hi is s pointer).

By declaring a member functions st ta at ti ic c (§10.2.4), we can give it the first two properties only. By
declaring a function af fr ri ie en nd d, we can give it the first property only.

For example, we could define an operator that multiplies aM Ma at tr ri ix x by a V Ve ec ct to or r. Naturally,
V Ve ec ct to or r and M Ma at tr ri ix x each hide their representation and provide a complete set of operations for
manipulating objects of their type. However, our multiplication routine cannot be a member of
both. Also, we don’t really want to provide low-level access functions to allow every user to both
read and write the complete representation of bothM Ma at tr ri ix x andV Ve ec ct to or r. To avoid this, we declare
theo op pe er ra at to or r* a friend of both:

c cl la as ss s M Ma at tr ri ix x;

c cl la as ss s V Ve ec ct to or r {
f fl lo oa at t v v[4 4] ;
/ / ...
f fr ri ie en nd d V Ve ec ct to or r o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t V Ve ec ct to or r&) ;

};

c cl la as ss s M Ma at tr ri ix x {
V Ve ec ct to or r v v[4 4] ;
/ / ...
f fr ri ie en nd d V Ve ec ct to or r o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t V Ve ec ct to or r&) ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.5 Friends 279

V Ve ec ct to or r o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x& m m, c co on ns st t V Ve ec ct to or r& v v)
{

V Ve ec ct to or r r r;
f fo or r (i in nt t i i = 0 0; i i<4 4; i i++) { / / r[i] = m[i] * v;

r r. v v[i i] = 0 0;
f fo or r (i in nt t j j = 0 0; j j<4 4; j j++) r r. v v[i i] += m m. v v[i i]. v v[j j] * v v. v v[j j] ;

}
r re et tu ur rn n r r;

}

A f fr ri ie en nd d declaration can be placed in either the private or the public part of a class declaration; it
does not matter where. Like a member function, a friend function is explicitly declared in the
declaration of the class of which it is a friend. It is therefore as much a part of that interface as is a
member function.

A member function of one class can be the friend of another. For example:

c cl la as ss s L Li is st t_ _i it te er ra at to or r {
/ / ...
i in nt t* n ne ex xt t() ;

};

c cl la as ss s L Li is st t {
f fr ri ie en nd d i in nt t* L Li is st t_ _i it te er ra at to or r: : n ne ex xt t() ;
/ / ...

};

It is not unusual for all functions of one class to be friends of another. There is a shorthand for this:

c cl la as ss s L Li is st t {
f fr ri ie en nd d c cl la as ss s L Li is st t_ _i it te er ra at to or r;
/ / ...

};

This friend declaration makes all ofL Li is st t_ _i it te er ra at to or r’s member functions friends ofL Li is st t.
Clearly,f fr ri ie en nd d classes should be used only to express closely connected concepts. Often, there

is a choice between making a class a member (a nested class) or a friend (§24.4).

11.5.1 Finding Friends [over.lookup]

Like a member declaration, af fr ri ie en nd d declaration does not introduce a name into an enclosing scope.
For example:

c cl la as ss s M Ma at tr ri ix x {
f fr ri ie en nd d c cl la as ss s X Xf fo or rm m;
f fr ri ie en nd d M Ma at tr ri ix x i in nv ve er rt t(c co on ns st t M Ma at tr ri ix x&) ;
/ / ...

};

X Xf fo or rm m x x; / / error: no Xform in scope
M Ma at tr ri ix x (* p p)(c co on ns st t M Ma at tr ri ix x&) = &i in nv ve er rt t; / / error: no invert() in scope

For large programs and large classes, it is nice that a class doesn’t ‘‘quietly’’ add names to its

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

280 Operator Overloading Chapter 11

enclosing scope. For a template class that can be instantiated in many different contexts (Chapter
13), this is very important.

A friend class must be previously declared in an enclosing scope or defined in the non-class
scope immediately enclosing the class that is declaring it a friend. For example:

c cl la as ss s X X { /* ... */ }; / / Y’s friend

n na am me es sp pa ac ce e N N {
c cl la as ss s Y Y {

f fr ri ie en nd d c cl la as ss s X X;
f fr ri ie en nd d c cl la as ss s Z Z;
f fr ri ie en nd d c cl la as ss s A AE E;

};
c cl la as ss s Z Z { /* ... */ }; / / Y’s friend

}

c cl la as ss s A AE E { /* ... */ }; / / not a friend of Y

A friend function can be explicitly declared just like friend classes, or it can be found through its
argument types (§8.2.6) as if it was declared in the non-class scope immediately enclosing its class.
For example:

v vo oi id d f f(M Ma at tr ri ix x& m m)
{

i in nv ve er rt t(m m) ; / / Matrix’s friend invert()
}

It follows that a friend function should either be explicitly declared in an enclosing scope or take an
argument of its class. If not, the friend cannot be called. For example:

/ / no f() here

v vo oi id d g g() ; / / X’s friend

c cl la as ss s X X {
f fr ri ie en nd d v vo oi id d f f() ; / / useless
f fr ri ie en nd d v vo oi id d g g() ;
f fr ri ie en nd d v vo oi id d h h(c co on ns st t X X&) ; / / can be found through its argument

};

v vo oi id d f f() { /* ... */ } / / not a friend of X

11.5.2 Friends and Members [over.friends.members]

When should we use a friend function, and when is a member function the better choice for specify-
ing an operation? First, we try to minimize the number of functions that access the representation
of a class and try to make the set of access functions as appropriate as possible. Therefore, the first
question is not, ‘‘Should it be a member, a static member, or a friend?’’ but rather, ‘‘Does it really
need access?’’ Typically, the set of functions that need access is smaller than we are willing to
believe at first.

Some operations must be members– for example, constructors, destructors, and virtual

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.5.2 Friends and Members 281

functions (§12.2.6)– but typically there is a choice. Because member names are local to the class,
a function should be a member unless there is a specific reason for it to be a nonmember.

Consider a classX X presenting alternative ways of presenting an operation:

c cl la as ss s X X {
/ / ...
X X(i in nt t) ;

i in nt t m m1 1() ;
i in nt t m m2 2() c co on ns st t;

f fr ri ie en nd d i in nt t f f1 1(X X&) ;
f fr ri ie en nd d i in nt t f f2 2(c co on ns st t X X&) ;
f fr ri ie en nd d i in nt t f f3 3(X X) ;

};

Member functions can be invoked for objects of their class only; no user-defined conversions are
applied. For example:

v vo oi id d g g()
{

9 99 9. m m1 1() ; / / error: X(99).m1() not tried
9 99 9. m m2 2() ; / / error: X(99).m2() not tried

}

The conversionX X(i in nt t) is not applied to make anX X out of9 99 9.
The global functionf f1 1() has a similar property because implicit conversions are not used for

non-c co on ns st t reference arguments (§5.5, §11.3.5). However, conversions may be applied to the argu-
ments off f2 2() andf f3 3() :

v vo oi id d h h()
{

f f1 1(9 99 9) ; / / error: f1(X(99)) not tried
f f2 2(9 99 9) ; / / ok: f2(X(99));
f f3 3(9 99 9) ; / / ok: f3(X(99));

}

An operation modifying the state of a class object should therefore be a member or a global func-
tion taking a non-c co on ns st t reference argument (or a non-c co on ns st t pointer argument). Operators that
require lvalue operands for the fundamental types (=, *= , ++, etc.) are most naturally defined as
members for user-defined types.

Conversely, if implicit type conversion is desired for all operands of an operation, the function
implementing it must be a nonmember function taking ac co on ns st t reference argument or a non-
reference argument. This is often the case for the functions implementing operators that do not
require lvalue operands when applied to fundamental types (+, - , || , etc.). Such operators often
need access to the representations of their operand class. Consequently, binary operators are the
most common source off fr ri ie en nd d functions.

If no type conversions are defined, there appears to be no compelling reason to choose a mem-
ber over a friend taking a reference argument, or vice versa. In some cases, the programmer may
have a preference for one call syntax over another. For example, most people seem to prefer the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

282 Operator Overloading Chapter 11

notationi in nv v(m m) for inverting aM Ma at tr ri ix x m m to the alternativem m. i in nv v() . Naturally, if i in nv v() really
does invertm m itself, rather than return a newM Ma at tr ri ix x that is the inverse ofm m, it should be a member.

All other things considered equal, choose a member. It is not possible to know if someone
someday will define a conversion operator. It is not always possible to predict if a future change
may require changes to the state of the object involved. The member function call syntax makes it
clear to the user that the object may be modified; a reference argument is far less obvious. Further-
more, expressions in the body of a member can be noticeably shorter than the equivalent expres-
sions in a global function; a nonmember function must use an explicit argument, whereas the mem-
ber can uset th hi is s implicitly. Also, because member names are local to the class they tend to be
shorter than the names of nonmember functions.

11.6 Large Objects[over.large]

We defined thec co om mp pl le ex x operators to take arguments of typec co om mp pl le ex x. This implies that for each
use of ac co om mp pl le ex x operator, each operand is copied. The overhead of copying twod do ou ub bl le es s can be
noticeable but often less than what a pair of pointers impose. Unfortunately, not all classes have a
conveniently small representation. To avoid excessive copying, one can declare functions to take
reference arguments. For example:

c cl la as ss s M Ma at tr ri ix x {
d do ou ub bl le e m m[4 4][4 4] ;

p pu ub bl li ic c:
M Ma at tr ri ix x() ;
f fr ri ie en nd d M Ma at tr ri ix x o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;
f fr ri ie en nd d M Ma at tr ri ix x o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;

};

References allow the use of expressions involving the usual arithmetic operators for large objects
without excessive copying. Pointers cannot be used because it is not possible to redefine the mean-
ing of an operator applied to a pointer. Addition could be defined like this:

M Ma at tr ri ix x o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x& a ar rg g1 1, c co on ns st t M Ma at tr ri ix x& a ar rg g2 2)
{

M Ma at tr ri ix x s su um m;
f fo or r (i in nt t i i=0 0; i i<4 4; i i++)

f fo or r (i in nt t j j=0 0; j j<4 4; j j++)
s su um m. m m[i i][j j] = a ar rg g1 1. m m[i i][j j] + a ar rg g2 2. m m[i i][j j] ;

r re et tu ur rn n s su um m;
}

This o op pe er ra at to or r+() accesses the operands of+ through references but returns an object value.
Returning a reference would appear to be more efficient:

c cl la as ss s M Ma at tr ri ix x {
/ / ...
f fr ri ie en nd d M Ma at tr ri ix x& o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;
f fr ri ie en nd d M Ma at tr ri ix x& o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.6 Large Objects 283

This is legal, but it causes a memory allocation problem. Because a reference to the result will be
passed out of the function as a reference to the return value, the return value cannot be an automatic
variable (§7.3). Since an operator is often used more than once in an expression, the result cannot
be as st ta at ti ic c local variable. The result would typically be allocated on the free store. Copying the
return value is often cheaper (in execution time, code space, and data space) than allocating and
(eventually) deallocating an object on the free store. It is also much simpler to program.

There are techniques you can use to avoid copying the result. The simplest is to use a buffer of
static objects. For example:

c co on ns st t m ma ax x_ _m ma at tr ri ix x_ _t te em mp p = 7 7;

M Ma at tr ri ix x& g ge et t_ _m ma at tr ri ix x_ _t te em mp p()
{

s st ta at ti ic c i in nt t n nb bu uf f = 0 0;
s st ta at ti ic c M Ma at tr ri ix x b bu uf f[m ma ax x_ _m ma at tr ri ix x_ _t te em mp p] ;

i if f (n nb bu uf f == m ma ax x_ _m ma at tr ri ix x_ _t te em mp p) n nb bu uf f = 0 0;
r re et tu ur rn n b bu uf f[n nb bu uf f++] ;

}

M Ma at tr ri ix x& o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x& a ar rg g1 1, c co on ns st t M Ma at tr ri ix x& a ar rg g2 2)
{

M Ma at tr ri ix x& r re es s = g ge et t_ _m ma at tr ri ix x_ _t te em mp p() ;
/ / ...
r re et tu ur rn n r re es s;

}

Now aM Ma at tr ri ix x is copied only when the result of an expression is assigned. However, heaven help
you if you write an expression that involves more thanm ma ax x_ _m ma at tr ri ix x_ _t te em mp p temporaries!

A less error-prone technique involves defining the matrix type as a handle (§25.7) to a represen-
tation type that really holds the data. In that way, the matrix handles can manage the representation
objects in such a way that allocation and copying are minimized (see §11.12 and §11.14[18]).
However, that strategy relies on operators returning objects rather than references or pointers.
Another technique is to define ternary operations and have them automatically invoked for expres-
sions such asa a=b b+c c anda a+b b* i i (§21.4.6.3, §22.4.7).

11.7 Essential Operators[over.essential]

In general, for a typeX X, the copy constructorX X(c co on ns st t X X&) takes care of initialization by an object
of the same typeX X. It cannot be overemphasized thatassignment and initialization are different
operations(§10.4.4.1). This is especially important when a destructor is declared. If a classX X has
a destructor that performs a nontrivial task, such as free-store deallocation, the class is likely to
need the full complement of functions that control construction, destruction, and copying:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

284 Operator Overloading Chapter 11

c cl la as ss s X X {
/ / ...
X X(S So om me et ty yp pe e) ; / / constructor: create objects
X X(c co on ns st t X X&) ; / / copy constructor
X X& o op pe er ra at to or r=(c co on ns st t X X&) ; / / copy assignment: cleanup and copy
~X X() ; / / destructor: cleanup

};

There are three more cases in which an object is copied: as a function argument, as a function
return value, and as an exception. When an argument is passed, a hitherto uninitialized variable–
the formal parameter– is initialized. The semantics are identical to those of other initializations.
The same is the case for function return values and exceptions, although that is less obvious. In
such cases, the copy constructor will be applied. For example:

s st tr ri in ng g g g(s st tr ri in ng g a ar rg g)
{

r re et tu ur rn n a ar rg g;
}

i in nt t m ma ai in n ()
{

s st tr ri in ng g s s = " N Ne ew wt to on n";
s s = g g(s s) ;

}

Clearly, the value ofs s ought to be" "N Ne ew wt to on n" " after the call ofg g() . Getting a copy of the value ofs s
into the argumenta ar rg g is not difficult; a call ofs st tr ri in ng g’s copy constructor does that. Getting a copy
of that value out ofg g() takes another call ofs st tr ri in ng g(c co on ns st t s st tr ri in ng g&) ; this time, the variable initial-
ized is a temporary one, which is then assigned tos s. Often one, but not both, of these copy opera-
tions can be optimized away. Such temporary variables are, of course, destroyed properly using
s st tr ri in ng g: :~ s st tr ri in ng g() (see §10.4.10).

For a classX X for which the assignment operatorX X: : o op pe er ra at to or r=(c co on ns st t X X&) and the copy con-
structorX X: : X X(c co on ns st t X X&) are not explicitly declared by the programmer, the missing operation or
operations will be generated by the compiler (§10.2.5).

11.7.1 Explicit Constructors [over.explicit]

By default, a single argument constructor also defines an implicit conversion. For some types, that
is ideal. For example:

c co om mp pl le ex x z z = 2 2; / / initialize z with complex(2)

In other cases, the implicit conversion is undesirable and error-prone. For example:

s st tr ri in ng g s s = ´ a a´; / / make s a string with int(’a’) elements

It is quite unlikely that this was what the person definings s meant.
Implicit conversion can be suppressed by declaring a constructore ex xp pl li ic ci it t. That is, ane ex xp pl li ic ci it t

constructor will be invoked only explicitly. In particular, where a copy constructor is in principle
needed (§11.3.4), ane ex xp pl li ic ci it t constructor will not be implicitly invoked. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.7.1 Explicit Constructors 285

c cl la as ss s S St tr ri in ng g {
/ / ...
e ex xp pl li ic ci it t S St tr ri in ng g(i in nt t n n) ; / / preallocate n bytes
S St tr ri in ng g(c co on ns st t c ch ha ar r* p p) ; / / initial value is the C-style string p

};

S St tr ri in ng g s s1 1 = ´ a a´; / / error: no implicit char– >String conversion
S St tr ri in ng g s s2 2(1 10 0) ; / / ok: String with space for 10 characters
S St tr ri in ng g s s3 3 = S St tr ri in ng g(1 10 0) ; / / ok: String with space for 10 characters
S St tr ri in ng g s s4 4 = " B Br ri ia an n"; / / ok: s4 = String("Brian")
S St tr ri in ng g s s5 5(" F Fa aw wl lt ty y") ;

v vo oi id d f f(S St tr ri in ng g) ;

S St tr ri in ng g g g()
{

f f(1 10 0) ; / / error: no implicit int– >String conversion
f f(S St tr ri in ng g(1 10 0)) ;
f f(" A Ar rt th hu ur r") ; / / ok: f(String("Arthur"))
f f(s s1 1) ;

S St tr ri in ng g* p p1 1 = n ne ew w S St tr ri in ng g(" E Er ri ic c") ;
S St tr ri in ng g* p p2 2 = n ne ew w S St tr ri in ng g(1 10 0) ;

r re et tu ur rn n 1 10 0; / / error: no implicit int– >String conversion
}

The distinction between

S St tr ri in ng g s s1 1 = ´ a a´; / / error: no implicit char– >String conversion

and

S St tr ri in ng g s s2 2(1 10 0) ; / / ok: string with space for 10 characters

may seem subtle, but it is less so in real code than in contrived examples.
In D Da at te e, we used a plaini in nt t to represent a year (§10.3). HadD Da at te e been critical in our design,

we might have introduced aY Ye ea ar r type to allow stronger compile-time checking. For example:

c cl la as ss s Y Ye ea ar r {
i in nt t y y;

p pu ub bl li ic c:
e ex xp pl li ic ci it t Y Ye ea ar r(i in nt t i i) : y y(i i) { } / / construct Year from int
o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n y y; } / / conversion: Year to int

};

c cl la as ss s D Da at te e {
p pu ub bl li ic c:

D Da at te e(i in nt t d d, M Mo on nt th h m m, Y Ye ea ar r y y) ;
/ / ...

};

D Da at te e d d3 3(1 19 97 78 8, f fe eb b, 2 21 1) ; / / error: 21 is not a Year
D Da at te e d d4 4(2 21 1, f fe eb b, Y Ye ea ar r(1 19 97 78 8)) ; / / ok

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

286 Operator Overloading Chapter 11

The Y Ye ea ar r class is a simple ‘‘wrapper’’ around ani in nt t. Thanks to theo op pe er ra at to or r i in nt t() , a Y Ye ea ar r is
implicitly converted into ani in nt t wherever needed. By declaring the constructore ex xp pl li ic ci it t, we make
sure that thei in nt t to Y Ye ea ar r happens only when we ask for it and that ‘‘accidental’’ assignments are
caught at compile time. BecauseY Ye ea ar r’s member functions are easily inlined, no run-time or space
costs are added.

A similar technique can be used to define range types (§25.6.1).

11.8 Subscripting[over.subscript]

An o op pe er ra at to or r[] function can be used to give subscripts a meaning for class objects. The second
argument (the subscript) of ano op pe er ra at to or r[] function may be of any type. This makes it possible to
definev ve ec ct to or rs, associative arrays, etc.

As an example, let us recode the example from §5.5 in which an associative array is used to
write a small program for counting the number of occurrences of words in a file. There, a function
is used. Here, an associative array type is defined:

c cl la as ss s A As ss so oc c {
s st tr ru uc ct t P Pa ai ir r {

s st tr ri in ng g n na am me e;
d do ou ub bl le e v va al l;
P Pa ai ir r(s st tr ri in ng g n n ="", d do ou ub bl le e v v =0 0) : n na am me e(n n) , v va al l(v v) { }

};
v ve ec ct to or r<P Pa ai ir r> v ve ec c;

A As ss so oc c(c co on ns st t A As ss so oc c&) ; / / private to prevent copying
A As ss so oc c& o op pe er ra at to or r=(c co on ns st t A As ss so oc c&) ; / / private to prevent copying

p pu ub bl li ic c:
A As ss so oc c() {}
d do ou ub bl le e& o op pe er ra at to or r[](c co on ns st t s st tr ri in ng g&) ;
v vo oi id d p pr ri in nt t_ _a al ll l() c co on ns st t;

};

An A As ss so oc c keeps a vector ofP Pa ai ir rs. The implementation uses the same trivial and inefficient search
method as in §5.5:

d do ou ub bl le e& A As ss so oc c: : o op pe er ra at to or r[](c co on ns st t s st tr ri in ng g& s s)
/ / search for s; return its value if found; otherwise, make a new Pair and return the default value 0

{
f fo or r (v ve ec ct to or r<P Pa ai ir r>: : c co on ns st t_ _i it te er ra at to or r p p = v ve ec c. b be eg gi in n() ; p p!= v ve ec c. e en nd d() ; ++p p)

i if f (s s == p p-> n na am me e) r re et tu ur rn n p p-> v va al l;

v ve ec c. p pu us sh h_ _b ba ac ck k(P Pa ai ir r(s s, 0 0)) ; / / initial value: 0

r re et tu ur rn n v ve ec c. b ba ac ck k(). v va al l; / / return last element (§16.3.3)
}

Because the representation of anA As ss so oc c is hidden, we need a way of printing it:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.8 Subscripting 287

v vo oi id d A As ss so oc c: : p pr ri in nt t_ _a al ll l() c co on ns st t
{

f fo or r (v ve ec ct to or r<P Pa ai ir r>: : c co on ns st t_ _i it te er ra at to or r p p = v ve ec c. b be eg gi in n() ; p p!= v ve ec c. e en nd d() ; ++p p)
c co ou ut t << p p-> n na am me e << ": " << p p-> v va al l << ´ \ \n n´;

}

Finally, we can write the trivial main program:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

s st tr ri in ng g b bu uf f;
A As ss so oc c v ve ec c;
w wh hi il le e (c ci in n>>b bu uf f) v ve ec c[b bu uf f]++;
v ve ec c. p pr ri in nt t_ _a al ll l() ;

}

A further development of the idea of an associative array can be found in §17.4.1.
An o op pe er ra at to or r[]() must be a member function.

11.9 Function Call[over.call]

Function call, that is, the notationexpression(expression-list),can be interpreted as a binary opera-
tion with theexpressionas the left-hand operand and theexpression-listas the right-hand operand.
The call operator() can be overloaded in the same way as other operators can. An argument list
for an o op pe er ra at to or r()() is evaluated and checked according to the usual argument-passing rules.
Overloading function call seems to be useful primarily for defining types that have only a single
operation and for types for which one operation is predominant.

The most obvious, and probably also the most important, use of the() operator is to provide
the usual function call syntax for objects that in some way behave like functions. An object that
acts like a function is often called afunction-like objector simply afunction object(§18.4). Such
function objects are important because they allow us to write code that takes nontrivial operations
as parameters. For example, the standard library provides many algorithms that invoke a function
for each element of a container. Consider:

v vo oi id d n ne eg ga at te e(c co om mp pl le ex x& c c) { c c = - c c; }

v vo oi id d f f(v ve ec ct to or r<c co om mp pl le ex x>& a aa a, l li is st t<c co om mp pl le ex x>& l ll l)
{

f fo or r_ _e ea ac ch h(a aa a. b be eg gi in n() , a aa a. e en nd d() , n ne eg ga at te e) ; / / negate all vector elements
f fo or r_ _e ea ac ch h(l ll l. b be eg gi in n() , l ll l. e en nd d() , n ne eg ga at te e) ; / / negate all list elements

}

This negates every element in the vector and the list.
What if we wanted to addc co om mp pl le ex x(2 2, 3 3) to every element? That is easily done like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

288 Operator Overloading Chapter 11

v vo oi id d a ad dd d2 23 3(c co om mp pl le ex x& c c)
{

c c += c co om mp pl le ex x(2 2, 3 3) ;
}

v vo oi id d g g(v ve ec ct to or r<c co om mp pl le ex x>& a aa a, l li is st t<c co om mp pl le ex x>& l ll l)
{

f fo or r_ _e ea ac ch h(a aa a. b be eg gi in n() , a aa a. e en nd d() , a ad dd d2 23 3) ;
f fo or r_ _e ea ac ch h(l ll l. b be eg gi in n() , l ll l. e en nd d() , a ad dd d2 23 3) ;

}

How would we write a function to repeatedly add an arbitrary complex value? We need something
to which we can pass that arbitrary value and which can then use that value each time it is called.
That does not come naturally for functions. Typically, we end up ‘‘passing’’ the arbitrary value by
leaving it in the function’s surrounding context. That’s messy. However, we can write a class that
behaves in the desired way:

c cl la as ss s A Ad dd d {
c co om mp pl le ex x v va al l;

p pu ub bl li ic c:
A Ad dd d(c co om mp pl le ex x c c) { v va al l = c c; } / / save value
A Ad dd d(d do ou ub bl le e r r, d do ou ub bl le e i i) { v va al l = c co om mp pl le ex x(r r, i i) ; }

v vo oi id d o op pe er ra at to or r()(c co om mp pl le ex x& c c) c co on ns st t { c c += v va al l; } / / add value to argument
};

An object of classA Ad dd d is initialized with a complex number, and when invoked using() , it adds
that number to its argument. For example:

v vo oi id d h h(v ve ec ct to or r<c co om mp pl le ex x>& a aa a, l li is st t<c co om mp pl le ex x>& l ll l, c co om mp pl le ex x z z)
{

f fo or r_ _e ea ac ch h(a aa a. b be eg gi in n() , a aa a. e en nd d() , A Ad dd d(2 2, 3 3)) ;
f fo or r_ _e ea ac ch h(l ll l. b be eg gi in n() , l ll l. e en nd d() , A Ad dd d(z z)) ;

}

This will addc co om mp pl le ex x(2 2, 3 3) to every element of the array andz z to every element on the list. Note
thatA Ad dd d(z z) constructs an object that is used repeatedly byf fo or r_ _e ea ac ch h() . It is not simply a function
that is called once or even called repeatedly. The function that is called repeatedly isA Ad dd d(z z) ’s
o op pe er ra at to or r()().

This all works becausef fo or r_ _e ea ac ch h is a template that applies() to its third argument without car-
ing exactly what that third argument really is:

t te em mp pl la at te e<c cl la as ss s I It te er r, c cl la as ss s F Fc ct t> I It te er r f fo or r_ _e ea ac ch h(I It te er r b b, I It te er r e e, F Fc ct t f f)
{

w wh hi il le e (b b != e e) f f(* b b++) ;
r re et tu ur rn n b b;

}

At first glance, this technique may look esoteric, but it is simple, efficient, and extremely useful
(see §3.8.5, §18.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.9 Function Call 289

Other popular uses ofo op pe er ra at to or r()() are as a substring operator and as a subscripting operator
for multidimensional arrays (§22.4.5).

An o op pe er ra at to or r()() must be a member function.

11.10 Dereferencing[over.deref]

The dereferencing operator-> can be defined as a unary postfix operator. That is, given a class

c cl la as ss s P Pt tr r {
/ / ...
X X* o op pe er ra at to or r->() ;

};

objects of classP Pt tr r can be used to access members of classX X in a very similar manner to the way
pointers are used. For example:

v vo oi id d f f(P Pt tr r p p)
{

p p-> m m = 7 7; / / (p.operator– >())– >m = 7
}

The transformation of the objectp p into the pointerp p. o op pe er ra at to or r->() does not depend on the mem-
berm m pointed to. That is the sense in whicho op pe er ra at to or r->() is a unary postfix operator. However,
there is no new syntax introduced, so a member name is still required after the-> . For example:

v vo oi id d g g(P Pt tr r p p)
{

X X* q q1 1 = p p->; / / syntax error
X X* q q2 2 = p p. o op pe er ra at to or r->() ; / / ok

}

Overloading-> is primarily useful for creating ‘‘smart pointers,’’ that is, objects that act like point-
ers and in addition perform some action whenever an object is accessed through them. For exam-
ple, one could define a classR Re ec c_ _p pt tr r for accessing objects of classR Re ec c stored on disk.R Re ec c_ _p pt tr r’s
constructor takes a name that can be used to find the object on disk,R Re ec c_ _p pt tr r: : o op pe er ra at to or r->()
brings the object into main memory when accessed through itsR Re ec c_ _p pt tr r, andR Re ec c_ _p pt tr r’s destructor
eventually writes the updated object back out to disk:

c cl la as ss s R Re ec c_ _p pt tr r {
R Re ec c* i in n_ _c co or re e_ _a ad dd dr re es ss s;
c co on ns st t c ch ha ar r* i id de en nt ti if fi ie er r;
/ / ...

p pu ub bl li ic c:
R Re ec c_ _p pt tr r(c co on ns st t c ch ha ar r* p p) : i id de en nt ti if fi ie er r(p p) , i in n_ _c co or re e_ _a ad dd dr re es ss s(0 0) { }
~R Re ec c_ _p pt tr r() { w wr ri it te e_ _t to o_ _d di is sk k(i in n_ _c co or re e_ _a ad dd dr re es ss s, i id de en nt ti if fi ie er r) ; }
R Re ec c* o op pe er ra at to or r->() ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

290 Operator Overloading Chapter 11

R Re ec c* R Re ec c_ _p pt tr r: : o op pe er ra at to or r->()
{

i if f (i in n_ _c co or re e_ _a ad dd dr re es ss s == 0 0) i in n_ _c co or re e_ _a ad dd dr re es ss s = r re ea ad d_ _f fr ro om m_ _d di is sk k(i id de en nt ti if fi ie er r) ;
r re et tu ur rn n i in n_ _c co or re e_ _a ad dd dr re es ss s;

}

R Re ec c_ _p pt tr r might be used like this:

s st tr ru uc ct t R Re ec c { / / the Rec that a Rec_ptr points to
s st tr ri in ng g n na am me e;
/ / ...

};

v vo oi id d u up pd da at te e(c co on ns st t c ch ha ar r* s s)
{

R Re ec c_ _p pt tr r p p(s s) ; / / get Rec_ptr for s

p p-> n na am me e = " R Ro os sc co oe e"; / / update s; if necessary, first retrieve from disk
/ / ...

}

Naturally, a realR Re ec c_ _p pt tr r would be a template so that theR Re ec c type is a parameter. Also, a realistic
program would contain error-handling code and use a less naive way of interacting with the disk.

For ordinary pointers, use of-> is synonymous with some uses of unary* and[] . Given

Y Y* p p;

it holds that

p p-> m m == (* p p). m m == p p[0 0]. m m

As usual, no such guarantee is provided for user-defined operators. The equivalence can be pro-
vided where desired:

c cl la as ss s P Pt tr r_ _t to o_ _Y Y {
Y Y* p p;

p pu ub bl li ic c:
Y Y* o op pe er ra at to or r->() { r re et tu ur rn n p p; }
Y Y& o op pe er ra at to or r*() { r re et tu ur rn n * p p; }
Y Y& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n p p[i i] ; }

};

If you provide more than one of these operators, it might be wise to provide the equivalence, just as
it is wise to ensure that++x x andx x+=1 1 have the same effect asx x=x x+1 1 for a simple variablex x of
some class if++, +=, =, and+ are provided.

The overloading of-> is important to a class of interesting programs and not just a minor
curiosity. The reason is thatindirection is a key concept and that overloading-> provides a clean,
direct, and efficient way of representing indirection in a program. Iterators (Chapter 19) provide an
important example of this. Another way of looking at operator-> is to consider it as a way of pro-
viding C++ with a limited, but useful, form ofdelegation(§24.2.4).

Operator-> must be a member function. If used, its return type must be a pointer or an object
of a class to which you can apply-> . When declared for a template class,o op pe er ra at to or r->() is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.10 Dereferencing 291

frequently unused, so it makes sense to postpone checking the constraint on the return type until
actual use.

11.11 Increment and Decrement[over.incr]

Once people invent ‘‘smart pointers,’’ they often decide to provide the increment operator++ and
the decrement operator-- to mirror these operators’ use for built-in types. This is especially obvi-
ous and necessary where the aim is to replace an ordinary pointer type with a ‘‘smart pointer’’ type
that has the same semantics, except that it adds a bit of run-time error checking. For example, con-
sider a troublesome traditional program:

v vo oi id d f f1 1(T T a a) / / traditional use
{

T T v v[2 20 00 0] ;
T T* p p = &v v[0 0] ;
p p--;
* p p = a a; / / Oops: ‘p’ out of range, uncaught
++p p;
* p p = a a; / / ok

}

We might want to replace the pointerp p with an object of a classP Pt tr r_ _t to o_ _T T that can be dereferenced
only provided it actually points to an object. We would also like to ensure thatp p can be incre-
mented and decremented, only provided it points to an object within an array and the increment and
decrement operations yield an object within the array. That is we would like something like this:

c cl la as ss s P Pt tr r_ _t to o_ _T T {
/ / ...

};

v vo oi id d f f2 2(T T a a) / / checked
{

T T v v[2 20 00 0] ;
P Pt tr r_ _t to o_ _T T p p(& v v[0 0] , v v, 2 20 00 0) ;
p p--;
* p p = a a; / / run-time error: ‘p’ out of range
++p p;
* p p = a a; / / ok

}

The increment and decrement operators are unique among C++ operators in that they can be used as
both prefix and postfix operators. Consequently, we must define prefix and postfix increment and
decrementP Pt tr r_ _t to o_ _T T. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

292 Operator Overloading Chapter 11

c cl la as ss s P Pt tr r_ _t to o_ _T T {
T T* p p;
T T* a ar rr ra ay y;
i in nt t s si iz ze e;

p pu ub bl li ic c:

P Pt tr r_ _t to o_ _T T(T T* p p, T T* v v, i in nt t s s) ; / / bind to array v of size s, initial value p
P Pt tr r_ _t to o_ _T T(T T* p p) ; / / bind to single object, initial value p

P Pt tr r_ _t to o_ _T T& o op pe er ra at to or r++() ; / / prefix
P Pt tr r_ _t to o_ _T T o op pe er ra at to or r++(i in nt t) ; / / postfix

P Pt tr r_ _t to o_ _T T& o op pe er ra at to or r--() ; / / prefix
P Pt tr r_ _t to o_ _T T o op pe er ra at to or r--(i in nt t) ; / / postfix

T T& o op pe er ra at to or r*() ; / / prefix
};

The i in nt t argument is used to indicate that the function is to be invoked for postfix application of++.
This i in nt t is never used; the argument is simply a dummy used to distinguish between prefix and
postfix application. The way to remember which version of ano op pe er ra at to or r++ is prefix is to note that
the version without the dummy argument is prefix, exactly like all the other unary arithmetic and
logical operators. The dummy argument is used only for the ‘‘odd’’ postfix++ and-- .

UsingP Pt tr r_ _t to o_ _T T, the example is equivalent to:

v vo oi id d f f3 3(T T a a) / / checked
{

T T v v[2 20 00 0] ;
P Pt tr r_ _t to o_ _T T p p(& v v[0 0] , v v, 2 20 00 0) ;
p p. o op pe er ra at to or r--(0 0) ;
p p. o op pe er ra at to or r*() = a a; / / run-time error: ‘p’ out of range
p p. o op pe er ra at to or r++() ;
p p. o op pe er ra at to or r*() = a a; / / ok

}

Completing classP Pt tr r_ _t to o_ _T T is left as an exercise (§11.14[19]). Its elaboration into a template using
exceptions to report the run-time errors is another exercise (§14.12[2]). An example of operators
++ and -- for iteration can be found in §19.3. A pointer template that behaves correctly with
respect to inheritance is presented in (§13.6.3).

11.12 A String Class[over.string]

Here is a more realistic version of classS St tr ri in ng g. I designed it as the minimal string that served my
needs. This string provides value semantics, character read and write operations, checked and
unchecked access, stream I/O, literal strings as literals, and equality and concatenation operators. It
represents strings as C-style, zero-terminated arrays of characters and uses reference counts to mini-
mize copying. Writing a better string class and/or one that provides more facilities is a good exer-
cise (§11.14[7-12]). That done, we can throw away our exercises and use the standard library
string (Chapter 20).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.12 A String Class 293

My almost-realS St tr ri in ng g employs three auxiliary classes:S Sr re ep p, to allow an actual representation
to be shared between severalS St tr ri in ng gs with the same value;R Ra an ng ge e, to be thrown in case of range
errors, andC Cr re ef f, to help implement a subscript operator that distinguishes between reading and
writing:

c cl la as ss s S St tr ri in ng g {
s st tr ru uc ct t S Sr re ep p; / / representation
S Sr re ep p * r re ep p;

p pu ub bl li ic c:
c cl la as ss s C Cr re ef f; / / reference to char

c cl la as ss s R Ra an ng ge e { }; / / for exceptions

/ / ...
};

Like other members, amember class(often called anested class) can be declared in the class itself
and defined later:

s st tr ru uc ct t S St tr ri in ng g: : S Sr re ep p {
c ch ha ar r* s s; / / pointer to elements
i in nt t s sz z; / / number of characters
i in nt t n n; / / reference count

S Sr re ep p(i in nt t n ns sz z, c co on ns st t c ch ha ar r* p p)
{

n n = 1 1;
s sz z = n ns sz z;
s s = n ne ew w c ch ha ar r[s sz z+1 1] ; / / add space for terminator
s st tr rc cp py y(s s, p p) ;

}

~S Sr re ep p() { d de el le et te e[] s s; }

S Sr re ep p* g ge et t_ _o ow wn n_ _c co op py y() / / clone if necessary
{

i if f (n n==1 1) r re et tu ur rn n t th hi is s;
n n--;
r re et tu ur rn n n ne ew w S Sr re ep p(s sz z, s s) ;

}

v vo oi id d a as ss si ig gn n(i in nt t n ns sz z, c co on ns st t c ch ha ar r* p p)
{

i if f (s sz z != n ns sz z) {
d de el le et te e[] s s;
s sz z = n ns sz z;
s s = n ne ew w c ch ha ar r[s sz z+1 1] ;

}
s st tr rc cp py y(s s, p p) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

294 Operator Overloading Chapter 11

p pr ri iv va at te e: / / prevent copying:
S Sr re ep p(c co on ns st t S Sr re ep p&) ;
S Sr re ep p& o op pe er ra at to or r=(c co on ns st t S Sr re ep p&) ;

};

ClassS St tr ri in ng g provides the usual set of constructors, destructor, and assignment operations:

c cl la as ss s S St tr ri in ng g {
/ / ...

S St tr ri in ng g() ; / / x = ""
S St tr ri in ng g(c co on ns st t c ch ha ar r*) ; / / x = "abc"
S St tr ri in ng g(c co on ns st t S St tr ri in ng g&) ; / / x = other_string
S St tr ri in ng g& o op pe er ra at to or r=(c co on ns st t c ch ha ar r *) ;
S St tr ri in ng g& o op pe er ra at to or r=(c co on ns st t S St tr ri in ng g&) ;
~S St tr ri in ng g() ;

/ / ...
};

This S St tr ri in ng g has value semantics. That is, after an assignments s1 1=s s2 2, the two stringss s1 1 ands s2 2 are
fully distinct and subsequent changes to the one have no effect on the other. The alternative would
be to giveS St tr ri in ng g pointer semantics. That would be to let changes tos s2 2 afters s1 1=s s2 2 also affect the
value ofs s1 1. For types with conventional arithmetic operations, such as complex, vector, matrix,
and string, I prefer value semantics. However, for the value semantics to be affordable, aS St tr ri in ng g is
implemented as a handle to its representation and the representation is copied only when necessary:

S St tr ri in ng g: : S St tr ri in ng g() / / the empty string is the default value
{

r re ep p = n ne ew w S Sr re ep p(0 0,"") ;
}

S St tr ri in ng g: : S St tr ri in ng g(c co on ns st t S St tr ri in ng g& x x) / / copy constructor
{

x x. r re ep p-> n n++;
r re ep p = x x. r re ep p; / / share representation

}

S St tr ri in ng g: :~ S St tr ri in ng g()
{

i if f (-- r re ep p-> n n == 0 0) d de el le et te e r re ep p;
}

S St tr ri in ng g& S St tr ri in ng g: : o op pe er ra at to or r=(c co on ns st t S St tr ri in ng g& x x) / / copy assignment
{

x x. r re ep p-> n n++; / / protects against ‘‘st = st’’
i if f (-- r re ep p-> n n == 0 0) d de el le et te e r re ep p;
r re ep p = x x. r re ep p; / / share representation
r re et tu ur rn n * t th hi is s;

}

Pseudo-copy operations takingc co on ns st t c ch ha ar r* arguments are provided to allow string literals:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.12 A String Class 295

S St tr ri in ng g: : S St tr ri in ng g(c co on ns st t c ch ha ar r* s s)
{

r re ep p = n ne ew w S Sr re ep p(s st tr rl le en n(s s) , s s) ;
}

S St tr ri in ng g& S St tr ri in ng g: : o op pe er ra at to or r=(c co on ns st t c ch ha ar r* s s)
{

i if f (r re ep p-> n n == 1 1) / / recycle Srep
r re ep p-> a as ss si ig gn n(s st tr rl le en n(s s) , s s) ;

e el ls se e { / / use new Srep
r re ep p-> n n--;
r re ep p = n ne ew w S Sr re ep p(s st tr rl le en n(s s) , s s) ;

}
r re et tu ur rn n * t th hi is s;

}

The design of access operators for a string is a difficult topic because ideally access is by conven-
tional notation (that is, using[]), maximally efficient, and range checked. Unfortunately, you can-
not have all of these properties simultaneously. My choice here has been to provide efficient
unchecked operations with a slightly inconvenient notation plus slightly less efficient checked oper-
ators with the conventional notation:

c cl la as ss s S St tr ri in ng g {
/ / ...

v vo oi id d c ch he ec ck k(i in nt t i i) c co on ns st t { i if f (i i<0 0 || r re ep p-> s sz z<=i i) t th hr ro ow w R Ra an ng ge e() ; }

c ch ha ar r r re ea ad d(i in nt t i i) c co on ns st t { r re et tu ur rn n r re ep p-> s s[i i] ; }
v vo oi id d w wr ri it te e(i in nt t i i, c ch ha ar r c c) { r re ep p=r re ep p-> g ge et t_ _o ow wn n_ _c co op py y() ; r re ep p-> s s[i i]= c c; }

C Cr re ef f o op pe er ra at to or r[](i in nt t i i) { c ch he ec ck k(i i) ; r re et tu ur rn n C Cr re ef f(* t th hi is s, i i) ; }
c ch ha ar r o op pe er ra at to or r[](i in nt t i i) c co on ns st t { c ch he ec ck k(i i) ; r re et tu ur rn n r re ep p-> s s[i i] ; }

i in nt t s si iz ze e() c co on ns st t { r re et tu ur rn n r re ep p-> s sz z; }

/ / ...
};

The idea is to use[] to get checked access for ordinary use, but to allow the user to optimize by
checking the range once for a set of accesses. For example:

i in nt t h ha as sh h(c co on ns st t S St tr ri in ng g& s s)
{

i in nt t h h = s s. r re ea ad d(0 0) ;
c co on ns st t i in nt t m ma ax x = s s. s si iz ze e() ;
f fo or r (i in nt t i i = 1 1; i i<m ma ax x; i i++) h h ^= s s. r re ea ad d(i i)>> 1 1; / / unchecked access to s
r re et tu ur rn n h h;

}

Defining an operator, such as[] , to be used for both reading and writing is difficult where it is not
acceptable simply to return a reference and let the user decide what to do with it. Here, that is not a
reasonable alternative because I have definedS St tr ri in ng g so that the representation is shared between
S St tr ri in ng gs that have been assigned, passed as value arguments, etc., until someone actually writes to a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

296 Operator Overloading Chapter 11

S St tr ri in ng g. Then, and only then, is the representation copied. This technique is usually calledcopy-
on-write. The actual copy is done byS St tr ri in ng g: : S Sr re ep p: : g ge et t_ _o ow wn n_ _c co op py y() .

To get these access functions inlined, their definitions must be placed so that the definition of
S Sr re ep p is in scope. This implies that eitherS Sr re ep p is defined withinS St tr ri in ng g or the access functions are
definedi in nl li in ne eoutsideS St tr ri in ng g and afterS St tr ri in ng g: : S Sr re ep p (§11.14[2]).

To distinguish between a read and a write,S St tr ri in ng g: : o op pe er ra at to or r[]() returns aC Cr re ef f when called
for a non-c co on ns st t object. A C Cr re ef f behaves like a c ch ha ar r&, except that it calls
S St tr ri in ng g: : S Sr re ep p: : g ge et t_ _o ow wn n_ _c co op py y() when written to:

c cl la as ss s S St tr ri in ng g: : C Cr re ef f { / / reference to s[i]
f fr ri ie en nd d c cl la as ss s S St tr ri in ng g;

S St tr ri in ng g& s s;
i in nt t i i;
C Cr re ef f(S St tr ri in ng g& s ss s, i in nt t i ii i) : s s(s ss s) , i i(i ii i) { }

p pu ub bl li ic c:
o op pe er ra at to or r c ch ha ar r() { r re et tu ur rn n s s. r re ea ad d(i i) ; } / / yield value
v vo oi id d o op pe er ra at to or r=(c ch ha ar r c c) { s s. w wr ri it te e(i i, c c) ; } / / change value

};

For example:

v vo oi id d f f(S St tr ri in ng g s s, c co on ns st t S St tr ri in ng g& r r)
{

i in nt t c c1 1 = s s[1 1] ; / / c1 = s.operator[](1).operator char()
s s[1 1] = ´ c c´; / / s.operator[](1).operator=(’c’)

i in nt t c c2 2 = r r[1 1] ; / / c2 = r.operator[](1)
r r[1 1] = ´ d d´; / / error: assignment to char, r.operator[](1) = ’d’

}

Note that for a non-c co on ns st t objects s. o op pe er ra at to or r[](1 1) is C Cr re ef f(s s, 1 1) .
To complete classS St tr ri in ng g, I provide a set of useful functions:

c cl la as ss s S St tr ri in ng g {
/ / ...

S St tr ri in ng g& o op pe er ra at to or r+=(c co on ns st t S St tr ri in ng g&) ;
S St tr ri in ng g& o op pe er ra at to or r+=(c co on ns st t c ch ha ar r*) ;

f fr ri ie en nd d o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co on ns st t S St tr ri in ng g&) ;
f fr ri ie en nd d i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m&, S St tr ri in ng g&) ;

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t S St tr ri in ng g& x x, c co on ns st t c ch ha ar r* s s)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, s s) == 0 0; }

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t S St tr ri in ng g& x x, c co on ns st t S St tr ri in ng g& y y)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, y y. r re ep p-> s s) == 0 0; }

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t S St tr ri in ng g& x x, c co on ns st t c ch ha ar r* s s)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, s s) != 0 0; }

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.12 A String Class 297

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t S St tr ri in ng g& x x, c co on ns st t S St tr ri in ng g& y y)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, y y. r re ep p-> s s) != 0 0; }

};

S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t S St tr ri in ng g&) ;
S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t c ch ha ar r*) ;

To save space, I have left the I/O and concatenation operations as exercises.
The main program simply exercises theS St tr ri in ng g operators a bit:

S St tr ri in ng g f f(S St tr ri in ng g a a, S St tr ri in ng g b b)
{

a a[2 2] = ´ x x´;
c ch ha ar r c c = b b[3 3] ;
c co ou ut t << " i in n f f: " << a a << ´ ´ << b b << ´ ´ << c c << ´ \ \n n´;
r re et tu ur rn n b b;

}

i in nt t m ma ai in n()
{

S St tr ri in ng g x x, y y;
c co ou ut t << " P Pl le ea as se e e en nt te er r t tw wo o s st tr ri in ng gs s\ \n n";
c ci in n >> x x >> y y;
c co ou ut t << " i in np pu ut t: " << x x << ´ ´ << y y << ´ \ \n n´;
S St tr ri in ng g z z = x x;
y y = f f(x x, y y) ;
i if f (x x != z z) c co ou ut t << " x x c co or rr ru up pt te ed d! \ \n n";
x x[0 0] = ´!´;
i if f (x x == z z) c co ou ut t << " w wr ri it te e f fa ai il le ed d! \ \n n";
c co ou ut t << " e ex xi it t: " << x x << ´ ´ << y y << ´ ´ << z z << ´ \ \n n´;

}

This S St tr ri in ng g lacks many features that you might consider important or even essential. For example,
it offers no operation of producing a C-string representation of its value (§11.14[10], Chapter 20).

11.13 Advice[class.advice]

[1] Define operators primarily to mimic conventional usage; §11.1.
[2] For large operands, usec co on ns st t reference argument types; §11.6.
[3] For large results, consider optimizing the return; §11.6.
[4] Prefer the default copy operations if appropriate for a class; §11.3.4.
[5] Redefine or prohibit copying if the default is not appropriate for a type; §11.2.2.
[6] Prefer member functions over nonmembers for operations that need access to the representa-

tion; §11.5.2.
[7] Prefer nonmember functions over members for operations that do not need access to the repre-

sentation; §11.5.2.
[8] Use namespaces to associate helper functions with ‘‘their’’ class; §11.2.4.
[9] Use nonmember functions for symmetric operators; §11.3.2.
[10] Use() for subscripting multidimensional arrays; §11.9.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

298 Operator Overloading Chapter 11

[11] Make constructors that take a single ‘‘size argument’’e ex xp pl li ic ci it t; §11.7.1.
[12] For non-specialized uses, prefer the standards st tr ri in ng g (Chapter 20) to the result of your own

exercises; §11.12.
[13] Be cautious about introducing implicit conversions; §11.4.
[14] Use member functions to express operators that require an lvalue as its left-hand operand;

§11.3.5.

11.14 Exercises[over.exercises]

1. (∗2) In the following program, which conversions are used in each expression?

s st tr ru uc ct t X X {
i in nt t i i;
X X(i in nt t) ;
o op pe er ra at to or r+(i in nt t) ;

};

s st tr ru uc ct t Y Y {
i in nt t i i;
Y Y(X X) ;
o op pe er ra at to or r+(X X) ;
o op pe er ra at to or r i in nt t() ;

};

e ex xt te er rn n X X o op pe er ra at to or r*(X X, Y Y) ;
e ex xt te er rn n i in nt t f f(X X) ;

X X x x = 1 1;
Y Y y y = x x;
i in nt t i i = 2 2;

i in nt t m ma ai in n()
{

i i + 1 10 0; y y + 1 10 0; y y + 1 10 0 * y y;
x x + y y + i i; x x * x x + i i; f f(7 7) ;
f f(y y) ; y y + y y; 1 10 06 6 + y y;

}

Modify the program so that it will run and print the values of each legal expression.
2. (∗2) Complete and test classS St tr ri in ng g from §11.12.
3. (∗2) Define a classI IN NT T that behaves exactly like ani in nt t. Hint: DefineI IN NT T: : o op pe er ra at to or r i in nt t() .
4. (∗1) Define a classR RI IN NT T that behaves like ani in nt t except that the only operations allowed are+

(unary and binary),- (unary and binary),* , / , and%. Hint: Do not defineR RI IN NT T: : o op pe er ra at to or r
i in nt t() .

5. (∗3) Define a classL LI IN NT T that behaves like aR RI IN NT T, except that it has at least 64 bits of preci-
sion.

6. (∗4) Define a class implementing arbitrary precision arithmetic. Test it by calculating the facto-
rial of 1 10 00 00 0. Hint: You will need to manage storage in a way similar to what was done for class
S St tr ri in ng g.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.14 Exercises 299

7. (∗2) Define an external iterator for classS St tr ri in ng g:

c cl la as ss s S St tr ri in ng g_ _i it te er r {
/ / refer to string and string element

p pu ub bl li ic c:
S St tr ri in ng g_ _i it te er r(S St tr ri in ng g& s s) ; / / iterator for s
c ch ha ar r& n ne ex xt t() ; / / reference to next element

/ / more operations of your choice
};

Compare this in utility, programming style, and efficiency to having an internal iterator for
S St tr ri in ng g (that is, a notion of a current element for theS St tr ri in ng g and operations relating to that ele-
ment).

8. (∗1.5) Provide a substring operator for a string class by overloading() . What other operations
would you like to be able to do on a string?

9. (∗3) Design classS St tr ri in ng g so that the substring operator can be used on the left-hand side of an
assignment. First, write a version in which a string can be assigned to a substring of the same
length. Then, write a version in which the lengths may differ.

10. (∗2) Define an operation forS St tr ri in ng g that produces a C-string representation of its value. Discuss
the pros and cons of having that operation as a conversion operator. Discuss alternatives for
allocating the memory for that C-string representation.

11. (∗2.5) Define and implement a simple regular expression pattern match facility for classS St tr ri in ng g.
12. (∗1.5) Modify the pattern match facility from §11.14[11] to work on the standard librarys st tr ri in ng g.

Note that you cannot modify the definition ofs st tr ri in ng g.
13. (∗2) Write a program that has been rendered unreadable through use of operator overloading

and macros. An idea: Define+ to mean- and vice versa forI IN NT Ts s. Then, use a macro to define
i in nt t to meanI IN NT T. Redefine popular functions using reference type arguments. Writing a few
misleading comments can also create great confusion.

14. (∗3) Swap the result of §11.14[13] with a friend. Without running it, figure out what your
friend’s program does. When you have completed this exercise, you’ll know what to avoid.

15. (∗2) Define a typeV Ve ec c4 4 as a vector of fourf fl lo oa at ts. Defineo op pe er ra at to or r[] for V Ve ec c4 4. Define opera-
tors+, - , * , / , =, +=, -= , *= , and/= for combinations of vectors and floating-point numbers.

16. (∗3) Define a classM Ma at t4 4 as a vector of fourV Ve ec c4 4s. Defineo op pe er ra at to or r[] to return aV Ve ec c4 4 for
M Ma at t4 4. Define the usual matrix operations for this type. Define a function doing Gaussian elim-
ination for aM Ma at t4 4.

17. (∗2) Define a classV Ve ec ct to or r similar toV Ve ec c4 4 but with the size given as an argument to the con-
structorV Ve ec ct to or r: : V Ve ec ct to or r(i in nt t) .

18. (∗3) Define a classM Ma at tr ri ix x similar toM Ma at t4 4 but with the dimensions given as arguments to the
constructorM Ma at tr ri ix x: : M Ma at tr ri ix x(i in nt t, i in nt t) .

19. (∗2) Complete classP Pt tr r_ _t to o_ _T T from §11.11 and test it. To be complete,P Pt tr r_ _t to o_ _T T must have at
least the operators* , -> , =, ++, and-- defined. Do not cause a run-time error until a wild
pointer is actually dereferenced.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

300 Operator Overloading Chapter 11

20. (∗1) Given two structures:

s st tr ru uc ct t S S { i in nt t x x, y y; };
s st tr ru uc ct t T T { c ch ha ar r* p p; c ch ha ar r* q q; };

write a classC C that allows the use ofx x andp p from someS SandT T, much as ifx x andp p had been
members ofC C.

21. (∗1.5) Define a class I In nd de ex x to hold the index for an exponentiation function
m my yp po ow w(d do ou ub bl le e, I In nd de ex x) . Find a way to have2 2** I I call m my yp po ow w(2 2, I I) .

22. (∗2) Define a classI Im ma ag gi in na ar ry y to represent imaginary numbers. Define classC Co om mp pl le ex x based on
that. Implement the fundamental arithmetic operators.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

12
_ __ _______________________________________

Derived Classes

Do not multiply objects without necessity.
– W. Occam

Concepts and classes— derived classes— member functions— construction and
destruction— class hierarchies— type fields— virtual functions— abstract classes—
traditional class hierarchies— abstract classes as interfaces— localizing object creation
— abstract classes and class hierarchies— advice— exercises.

12.1 Introduction [derived.intro]

From Simula, C++ borrowed the concept of a class as a user-defined type and the concept of class
hierarchies. In addition, it borrowed the idea for system design that classes should be used to
model concepts in the programmer’s and the application’s world. C++ provides language con-
structs that directly support these design notions. Conversely, using the language features in sup-
port of design concepts distinguishes effective use of C++. Using language constructs only as nota-
tional props for more traditional types of programming is to miss key strengths of C++.

A concept does not exist in isolation. It coexists with related concepts and derives much of its
power from relationships with related concepts. For example, try to explain what a car is. Soon
you’ll have introduced the notions of wheels, engines, drivers, pedestrians, trucks, ambulances,
roads, oil, speeding tickets, motels, etc. Since we use classes to represent concepts, the issue
becomes how to represent relationships between concepts. However, we can’t express arbitrary
relationships directly in a programming language. Even if we could, we wouldn’t want to. Our
classes should be more narrowly defined than our everyday concepts– and more precise. The
notion of a derived class and its associated language mechanisms are provided to express hierarchi-
cal relationships, that is, to express commonality between classes. For example, the concepts of a
circle and a triangle are related in that they are both shapes; that is, they have the concept of a shape
in common. Thus, we must explicitly define classC Ci ir rc cl le e and classT Tr ri ia an ng gl le e to have classS Sh ha ap pe e in

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

302 Derived Classes Chapter 12

common. Representing a circle and a triangle in a program without involving the notion of a shape
would be to lose something essential. This chapter is an exploration of the implications of this sim-
ple idea, which is the basis for what is commonly called object-oriented programming.

The presentation of language features and techniques progress from the simple and concrete to
the more sophisticated and abstract. For many programmers, this will also be a progression from
the familiar towards the less well known. This is not a simple journey from ‘‘bad old techniques’’
towards ‘‘the one right way.’’ When I point out limitations of one technique as a motivation for
another, I do so in the context of specific problems; for different problems or in other contexts, the
first technique may indeed be the better choice. Useful software has been constructed using all of
the techniques presented here. The aim is to help you attain sufficient understanding of the tech-
niques to be able to make intelligent and balanced choices among them for real problems.

In this chapter, I first introduce the basic language features supporting object-oriented program-
ming. Next, the use of those features to develop well-structured programs is discussed in the con-
text of a larger example. Further facilities supporting object-oriented programming, such as multi-
ple inheritance and run-time type identification, are discussed in Chapter 15.

12.2 Derived Classes[derived.derived]

Consider building a program dealing with people employed by a firm. Such a program might have
a data structure like this:

s st tr ru uc ct t E Em mp pl lo oy ye ee e {
s st tr ri in ng g f fi ir rs st t_ _n na am me e, f fa am mi il ly y_ _n na am me e;
c ch ha ar r m mi id dd dl le e_ _i in ni it ti ia al l;
D Da at te e h hi ir ri in ng g_ _d da at te e;
s sh ho or rt t d de ep pa ar rt tm me en nt t;
/ / ...

};

Next, we might try to define a manager:

s st tr ru uc ct t M Ma an na ag ge er r {
E Em mp pl lo oy ye ee e e em mp p; / / manager’s employee record
s se et t<E Em mp pl lo oy ye ee e*> g gr ro ou up p; / / people managed
s sh ho or rt t l le ev ve el l;
/ / ...

};

A manager is also an employee; theE Em mp pl lo oy ye ee e data is stored in thee em mp p member of aM Ma an na ag ge er r
object. This may be obvious to a human reader– especially a careful reader– but there is nothing
that tells the compiler and other tools thatM Ma an na ag ge er r is also anE Em mp pl lo oy ye ee e. A M Ma an na ag ge er r* is not an
E Em mp pl lo oy ye ee e* , so one cannot simply use one where the other is required. In particular, one cannot put
a M Ma an na ag ge er r onto a list ofE Em mp pl lo oy ye ee es without writing special code. We could either use explicit
type conversion on aM Ma an na ag ge er r* or put the address of thee em mp p member onto a list ofe em mp pl lo oy ye ee es.
However, both solutions are inelegant and can be quite obscure. The correct approach is to explic-
itly state that aM Ma an na ag ge er r is anE Em mp pl lo oy ye ee e, with a few pieces of information added:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2 Derived Classes 303

s st tr ru uc ct t M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e {
s se et t<E Em mp pl lo oy ye ee e*> g gr ro ou up p;
s sh ho or rt t l le ev ve el l;
/ / ...

};

TheM Ma an na ag ge er r is derivedfrom E Em mp pl lo oy ye ee e, and conversely,E Em mp pl lo oy ye ee e is abase classfor M Ma an na ag ge er r.
The classM Ma an na ag ge er r has the members of classE Em mp pl lo oy ye ee e (n na am me e, a ag ge e, etc.) in addition to its own
members (g gr ro ou up p, l le ev ve el l, etc.).

Derivation is often represented graphically by a pointer from the derived class to its base class
indicating that the derived class refers to its base (rather than the other way around):

E Em mp pl lo oy ye ee e

M Ma an na ag ge er r

..

A derived class is often said to inherit properties from its base, so the relationship is also called
inheritance. A base class is sometimes called asuperclassand a derived class asubclass. This ter-
minology, however, is confusing to people who observe that the data in a derived class object is a
superset of the data of an object of its base class. A derived class is larger than its base class in the
sense that it holds more data and provides more functions.

A popular and efficient implementation of the notion of derived classes has an object of the
derived class represented as an object of the base class, with the information belonging specifically
to the derived class added at the end. For example:

f fi ir rs st t_ _n na am me e
f fa am mi il ly y_ _n na am me e

...

f fi ir rs st t_ _n na am me e
f fa am mi il ly y_ _n na am me e

...
g gr ro ou up p
l le ev ve el l

...

E Em mp pl lo oy ye ee e: M Ma an na ag ge er r:

Deriving M Ma an na ag ge er r from E Em mp pl lo oy ye ee e in this way makesM Ma an na ag ge er r a subtype ofE Em mp pl lo oy ye ee e so that a
M Ma an na ag ge er r can be used wherever anE Em mp pl lo oy ye ee e is acceptable. For example, we can now create a list
of E Em mp pl lo oy ye ee es, some of whom areM Ma an na ag ge er rs:

v vo oi id d f f(M Ma an na ag ge er r m m1 1, E Em mp pl lo oy ye ee e e e1 1)
{

l li is st t<E Em mp pl lo oy ye ee e*> e el li is st t;

e el li is st t. p pu us sh h_ _f fr ro on nt t(& m m1 1) ;
e el li is st t. p pu us sh h_ _f fr ro on nt t(& e e1 1) ;
/ / ...

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

304 Derived Classes Chapter 12

A M Ma an na ag ge er r is (also) anE Em mp pl lo oy ye ee e, so aM Ma an na ag ge er r* can be used as aE Em mp pl lo oy ye ee e* . However, an
E Em mp pl lo oy ye ee e is not necessarily aM Ma an na ag ge er r, so anE Em mp pl lo oy ye ee e* cannot be used as aM Ma an na ag ge er r* . In gen-
eral, if a classD De er ri iv ve ed d has a public base class (§15.3)B Ba as se e, then aD De er ri iv ve ed d* can be assigned to a
variable of typeB Ba as se e* without the use of explicit type conversion. The opposite conversion, from
B Ba as se e* to D De er ri iv ve ed d* , must be explicit. For example:

v vo oi id d g g(M Ma an na ag ge er r m mm m, E Em mp pl lo oy ye ee e e ee e)
{

E Em mp pl lo oy ye ee e* p pe e = &m mm m; / / ok: every Manager is an Employee
M Ma an na ag ge er r* p pm m = &e ee e; / / error: not every Employee is a Manager

p pm m-> l le ev ve el l = 2 2; / / disaster: ee doesn’t have a ‘level’

p pm m = s st ta at ti ic c_ _c ca as st t<M Ma an na ag ge er r*>(p pe e) ; / / brute force: works because pe points
/ / to the Manager mm

p pm m-> l le ev ve el l = 2 2; / / fine: pm points to the Manager mm that has a ‘level’
}

In other words, an object of a derived class can be treated as an object of its base class when manip-
ulated through pointers and references. The opposite is not true. The use ofs st ta at ti ic c_ _c ca as st t and
d dy yn na am mi ic c_ _c ca as st t is discussed in §15.4.2.

Using a class as a base is equivalent to declaring an (unnamed) object of that class. Conse-
quently, a class must be defined in order to be used as a base (§5.7):

c cl la as ss s E Em mp pl lo oy ye ee e; / / declaration only, no definition

c cl la as ss s M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e { / / error: Employee not defined
/ / ...

};

12.2.1 Member Functions [derived.member]

Simple data structures, such asE Em mp pl lo oy ye ee eandM Ma an na ag ge er r, are really not that interesting and often not
particularly useful. We need to give the information as a proper type that provides a suitable set of
operations that present the concept, and we need to do this without tying us to the details of a par-
ticular representation. For example:

c cl la as ss s E Em mp pl lo oy ye ee e {
s st tr ri in ng g f fi ir rs st t_ _n na am me e, f fa am mi il ly y_ _n na am me e;
c ch ha ar r m mi id dd dl le e_ _i in ni it ti ia al l;
/ / ...

p pu ub bl li ic c:
v vo oi id d p pr ri in nt t() c co on ns st t;
s st tr ri in ng g f fu ul ll l_ _n na am me e() c co on ns st t

{ r re et tu ur rn n f fi ir rs st t_ _n na am me e + ´ ´ + m mi id dd dl le e_ _i in ni it ti ia al l + ´ ´ + f fa am mi il ly y_ _n na am me e; }
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.1 Member Functions 305

c cl la as ss s M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e {
/ / ...

p pu ub bl li ic c:
v vo oi id d p pr ri in nt t() c co on ns st t;
/ / ...

};

A member of a derived class can use the public– and protected (see §15.3)– members of its base
class as if they were declared in the derived class itself. For example:

v vo oi id d M Ma an na ag ge er r: : p pr ri in nt t() c co on ns st t
{

c co ou ut t << " n na am me e i is s " << f fu ul ll l_ _n na am me e() << ´ \ \n n´;
/ / ...

}

However, a derived class cannot use a base class’ private names:

v vo oi id d M Ma an na ag ge er r: : p pr ri in nt t() c co on ns st t
{

c co ou ut t << " n na am me e i is s " << f fa am mi il ly y_ _n na am me e << ´ \ \n n´; / / error!
/ / ...

}

This second version ofM Ma an na ag ge er r: : p pr ri in nt t() will not compile. A member of a derived class has no
special permission to access private members of its base class, sof fa am mi il ly y_ _n na am me e is not accessible to
M Ma an na ag ge er r: : p pr ri in nt t() .

This comes as a surprise to some, but consider the alternative: that a member function of a
derived class could access the private members of its base class. The concept of a private member
would be rendered meaningless by allowing a programmer to gain access to the private part of a
class simply by deriving a new class from it. Furthermore, one could no longer find all uses of a
private name by looking at the functions declared as members and friends of that class. One would
have to examine every source file of the complete program for derived classes, then examine every
function of those classes, then find every class derived from those classes, etc. This is, at best,
tedious and often impractical. Where it is acceptable,p pr ro ot te ec ct te ed d – rather thanp pr ri iv va at te e – members
can be used. A protected member is like a public member to a member of a derived class, yet it is
like a private member to other functions (see §15.3).

Typically, the cleanest solution is for the derived class to use only the public members of its
base class. For example:

v vo oi id d M Ma an na ag ge er r: : p pr ri in nt t() c co on ns st t
{

E Em mp pl lo oy ye ee e: : p pr ri in nt t() ; / / print Employee information

c co ou ut t << l le ev ve el l; / / print Manager-specific information
/ / ...

}

Note that: : must be used becausep pr ri in nt t() has been redefined inM Ma an na ag ge er r. Such reuse of names
is typical. The unwary might write this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

306 Derived Classes Chapter 12

v vo oi id d M Ma an na ag ge er r: : p pr ri in nt t() c co on ns st t
{

p pr ri in nt t() ; / / oops!

/ / print Manager-specific information
}

and find the program involved in an unexpected sequence of recursive calls.

12.2.2 Constructors and Destructors [derived.ctor]

Some derived classes need constructors. If a base class has constructors, then a constructor must be
invoked. Default constructors can be invoked implicitly. However, if all constructors for a base
require arguments, then a constructor for that base must be explicitly called. Consider:

c cl la as ss s E Em mp pl lo oy ye ee e {
s st tr ri in ng g f fi ir rs st t_ _n na am me e, f fa am mi il ly y_ _n na am me e;
s sh ho or rt t d de ep pa ar rt tm me en nt t;
/ / ...

p pu ub bl li ic c:
E Em mp pl lo oy ye ee e(c co on ns st t s st tr ri in ng g& n n, i in nt t d d) ;
/ / ...

};

c cl la as ss s M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e {
s se et t<E Em mp pl lo oy ye ee e*> g gr ro ou up p; / / people managed
s sh ho or rt t l le ev ve el l;
/ / ...

p pu ub bl li ic c:
M Ma an na ag ge er r(c co on ns st t s st tr ri in ng g& n n, i in nt t d d, i in nt t l lv vl l) ;
/ / ...

};

Arguments for the base class’ constructor are specified in the definition of a derived class’ con-
structor. In this respect, the base class acts exactly like a member of the derived class (§10.4.6).
For example:

E Em mp pl lo oy ye ee e: : E Em mp pl lo oy ye ee e(c co on ns st t s st tr ri in ng g& n n, i in nt t d d)
: f fa am mi il ly y_ _n na am me e(n n) , d de ep pa ar rt tm me en nt t(d d) / / initialize members

{
/ / ...

}

M Ma an na ag ge er r: : M Ma an na ag ge er r(c co on ns st t s st tr ri in ng g& n n, i in nt t d d, i in nt t l lv vl l)
: E Em mp pl lo oy ye ee e(n n, d d) , / / initialize base

l le ev ve el l(l lv vl l) / / initialize members
{

/ / ...
}

A derived class constructor can specify initializers for its own members and immediate bases only;
it cannot directly initialize members of a base. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.2 Constructors and Destructors 307

M Ma an na ag ge er r: : M Ma an na ag ge er r(c co on ns st t s st tr ri in ng g& n n, i in nt t d d, i in nt t l lv vl l)
: f fa am mi il ly y_ _n na am me e(n n) , / / error: family_name not declared in manager

d de ep pa ar rt tm me en nt t(d d) , / / error: department not declared in manager
l le ev ve el l(l lv vl l)

{
/ / ...

}

This definition contains three errors: it fails to invokeE Em mp pl lo oy ye ee é s s constructor, and twice it
attempts to initialize members ofE Em mp pl lo oy ye ee edirectly.

Class objects are constructed from the bottom up: first the base, then the members, and then the
derived class itself. They are destroyed in the opposite order: first the derived class itself, then the
members, and then the base. Members and bases are constructed in order of declaration in the class
and destroyed in the reverse order. See also §10.4.6 and §15.2.4.1.

12.2.3 Copying [derived.copy]

Copying of class objects is defined by the copy constructor and assignments (§10.4.4.1). Consider:

c cl la as ss s E Em mp pl lo oy ye ee e {
/ / ...
E Em mp pl lo oy ye ee e& o op pe er ra at to or r=(c co on ns st t E Em mp pl lo oy ye ee e&) ;
E Em mp pl lo oy ye ee e(c co on ns st t E Em mp pl lo oy ye ee e&) ;

};

v vo oi id d f f(c co on ns st t M Ma an na ag ge er r& m m)
{

E Em mp pl lo oy ye ee e e e = m m; / / construct e from Employee part of m
e e = m m; / / assign Employee part of m to e

}

Because theE Em mp pl lo oy ye ee e copy functions do not know anything aboutM Ma an na ag ge er rs, only theE Em mp pl lo oy ye ee e
part of aM Ma an na ag ge er r is copied. This is commonly referred to asslicing and can be a source of sur-
prises and errors. One reason to pass pointers and references to objects of classes in a hierarchy is
to avoid slicing. Other reasons are to preserve polymorphic behavior (§2.5.4, §12.2.6) and to gain
efficiency.

12.2.4 Class Hierarchies [derived.hierarchy]

A derived class can itself be a base class. For example:

c cl la as ss s E Em mp pl lo oy ye ee e { /* ... */ };
c cl la as ss s M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e { /* ... */ };
c cl la as ss s D Di ir re ec ct to or r : p pu ub bl li ic c M Ma an na ag ge er r { /* ... */ };

Such a set of related classes is traditionally called aclass hierarchy. Such a hierarchy is most often
a tree, but it can also be a more general graph structure. For example:

c cl la as ss s T Te em mp po or ra ar ry y { /* ... */ };
c cl la as ss s S Se ec cr re et ta ar ry y : p pu ub bl li ic c E Em mp pl lo oy ye ee e { /* ... */ };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

308 Derived Classes Chapter 12

c cl la as ss s T Ts se ec c : p pu ub bl li ic c T Te em mp po or ra ar ry y, p pu ub bl li ic c S Se ec cr re et ta ar ry y { /* ... */ };
c cl la as ss s C Co on ns su ul lt ta an nt t : p pu ub bl li ic c T Te em mp po or ra ar ry y, p pu ub bl li ic c M Ma an na ag ge er r { /* ... */ };

Or graphically:

T Te em mp po or ra ar ry y E Em mp pl lo oy ye ee e

T Ts se ec c

S Se ec cr re et ta ar ry y M Ma an na ag ge er r

C Co on ns su ul lt ta an nt t D Di ir re ec ct to or r

..

Thus, as is explained in detail in §15.2, C++ can express a directed acyclic graph of classes.

12.2.5 Type Fields [derived.typefield]

To use derived classes as more than a convenient shorthand in declarations, we must solve the fol-
lowing problem: Given a pointer of typeb ba as se e* , to which derived type does the object pointed to
really belong? There are four fundamental solutions to the problem:

[1] Ensure that only objects of a single type are pointed to (§2.7, Chapter 13).
[2] Place a type field in the base class for the functions to inspect.
[3] Used dy yn na am mi ic c_ _c ca as st t (§15.4.2, §15.4.5).
[4] Use virtual functions (§2.5.5, §12.2.6).

Pointers to base classes are commonly used in the design ofcontainer classessuch as set, vector,
and list. In this case, solution 1 yields homogeneous lists, that is, lists of objects of the same type.
Solutions 2, 3, and 4 can be used to build heterogeneous lists, that is, lists of (pointers to) objects of
several different types. Solution 3 is a language-supported variant of solution 2. Solution 4 is a
special type-safe variation of solution 2. Combinations of solutions 1 and 4 are particularly inter-
esting and powerful; in almost all situations, they yield cleaner code than do solutions 2 and 3.

Let us first examine the simple type-field solution to see why it is most often best avoided. The
manager/employee example could be redefined like this:

s st tr ru uc ct t E Em mp pl lo oy ye ee e {
e en nu um m E Em mp pl l_ _t ty yp pe e { M M, E E };
E Em mp pl l_ _t ty yp pe e t ty yp pe e;

E Em mp pl lo oy ye ee e() : t ty yp pe e(E E) { }

s st tr ri in ng g f fi ir rs st t_ _n na am me e, f fa am mi il ly y_ _n na am me e;
c ch ha ar r m mi id dd dl le e_ _i in ni it ti ia al l;

D Da at te e h hi ir ri in ng g_ _d da at te e;
s sh ho or rt t d de ep pa ar rt tm me en nt t;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.5 Type Fields 309

s st tr ru uc ct t M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e {
M Ma an na ag ge er r() { t ty yp pe e = M M; }

s se et t<E Em mp pl lo oy ye ee e*> g gr ro ou up p; / / people managed
s sh ho or rt t l le ev ve el l;
/ / ...

};

Given this, we can now write a function that prints information about eachE Em mp pl lo oy ye ee e:

v vo oi id d p pr ri in nt t_ _e em mp pl lo oy ye ee e(c co on ns st t E Em mp pl lo oy ye ee e* e e)
{

s sw wi it tc ch h (e e-> t ty yp pe e) {
c ca as se e E Em mp pl lo oy ye ee e: : E E:

c co ou ut t << e e-> f fa am mi il ly y_ _n na am me e << ´ \ \t t´ << e e-> d de ep pa ar rt tm me en nt t << ´ \ \n n´;
/ / ...
b br re ea ak k;

c ca as se e E Em mp pl lo oy ye ee e: : M M:
{ c co ou ut t << e e-> f fa am mi il ly y_ _n na am me e << ´ \ \t t´ << e e-> d de ep pa ar rt tm me en nt t << ´ \ \n n´;

/ / ...
c co on ns st t M Ma an na ag ge er r* p p = s st ta at ti ic c_ _c ca as st t<c co on ns st t M Ma an na ag ge er r*>(e e) ;
c co ou ut t << " l le ev ve el l " << p p-> l le ev ve el l << ´ \ \n n´;
/ / ...
b br re ea ak k;

}
}

}

and use it to print a list ofE Em mp pl lo oy ye ee es, like this:

v vo oi id d p pr ri in nt t_ _l li is st t(c co on ns st t l li is st t<E Em mp pl lo oy ye ee e*>& e el li is st t)
{

f fo or r (l li is st t<E Em mp pl lo oy ye ee e*>: : c co on ns st t_ _i it te er ra at to or r p p = e el li is st t. b be eg gi in n() ; p p!= e el li is st t. e en nd d() ; ++p p)
p pr ri in nt t_ _e em mp pl lo oy ye ee e(* p p) ;

}

This works fine, especially in a small program maintained by a single person. However, it has the
fundamental weakness in that it depends on the programmer manipulating types in a way that can-
not be checked by the compiler. This problem is usually made worse because functions such as
p pr ri in nt t_ _e em mp pl lo oy ye ee e() are organized to take advantage of the commonality of the classes involved.
For example:

v vo oi id d p pr ri in nt t_ _e em mp pl lo oy ye ee e(c co on ns st t E Em mp pl lo oy ye ee e* e e)
{

c co ou ut t << e e-> f fa am mi il ly y_ _n na am me e << ´ \ \t t´ << e e-> d de ep pa ar rt tm me en nt t << ´ \ \n n´;
/ / ...
i if f (e e-> t ty yp pe e == E Em mp pl lo oy ye ee e: : M M) {

c co on ns st t M Ma an na ag ge er r* p p = s st ta at ti ic c_ _c ca as st t<c co on ns st t M Ma an na ag ge er r*>(e e) ;
c co ou ut t << " l le ev ve el l " << p p-> l le ev ve el l << ´ \ \n n´;
/ / ...

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

310 Derived Classes Chapter 12

Finding all such tests on the type field buried in a large function that handles many derived classes
can be difficult. Even when they have been found, understanding what is going on can be difficult.
Furthermore, any addition of a new kind ofE Em mp pl lo oy ye ee e involves a change to all the key functions in
the system– the ones containing the tests on the type field. The programmer must consider every
function that could conceivably need a test on the type field after a change. This implies the need
to access critical source code and the resulting necessary overhead of testing the affected code. The
use of an explicit type conversion is a strong hint that improvement is possible.

In other words, use of a type field is an error-prone technique that leads to maintenance prob-
lems. The problems increase in severity as the size of the program increases because the use of a
type field causes a violation of the ideals of modularity and data hiding. Each function using a type
field must know about the representation and other details of the implementation of every class
derived from the one containing the type field.

It also seems that the existence of any common data accessible from every derived class, such
as a type field, tempts people to add more such data. The common base thus becomes the reposi-
tory of all kinds of ‘‘useful information.’’ This, in turn, gets the implementation of the base and
derived classes intertwined in ways that are most undesirable. For clean design and simpler main-
tenance, we want to keep separate issues separate and avoid mutual dependencies.

12.2.6 Virtual Functions [derived.virtual]

Virtual functions overcome the problems with the type-field solution by allowing the programmer
to declare functions in a base class that can be redefined in each derived class. The compiler and
loader will guarantee the correct correspondence between objects and the functions applied to them.
For example:

c cl la as ss s E Em mp pl lo oy ye ee e {
s st tr ri in ng g f fi ir rs st t_ _n na am me e, f fa am mi il ly y_ _n na am me e;
s sh ho or rt t d de ep pa ar rt tm me en nt t;
/ / ...

p pu ub bl li ic c:
E Em mp pl lo oy ye ee e(c co on ns st t s st tr ri in ng g& n na am me e, i in nt t d de ep pt t) ;
v vi ir rt tu ua al l v vo oi id d p pr ri in nt t() c co on ns st t;
/ / ...

};

The keywordv vi ir rt tu ua al l indicates thatp pr ri in nt t() can act as an interface to thep pr ri in nt t() function defined
in this class and thep pr ri in nt t() functions defined in classes derived from it. Where suchp pr ri in nt t()
functions are defined in derived classes, the compiler ensures that the rightp pr ri in nt t() for the given
E Em mp pl lo oy ye ee eobject is invoked in each case.

To allow a virtual function declaration to act as an interface to functions defined in derived
classes, the argument types specified for a function in a derived class cannot differ from the argu-
ment types declared in the base, and only very slight changes are allowed for the return type
(§15.6.2). A virtual member function is sometimes called amethod.

A virtual functionmustbe defined for the class in which it is first declared (unless it is declared
to be a pure virtual function; see §12.3). For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.6 Virtual Functions 311

v vo oi id d E Em mp pl lo oy ye ee e: : p pr ri in nt t() c co on ns st t
{

c co ou ut t << f fa am mi il ly y_ _n na am me e << ´ \ \t t´ << d de ep pa ar rt tm me en nt t << ´ \ \n n´;
/ / ...

}

A virtual function can be used even if no class is derived from its class, and a derived class that
does not need its own version of a virtual function need not provide one. When deriving a class,
simply provide an appropriate function, if it is needed. For example:

c cl la as ss s M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e {
s se et t<E Em mp pl lo oy ye ee e*> g gr ro ou up p;
s sh ho or rt t l le ev ve el l;
/ / ...

p pu ub bl li ic c:
M Ma an na ag ge er r(c co on ns st t s st tr ri in ng g& n na am me e, i in nt t d de ep pt t, i in nt t l lv vl l) ;
v vo oi id d p pr ri in nt t() c co on ns st t;
/ / ...

};

v vo oi id d M Ma an na ag ge er r: : p pr ri in nt t() c co on ns st t
{

E Em mp pl lo oy ye ee e: : p pr ri in nt t() ;
c co ou ut t << " \ \t tl le ev ve el l " << l le ev ve el l << ´ \ \n n´;
/ / ...

}

A function from a derived class with the same name and the same set of argument types as a virtual
function in a base is said tooverride the base class version of the virtual function. Except where
we explicitly say which version of a virtual function is called (as in the callE Em mp pl lo oy ye ee e: : p pr ri in nt t()),
the overriding function is chosen as the most appropriate for the object for which it is called.

The global functionp pr ri in nt t_ _e em mp pl lo oy ye ee e() (§12.2.5) is now unnecessary because thep pr ri in nt t()
member functions have taken its place. A list ofE Em mp pl lo oy ye ee es can be printed like this:

v vo oi id d p pr ri in nt t_ _l li is st t(s se et t<E Em mp pl lo oy ye ee e*>& s s)
{

f fo or r (s se et t<E Em mp pl lo oy ye ee e*>: : c co on ns st t_ _i it te er ra at to or r p p = s s. b be eg gi in n() ; p p!= s s. e en nd d() ; ++p p)/ / see §2.7.2
(* p p)-> p pr ri in nt t() ;

}

or even

v vo oi id d p pr ri in nt t_ _l li is st t(s se et t<E Em mp pl lo oy ye ee e*>& s s)
{

f fo or r_ _e ea ac ch h(s s. b be eg gi in n() , s s. e en nd d() , m me em m_ _f fu un n(& E Em mp pl lo oy ye ee e: : p pr ri in nt t)) ; / / see §3.8.5
}

EachE Em mp pl lo oy ye ee ewill be written out according to its type. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

312 Derived Classes Chapter 12

i in nt t m ma ai in n()
{

E Em mp pl lo oy ye ee e e e(" B Br ro ow wn n", 1 12 23 34 4) ;
M Ma an na ag ge er r m m(" S Sm mi it th h", 1 12 23 34 4, 2 2) ;
s se et t<E Em mp pl lo oy ye ee e*> e em mp pl l;
e em mp pl l. p pu us sh h_ _f fr ro on nt t(& e e) ; / / see §2.5.4
e em mp pl l. p pu us sh h_ _f fr ro on nt t(& m m) ;
p pr ri in nt t_ _l li is st t(e em mp pl l) ;

}

produced:

S Sm mi it th h 1 12 23 34 4
l le ev ve el l 2 2

B Br ro ow wn n 1 12 23 34 4

Note that this will work even ifE Em mp pl lo oy ye ee e: : p pr ri in nt t_ _l li is st t() was written and compiled before the spe-
cific derived classM Ma an na ag ge er r was even conceived of! This is a key aspect of classes. When used
properly, it becomes the cornerstone of object-oriented designs and provides a degree of stability to
an evolving program.

Getting ‘‘the right’’ behavior fromE Em mp pl lo oy ye ee e’s functions independently of exactly what kind of
E Em mp pl lo oy ye ee e is actually used is calledpolymorphism. A type with virtual functions is called a
polymorphic type. To get polymorphic behavior in C++, the member functions called must bev vi ir r- -
t tu ua al l and objects must be manipulated through pointers or references. When manipulating an object
directly (rather than through a pointer or reference), its exact type is known by the compilation so
that run-time polymorphism is not needed.

Clearly, to implement polymorphism, the compiler must store some kind of type information in
each object of classE Em mp pl lo oy ye ee e and use it to call the right version of the virtual functionp pr ri in nt t() . In
a typical implementation, the space taken is just enough to hold a pointer (§2.5.5). This space is
taken only in objects of a class with virtual functions– not in every object, or even in every object
of a derived class. You pay this overhead only for classes for which you declare virtual functions.
Had you chosen to use the alternative type-field solution, a comparable amount of space would
have been needed for the type field.

Calling a function using the scope resolution operator: : as is done inM Ma an na ag ge er r: : p pr ri in nt t()
ensures that the virtual mechanism is not used. Otherwise,M Ma an na ag ge er r: : p pr ri in nt t() would suffer an
infinite recursion. The use of a qualified name has another desirable effect. That is, if av vi ir rt tu ua al l
function is alsoi in nl li in ne e (as is not uncommon), then inline substitution can be used for calls specified
using : : . This provides the programmer with an efficient way to handle some important special
cases in which one virtual function calls another for the same object. TheM Ma an na ag ge er r: : p pr ri in nt t()
function is an example of this. Because the type of the object is determined in the call of
M Ma an na ag ge er r: : p pr ri in nt t() , it need not be dynamically determined again for the resulting call of
E Em mp pl lo oy ye ee e: : p pr ri in nt t() .

It is worth remembering that the traditional and obvious implementation of a virtual function
call is simply an indirect function call (§2.5.5), so efficiency concerns should not deter anyone from
using a virtual function where an ordinary function call would be acceptably efficient.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.3 Abstract Classes 313

12.3 Abstract Classes[derived.abstract]

Many classes resemble classE Em mp pl lo oy ye ee e in that they are useful both as themselves and also as bases
for derived classes. For such classes, the techniques described in the previous section suffice.
However, not all classes follow that pattern. Some classes, such as classS Sh ha ap pe e, represent abstract
concepts for which objects cannot exist. AS Sh ha ap pe e makes sense only as the base of some class
derived from it. This can be seen from the fact that it is not possible to provide sensible definitions
for its virtual functions:

c cl la as ss s S Sh ha ap pe e {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d r ro ot ta at te e(i in nt t) { e er rr ro or r(" S Sh ha ap pe e: : r ro ot ta at te e") ; } / / inelegant
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() { e er rr ro or r(" S Sh ha ap pe e: : d dr ra aw w") ; }
/ / ...

};

Trying to make a shape of this unspecified kind is silly but legal:

S Sh ha ap pe e s s; / / silly: ‘‘shapeless shape’’

It is silly because every operation ons s will result in an error.
A better alternative is to declare the virtual functions of classS Sh ha ap pe e to bepure virtual functions.

A virtual function is ‘‘made pure’’ by the initializer= 0 0:

c cl la as ss s S Sh ha ap pe e { / / abstract class
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d r ro ot ta at te e(i in nt t) = 0 0; / / pure virtual function
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() = 0 0; / / pure virtual function
v vi ir rt tu ua al l b bo oo ol l i is s_ _c cl lo os se ed d() = 0 0; / / pure virtual function
/ / ...

};

A class with one or more pure virtual functions is anabstract class, and no objects of that abstract
class can be created:

S Sh ha ap pe e s s; / / error: variable of abstract class Shape

An abstract class can be used only as an interface and as a base for other classes. For example:

c cl la as ss s P Po oi in nt t { /* ... */ };

c cl la as ss s C Ci ir rc cl le e : p pu ub bl li ic c S Sh ha ap pe e {
p pu ub bl li ic c:

v vo oi id d r ro ot ta at te e(i in nt t) { } / / override Shape::rotate
v vo oi id d d dr ra aw w() ; / / override Shape::draw
b bo oo ol l i is s_ _c cl lo os se ed d() { r re et tu ur rn n t tr ru ue e; } / / override Shape::is_closed

C Ci ir rc cl le e(P Po oi in nt t p p, i in nt t r r) ;
p pr ri iv va at te e:

P Po oi in nt t c ce en nt te er r;
i in nt t r ra ad di iu us s;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

314 Derived Classes Chapter 12

A pure virtual function that is not defined in a derived class remains a pure virtual function, so the
derived class is also an abstract class. This allows us to build implementations in stages:

c cl la as ss s P Po ol ly yg go on n : p pu ub bl li ic c S Sh ha ap pe e { / / abstract class
p pu ub bl li ic c:

b bo oo ol l i is s_ _c cl lo os se ed d() { r re et tu ur rn n t tr ru ue e; } / / override Shape::is_closed
/ / ... draw and rotate not overridden ...

};

P Po ol ly yg go on n b b; / / error: declaration of object of abstract class Polygon

c cl la as ss s I Ir rr re eg gu ul la ar r_ _p po ol ly yg go on n : p pu ub bl li ic c P Po ol ly yg go on n {
l li is st t<P Po oi in nt t> l lp p;

p pu ub bl li ic c:
v vo oi id d d dr ra aw w() ; / / override Shape::draw
v vo oi id d r ro ot ta at te e(i in nt t) ; / / override Shape::rotate
/ / ...

};

I Ir rr re eg gu ul la ar r_ _p po ol ly yg go on n p po ol ly y(s so om me e_ _p po oi in nt ts s) ; / / fine (assume suitable constructor)

An important use of abstract classes is to provide an interface without exposing any implementation
details. For example, an operating system might hide the details of its device drivers behind an
abstract class:

c cl la as ss s C Ch ha ar ra ac ct te er r_ _d de ev vi ic ce e {
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t o op pe en n(i in nt t o op pt t) = 0 0;
v vi ir rt tu ua al l i in nt t c cl lo os se e(i in nt t o op pt t) = 0 0;
v vi ir rt tu ua al l i in nt t r re ea ad d(c ch ha ar r* p p, i in nt t n n) = 0 0;
v vi ir rt tu ua al l i in nt t w wr ri it te e(c co on ns st t c ch ha ar r* p p, i in nt t n n) = 0 0;
v vi ir rt tu ua al l i in nt t i io oc ct tl l(i in nt t ...) = 0 0;
v vi ir rt tu ua al l ~C Ch ha ar ra ac ct te er r_ _d de ev vi ic ce e() { } / / virtual destructor

};

We can then specify drivers as classes derived fromC Ch ha ar ra ac ct te er r_ _d de ev vi ic ce e, and manipulate a variety of
drivers through that interface. The importance of virtual destructors is explained in §12.4.2.

With the introduction of abstract classes, we have the basic facilities for writing a complete pro-
gram in a modular fashion using classes as building blocks.

12.4 Design of Class Hierarchies[derived.design]

Consider a simple design problem: provide a way for a program to get an integer value from a user
interface. This can be done in a bewildering number of ways. To insulate our program from this
variety, and also to get a chance to explore the possible design choices, let us start by defining our
program’s model of this simple input operation. We will leave until later the details of implement-
ing it using a real user-interface system.

The idea is to have a classI Iv va al l_ _b bo ox x that knows what range of input values it will accept. A
program can ask anI Iv va al l_ _b bo ox x for its value and ask it to prompt the user if necessary. In addition, a
program can ask anI Iv va al l_ _b bo ox x if a user changed the value since the program last looked at it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4 Design of Class Hierarchies 315

Because there are many ways of implementing this basic idea, we must assume that there will
be many different kinds ofI Iv va al l_ _b bo ox xe es s, such as sliders, plain boxes in which a user can type a num-
ber, dials, and voice interaction.

The general approach is to build a ‘‘virtual user-interface system’’ for the application to use.
This system provides some of the services provided by existing user-interface systems. It can be
implemented on a wide variety of systems to ensure the portability of application code. Naturally,
there are other ways of insulating an application from a user-interface system. I chose this
approach because it is general, because it allows me to demonstrate a variety of techniques and
design tradeoffs, because those techniques are also the ones used to build ‘‘real’’ user-interface sys-
tems, and– most important– because these techniques are applicable to problems far beyond the
narrow domain of interface systems.

12.4.1 A Traditional Class Hierarchy [derived.traditional]

Our first solution is a traditional class hierarchy as is commonly found in Simula, Smalltalk, and
older C++ programs.

ClassI Iv va al l_ _b bo ox x defines the basic interface to allI Iv va al l_ _b bo ox xes and specifies a default implementa-
tion that more specific kinds ofI Iv va al l_ _b bo ox xes can override with their own versions. In addition, we
declare the data needed to implement the basic notion:

c cl la as ss s I Iv va al l_ _b bo ox x {
p pr ro ot te ec ct te ed d:

i in nt t v va al l;
i in nt t l lo ow w, h hi ig gh h;
b bo oo ol l c ch ha an ng ge ed d;

p pu ub bl li ic c:
I Iv va al l_ _b bo ox x(i in nt t l ll l, i in nt t h hh h) { c ch ha an ng ge ed d = f fa al ls se e; v va al l = l lo ow w = l ll l; h hi ig gh h = h hh h; }

v vi ir rt tu ua al l i in nt t g ge et t_ _v va al lu ue e() { c ch ha an ng ge ed d = f fa al ls se e; r re et tu ur rn n v va al l; }
v vi ir rt tu ua al l v vo oi id d s se et t_ _v va al lu ue e(i in nt t i i) { c ch ha an ng ge ed d = t tr ru ue e; v va al l = i i; } / / for user
v vi ir rt tu ua al l v vo oi id d r re es se et t_ _v va al lu ue e(i in nt t i i) { c ch ha an ng ge ed d = f fa al ls se e; v va al l = i i; } / / for application
v vi ir rt tu ua al l v vo oi id d p pr ro om mp pt t() { }
v vi ir rt tu ua al l b bo oo ol l w wa as s_ _c ch ha an ng ge ed d() c co on ns st t { r re et tu ur rn n c ch ha an ng ge ed d; }

};

The default implementation of the functions is pretty sloppy and is provided here primarily to illus-
trate the intended semantics. A realistic class would, for example, provide some range checking.

A programmer might use these ‘‘i iv va al l classes’’ like this:

v vo oi id d i in nt te er ra ac ct t(I Iv va al l_ _b bo ox x* p pb b)
{

p pb b-> p pr ro om mp pt t() ; / / alert user
/ / ...
i in nt t i i = p pb b-> g ge et t_ _v va al lu ue e() ;
i if f (p pb b-> w wa as s_ _c ch ha an ng ge ed d()) {

/ / new value; do something
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

316 Derived Classes Chapter 12

e el ls se e {
/ / old value was fine; do something else

}
/ / ...

}

v vo oi id d s so om me e_ _f fc ct t()
{

I Iv va al l_ _b bo ox x* p p1 1 = n ne ew w I Iv va al l_ _s sl li id de er r(0 0, 5 5) ; / / Ival_slider derived from Ival_box
i in nt te er ra ac ct t(p p1 1) ;

I Iv va al l_ _b bo ox x* p p2 2 = n ne ew w I Iv va al l_ _d di ia al l(1 1, 1 12 2) ;
i in nt te er ra ac ct t(p p2 2) ;

}

Most application code is written in terms of (pointers to) plainI Iv va al l_ _b bo ox xes the wayi in nt te er ra ac ct t() is.
That way, the application doesn’t have to know about the potentially large number of variants of
the I Iv va al l_ _b bo ox x concept. The knowledge of such specialized classes is isolated in the relatively few
functions that create such objects. This isolates users from changes in the implementations of the
derived classes. Most code can be oblivious to the fact that there are different kinds ofI Iv va al l_ _b bo ox xes.

To simplify the discussion, I do not address issues of how a program waits for input. Maybe the
program really does wait for the user ing ge et t_ _v va al lu ue e() , maybe the program associates theI Iv va al l_ _b bo ox x
with an event and prepares to respond to a callback, or maybe the program spawns a thread for the
I Iv va al l_ _b bo ox x and later inquires about the state of that thread. Such decisions are crucial in the design
of user-interface systems. However, discussing them here in any realistic detail would simply dis-
tract from the presentation of programming techniques and language facilities. The design tech-
niques described here and the language facilities that support them are not specific to user inter-
faces. They apply to a far greater range of problems.

The different kinds ofI Iv va al l_ _b bo ox xes are defined as classes derived fromI Iv va al l_ _b bo ox x. For example:

c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x {
/ / graphics stuff to define what the slider looks like, etc.

p pu ub bl li ic c:
I Iv va al l_ _s sl li id de er r(i in nt t, i in nt t) ;

i in nt t g ge et t_ _v va al lu ue e() ;
v vo oi id d p pr ro om mp pt t() ;

};

The data members ofI Iv va al l_ _b bo ox x were declaredp pr ro ot te ec ct te ed d to allow access from derived classes.
Thus, I Iv va al l_ _s sl li id de er r: : g ge et t_ _v va al lu ue e() can deposit a value inI Iv va al l_ _b bo ox x: : v va al l. A p pr ro ot te ec ct te ed d member is
accessible from a class’ own members and from members of derived classes, but not to general
users (see §15.3).

In addition toI Iv va al l_ _s sl li id de er r, we would define other variants of theI Iv va al l_ _b bo ox x concept. These could
include I Iv va al l_ _d di ia al l, which lets you select a value by turning a knob;f fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r, which
flashes when you ask it top pr ro om mp pt t() ; andp po op pu up p_ _i iv va al l_ _s sl li id de er r, which responds top pr ro om mp pt t() by
appearing in some prominent place, thus making it hard for the user to ignore.

From where would we get the graphics stuff? Most user-interface systems provide a class
defining the basic properties of being an entity on the screen. So, if we use the system from ‘‘Big

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.1 A Traditional Class Hierarchy 317

Bucks Inc.,’’ we would have to make each of ourI Iv va al l_ _s sl li id de er r, I Iv va al l_ _d di ia al l, etc., classes a kind of
B BB Bw wi in nd do ow w. This would most simply be achieved by rewriting ourI Iv va al l_ _b bo ox x so that it derives from
B BB Bw wi in nd do ow w. In that way, all our classes inherit all the properties of aB BB Bw wi in nd do ow w. For example,
every I Iv va al l_ _b bo ox x can be placed on the screen, obey the graphical style rules, be resized, be dragged
around, etc., according to the standard set by theB BB Bw wi in nd do ow w system. Our class hierarchy would
look like this:

c cl la as ss s I Iv va al l_ _b bo ox x : p pu ub bl li ic c B BB Bw wi in nd do ow w { /* ... */ }; / / rewritten to use BBwindow
c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s I Iv va al l_ _d di ia al l : p pu ub bl li ic c I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s F Fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };
c cl la as ss s P Po op pu up p_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };

or graphically:

B BB Bw wi in nd do ow w

I Iv va al l_ _b bo ox x

I Iv va al l_ _s sl li id de er r I Iv va al l_ _d di ia al l

F Fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r P Po op pu up p_ _i iv va al l_ _s sl li id de er r

..

12.4.1.1 Critique [derived.critique]

This design works well in many ways, and for many problems this kind of hierarchy is a good solu-
tion. However, there are some awkward details that could lead us to look for alternative designs.

We retrofittedB BB Bw wi in nd do ow w as the base ofI Iv va al l_ _b bo ox x. This is not quite right. The use ofB BB Bw wi in n- -
d do ow w isn’t part of our basic notion of anI Iv va al l_ _b bo ox x; it is an implementation detail. DerivingI Iv va al l_ _b bo ox x
from B BB Bw wi in nd do ow w elevated an implementation detail to a first-level design decision. That can be
right. For example, using the environment defined by ‘‘Big Bucks Inc.’’ may be a key decision of
how our organization conducts its business. However, what if we also wanted to have implementa-
tions of ourI Iv va al l_ _b bo ox xes for systems from ‘‘Imperial Bananas,’’ ‘‘Liberated Software,’’ and ‘‘Com-
piler Whizzes?’’ We would have to maintain four distinct versions of our program:

c cl la as ss s I Iv va al l_ _b bo ox x : p pu ub bl li ic c B BB Bw wi in nd do ow w { /* ... */ }; / / BB version
c cl la as ss s I Iv va al l_ _b bo ox x : p pu ub bl li ic c C CW Ww wi in nd do ow w { /* ... */ }; / / CW version
c cl la as ss s I Iv va al l_ _b bo ox x : p pu ub bl li ic c I IB Bw wi in nd do ow w { /* ... */ }; / / IB version
c cl la as ss s I Iv va al l_ _b bo ox x : p pu ub bl li ic c L LS Sw wi in nd do ow w { /* ... */ }; / / LS version

Having many versions could result in a version-control nightmare.
Another problem is that every derived class shares the basic data declared inI Iv va al l_ _b bo ox x. That

data is, of course, an implementation detail that also crept into ourI Iv va al l_ _b bo ox x interface. From a
practical point of view, it is also the wrong data in many cases. For example, anI Iv va al l_ _s sl li id de er r
doesn’t need the value stored specifically. It can easily be calculated from the position of the slider
when someone executesg ge et t_ _v va al lu ue e() . In general, keeping two related, but different, sets of data is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

318 Derived Classes Chapter 12

asking for trouble. Sooner or later someone will get them out of sync. Also, experience shows that
novice programmers tend to mess with protected data in ways that are unnecessary and that cause
maintenance problems. Data is better kept private so that writers of derived classes cannot mess
with them. Better still, data should be in the derived classes, where it can be defined to match
requirements exactly and cannot complicate the life of unrelated derived classes. In almost all
cases, a protected interface should contain only functions, types, and constants.

Deriving from B BB Bw wi in nd do ow w gives the benefit of making the facilities provided byB BB Bw wi in nd do ow w
available to users ofI Iv va al l_ _b bo ox x. Unfortunately, it also means that changes to classB BB Bw wi in nd do ow w may
force users to recompile or even rewrite their code to recover from such changes. In particular, the
way most C++ implementations work implies that a change in the size of a base class requires a
recompilation of all derived classes.

Finally, our program may have to run in a mixed environment in which windows of different
user-interface systems coexist. This could happen either because two systems somehow share a
screen or because our program needs to communicate with users on different systems. Having our
user-interface systems ‘‘wired in’’ as the one and only base of our one and onlyI Iv va al l_ _b bo ox x interface
just isn’t flexible enough to handle those situations.

12.4.2 Abstract Classes [derived.interface]

So, let’s start again and build a new class hierarchy that solves the problems presented in the cri-
tique of the traditional hierarchy:

[1] The user-interface system should be an implementation detail that is hidden from users who
don’t want to know about it.

[2] The I Iv va al l_ _b bo ox x class should contain no data.
[3] No recompilation of code using theI Iv va al l_ _b bo ox x family of classes should be required after a

change of the user-interface system.
[4] I Iv va al l_ _b bo ox xes for different interface systems should be able to coexist in our program.

Several alternative approaches can be taken to achieve this. Here, I present one that maps cleanly
into the C++ language.

First, I specify classI Iv va al l_ _b bo ox x as a pure interface:

c cl la as ss s I Iv va al l_ _b bo ox x {
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t g ge et t_ _v va al lu ue e() = 0 0;
v vi ir rt tu ua al l v vo oi id d s se et t_ _v va al lu ue e(i in nt t i i) = 0 0;
v vi ir rt tu ua al l v vo oi id d r re es se et t_ _v va al lu ue e(i in nt t i i) = 0 0;
v vi ir rt tu ua al l v vo oi id d p pr ro om mp pt t() = 0 0;
v vi ir rt tu ua al l b bo oo ol l w wa as s_ _c ch ha an ng ge ed d() c co on ns st t = 0 0;
v vi ir rt tu ua al l ~I Iv va al l_ _b bo ox x() { }

};

This is much cleaner than the original declaration ofI Iv va al l_ _b bo ox x. The data is gone and so are the sim-
plistic implementations of the member functions. Gone, too, is the constructor, since there is no
data for it to initialize. Instead, I added a virtual destructor to ensure proper cleanup of the data that
will be defined in the derived classes.

The definition ofI Iv va al l_ _s sl li id de er r might look like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.2 Abstract Classes 319

c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w {
p pu ub bl li ic c:

I Iv va al l_ _s sl li id de er r(i in nt t, i in nt t) ;
~I Iv va al l_ _s sl li id de er r() ;

i in nt t g ge et t_ _v va al lu ue e() ;
v vo oi id d s se et t_ _v va al lu ue e(i in nt t i i) ;
/ / ...

p pr ro ot te ec ct te ed d:
/ / functions overriding BBwindow virtual functions
/ / e.g. BBwindow::draw(), BBwindow::mouse1hit()

p pr ri iv va at te e:
/ / data needed for slider

};

The derived classI Iv va al l_ _s sl li id de er r inherits from an abstract class (I Iv va al l_ _b bo ox x) that requires it to imple-
ment the base class’ pure virtual functions. It also inherits fromB BB Bw wi in nd do ow w that provides it with
the means of doing so. SinceI Iv va al l_ _b bo ox x provides the interface for the derived class, it is derived
using p pu ub bl li ic c. Since B BB Bw wi in nd do ow w is only an implementation aid, it is derived usingp pr ro ot te ec ct te ed d
(§15.3.2). This implies that a programmer usingI Iv va al l_ _s sl li id de er r cannot directly use facilities defined
by B BB Bw wi in nd do ow w. The interface provided byI Iv va al l_ _s sl li id de er r is the one inherited byI Iv va al l_ _b bo ox x, plus what
I Iv va al l_ _s sl li id de er r explicitly declares. I usedp pr ro ot te ec ct te ed d derivation instead of the more restrictive (and usu-
ally safer)p pr ri iv va at te ederivation to makeB BB Bw wi in nd do ow w available to classes derived fromI Iv va al l_ _s sl li id de er r.

Deriving directly from more than one class is usually calledmultiple inheritance(§15.2). Note
that I Iv va al l_ _s sl li id de er r must override functions from bothI Iv va al l_ _b bo ox x andB BB Bw wi in nd do ow w. Therefore, it must be
derived directly or indirectly from both. As shown in §12.4.1.1, derivingI Iv va al l_ _s sl li id de er r indirectly
from B BB Bw wi in nd do ow w by makingB BB Bw wi in nd do ow w a base ofI Iv va al l_ _b bo ox x is possible, but doing so has undesirable
side effects. Similarly, making the ‘‘implementation class’’B BB Bw wi in nd do ow w a member ofI Iv va al l_ _b bo ox x is
not a solution because a class cannot override virtual functions of its members (§24.3.4). Repre-
senting the window by aB BB Bw wi in nd do ow w* member inI Iv va al l_ _b bo ox x leads to a completely different design
with a separate set of tradeoffs (§12.7[14], §25.7).

Interestingly, this declaration ofI Iv va al l_ _s sl li id de er r allows application code to be written exactly as
before. All we have done is to restructure the implementation details in a more logical way.

Many classes require some form of cleanup for an object before it goes away. Since the abstract
classI Iv va al l_ _b bo ox x cannot know if a derived class requires such cleanup, it must assume that it does
require some. We ensure proper cleanup by defining a virtual destructorI Iv va al l_ _b bo ox x: :~ I Iv va al l_ _b bo ox x()
in the base and overriding it suitably in derived classes. For example:

v vo oi id d f f(I Iv va al l_ _b bo ox x* p p)
{

/ / ...
d de el le et te e p p;

}

The d de el le et te e operator explicitly destroys the object pointed to byp p. We have no way of knowing
exactly to which class the object pointed to byp p belongs, but thanks toI Iv va al l_ _b bo ox x’s virtual
destructor, proper cleanup as (optionally) defined by that class’ destructor will be called.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

320 Derived Classes Chapter 12

TheI Iv va al l_ _b bo ox x hierarchy can now be defined like this:

c cl la as ss s I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w { /* ... */ };
c cl la as ss s I Iv va al l_ _d di ia al l : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w { /* ... */ };
c cl la as ss s F Fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };
c cl la as ss s P Po op pu up p_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };

or graphically using obvious abbreviations:

B BB Bw wi in nd do ow w B BB Bw wi in nd do ow w I Iv va al l_ _b bo ox x

I Iv va al l_ _s sl li id de er r I Iv va al l_ _d di ia al l

F Fl la as sh hi in ng g_ _s sl li id de er r P Po op pu up p_ _s sl li id de er r

..

I used a dashed line to represent protected inheritance. As far as general users are concerned, doing
that is simply an implementation detail.

12.4.3 Alternative Implementations [derived.alt]

This design is cleaner and more easily maintainable than the traditional one– and no less efficient.
However, it still fails to solve the version control problem:

c cl la as ss s I Iv va al l_ _b bo ox x { /* ... */ }; / / common
c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w { /* ... */ }; / / for BB
c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d C CW Ww wi in nd do ow w { /* ... */ }; / / for CW
/ / ...

In addition, there is no way of having anI Iv va al l_ _s sl li id de er r for B BB Bw wi in nd do ow ws coexist with anI Iv va al l_ _s sl li id de er r
for C CW Ww wi in nd do ow ws, even if the two user-interface systems could themselves coexist.

The obvious solution is to define several differentI Iv va al l_ _s sl li id de er r classes with separate names:

c cl la as ss s I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w { /* ... */ };
c cl la as ss s C CW W_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x, p pr ro ot te ec ct te ed d C CW Ww wi in nd do ow w { /* ... */ };
/ / ...

or graphically:

I Iv va al l_ _b bo ox x B BB Bw wi in nd do ow w C CW Ww wi in nd do ow w

B BB B_ _i iv va al l_ _s sl li id de er r C CW W_ _i iv va al l_ _s sl li id de er r
..

To further insulate our application-orientedI Iv va al l_ _b bo ox x classes from implementation details, we can
derive an abstractI Iv va al l_ _s sl li id de er r class fromI Iv va al l_ _b bo ox x and then derive the system-specificI Iv va al l_ _s sl li id de er rs s
from that:

c cl la as ss s I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x { /* ... */ };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.3 Alternative Implementations 321

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w { /* ... */ };
c cl la as ss s C CW W_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d C CW Ww wi in nd do ow w { /* ... */ };
/ / ...

or graphically:

I Iv va al l_ _b bo ox x

B BB Bw wi in nd do ow w C CW Ww wi in nd do ow w I Iv va al l_ _s sl li id de er r

B BB B_ _i iv va al l_ _s sl li id de er r C CW W_ _i iv va al l_ _s sl li id de er r

..

Usually, we can do better yet by utilizing more-specific classes in the implementation hierarchy.
For example, if the ‘‘Big Bucks Inc.’’ system has a slider class, we can derive ourI Iv va al l_ _s sl li id de er r
directly from theB BB Bs sl li id de er r:

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r { /* ... */ };
c cl la as ss s C CW W_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d C CW Ws sl li id de er r { /* ... */ };

or graphically:

I Iv va al l_ _b bo ox x

B BB Bs sl li id de er r C CW Ws sl li id de er r I Iv va al l_ _s sl li id de er r

B BB B_ _i iv va al l_ _s sl li id de er r C CW W_ _i iv va al l_ _s sl li id de er r

..B BB Bw wi in nd do ow w C CW Ww wi in nd do ow w..

This improvement becomes significant where– as is not uncommon– our abstractions are not too
different from the ones provided by the system used for implementation. In that case, program-
ming is reduced to mapping between similar concepts. Derivation from general base classes, such
asB BB Bw wi in nd do ow w, is then done only rarely.

The complete hierarchy will consist of our original application-oriented conceptual hierarchy of
interfaces expressed as derived classes:

c cl la as ss s I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s I Iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s I Iv va al l_ _d di ia al l : p pu ub bl li ic c I Iv va al l_ _b bo ox x { /* ... */ };
c cl la as ss s F Fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };
c cl la as ss s P Po op pu up p_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };

followed by the implementations of this hierarchy for various graphical user-interface systems,
expressed as derived classes:

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r { /* ... */ };
c cl la as ss s B BB B_ _f fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c F Fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r,

p pr ro ot te ec ct te ed d B BB Bw wi in nd do ow w_ _w wi it th h_ _b be el ll ls s_ _a an nd d_ _w wh hi is st tl le es s { /* ... */ };
c cl la as ss s B BB B_ _p po op pu up p_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c P Po op pu up p_ _i iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r { /* ... */ };
c cl la as ss s C CW W_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d C CW Ws sl li id de er r { /* ... */ };
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

322 Derived Classes Chapter 12

Using obvious abbreviations, this hierarchy can be represented graphically like this:

I Iv va al l_ _b bo ox x

I Iv va al l_ _s sl li id de er r I Iv va al l_ _d di ia al l

i if fl la as sh h i ip po op pu up p

C CW Ws sl l C CW Ws sl l C CW Ws sl l

C CW Wi is sl li id de er r B BB Bi is sl li id de er r C CW Wi ip po op p C CW Wi if fl l B BB Bi ip po op p B BB Bi if fl l

B BB Bs sl li id de er r B BB Bs sl li id de er r B BB Bb b& &w w

..

The originalI Iv va al l_ _b bo ox x class hierarchy appears unchanged surrounded by implementation classes.

12.4.3.1 Critique [derived.critique2]

The abstract class design is flexible and almost as simple to deal with as the equivalent design that
relies on a common base defining the user-interface system. In the latter design, the windows class
is the root of a tree. In the former, the original application class hierarchy appears unchanged as the
root of classes that supply its implementations. From the application’s point of view, these designs
are equivalent in the strong sense that almost all code works unchanged and in the same way in the
two cases. In either case, you can look at theI Iv va al l_ _b bo ox x family of classes without bothering with the
window-related implementation details most of the time. For example, we would not need to
rewrite i in nt te er ra ac ct t() from §12.4.1 if we switched from the one class hierarchy to the other.

In either case, the implementation of eachI Iv va al l_ _b bo ox x class must be rewritten when the public
interface of the user-interface system changes. However, in the abstract class design, almost all
user code is protected against changes to the implementation hierarchy and requires no recompila-
tion after such a change. This is especially important when the supplier of the implementation hier-
archy issues a new ‘‘almost compatible’’ release. In addition, users of the abstract class hierarchy
are in less danger of being locked into a proprietary implementation than are users of a classical
hierarchy. Users of theI Iv va al l_ _b bo ox x abstract class application hierarchy cannot accidentally use facili-
ties from the implementation because only facilities explicitly specified in theI Iv va al l_ _b bo ox x hierarchy
are accessible; nothing is implicitly inherited from an implementation-specific base class.

12.4.4 Localizing Object Creation [derived.local]

Most of an application can be written using theI Iv va al l_ _b bo ox x interface. Further, should the derived
interfaces evolve to provide more facilities than plainI Iv va al l_ _b bo ox x, then most of an application can be
written using theI Iv va al l_ _b bo ox x, I Iv va al l_ _s sl li id de er r, etc., interfaces. However, the creation of objects must be

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.4 Localizing Object Creation 323

done using implementation-specific names such asC CW W_ _i iv va al l_ _d di ia al l and B BB B_ _f fl la as sh hi in ng g_ _i iv va al l_ _s sl li id de er r.
We would like to minimize the number of places where such specific names occur, and object cre-
ation is hard to localize unless it is done systematically.

As usual, the solution is to introduce an indirection. This can be done in many ways. A simple
one is to introduce an abstract class to represent the set of creation operations:

c cl la as ss s I Iv va al l_ _m ma ak ke er r {
p pu ub bl li ic c:

v vi ir rt tu ua al l I Iv va al l_ _d di ia al l* d di ia al l(i in nt t, i in nt t) =0 0; / / make dial
v vi ir rt tu ua al l P Po op pu up p_ _i iv va al l_ _s sl li id de er r* p po op pu up p_ _s sl li id de er r(i in nt t, i in nt t) =0 0; / / make popup slider
/ / ...

};

For each interface from theI Iv va al l_ _b bo ox x family of classes that a user should know about, class
I Iv va al l_ _m ma ak ke er r provides a function that makes an object. Such a class is sometimes called afactory,
and its functions are (somewhat misleadingly) sometimes calledvirtual constructors(§15.6.2).

We now represent each user-interface system by a class derived fromI Iv va al l_ _m ma ak ke er r:

c cl la as ss s B BB B_ _m ma ak ke er r : p pu ub bl li ic c I Iv va al l_ _m ma ak ke er r { / / make BB versions
p pu ub bl li ic c:

I Iv va al l_ _d di ia al l* d di ia al l(i in nt t, i in nt t) ;
P Po op pu up p_ _i iv va al l_ _s sl li id de er r* p po op pu up p_ _s sl li id de er r(i in nt t, i in nt t) ;
/ / ...

};

c cl la as ss s L LS S_ _m ma ak ke er r : p pu ub bl li ic c I Iv va al l_ _m ma ak ke er r { / / make LS versions
p pu ub bl li ic c:

I Iv va al l_ _d di ia al l* d di ia al l(i in nt t, i in nt t) ;
P Po op pu up p_ _i iv va al l_ _s sl li id de er r* p po op pu up p_ _s sl li id de er r(i in nt t, i in nt t) ;
/ / ...

};

Each function creates an object of the desired interface and implementation type. For example:

I Iv va al l_ _d di ia al l* B BB B_ _m ma ak ke er r: : d di ia al l(i in nt t a a, i in nt t b b)
{

r re et tu ur rn n n ne ew w B BB B_ _i iv va al l_ _d di ia al l(a a, b b) ;
}

I Iv va al l_ _d di ia al l* L LS S_ _m ma ak ke er r: : d di ia al l(i in nt t a a, i in nt t b b)
{

r re et tu ur rn n n ne ew w L LS S_ _i iv va al l_ _d di ia al l(a a, b b) ;
}

Given a pointer to aI Iv va al l_ _m ma ak ke er r, a user can now create objects without having to know exactly
which user-interface system is used. For example:

v vo oi id d u us se er r(I Iv va al l_ _m ma ak ke er r* p pi im m)
{

I Iv va al l_ _b bo ox x* p pb b = p pi im m-> d di ia al l(0 0, 9 99 9) ; / / create appropriate dial
/ / ...

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

324 Derived Classes Chapter 12

B BB B_ _m ma ak ke er r B BB B_ _i im mp pl l; / / for BB users
L LS S_ _m ma ak ke er r L LS S_ _i im mp pl l; / / for LS users

v vo oi id d d dr ri iv ve er r()
{

u us se er r(& B BB B_ _i im mp pl l) ; / / use BB
u us se er r(& L LS S_ _i im mp pl l) ; / / use LS

}

12.5 Class Hierarchies and Abstract Classes[derived.hier]

An abstract class is an interface. A class hierarchy is a means of building classes incrementally.
Naturally, every class provides an interface to users and some abstract classes provide significant
functionality to build from, but ‘‘interface’’ and ‘‘building block’’ are the primary roles of abstract
classes and class hierarchies.

A classical hierarchy is a hierarchy in which the individual classes both provide useful function-
ality for users and act as building blocks for the implementation of more advanced or specialized
classes. Such hierarchies are ideal for supporting programming by incremental refinement. They
provide the maximum support for the implementation of new classes as long as the new class
relates strongly to the existing hierarchy.

Classical hierarchies do tend to couple implementation concerns rather strongly with the inter-
faces provided to users. Abstract classes can help here. Hierarchies of abstract classes provide a
clean and powerful way of expressing concepts without encumbering them with implementation
concerns or significant run-time overheads. After all, a virtual function call is cheap and indepen-
dent of the kind of abstraction barrier it crosses. It costs no more to call a member of an abstract
class than to call any otherv vi ir rt tu ua al l function.

The logical conclusion of this line of thought is a system represented to users as a hierarchy of
abstract classes and implemented by a classical hierarchy.

12.6 Advice[derived.advice]

[1] Avoid type fields; §12.2.5.
[2] Use pointers and references to avoid slicing; §12.2.3.
[3] Use abstract classes to focus design on the provision of clean interfaces; §12.3.
[4] Use abstract classes to minimize interfaces; §12.4.2.
[5] Use abstract classes to keep implementation details out of interfaces; §12.4.2.
[6] Use virtual functions to allow new implementations to be added without affecting user code;

§12.4.1.
[7] Use abstract classes to minimize recompilation of user code; §12.4.2.
[8] Use abstract classes to allow alternative implementations to coexist; §12.4.3.
[9] A class with a virtual function should have a virtual destructor; §12.4.2.
[10] An abstract class typically doesn’t need a constructor; §12.4.2.
[11] Keep the representations of distinct concepts distinct; §12.4.1.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.7 Exercises 325

12.7 Exercises[derived.exercises]

1. (∗1) Define

c cl la as ss s b ba as se e {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d i ia am m() { c co ou ut t << " b ba as se e\ \n n"; }
};

Derive two classes fromb ba as se e, and for each definei ia am m() to write out the name of the class.
Create objects of these classes and calli ia am m() for them. Assign pointers to objects of the
derived classes tob ba as se e* pointers and calli ia am m() through those pointers.

2. (∗3.5) Implement a simple graphics system using whatever graphics facilities are available on
your system (if you don’t have a good graphics system or have no experience with one, you
might consider a simple ‘‘huge bit ASCII implementation’’ where a point is a character position
and you write by placing a suitable character, such as* in a position):W Wi in nd do ow w(n n, m m) creates
an area of sizen n timesm m on the screen. Points on the screen are addressed using (x,y) coordi-
nates (Cartesian). AW Wi in nd do ow w w w has a current positionw w. c cu ur rr re en nt t() . Initially, c cu ur rr re en nt t is
P Po oi in nt t(0 0, 0 0) . The current position can be set byw w. c cu ur rr re en nt t(p p) wherep p is aP Po oi in nt t. A P Po oi in nt t is
specified by a coordinate pair:P Po oi in nt t(x x, y y) . A L Li in ne e is specified by a pair ofP Po oi in nt ts:
L Li in ne e(w w. c cu ur rr re en nt t() , p p2 2) ; classS Sh ha ap pe e is the common interface toD Do ot ts, L Li in ne es, R Re ec ct ta an ng gl le es,
C Ci ir rc cl le es, etc. AP Po oi in nt t is not aS Sh ha ap pe e. A D Do ot t, D Do ot t(p p) can be used to represent aP Po oi in nt t p p on the
screen. A S Sh ha ap pe e is invisible unless d dr ra aw w() n. For example:
w w. d dr ra aw w(C Ci ir rc cl le e(w w. c cu ur rr re en nt t() , 1 10 0)) . EveryS Sh ha ap pe e has 9 contact points:e e (east),w w (west),n n
(north),s s (south),n ne e, n nw w, s se e, s sw w, andc c (center). For example,L Li in ne e(x x. c c() , y y. n nw w()) creates
a line fromx x’s center toy y’s top left corner. Afterd dr ra aw w() ing aS Sh ha ap pe e the current position is the
S Sh ha ap pe e’s s se e(). A R Re ec ct ta an ng gl le e is specified by its bottom left and top right corner:
R Re ec ct ta an ng gl le e(w w. c cu ur rr re en nt t() , P Po oi in nt t(1 10 0, 1 10 0)) . As a simple test, display a simple ‘‘child’s draw-
ing of a house’’ with a roof, two windows, and a door.

3. (∗2) Important aspects of aS Sh ha ap pe e appear on the screen as a set of line segments. Implement
operations to vary the appearance of these segments:s s. t th hi ic ck kn ne es ss s(n n) sets the line thickness to
0 0, 1 1, 2 2, or 3 3, where2 2 is the default and0 0 means invisible. In addition, a line segment can be
s so ol li id d, d da as sh he ed d, ord do ot tt te ed d. This is set by the functionS Sh ha ap pe e: : o ou ut tl li in ne e() .

4. (∗2.5) Provide a functionL Li in ne e: : a ar rr ro ow wh he ea ad d() that adds arrow heads to an end of a line. A
line has two ends and an arrowhead can point in two directions relative to the line, so the argu-
ment or arguments toa ar rr ro ow wh he ea ad d() must be able to express at least four alternatives.

5. (∗3.5) Make sure that points and line segments that fall outside theW Wi in nd do ow w do not appear on
the screen. This is often called ‘‘clipping.’’ As an exercise only, do not rely on the implemen-
tation graphics system for this.

6. (∗2.5) Add aT Te ex xt t type to the graphics system. AT Te ex xt t is a rectangularS Sh ha ap pe e displaying charac-
ters. By default, a character takes up one coordinate unit along each coordinate axis.

7. (∗2) Define a function that draws a line connecting two shapes by finding the two closest ‘‘con-
tact points’’ and connecting them.

8. (∗3) Add a notion of color to the simple graphics system. Three things can be colored: the
background, the inside of a closed shape, and the outlines of shapes.

9. (∗2) Consider:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

326 Derived Classes Chapter 12

c cl la as ss s C Ch ha ar r_ _v ve ec c {
i in nt t s sz z;
c ch ha ar r e el le em me en nt t[1 1] ;

p pu ub bl li ic c:
s st ta at ti ic c C Ch ha ar r_ _v ve ec c* n ne ew w_ _c ch ha ar r_ _v ve ec c(i in nt t s s) ;
c ch ha ar r& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n e el le em me en nt t[i i] ; }
/ / ...

};

Definen ne ew w_ _c ch ha ar r_ _v ve ec c() to allocate contiguous memory for aC Ch ha ar r_ _v ve ec c object so that the ele-
ments can be indexed throughe el le em me en nt t as shown. Under what circumstances does this trick
cause serious problems?

10. (∗2.5) Given classesC Ci ir rc cl le e, S Sq qu ua ar re e, andT Tr ri ia an ng gl le e derived from a classS Sh ha ap pe e, define a func-
tion i in nt te er rs se ec ct t() that takes twoS Sh ha ap pe e* arguments and calls suitable functions to determine if
the two shapes overlap. It will be necessary to add suitable (virtual) functions to the classes to
achieve this. Don’t bother to write the code that checks for overlap; just make sure the right
functions are called. This is commonly referred to asdouble d di is sp pa at tc ch h or amulti-method.

11. (∗5) Design and implement a library for writing event-driven simulations. Hint:<t ta as sk k. h h>.
However, that is an old program, and you can do better. There should be a classt ta as sk k. An
object of classt ta as sk k should be able to save its state and to have that state restored (you might
definet ta as sk k: : s sa av ve e() andt ta as sk k: : r re es st to or re e()) so that it can operate as a coroutine. Specific tasks
can be defined as objects of classes derived from classt ta as sk k. The program to be executed by a
task might be specified as a virtual function. It should be possible to pass arguments to a new
task as arguments to its constructor(s). There should be a scheduler implementing a concept of
virtual time. Provide a functiont ta as sk k: : d de el la ay y(l lo on ng g) that ‘‘consumes’’ virtual time. Whether
the scheduler is part of classt ta as sk k or separate will be one of the major design decisions. The
tasks will need to communicate. Design a classq qu ue eu ue e for that. Devise a way for a task to wait
for input from several queues. Handle run-time errors in a uniform way. How would you
debug programs written using such a library?

12. (∗2) Define interfaces forW Wa ar rr ri io or r, M Mo on ns st te er r, andO Ob bj je ec ct t (that is a thing you can pick up, drop,
use, etc.) classes for an adventure-style game.

13. (∗1.5) Why is there both aP Po oi in nt t and aD Do ot t class in §12.7[2]? Under which circumstances
would it be a good idea to augment theS Sh ha ap pe eclasses with concrete versions of key classes such
asL Li in ne e.

14. (∗3) Outline a different implementation strategy for theI Iv va al l_ _b bo ox x example (§12.4) based on the
idea that every class seen by an application is an interface containing a single pointer to the
implementation. Thus, each "interface class" will be a handle to an "implementation class," and
there will be an interface hierarchy and an implementation hierarchy. Write code fragments that
are detailed enough to illustrate possible problems with type conversion. Consider ease of use,
ease of programming, ease of reusing implementations and interfaces when adding a new con-
cept to the hierarchy, ease of making changes to interfaces and implementations, and need for
recompilation after change in the implementation.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

13
_ __ _______________________________________

Templates

Your quote here.
– B. Stroustrup

Templates— a string template— instantiation— template parameters— type checking
— function templates— template argument deduction— specifying template arguments
— function template overloading— policy as template arguments— default template
arguments— specialization— derivation and templates— member templates— con-
versions— source code organization— advice— exercises.

13.1 Introduction [temp.intro]

Independent concepts should be independently represented and should be combined only when
needed. Where this principle is violated, you either bundle unrelated concepts together or create
unnecessary dependencies. Either way, you get a less flexible set of components out of which to
compose systems. Templates provide a simple way to represent a wide range of general concepts
and simple ways to combine them. The resulting classes and functions can match hand-written,
more-specialized code in run-time and space efficiency.

Templates provide direct support for generic programming (§2.7), that is, programming using
types as parameters. The C++ template mechanism allows a type to be a parameter in the definition
of a class or a function. A template depends only on the properties that it actually uses from its
parameter types and does not require different types used as arguments to be explicitly related. In
particular, the argument types used for a template need not be from a single inheritance hierarchy.

Here, templates are introduced with the primary focus on techniques needed for the design,
implementation, and use of the standard library. The standard library requires a greater degree of
generality, flexibility, and efficiency than does most software. Consequently, techniques that can
be used in the design and implementation of the standard library are effective and efficient in the
design of solutions to a wide variety of problems. These techniques enable an implementer to hide

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

328 Templates Chapter 13

sophisticated implementations behind simple interfaces and to expose complexity to the user only
when the user has a specific need for it. For example,s so or rt t(v v) can be the interface to a variety of
sort algorithms for elements of a variety of types held in a variety of containers. The sort function
that is most appropriate for the particularv v will be automatically chosen.

Every major standard library abstraction is represented as a template (for example,s st tr ri in ng g,
o os st tr re ea am m, c co om mp pl le ex x, l li is st t, andm ma ap p) and so are the key operations (for example,s st tr ri in ng g compare, the
output operator<<, c co om mp pl le ex x addition, getting the next element from al li is st t, and s so or rt t()). This
makes the library chapters (Part 3) of this book a rich source of examples of templates and pro-
gramming techniques relying on them. Consequently, this chapter concentrates on smaller exam-
ples illustrating technical aspects of templates and fundamental techniques for using them:

§13.2: The basic mechanisms for defining and using class templates
§13.3: Function templates, function overloading, and type deduction
§13.4: Template parameters used to specify policies for generic algorithms
§13.5: Multiple definitions providing alternative implementations for a template
§13.6: Derivation and templates (run-time and compile-time polymorphism)
§13.7: Source code organization

Templates were introduced in §2.7.1 and §3.8. Detailed rules for template name resolution, tem-
plate syntax, etc., can be found in §C.13.

13.2 A Simple String Template[temp.string]

Consider a string of characters. A string is a class that holds characters and provides operations
such as subscripting, concatenation, and comparison that we usually associate with the notion of a
‘‘string.’’ We would like to provide that behavior for many different kinds of characters. For
example, strings of signed characters, of unsigned characters, of Chinese characters, of Greek char-
acters, etc., are useful in various contexts. Thus, we want to represent the notion of ‘‘string’’ with
minimal dependence on a specific kind of character. The definition of a string relies on the fact that
a character can be copied, and little else. Thus, we can make a more general string type by taking
the string ofc ch ha ar r from §11.12 and making the character type a parameter:

t te em mp pl la at te e<c cl la as ss s C C> c cl la as ss s S St tr ri in ng g {
s st tr ru uc ct t S Sr re ep p;
S Sr re ep p * r re ep p;

p pu ub bl li ic c:
S St tr ri in ng g() ;
S St tr ri in ng g(c co on ns st t C C*) ;
S St tr ri in ng g(c co on ns st t S St tr ri in ng g&) ;

C C r re ea ad d(i in nt t i i) c co on ns st t;
/ / ...

};

The t te em mp pl la at te e <c cl la as ss s C C> prefix specifies that a template is being declared and that a type argument
C C will be used in the declaration. After its introduction,C C is used exactly like other type names.
The scope ofC C extends to the end of the declaration prefixed byt te em mp pl la at te e <c cl la as ss s C C>. Note that
t te em mp pl la at te e<c cl la as ss s C C> says thatC C is atypename; it need not be the name of aclass.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2 A Simple String Template 329

The name of a class template followed by a type bracketed by< > is the name of a class (as
defined by the template) and can be used exactly like other class names. For example:

S St tr ri in ng g<c ch ha ar r> c cs s;
S St tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r> u us s;
S St tr ri in ng g<w wc ch ha ar r_ _t t> w ws s;

c cl la as ss s J Jc ch ha ar r {
/ / Japanese character

};

S St tr ri in ng g<J Jc ch ha ar r> j js s;

Except for the special syntax of its name,S St tr ri in ng g<c ch ha ar r> works exactly as if it had been defined
using the definition of classS St tr ri in ng g in §11.12. MakingS St tr ri in ng g a template allows us to provide the
facilities we had forS St tr ri in ng g of c ch ha ar r for S St tr ri in ng gs of any kind of character. For example, if we use the
standard librarym ma ap p and theS St tr ri in ng g template, the word-counting example from §11.8 becomes:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

S St tr ri in ng g<c ch ha ar r> b bu uf f;
m ma ap p<S St tr ri in ng g<c ch ha ar r>, i in nt t> m m;
w wh hi il le e (c ci in n>>b bu uf f) m m[b bu uf f]++;
/ / write out result

}

The version for our Japanese-character typeJ Jc ch ha ar r would be:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

S St tr ri in ng g<J Jc ch ha ar r> b bu uf f;
m ma ap p<S St tr ri in ng g<J Jc ch ha ar r>, i in nt t> m m;
w wh hi il le e (c ci in n>>b bu uf f) m m[b bu uf f]++;
/ / write out result

}

The standard library provides the template classb ba as si ic c_ _s st tr ri in ng g that is similar to the templatized
S St tr ri in ng g (§11.12, §20.3). In the standard library,s st tr ri in ng g is defined as a synonym for
b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r>:

t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r> s st tr ri in ng g;

This allows us to write the word-counting program like this:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

s st tr ri in ng g b bu uf f;
m ma ap p<s st tr ri in ng g, i in nt t> m m;
w wh hi il le e (c ci in n>>b bu uf f) m m[b bu uf f]++;
/ / write out result

}

In general,t ty yp pe ed de ef fs are useful for shortening the long names of classes generated from templates.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

330 Templates Chapter 13

Also, we often prefer not to know the details of how a type is defined, and at ty yp pe ed de ef f allows us to
hide the fact that a type is generated from a template.

13.2.1 Defining a Template [temp.string.details]

A class generated from a class template is a perfectly ordinary class. Thus, use of a template does
not imply any run-time mechanisms beyond what is used for an equivalent ‘‘hand-written’’ class.
Nor does it necessarily imply any reduction in the amount of code generated.

It is usually a good idea to debug a particular class, such asS St tr ri in ng g, before turning it into a tem-
plate such asS St tr ri in ng g<C C>. By doing so, we handle many design problems and most of the code
errors in the context of a concrete example. This kind of debugging is familiar to all programmers,
and most people cope better with a concrete example than with an abstract concept. Later, we can
deal with any problems that might arise from generalization without being distracted by more con-
ventional errors. Similarly, when trying to understand a template, it is often useful to imagine its
behavior for a particular type argument such asc ch ha ar r before trying to comprehend the template in
its full generality.

Members of a template class are declared and defined exactly as they would have been for a
non-template class. A template member need not be defined within the template class itself. In
that case, its definition must be provided somewhere else, as for non-template class members
(§C.13.7). Members of a template class are themselves templates parameterized by the parameters
of their template class. When such a member is defined outside its class, it must explicitly be
declared a template. For example:

t te em mp pl la at te e<c cl la as ss s C C> s st tr ru uc ct t S St tr ri in ng g<C C>: : S Sr re ep p {
C C* s s; / / pointer to elements
i in nt t s sz z; / / number of elements
i in nt t n n; / / reference count
/ / ...

};

t te em mp pl la at te e<c cl la as ss s C C> C C S St tr ri in ng g<C C>: : r re ea ad d(i in nt t i i) c co on ns st t { r re et tu ur rn n r re ep p-> s s[i i] ; }

t te em mp pl la at te e<c cl la as ss s C C> S St tr ri in ng g<C C>: : S St tr ri in ng g()
{

p p = n ne ew w S Sr re ep p(0 0, C C()) ;
}

Template parameters, such asC C, are parameters rather than names of types defined externally to the
template. However, that doesn’t affect the way we write the template code using them. Within the
scope ofS St tr ri in ng g<C C>, qualification with<C C> is redundant for the name of the template itself, so
S St tr ri in ng g<C C>: : S St tr ri in ng g is the name for the constructor. If you prefer, you can be explicit:

t te em mp pl la at te e<c cl la as ss s C C> S St tr ri in ng g<C C>: : S St tr ri in ng g<C C>()
{

p p = n ne ew w S Sr re ep p(0 0, C C()) ;
}

Just as there can be only one function defining a class member function in a program, there can be
only one function template defining a class template member function in a program. However,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2.1 Defining a Template 331

overloading is a possibility for functions only (§13.3.2), while specialization (§13.5) enables us to
provide alternative implementations for a template.

It is not possible to overload a class template name, so if a class template is declared in a scope,
no other entity can be declared there with the same name (see also §13.5). For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S St tr ri in ng g { /* ... */ };

c cl la as ss s S St tr ri in ng g { /* ... */ }; / / error: double definition

A type used as a template argument must provide the interface expected by the template. For
example, a type used as an argument toS St tr ri in ng g must provide the usual copy operations (§10.4.4.1,
§20.2.1). Note that there is no requirement that different arguments for the same template parame-
ter should be related by inheritance.

13.2.2 Template Instantiation [temp.string.inst]

The process of generating a class declaration from a template class and a template argument is often
called template instantiation(§C.13.7). Similarly, a function is generated (‘‘instantiated’’) from a
template function plus a template argument. A version of a template for a particular template argu-
ment is called aspecialization.

In general, it is the implementation’s job– not the programmer’s– to ensure that versions of a
template function are generated for each set of template arguments used (§C.13.7). For example:

S St tr ri in ng g<c ch ha ar r> c cs s;

v vo oi id d f f()
{

S St tr ri in ng g<J Jc ch ha ar r> j js s;

c cs s = " I It t´ s s t th he e i im mp pl le em me en nt ta at ti io on n´ s s j jo ob b t to o f fi ig gu ur re e o ou ut t w wh ha at t c co od de e n ne ee ed ds s t to o b be e g ge en ne er ra at te ed d";
}

For this, the implementation generates declarations forS St tr ri in ng g<c ch ha ar r> andS St tr ri in ng g<J Jc ch ha ar r>, for their
correspondingS Sr re ep p types, for their destructors and default constructors, and for the assignment
S St tr ri in ng g<c ch ha ar r>: : o op pe er ra at to or r=(c ch ha ar r*) . Other member functions are not used and should not be gen-
erated. The generated classes are perfectly ordinary classes that obey all the usual rules for classes.
Similarly, generated functions are ordinary functions that obey all the usual rules for functions.

Obviously, templates provide a powerful way of generating code from relatively short defini-
tions. Consequently, a certain amount of caution is in order to avoid flooding memory with almost
identical function definitions (§13.5).

13.2.3 Template Parameters [temp.param]

A template can take type parameters, parameters of ordinary types such asi in nt ts, and template
parameters (§C.13.3). Naturally, a template can take several parameters. For example:

t te em mp pl la at te e<c cl la as ss s T T, T T d de ef f_ _v va al l> c cl la as ss s C Co on nt t { /* ... */ };

As shown, a template parameter can be used in the definition of subsequent template parameters.
Integer arguments come in handy for supplying sizes and limits. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

332 Templates Chapter 13

t te em mp pl la at te e<c cl la as ss s T T, i in nt t i i> c cl la as ss s B Bu uf ff fe er r {
T T v v[i i] ;
i in nt t s sz z;

p pu ub bl li ic c:
B Bu uf ff fe er r() : s sz z(i i) {}
/ / ...

};

B Bu uf ff fe er r<c ch ha ar r, 1 12 27 7> c cb bu uf f;
B Bu uf ff fe er r<R Re ec co or rd d, 8 8> r rb bu uf f;

Simple and constrained containers such asB Bu uf ff fe er r can be important where run-time efficiency and
compactness are paramount (thus preventing the use of a more generals st tr ri in ng g or v ve ec ct to or r). Passing a
size as a template argument allowsB Bu uf ff fe er r’s implementer to avoid free store use. Another example
is theR Ra an ng ge e type in §25.6.1.

A template argument can be a constant expression (§C.5), the address of an object or function
with external linkage (§9.2), or a non-overloaded pointer to member (§15.5). A pointer used as a
template argument must be of the form&o of f, whereo of f is the name of an object or a function, or of
the formf f, wheref f is the name of a function. A pointer to member must be of the form&X X: : o of f,
whereo of f is the name of an member. In particular, a string literal isnot acceptable as a template
argument.

An integer template argument must be a constant:

v vo oi id d f f(i in nt t i i)
{

B Bu uf ff fe er r<i in nt t, i i> b bx x; / / error: constant expression expected
}

Conversely, a non-type template parameter is a constant within the template so that an attempt to
change the value of a parameter is an error.

13.2.4 Type Equivalence [temp.equiv]

Given a template, we can generate types by supplying template arguments. For example:

S St tr ri in ng g<c ch ha ar r> s s1 1;
S St tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r> s s2 2;
S St tr ri in ng g<i in nt t> s s3 3;

t ty yp pe ed de ef f u un ns si ig gn ne ed d c ch ha ar r U Uc ch ha ar r;
S St tr ri in ng g<U Uc ch ha ar r> s s4 4;
S St tr ri in ng g<c ch ha ar r> s s5 5;

B Bu uf ff fe er r<S St tr ri in ng g<c ch ha ar r>, 1 10 0> b b1 1;
B Bu uf ff fe er r<c ch ha ar r, 1 10 0> b b2 2;
B Bu uf ff fe er r<c ch ha ar r, 2 20 0- 1 10 0> b b3 3;

When using the same set of template arguments for a template, we always refer to the same gener-
ated type. However, what does ‘‘the same’’ mean in this context? As usual,t ty yp pe ed de ef fs do not intro-
duce new types, soS St tr ri in ng g<U Uc ch ha ar r> is the same type asS St tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r>. Conversely,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2.4 Type Equivalence 333

becausec ch ha ar r and u un ns si ig gn ne ed d c ch ha ar r are different types (§4.3),S St tr ri in ng g<c ch ha ar r> and S St tr ri in ng g<u un ns si ig gn ne ed d
c ch ha ar r> are different types.

The compiler can evaluate constant expressions (§C.5), soB Bu uf ff fe er r<c ch ha ar r, 2 20 0- 1 10 0> is recognized
to be the same type asB Bu uf ff fe er r<c ch ha ar r, 1 10 0>.

13.2.5 Type Checking [temp.check]

A template is defined and then later used in combination with a set of template arguments. When
the template is defined, the definition is checked for syntax errors and possibly also for other errors
that can be detected in isolation from a particular set of template arguments. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t {
s st tr ru uc ct t L Li in nk k {

L Li in nk k* p pr re e;
L Li in nk k* s su uc c;
T T v va al l;
L Li in nk k(L Li in nk k* p p, L Li in nk k* s s, c co on ns st t T T& v v) : p pr re e(p p) , s su uc c(s s) , v va al l(v v) { }

} / / syntax error: missing semicolon
L Li in nk k* h he ea ad d;

p pu ub bl li ic c:
L Li is st t() : h he ea ad d(7 7) { } / / error: pointer initialized with int
L Li is st t(c co on ns st t T T& t t) : h he ea ad d(n ne ew w L Li in nk k(0 0, o o, t t)) { } / / error: undefined identifier ‘o’
/ / ...
v vo oi id d p pr ri in nt t_ _a al ll l() { f fo or r (L Li in nk k* p p = h he ea ad d; p p; p p=p p-> s su uc c) c co ou ut t << p p-> v va al l << ´ \ \n n´; }

};

A compiler can catch simple semantic errors at the point of definition or later at the point of use.
Users generally prefer early detection, but not all ‘‘simple’’ errors are easy to detect. Here, I made
three ‘‘mistakes.’’ Independently of what the template parameter is, a pointerT T* cannot be initial-
ized by the integer7 7. Similarly, the identifiero o (a mistyped0 0, of course) cannot be an argument to
L Li is st t<T T>: : L Li in nk k’s constructor because there is no such name in scope.

A name used in a template definition must either be in scope or in some reasonably obvious
way depend on a template parameter (§C.13.8.1). The most common and obvious way of depend-
ing on a template parameterT T is to use a member of aT T or to take an argument of typeT T. In
L Li is st t<T T>: : p pr ri in nt t_ _a al ll l() , c co ou ut t<<p p-> v va al l is a slightly more subtle example.

Errors that relate to the use of template parameters cannot be detected until the template is used.
For example:

c cl la as ss s R Re ec c { /* ... */ };

v vo oi id d f f(L Li is st t<i in nt t>& l li i, L Li is st t<R Re ec c>& l lr r)
{

l li i. p pr ri in nt t_ _a al ll l() ;
l lr r. p pr ri in nt t_ _a al ll l() ;

}

The l li i. p pr ri in nt t_ _a al ll l() checks out fine, butl lr r. p pr ri in nt t_ _a al ll l() gives a type error because there is no<<
output operator defined forR Re ec c. The earliest that errors relating to a template parameter can be
detected is at the first point of use of the template for a particular template argument. That point is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

334 Templates Chapter 13

usually called thefirst point of instantiation, or simply thepoint of instantiation(see §C.13.7). The
implementation is allowed to postpone this checking until the program is linked. If we had only a
declaration ofp pr ri in nt t_ _a al ll l() available in this translation unit, rather than its definition, the implemen-
tation might have had to delay type checking (see §13.7). Independently of when checking is done,
the same set of rules is checked. Again, users prefer early checking. It is possible to express con-
straints on template arguments in terms of member functions (see §13.9[16]).

13.3 Function Templates[temp.fct]

For most people, the first and most obvious use of templates is to define and use container classes
such asb ba as si ic c_ _s st tr ri in ng g (§20.3),v ve ec ct to or r (§16.3), l li is st t (§17.2.2), andm ma ap p (§17.4.1). Soon after, the
need for template functions arises. Sorting an array is a simple example:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(v ve ec ct to or r<T T>&) ; / / declaration

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v vi i, v ve ec ct to or r<s st tr ri in ng g>& v vs s)
{

s so or rt t(v vi i) ; / / sort(vector<int>&);
s so or rt t(v vs s) ; / / sort(vector<string>&);

}

When a template function is called, the types of the function arguments determine which version of
the template is used; that is, the template arguments are deduced from the function arguments
(§13.3.1).

Naturally, the template function must be defined somewhere (§C.13.7):

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(v ve ec ct to or r<T T>& v v) / / definition
/ / Shell sort (Knuth, Vol. 3, pg. 84).

{
c co on ns st t s si iz ze e_ _t t n n = v v. s si iz ze e() ;

f fo or r (i in nt t g ga ap p=n n/ 2 2; 0 0<g ga ap p; g ga ap p/= 2 2)
f fo or r (i in nt t i i=g ga ap p; i i<n n; i i++)

f fo or r (i in nt t j j=i i- g ga ap p; 0 0<=j j; j j-= g ga ap p)
i if f (v v[j j+g ga ap p]< v v[j j]) { / / swap v[j] and v[j+gap]

T T t te em mp p = v v[j j] ;
v v[j j] = v v[j j+g ga ap p] ;
v v[j j+g ga ap p] = t te em mp p;

}
}

Please compare this definition to thes so or rt t() defined in (§7.7). This templatized version is cleaner
and shorter because it can rely on more information about the type of the elements it sorts. Most
likely, it is also faster because it doesn’t rely on a pointer to function for the comparison. This
implies that no indirect function calls are needed and that inlining of a simple< is easy.

A further simplification is to use the standard library templates sw wa ap p() (§18.6.8) to reduce the
action to its natural form:

i if f (v v[j j+g ga ap p]< v v[j j]) s sw wa ap p(v v[j j] , v v[j j+g ga ap p]) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.3 Function Templates 335

This does not introduce any new overheads.
In this example, operator< is used for comparison. However, not every type has a< operator.

This limits the use of this version ofs so or rt t() , but the limitation is easily avoided (see §13.4).

13.3.1 Function Template Arguments [temp.deduce]

Function templates are essential for writing generic algorithms to be applied to a wide variety of
container types (§2.7.2, §3.8, Chapter 18). The ability to deduce the template arguments for a call
from the function arguments is crucial.

A compiler can deduce type and non-type arguments from a call, provided the function argu-
ment list uniquely identifies the set of template arguments (§C.13.4). For example:

t te em mp pl la at te e<c cl la as ss s T T, i in nt t i i> T T l lo oo ok ku up p(B Bu uf ff fe er r<T T, i i>& b b, c co on ns st t c ch ha ar r* p p) ;

c cl la as ss s R Re ec co or rd d {
c co on ns st t c ch ha ar r[1 12 2] ;
/ / ...

};

R Re ec co or rd d f f(B Bu uf ff fe er r<R Re ec co or rd d, 1 12 28 8>& b bu uf f, c co on ns st t c ch ha ar r* p p)
{

r re et tu ur rn n l lo oo ok ku up p(b bu uf f, p p) ; / / use the lookup() where T is Record and i is 128
}

Here,T T is deduced to beR Re ec co or rd d andi i is deduced to be1 12 28 8.
Note that class template parameters are never deduced. The reason is that the flexibility pro-

vided by several constructors for a class would make such deduction impossible in many cases and
obscure in many more. Specialization provides a mechanism for implicitly choosing between dif-
ferent implementations of a class (§13.5). If we need to create an object of a deduced type, we can
often do that by calling a function to do the creation; seem ma ak ke e_ _p pa ai ir r() in §17.4.1.2.

If a template argument cannot be deduced from the template function arguments (§C.13.4), we
must specify it explicitly. This is done in the same way template arguments are explicitly specified
for a template class. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v ve ec ct to or r { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> T T* c cr re ea at te e() ; / / make a T and return a pointer to it

v vo oi id d f f()
{

v ve ec ct to or r<i in nt t> v v; / / class, template argument ‘int’
i in nt t* p p = c cr re ea at te e<i in nt t>() ; / / function, template argument ‘int’

}

One common use of explicit specification is to provide a return type for a template function:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s U U> T T i im mp pl li ic ci it t_ _c ca as st t(U U u u) { r re et tu ur rn n u u; }

v vo oi id d g g(i in nt t i i)
{

i im mp pl li ic ci it t_ _c ca as st t(i i) ; / / error: can’t deduce T
i im mp pl li ic ci it t_ _c ca as st t<d do ou ub bl le e>(i i) ; / / T is double; U is int

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

336 Templates Chapter 13

i im mp pl li ic ci it t_ _c ca as st t<c ch ha ar r, d do ou ub bl le e>(i i) ; / / T is char; U is double
i im mp pl li ic ci it t_ _c ca as st t<c ch ha ar r*, i in nt t>(i i) ; / / T is char*; U is int; error: cannot convert int to char*

}

As with default function arguments (§7.5), only trailing arguments can be left out of a list of
explicit template arguments.

Explicit specification of template arguments allows the definition of families of conversion
functions and object creation functions (§13.3.2, §C.13.1, §C.13.5). An explicit version of the
implicit conversions (§C.6), such asi im mp pl li ic ci it t_ _c ca as st t() , is frequently useful. The syntax for
d dy yn na am mi ic c_ _c ca as st t, s st ta at ti ic c_ _c ca as st t, etc., (§6.2.7, §15.4.1) matches the explicitly qualified template function
syntax. However, the built-in type conversion operators supply operations that cannot be expressed
by other language features.

13.3.2 Function Template Overloading [temp.over]

One can declare several function templates with the same name and even declare a combination of
function templates and ordinary functions with the same name. When an overloaded function is
called, overload resolution is necessary to find the right function or template function to invoke.
For example:

t te em mp pl la at te e<c cl la as ss s T T> T T s sq qr rt t(T T) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> s sq qr rt t(c co om mp pl le ex x<T T>) ;
d do ou ub bl le e s sq qr rt t(d do ou ub bl le e) ;

v vo oi id d f f(c co om mp pl le ex x<d do ou ub bl le e> z z)
{

s sq qr rt t(2 2) ; / / sqrt<int>(int)
s sq qr rt t(2 2. 0 0) ; / / sqrt(double)
s sq qr rt t(z z) ; / / sqrt<double>(complex<double>)

}

In the same way that a template function is a generalization of the notion of a function, the rules for
resolution in the presence of function templates are generalizations of the function overload resolu-
tion rules. Basically, for each template we find the specialization that is best for the set of function
arguments. Then, we apply the usual function overload resolution rules to these specializations and
all ordinary functions:

[1] Find the set of function template specializations (§13.2.2) that will take part in overload res-
olution. Do this by considering each function template and deciding which template argu-
ments, if any, would be used if no other function templates or functions of the same name
were in scope. For the calls sq qr rt t(z z) , this makess sq qr rt t<d do ou ub bl le e>(c co om mp pl le ex x<d do ou ub bl le e>) and
s sq qr rt t< c co om mp pl le ex x<d do ou ub bl le e> >(c co om mp pl le ex x<d do ou ub bl le e>) candidates.

[2] If two template functions can be called and one is more specialized than the other (§13.5.1),
consider only the most specialized template function in the following steps. For the call
s sq qr rt t(z z) , this means thats sq qr rt t<d do ou ub bl le e>(c co om mp pl le ex x<d do ou ub bl le e>) is preferred overs sq qr rt t<
c co om mp pl le ex x<d do ou ub bl le e> >(c co om mp pl le ex x<d do ou ub bl le e>) : any call that matchess sq qr rt t<T T>(c co om mp pl le ex x<T T>)
also matchess sq qr rt t<T T>(T T) .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.3.2 Function Template Overloading 337

[3] Do overload resolution for this set of functions, plus any ordinary functions as for ordinary
functions (§7.4). If a template function argument has been determined by template argu-
ment deduction (§13.3.1), that argument cannot also have promotions, standard conversions,
or user-defined conversions applied. Fors sq qr rt t(2 2) , s sq qr rt t<i in nt t>(i in nt t) is an exact match, so it
is preferred overs sq qr rt t(d do ou ub bl le e).

[4] If a function and a specialization are equally good matches, the function is preferred. Con-
sequently,s sq qr rt t(d do ou ub bl le e) is preferred overs sq qr rt t<d do ou ub bl le e>(d do ou ub bl le e) for s sq qr rt t(2 2. 0 0) .

[5] If no match is found, the call is an error. If we end up with two or more equally good
matches, the call is ambiguous and is an error.

For example:

t te em mp pl la at te e<c cl la as ss s T T> T T m ma ax x(T T, T T) ;

c co on ns st t i in nt t s s = 7 7;

v vo oi id d k k()
{

m ma ax x(1 1, 2 2) ; / / max<int>(1,2)
m ma ax x(´ a a´,´ b b´) ; / / max<char>(’a’,’b’)
m ma ax x(2 2. 7 7, 4 4. 9 9) ; / / max<double>(2.7,4.9)
m ma ax x(s s, 7 7) ; / / max<int>(int(s),7) (trivial conversion used)

m ma ax x(´ a a´, 1 1) ; / / error: ambiguous (no standard conversion)
m ma ax x(2 2. 7 7, 4 4) ; / / error: ambiguous (no standard conversion)

}

We could resolve the two ambiguities either by explicit qualification:

v vo oi id d f f()
{

m ma ax x<i in nt t>(´ a a´, 1 1) ; / / max<int>(int(’a’),1)
m ma ax x<d do ou ub bl le e>(2 2. 7 7, 4 4) ; / / max<double>(2.7,double(4))

}

or by adding suitable declarations:

i in nl li in ne e i in nt t m ma ax x(i in nt t i i, i in nt t j j) { r re et tu ur rn n m ma ax x<i in nt t>(i i, j j) ; }
i in nl li in ne e d do ou ub bl le e m ma ax x(i in nt t i i, d do ou ub bl le e d d) { r re et tu ur rn n m ma ax x<d do ou ub bl le e>(i i, d d) ; }
i in nl li in ne e d do ou ub bl le e m ma ax x(d do ou ub bl le e d d, i in nt t i i) { r re et tu ur rn n m ma ax x<d do ou ub bl le e>(d d, i i) ; }
i in nl li in ne e d do ou ub bl le e m ma ax x(d do ou ub bl le e d d1 1, d do ou ub bl le e d d2 2) { r re et tu ur rn n m ma ax x<d do ou ub bl le e>(d d1 1, d d2 2) ; }

v vo oi id d g g()
{

m ma ax x(´ a a´, 1 1) ; / / max(int(’a’),1)
m ma ax x(2 2. 7 7, 4 4) ; / / max(2.7,double(4))

}

For ordinary functions, ordinary overloading rules (§7.4) apply, and the use ofi in nl li in ne e ensures that
no extra overhead is imposed.

The definition ofm ma ax x() is trivial, so we could have written it explicitly. However, using a spe-
cialization of the template is an easy and general way of defining such resolution functions.

The overload resolution rules ensure that template functions interact properly with inheritance:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

338 Templates Chapter 13

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s B B { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s D D : p pu ub bl li ic c B B<T T> { /* ... */ };

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d f f(B B<T T>*) ;

v vo oi id d g g(B B<i in nt t>* p pb b, D D<i in nt t>* p pd d)
{

f f(p pb b) ; / / f<int>(pb)
f f(p pd d) ; / / f<int>(static_cast<B<int>*>(pd)); standard conversion D<int>* to B<int>* used

}

In this example, the template functionf f() accepts aB B<T T>* for any typeT T. We have an argument
of type D D<i in nt t>* , so the compiler easily deduces that by choosingT T to be i in nt t, the call can be
uniquely resolved to a call off f(B B<i in nt t>*) .

A function argument that is not involved in the deduction of a template parameter is treated
exactly as an argument of a non-template function. In particular, the usual conversion rules hold.
Consider:

t te em mp pl la at te e<c cl la as ss s C C> i in nt t g ge et t_ _n nt th h(C C& p p, i in nt t n n) ; / / get n-th element

This function presumably returns the value of the n-th element of a container of typeC C. BecauseC C
has to be deduced from an actual argument ofg ge et t_ _n nt th h() in a call, conversions are not applicable to
the first argument. However, the second argument is perfectly ordinary, so the full range of possi-
ble conversions is considered. For example:

c cl la as ss s I In nd de ex x {
p pu ub bl li ic c:

o op pe er ra at to or r i in nt t() ;
/ / ...

};

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v, s sh ho or rt t s s, I In nd de ex x i i)
{

i in nt t i i1 1 = g ge et t_ _n nt th h(v v, 2 2) ; / / exact match
i in nt t i i2 2 = g ge et t_ _n nt th h(v v, s s) ; / / standard conversion: short to int
i in nt t i i3 3 = g ge et t_ _n nt th h(v v, i i) ; / / user-defined conversion: Index to int

}

13.4 Using Template Arguments to Specify Policy[temp.policy]

Consider how to sort strings. Three concepts are involved: the string, the element type, and the cri-
teria used by the sort algorithm for comparing string elements.

We can’t hardwire the sorting criteria into the container because the container can’t (in general)
impose its needs on the element types. We can’t hardwire the sorting criteria into the element type
because there are many different ways of sorting elements.

Consequently, the sorting criteria are built neither into the container nor into the element type.
Instead, the criteria must be supplied when a specific operation needs to be performed. For exam-
ple, if I have strings of characters representing names of Swedes, what collating criteria would I

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.4 Using Template Arguments to Specify Policy 339

like to use for a comparison? Two different collating sequences (numerical orderings of the charac-
ters) are commonly used for sorting Swedish names. Naturally, neither a general string type nor a
general sort algorithm should know about the conventions for sorting names in Sweden. Therefore,
any general solution requires that the sorting algorithm be expressed in general terms that can be
defined not just for a specific type but also for a specific use of a specific type. For example, let us
generalize the standard C library functions st tr rc cm mp p() for S St tr ri in ng gs of any typeT T (§13.2):

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C>
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2)
{

f fo or r(i in nt t i i=0 0; i i<s st tr r1 1. l le en ng gt th h() && i i< s st tr r2 2. l le en ng gt th h() ; i i++)
i if f (! C C: : e eq q(s st tr r1 1[i i] , s st tr r2 2[i i])) r re et tu ur rn n C C: : l lt t(s st tr r1 1[i i] , s st tr r2 2[i i]) ? - 1 1 : 1 1;

r re et tu ur rn n s st tr r1 1. l le en ng gt th h()- s st tr r2 2. l le en ng gt th h() ;
}

If someone wantsc co om mp pa ar re e() to ignore case, to reflect locale, etc., that can be done by defining
suitableC C: : e eq q() andC C: : l lt t() . This allows any (comparison, sorting, etc.) algorithm that can be
described in terms of the operations supplied by the ‘‘C C-operations’’ and the container to be
expressed. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Cm mp p { / / normal, default compare
p pu ub bl li ic c:

s st ta at ti ic c i in nt t e eq q(T T a a, T T b b) { r re et tu ur rn n a a==b b; }
s st ta at ti ic c i in nt t l lt t(T T a a, T T b b) { r re et tu ur rn n a a<b b; }

};

c cl la as ss s L Li it te er ra at te e { / / compare Swedish names according to literary conventions
p pu ub bl li ic c:

s st ta at ti ic c i in nt t e eq q(c ch ha ar r a a, c ch ha ar r b b) { r re et tu ur rn n a a==b b; }
s st ta at ti ic c i in nt t l lt t(c ch ha ar r, c ch ha ar r) ; / / a table lookup based on character value (§13.9[14])

};

We can now choose the rules for comparison by explicit specification of the template arguments:

v vo oi id d f f(S St tr ri in ng g<c ch ha ar r> s sw we ed de e1 1, S St tr ri in ng g<c ch ha ar r> s sw we ed de e2 2)
{

c co om mp pa ar re e< c ch ha ar r, C Cm mp p<c ch ha ar r> >(s sw we ed de e1 1, s sw we ed de e2 2) ;
c co om mp pa ar re e< c ch ha ar r, L Li it te er ra at te e >(s sw we ed de e1 1, s sw we ed de e2 2) ;

}

Passing the comparison operations as a template parameter has two significant benefits compared to
alternatives such as passing pointers to functions. Several operations can be passed as a single
argument with no run-time cost. In addition, the comparison operatorse eq q() andl lt t() are trivial to
inline, whereas inlining a call through a pointer to function requires exceptional attention from a
compiler.

Naturally, comparison operations can be provided for user-defined types as well as built-in
types. This is essential to allow general algorithms to be applied to types with nontrivial compari-
son criteria (see §18.4).

Each class generated from a class template gets a copy of eachs st ta at ti ic c member of the class tem-
plate (see §C.13.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

340 Templates Chapter 13

13.4.1 Default Template Parameters [temp.default]

Explicitly specifying the comparison criteria for each call is tedious. Fortunately, it is easy to pick
a default so that only uncommon comparison criteria have to be explicitly specified. This can be
implemented through overloading:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C>
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2) ; / / compare using C

t te em mp pl la at te e<c cl la as ss s T T>
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2) ; / / compare using Cmp<T>

Alternatively, we can supply the normal convention as a default template argument:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C = C Cm mp p<T T> >
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2)
{

f fo or r(i in nt t i i=0 0; i i<s st tr r1 1. l le en ng gt th h() && i i< s st tr r2 2. l le en ng gt th h() ; i i++)
i if f (! C C: : e eq q(s st tr r1 1[i i] , s st tr r2 2[i i])) r re et tu ur rn n C C: : l lt t(s st tr r1 1[i i] , s st tr r2 2[i i]) ? - 1 1 : 1 1;

r re et tu ur rn n s st tr r1 1. l le en ng gt th h()- s st tr r2 2. l le en ng gt th h() ;
}

Given that, we can write:

v vo oi id d f f(S St tr ri in ng g<c ch ha ar r> s sw we ed de e1 1, S St tr ri in ng g<c ch ha ar r> s sw we ed de e2 2)
{

c co om mp pa ar re e(s sw we ed de e1 1, s sw we ed de e2 2) ; / / use Cmp<char>
c co om mp pa ar re e<c ch ha ar r, L Li it te er ra at te e>(s sw we ed de e1 1, s sw we ed de e2 2) ; / / use Literate

}

A less esoteric example (for non-Swedes) is comparing with and without taking case into account:

c cl la as ss s N No o_ _c ca as se e { /* ... */ };

v vo oi id d f f(S St tr ri in ng g<c ch ha ar r> s s1 1, S St tr ri in ng g<c ch ha ar r> s s2 2)
{

c co om mp pa ar re e(s s1 1, s s2 2) ; / / case sensitive
c co om mp pa ar re e<c ch ha ar r, N No o_ _c ca as se e>(s s1 1, s s2 2) ; / / not sensitive to case

}

The technique of supplying a policy through a template argument and then defaulting that argument
to supply the most common policy is widely used in the standard library (e.g., §18.4). Curiously
enough, it is not used forb ba as si ic c_ _s st tr ri in ng g (§13.2, Chapter 20) comparisons. Template parameters
used to express policies are often called ‘‘traits.’’ For example, the standard library string relies on
c ch ha ar r_ _t tr ra ai it ts s (§20.2.1), the standard algorithms on iterator traits (§19.2.2), and the standard library
containers ona al ll lo oc ca at to or rs s (§19.4).

The semantic checking of a default argument for a template parameter is done if and (only)
when that default argument is actually used. In particular, as long as we refrain from using the
default template argumentC Cm mp p<T T> we canc co om mp pa ar re e() strings of a typeX X for which C Cm mp p<X X>
wouldn’t compile (say, because< wasn’t defined for anX X). This point is crucial in the design of
the standard containers, which rely on a template argument to specify default values (§16.3.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5 Specialization 341

13.5 Specialization[temp.special]

By default, a template gives a single definition to be used for every template argument (or combina-
tion of template arguments) that a user can think of. This doesn’t always make sense for someone
writing a template. I might want to say, ‘‘if the template argument is a pointer, use this implemen-
tation; if it is not, use that implementation’’ or ‘‘give an error unless the template argument is a
pointer derived from classM My y_ _b ba as se e.’’ Many such design concerns can be addressed by providing
alternative definitions of the template and having the compiler choose between them based on the
template arguments provided where they are used. Such alternative definitions of a template are
calleduser-defined specializations, or simply,user specializations.

Consider likely uses of aV Ve ec ct to or r template:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { / / general vector type
T T* v v;
i in nt t s sz z;

p pu ub bl li ic c:
V Ve ec ct to or r() ;
V Ve ec ct to or r(i in nt t) ;

T T& e el le em m(i in nt t i i) { r re et tu ur rn n v v[i i] ; }
T T& o op pe er ra at to or r[](i in nt t i i) ;

v vo oi id d s sw wa ap p(V Ve ec ct to or r&) ;
/ / ...

};

V Ve ec ct to or r<i in nt t> v vi i;
V Ve ec ct to or r<S Sh ha ap pe e*> v vp ps s;
V Ve ec ct to or r<s st tr ri in ng g> v vs s;
V Ve ec ct to or r<c ch ha ar r*> v vp pc c;
V Ve ec ct to or r<N No od de e*> v vp pn n;

Most V Ve ec ct to or rs will beV Ve ec ct to or rs of some pointer type. There are several reasons for this, but the pri-
mary reason is that to preserve run-time polymorphic behavior, we must use pointers (§2.5.4,
§12.2.6). That is, anyone who practices object-oriented programming and also uses type-safe con-
tainers (such as the standard library containers) will end up with a lot of containers of pointers.

The default behavior of most C++ implementations is to replicate the code for template func-
tions. This is good for run-time performance, but unless care is taken it leads to code bloat in criti-
cal cases such as theV Ve ec ct to or r example.

Fortunately, there is an obvious solution. Containers of pointers can share a single implementa-
tion. This can be expressed through specialization. First, we define a version (a specialization) of
V Ve ec ct to or r for pointers tov vo oi id d:

t te em mp pl la at te e<> c cl la as ss s V Ve ec ct to or r<v vo oi id d*> {
v vo oi id d** p p;
/ / ...
v vo oi id d*& o op pe er ra at to or r[](i in nt t i i) ;

};

This specialization can then be used as the common implementation for allV Ve ec ct to or rs of pointers.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

342 Templates Chapter 13

The t te em mp pl la at te e<> prefix says that this is a specialization that can be specified without a template
parameter. The template arguments for which the specialization is to be used are specified in<>
brackets after the name. That is, the<v vo oi id d*> says that this definition is to be used as the imple-
mentation of everyV Ve ec ct to or r for whichT T is void* .

The V Ve ec ct to or r<v vo oi id d*> is a complete specialization. That is, there is no template parameter to
specify or deduce when we use the specialization;V Ve ec ct to or r<v vo oi id d*> is used forV Ve ec ct to or rs declared like
this:

V Ve ec ct to or r<v vo oi id d*> v vp pv v;

To define a specialization that is used for everyV Ve ec ct to or r of pointers and only forV Ve ec ct to or rs of pointers,
we need apartial specialization:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r<T T*> : p pr ri iv va at te e V Ve ec ct to or r<v vo oi id d*> {
p pu ub bl li ic c:

t ty yp pe ed de ef f V Ve ec ct to or r<v vo oi id d*> B Ba as se e;

V Ve ec ct to or r() : B Ba as se e() {}
e ex xp pl li ic ci it t V Ve ec ct to or r(i in nt t i i) : B Ba as se e(i i) {}

T T*& e el le em m(i in nt t i i) { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*&>(B Ba as se e: : e el le em m(i i)) ; }
T T*& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*&>(B Ba as se e: : o op pe er ra at to or r[](i i)) ; }

/ / ...
};

The specialization pattern<T T*> after the name says that this specialization is to be used for every
pointer type; that is, this definition is to be used for everyV Ve ec ct to or r with a template argument that can
be expressed asT T* . For example:

V Ve ec ct to or r<S Sh ha ap pe e*> v vp ps s; / / <T*> is <Shape*> so T is Shape
V Ve ec ct to or r<i in nt t**> v vp pp pi i; / / <T*> is <int** > so T is int*

Note that when a partial specialization is used, a template parameter is deduced from the specializa-
tion pattern; the template parameter is not simply the actual template argument. In particular, for
V Ve ec ct to or r<S Sh ha ap pe e*> , T T is S Sh ha ap pe eand notS Sh ha ap pe e* .

Given this partial specialization ofV Ve ec ct to or r, we have a shared implementation for allV Ve ec ct to or rs of
pointers. TheV Ve ec ct to or r<T T*> class is simply an interface tov vo oi id d* implemented exclusively through
derivation and inline expansion.

It is important that this refinement of the implementation ofV Ve ec ct to or r is achieved without affect-
ing the interface presented to users. Specialization is a way of specifying alternative implementa-
tions for different uses of a common interface. Naturally, we could have given the generalV Ve ec ct to or r
and theV Ve ec ct to or r of pointers different names. However, when I tried that, many people who should
have known better forgot to use the pointer classes and found their code much larger than expected.
In this case, it is much better to hide the crucial implementation details behind a common interface.

This technique proved successful in curbing code bloat in real use. People who do not use a
technique like this (in C++ or in other languages with similar facilities for type parameterization)
have found that replicated code can cost megabytes of code space even in moderately-sized pro-
grams. By eliminating the time needed to compile those additional versions of the vector opera-
tions, this technique can also cut compile and link times dramatically. Using a single specialization

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5 Specialization 343

to implement all lists of pointers is an example of the general technique of minimizing code bloat
by maximizing the amount of shared code.

The general template must be declared before any specialization. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t<T T*> { /* ... */ };

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { /* ... */ }; / / error: general template after specialization

The critical information supplied by the general template is the set of template parameters that the
user must supply to use it or any of its specializations. Consequently, a declaration of the general
case is sufficient to allow the declaration or definition of a specialization:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t;

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t<T T*> { /* ... */ };

If used, the general template needs to be defined somewhere (§13.7).
If a user specializes a template somewhere, that specialization must be in scope for every use of

the template with the type for which it was specialized. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { /* ... */ };

L Li is st t<i in nt t*> l li i;

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t<T T*> { /* ... */ }; / / error

Here,L Li is st t was specialized fori in nt t* afterL Li is st t<i in nt t*> had been used.
All specializations of a template must be declared in the same namespace as the template itself.

If used, a specialization that is explicitly declared (as opposed to generated from a more general
template) must also be explicitly defined somewhere (§13.7). In other words, explicitly specializ-
ing a template implies that no definition is generated for that specialization.

13.5.1 Order of Specializations [temp.special.order]

One specialization ismore specializedthan another if every argument list that matches its special-
ization pattern also matches the other, but not vice versa. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r; / / general
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r<T T*>; / / specialized for any pointer
t te em mp pl la at te e<> c cl la as ss s V Ve ec ct to or r<v vo oi id d*>; / / specialized for void*

Every type can be used as a template argument for the most generalV Ve ec ct to or r, but only pointers can
be used forV Ve ec ct to or r<T T*> and onlyv vo oi id d* s can be used forV Ve ec ct to or r<v vo oi id d*> .

The most specialized version will be preferred over the others in declarations of objects, point-
ers, etc., (§13.5) and in overload resolution (§13.3.2).

A specialization pattern can be specified in terms of types composed using the constructs
allowed for template parameter deduction (§13.3.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

344 Templates Chapter 13

13.5.2 Template Function Specialization [temp.special.fct]

Naturally, specialization is also useful for template functions. Consider the Shell sort from §7.7
and §13.3. It compares elements using< and swaps elements using detailed code. A better defini-
tion would be:

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l l le es ss s(T T a a, T T b b) { r re et tu ur rn n a a<b b; }

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(V Ve ec ct to or r<T T>& v v)
{

c co on ns st t s si iz ze e_ _t t n n = v v. s si iz ze e() ;

f fo or r (i in nt t g ga ap p=n n/ 2 2; 0 0<g ga ap p; g ga ap p/= 2 2)
f fo or r (i in nt t i i=g ga ap p; i i<n n; i i++)

f fo or r (i in nt t j j=i i- g ga ap p; 0 0<=j j; j j-= g ga ap p)
i if f (l le es ss s(v v[j j+g ga ap p] , v v[j j])) s sw wa ap p(v v[j j] , v v[j j+g ga ap p]) ;

}

This does not improve the algorithm itself, but it allows improvements to its implementation. As
written, s so or rt t() will not sort aV Ve ec ct to or r<c ch ha ar r*> correctly because< will compare the twoc ch ha ar r* s.
That is, it will compare the addresses of the firstc ch ha ar r in each string. Instead, we would like it to
compare the characters pointed to. A simple specialization ofl le es ss s() for c co on ns st t c ch ha ar r* will take care
of that:

t te em mp pl la at te e<> b bo oo ol l l le es ss s<c co on ns st t c ch ha ar r*>(c co on ns st t c ch ha ar r* a a, c co on ns st t c ch ha ar r* b b)
{

r re et tu ur rn n s st tr rc cm mp p(a a, b b)< 0 0;
}

As for classes (§13.5), thet te em mp pl la at te e<> prefix says that this is a specialization that can be specified
without a template parameter. The<c co on ns st t c ch ha ar r*> after the template function name means that this
specialization is to be used in cases where the template argument isc co on ns st t c ch ha ar r* . Because the tem-
plate argument can be deduced from the function argument list, we need not specify it explicitly.
So, we could simplify the definition of the specialization:

t te em mp pl la at te e<> b bo oo ol l l le es ss s<>(c co on ns st t c ch ha ar r* a a, c co on ns st t c ch ha ar r* b b)
{

r re et tu ur rn n s st tr rc cm mp p(a a, b b)< 0 0;
}

Given thet te em mp pl la at te e<> prefix, the second empty<> is redundant, so we would typically simply
write:

t te em mp pl la at te e<> b bo oo ol l l le es ss s(c co on ns st t c ch ha ar r* a a, c co on ns st t c ch ha ar r* b b)
{

r re et tu ur rn n s st tr rc cm mp p(a a, b b)< 0 0;
}

I prefer this shorter form of declaration.
Consider the obvious definition ofs sw wa ap p() :

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5.2 Template Function Specialization 345

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(T T& x x, T T& y y)
{

T T t t = x x; / / copy x to temporary
x x = y y; / / copy y to x
y y = t t; / / copy temporary to y

}

This is rather inefficient when invoked forV Ve ec ct to or rs ofV Ve ec ct to or rs; it swapsV Ve ec ct to or rs by copying all ele-
ments. This problem can also be solved by appropriate specialization. AV Ve ec ct to or r object will itself
hold only sufficient data to give indirect access to the elements (likes st tr ri in ng g; §11.12, §13.2). Thus,
a swap can be done by swapping those representations. To be able to manipulate that representa-
tion, I providedV Ve ec ct to or r with a member functions sw wa ap p() (§13.5):

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d V Ve ec ct to or r<T T>: : s sw wa ap p(V Ve ec ct to or r & a a) / / swap representations
{

s sw wa ap p(v v, a a. v v) ;
s sw wa ap p(s sz z, a a. s sz z) ;

}

This members sw wa ap p() can now be used to define a specialization of the generals sw wa ap p() :

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(V Ve ec ct to or r<T T>& a a, V Ve ec ct to or r<T T>& b b)
{

a a. s sw wa ap p(b b) ;
}

These specializations ofl le es ss s() ands sw wa ap p() are used in the standard library (§16.3.9, §20.3.16).
In addition, they are examples of widely applicable techniques. Specialization is useful when there
is a more efficient alternative to a general algorithm for a set of template arguments (here,
s sw wa ap p()). In addition, specialization comes in handy when an irregularity of an argument type
causes the general algorithm to give an undesired result (here,l le es ss s()). These ‘‘irregular types’’
are often the built-in pointer and array types.

13.6 Derivation and Templates[temp.derive]

Templates and derivation are mechanisms for building new types out of existing ones, and gener-
ally for writing useful code that exploits various forms of commonality. As shown in §3.7.1,
§3.8.5, and §13.5, combinations of the two mechanisms are the basis for many useful techniques.

Deriving a template class from a non-template class is a way of providing a common implemen-
tation for a set of templates. The list from §13.5 is a good example of this:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s l li is st t<T T*> : p pr ri iv va at te e l li is st t<v vo oi id d*> { /* ... */ };

Another way of looking at such examples is that a template is used to provide an elegant and type-
safe interface to an otherwise unsafe and inconvenient-to-use facility.

Naturally, it is often useful to derive one template class from another. One use of a base class is
as a building block in the implementation of further classes. If the data or operations in such a base

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

346 Templates Chapter 13

class depend on a template parameter of a derived class, the base itself must be parameterized;V Ve ec c
from §3.7.1 is an example of this:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v ve ec ct to or r { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec c : p pu ub bl li ic c v ve ec ct to or r<T T> { /* ... */ };

The overload resolution rules for template functions ensure that functions work ‘‘correctly’’ for
such derived types (§13.3.2).

Having the same template parameter for the base and derived class is the most common case,
but it is not a requirement. Interesting, although less frequently used, techniques rely on passing
the derived type itself to the base class. For example:

t te em mp pl la at te e <c cl la as ss s C C> c cl la as ss s B Ba as si ic c_ _o op ps s { / / basic operators on containers
b bo oo ol l o op pe er ra at to or r==(c co on ns st t C C&) c co on ns st t; / / compare all elements
b bo oo ol l o op pe er ra at to or r!=(c co on ns st t C C&) c co on ns st t;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s M Ma at th h_ _c co on nt ta ai in ne er r : p pu ub bl li ic c B Ba as si ic c_ _o op ps s< M Ma at th h_ _c co on nt ta ai in ne er r<T T> > {
p pu ub bl li ic c:

s si iz ze e_ _t t s si iz ze e() c co on ns st t;
T T& o op pe er ra at to or r[](s si iz ze e_ _t t) ;
/ / ...

};

This allows the definition of the basic operations on containers to be separate from the definition of
the containers themselves and defined once only. However, the definition of operations such as==
and!= must be expressed in terms of both the container and its elements, so the base class needs to
be passed to the container template.

Assuming that aM Ma at th h_ _c co on nt ta ai in ne er r is similar to a traditional vector, the definitions of a
B Ba as si ic c_ _o op ps s member would look something like this:

t te em mp pl la at te e <c cl la as ss s C C> b bo oo ol l B Ba as si ic c_ _o op ps s<C C>: : o op pe er ra at to or r==(c co on ns st t C C& a a) c co on ns st t
{

i if f (s si iz ze e() != a a. s si iz ze e()) r re et tu ur rn n f fa al ls se e;
f fo or r (i in nt t i i = 0 0; i i<s si iz ze e() ; ++i i)

i if f ((* t th hi is s)[i i] != a a[i i]) r re et tu ur rn n f fa al ls se e;
r re et tu ur rn n t tr ru ue e;

}

An alternative technique for keeping the containers and operations separate would be to combine
them from template arguments rather than use derivation:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C> c cl la as ss s M Mc co on nt ta ai in ne er r {
C C e el le em me en nt ts s;

p pu ub bl li ic c:
/ / ...
T T& o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n e el le em me en nt ts s[i i] ; }

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.6 Derivation and Templates 347

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t M Mc co on nt ta ai in ne er r&, c co on ns st t M Mc co on nt ta ai in ne er r&) ; / / compare elements
f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t M Mc co on nt ta ai in ne er r&, c co on ns st t M Mc co on nt ta ai in ne er r&) ;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s M My y_ _a ar rr ra ay y { /* ... */ };

M Mc co on nt ta ai in ne er r< d do ou ub bl le e, M My y_ _a ar rr ra ay y<d do ou ub bl le e> > m mc c;

A class generated from a class template is a perfectly ordinary class. Consequently, it can have
f fr ri ie en nd d functions (§C.13.2). In this case, I usedf fr ri ie en nd ds to achieve the conventional symmetric argu-
ment style for== and!= (§11.3.2). One might also consider passing a template rather than a con-
tainer as theC C argument in such cases (§13.2.3).

13.6.1 Parameterization and Inheritance [temp.inherit]

A template parameterizes the definition of a type or a function with another type. Code implement-
ing the template is identical for all parameter types, as is most code using the template. An abstract
class defines an interface. Much code for different implementations of the abstract class can be
shared in class hierarchies, and most code using the abstract class doesn’t depend on its implemen-
tation. From a design perspective, the two approaches are so close that they deserve a common
name. Since both allow an algorithm to be expressed once and applied to a variety of types, people
sometimes refer to both asp po ol ly ym mo or rp ph hi ic c. To distinguish them, what virtual functions provide is
called run-time polymorphism, and what templates offer is calledcompile-time polymorphismor
parametric polymorphism.

So when do we choose to use a template and when do we rely on an abstract class? In either
case, we manipulate objects that share a common set of operations. If no hierarchical relationship
is required between these objects, they are best used as template arguments. If the actual types of
these objects cannot be known at compile-time, they are best represented as classes derived from a
common abstract class. If run-time efficiency is at a premium, that is, if inlining of operations is
essential, a template should be used. This issue is discussed in greater detail in §24.4.1.

13.6.2 Member Templates [temp.member]

A class or a class template can have members that are themselves templates. For example:

t te em mp pl la at te e<c cl la as ss s S Sc ca al la ar r> c cl la as ss s c co om mp pl le ex x {
S Sc ca al la ar r r re e, i im m;

p pu ub bl li ic c:
t te em mp pl la at te e<c cl la as ss s T T>

c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<T T>& c c) : r re e(c c. r re e) , i im m(c c. i im m) { }
/ / ...

};

c co om mp pl le ex x<f fl lo oa at t> c cf f(0 0, 0 0) ;
c co om mp pl le ex x<d do ou ub bl le e> c cd d = c cf f; / / ok: uses float to double conversion

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

348 Templates Chapter 13

c cl la as ss s Q Qu ua ad d {
/ / no conversion to int

};

c co om mp pl le ex x<Q Qu ua ad d> c cq q;
c co om mp pl le ex x<i in nt t> c ci i = c cq q; / / error: no Quad to int conversion

In other words, you can construct ac co om mp pl le ex x<T T1 1> from ac co om mp pl le ex x<T T2 2> if and only if you can ini-
tialize aT T1 1 by aT T2 2. That seems reasonable.

Unfortunately, C++ accepts some unreasonable conversions between built-in types, such as
from d do ou ub bl le e to i in nt t. Truncation problems could be caught at run time using a checked conversion in
the style ofi im mp pl li ic ci it t_ _c ca as st t (§13.3.1) andc ch he ec ck ke ed d (§C.6.2.6):

t te em mp pl la at te e<c cl la as ss s S Sc ca al la ar r> c cl la as ss s c co om mp pl le ex x {
S Sc ca al la ar r r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x() : r re e(0 0) , i im m(0 0) { }
c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<S Sc ca al la ar r>& c c) : r re e(c c. r re e) , i im m(c c. i im m) { }

t te em mp pl la at te e<c cl la as ss s T T2 2> c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<T T2 2>& c c)
: r re e(c ch he ec ck ke ed d_ _c ca as st t<S Sc ca al la ar r>(c c. r re ea al l())) , i im m(c ch he ec ck ke ed d_ _c ca as st t<S Sc ca al la ar r>(c c. i im ma ag g())) { }

/ / ...
};

For completeness, I added a default constructor and a copy constructor. Curiously enough, a tem-
plate constructor is never used to generate a copy constructor, so without the explicitly declared
copy constructor, a default copy constructor would have been generated. In that case, that gener-
ated copy constructor would have been identical to the one I explicitly specified.

A member template cannot bev vi ir rt tu ua al l. For example:

c cl la as ss s S Sh ha ap pe e {
/ / ...
t te em mp pl la at te e<c cl la as ss s T T> v vi ir rt tu ua al l b bo oo ol l i in nt te er rs se ec ct t(c co on ns st t T T&) c co on ns st t =0 0; / / error: virtual template

};

This must be illegal. If it were allowed, the traditional virtual function table technique for imple-
menting virtual functions (§2.5.5) could not be used. The linker would have to add a new entry to
the virtual table for classS Sh ha ap pe eeach time someone calledi in nt te er rs se ec ct t() with a new argument type.

13.6.3 Inheritance Relationships [temp.rel.inheritance]

A class template is usefully understood as a specification of how particular types are to be created.
In other words, the template implementation is a mechanism that generates types when needed
based on the user’s specification. Consequently, a class template is sometimes called atype
generator.

As far as the C++ language rules are concerned, there is no relationship between two classes
generated from a single class template. For example:

c cl la as ss s S Sh ha ap pe e { /* ... */ };
c cl la as ss s C Ci ir rc cl le e : p pu ub bl li ic c S Sh ha ap pe e { /* ... */ };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.6.3 Inheritance Relationships 349

Given these declarations, people sometimes try to treat as se et t<C Ci ir rc cl le e*> as as se et t<S Sh ha ap pe e*> . This is
a serious logical error based on a flawed argument: ‘‘AC Ci ir rc cl le e is aS Sh ha ap pe e, so a set ofC Ci ir rc cl le es s is also
a set ofS Sh ha ap pe es s; therefore, I should be able to use a set ofC Ci ir rc cl le es s as a set ofS Sh ha ap pe es s.’’ The ‘‘there-
fore’’ part of this argument doesn’t hold. The reason is that a set ofC Ci ir rc cl le es guarantees that the
member of the set areC Ci ir rc cl le es s; a set ofS Sh ha ap pe es does not provide that guarantee. For example:

c cl la as ss s T Tr ri ia an ng gl le e : p pu ub bl li ic c S Sh ha ap pe e { /* ... */ };

v vo oi id d f f(s se et t<S Sh ha ap pe e*>& s s)
{

/ / ...
s s. i in ns se er rt t(n ne ew w T Tr ri ia an ng gl le e()) ;
/ / ...

}

v vo oi id d g g(s se et t<C Ci ir rc cl le e*>& s s)
{

f f(s s) ; / / error, type mismatch: s is a set<Circle*>, not a set<Shape*>
}

This won’t compile because there is no built-in conversion froms se et t<C Ci ir rc cl le e*>& to s se et t<S Sh ha ap pe e*>& .
Nor should there be. The guarantee that the members of as se et t<C Ci ir rc cl le e*> areC Ci ir rc cl le es allows us to
safely and efficiently applyC Ci ir rc cl le e-specific operations, such as determining the radius, to members
of the set. If we allowed as se et t<C Ci ir rc cl le e*> to be treated as as se et t<S Sh ha ap pe e*> , we could no longer main-
tain that guarantee. For example,f f() inserts aT Tr ri ia an ng gl le e* into its s se et t<S Sh ha ap pe e*> argument. If the
s se et t<S Sh ha ap pe e*> could have been as se et t<C Ci ir rc cl le e*> , the fundamental guarantee that as se et t<C Ci ir rc cl le e*>
containsC Ci ir rc cl le e* s only would have been violated.

13.6.3.1 Template Conversions [temp.mem.temp]

The example in the previous section demonstrates that there cannot be anydefault relationship
between classes generated from the same templates. However, for some templates we would like to
express such a relationship. For example, when we define a pointer template, we would like to
reflect inheritance relationships among the objects pointed to. Member templates (§13.6.2) allow
us to specify many such relationships where desired. Consider:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s P Pt tr r { / / pointer to T
T T* p p;

p pu ub bl li ic c:
P Pt tr r(T T*) ;
t te em mp pl la at te e<c cl la as ss s T T2 2> o op pe er ra at to or r P Pt tr r<T T2 2> () ; / / convert Ptr<T> to Ptr<T2>
/ / ...

};

We would like to define the conversion operators to provide the inheritance relationships we are
accustomed to for built-in pointers for these user-definedP Pt tr rs. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

350 Templates Chapter 13

v vo oi id d f f(P Pt tr r<C Ci ir rc cl le e> p pc c)
{

P Pt tr r<S Sh ha ap pe e> p ps s = p pc c; / / should work
P Pt tr r<C Ci ir rc cl le e> p pc c2 2 = p ps s; / / should give error

}

We want to allow the first initialization if and only ifS Sh ha ap pe e really is a direct or indirect public base
class ofC Ci ir rc cl le e. In general, we need to define the conversion operator so that theP Pt tr r<T T> to
P Pt tr r<T T2 2> conversion is accepted if and only if aT T* can be assigned to aT T2 2* . That can be done
like this:

t te em mp pl la at te e<c cl la as ss s T T>
t te em mp pl la at te e<c cl la as ss s T T2 2>

P Pt tr r<T T>: : o op pe er ra at to or r P Pt tr r<T T2 2> () { r re et tu ur rn n P Pt tr r<T T2 2>(p p) ; }

The return statement will compile if and only ifp p (which is aT T*) can be an argument to the
P Pt tr r<T T2 2>(T T2 2*) constructor. Therefore, ifT T* can be implicitly converted into aT T2 2* , theP Pt tr r<T T>
to P Pt tr r<T T2 2> conversion will work. For example

v vo oi id d f f(P Pt tr r<C Ci ir rc cl le e> p pc c)
{

P Pt tr r<S Sh ha ap pe e> p ps s = p pc c; / / ok: can convert Circle* to Shape*
P Pt tr r<C Ci ir rc cl le e> p pc c2 2 = p ps s; / / error: cannot convert Shape* to Circle*

}

Be careful to define logically meaningful conversions only.
Note that the template parameter lists of a template and its template member cannot be com-

bined. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s T T2 2> / / error
P Pt tr r<T T>: : o op pe er ra at to or r P Pt tr r<T T2 2> () { r re et tu ur rn n P Pt tr r<T T2 2>(p p) ; }

13.7 Source Code Organization[temp.source]

There are two obvious ways of organizing code using templates:
[1] Include template definitions before their use in a translation unit.
[2] Include template declarations (only) before their use in a translation unit, and compile their

definitions separately.
In addition, template functions are sometimes first declared, then used, and finally defined in a sin-
gle translation unit.

To see the differences between the two main approaches, consider a simple template:

#i in nc cl lu ud de e<i io os st tr re ea am m>

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d o ou ut t(c co on ns st t T T& t t) { s st td d: : c ce er rr r << t t; }

We could call thiso ou ut t. c c and#i in nc cl lu ud de e it wherevero ou ut t() was needed. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.7 Source Code Organization 351

/ / user1.c:
#i in nc cl lu ud de e " o ou ut t. c c"
/ / use out()

/ / user2.c:
#i in nc cl lu ud de e " o ou ut t. c c"
/ / use out()

That is, the definition ofo ou ut t() and all declarations it depends on are#i in nc cl lu ud de ed in several different
compilation units. It is up to the compiler to generate code when needed (only) and to optimize the
process of reading redundant definitions. This strategy treats template functions the same way as
inline functions.

One obvious problem with this is that everything on which the definition ofo ou ut t() depends is
added to each file usingo ou ut t() , thus increasing the amount of information that the compiler must
process. Another problem is that users may accidentally come to depend on declarations included
only for the benefit of the definition ofo ou ut t() . This danger can be minimized by using name-
spaces, by avoiding macros, and generally by reducing the amount of information included.

The separate compilation strategy is the logical conclusion of this line of thinking: if the tem-
plate definition isn’t included in the user code, none of its dependencies can affect that code. Thus
we split the originalo ou ut t. c c into two files:

/ / out.h:
t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d o ou ut t(c co on ns st t T T& t t) ;

/ / out.c:
#i in nc cl lu ud de e<i io os st tr re ea am m>
#i in nc cl lu ud de e " o ou ut t. h h"

e ex xp po or rt t t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d o ou ut t(c co on ns st t T T& t t) { s st td d: : c ce er rr r << t t; }

The fileo ou ut t. c c now holds all of the information needed to defineo ou ut t() , ando ou ut t. h h holds only what
is needed to call it. A user#i in nc cl lu ud de es only the declaration (the interface):

/ / user1.c:
#i in nc cl lu ud de e " o ou ut t. h h"
/ / use out()

/ / user2.c:
#i in nc cl lu ud de e " o ou ut t. h h"
/ / use out()

This strategy treats template functions the same way it does non-inline functions. The definition (in
o ou ut t. c c) is compiled separately, and it is up to the implementation to find the definition ofo ou ut t()
when needed. This strategy also puts a burden on the implementation. Instead of having to filter
out redundant copies of a template definition, the implementation must find the unique definition
when needed.

Note that to be accessible from other compilation units, a template definition must be explicitly
declarede ex xp po or rt t (§9.2.3). This can be done by addinge ex xp po or rt t to the definition or to a preceding
declaration. Otherwise, the definition must be in scope wherever the template is used.

Which strategy or combination of strategies is best depends on the compilation and linkage

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

352 Templates Chapter 13

system used, the kind of application you are building, and the external constraints on the way you
build systems. Generally, inline functions and other small functions that primarily call other tem-
plate functions are candidates for inclusion into every compilation unit in which they are used. On
an implementation with average support from the linker for template instantiation, doing this can
speed up compilation and improve error messages.

Including a definition makes it vulnerable to having its meaning affected by macros and decla-
rations in the context into which it is included. Consequently, larger template functions and tem-
plate functions with nontrivial context dependencies are better compiled separately. Also, if the
definition of a template requires a large number of declarations, these declarations can have unde-
sirable side effects if they are included into the context in which the template is used.

I consider the approach of separately compiling template definitions and including declarations
only in user code ideal. However, the application of ideals must be tempered by practical con-
straints, and separate compilation of templates is expensive on some implementations.

Whichever strategy is used, non-i in nl li in ne e s st ta at ti ic c members (§C.13.1) must have a unique definition
in some compilation unit. This implies that such members are best not used for templates that are
otherwise included in many translation units.

One ideal is for code to work the same whether it is compiled as a single unit or separated into
several separately translated units. That ideal should be approached by restricting a template
definition’s dependency on its environment rather than by trying to carry as much as possible of its
definition context with it into the instantiation process.

13.8 Advice[temp.advice]

[1] Use templates to express algorithms that apply to many argument types; §13.3.
[2] Use templates to express containers; §13.2.
[3] Provide specializations for containers of pointers to minimize code size; §13.5.
[4] Always declare the general form of a template before specializations; §13.5.
[5] Declare a specialization before its use; §13.5.
[6] Minimize a template definition’s dependence on its instantiation contexts; §13.2.5, §C.13.8.
[7] Define every specialization you declare; §13.5.
[8] Consider if a template needs specializations for C-style strings and arrays; §13.5.2.
[9] Parameterize with a policy object; §13.4.
[10] Use specialization and overloading to provide a single interface to implementations of the

same concept for different types; §13.5.
[11] Provide a simple interface for simple cases and use overloading and default arguments to

express less common cases; §13.5, §13.4.
[12] Debug concrete examples before generalizing to a template; §13.2.1.
[13] Remember toe ex xp po or rt t template definitions that need to be accessible from other translation

units; §13.7.
[14] Separately compile large templates and templates with nontrivial context dependencies; §13.7.
[15] Use templates to express conversions but define those conversions very carefully; §13.6.3.1.
[16] Where necessary, constrain template arguments using ac co on ns st tr ra ai in nt t() member function;

§13.9[16].

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.8 Advice 353

[17] Use explicit instantiation to minimize compile time and link time; §C.13.10.
[18] Prefer a template over derived classes when run-time efficiency is at a premium; §13.6.1.
[19] Prefer derived classes over a template if adding new variants without recompilation is impor-

tant; §13.6.1.
[20] Prefer a template over derived classes when no common base can be defined; §13.6.1.
[21] Prefer a template over derived classes when built-in types and structures with compatibility

constraints are important; §13.6.1.

13.9 Exercises[temp.exercises]

1. (∗2) Fix the errors in the definition ofL Li is st t from §13.2.5 and write out C++ code equivalent to
what the compiler must generate for the definition ofL Li is st t and the functionf f() . Run a small
test case using your hand-generated code and the code generated by the compiler from the tem-
plate version. If possible on your system given your knowledge, compare the generated code.

2. (∗3) Write a singly-linked list class template that accepts elements of any type derived from a
classL Li in nk k that holds the information necessary to link elements. This is called anintrusive list.
Using this list, write a singly-linked list that accepts elements of any type (a non-intrusive list).
Compare the performance of the two list classes and discuss the tradeoffs between them.

3. (∗2.5) Write intrusive and non-intrusive doubly-linked lists. What operations should be pro-
vided in addition to the ones you found necessary to supply for a singly-linked list?

4. (∗2) Complete theS St tr ri in ng g template from §13.2 based on theS St tr ri in ng g class from §11.12.
5. (∗2) Define as so or rt t() that takes its comparison criterion as a template argument. Define a class

R Re ec co or rd d with two data membersc co ou un nt t andp pr ri ic ce e. Sort av ve ec ct to or r<R Re ec co or rd d> on each data member.
6. (∗2) Implement aq qs so or rt t() template.
7. (∗2) Write a program that reads(k ke ey y, v va al lu ue e) pairs and prints out the sum of thev va al lu ue es corre-

sponding to each distinctk ke ey y. Specify what is required for a type to be ak ke ey y and av va al lu ue e.
8. (∗2.5) Implement a simpleM Ma ap p class based on theA As ss so oc c class from §11.8. Make sureM Ma ap p

works correctly using both C-style strings ands st tr ri in ng gs as keys. Make sureM Ma ap p works correctly
for types with and without default constructors. Provide a way of iterating over the elements of
aM Ma ap p.

9. (∗3) Compare the performance of the word count program from §11.8 against a program not
using an associative array. Use the same style of I/O in both cases.

10. (∗3) Re-implementM Ma ap p from §13.9[8] using a more suitable data structure (e.g., a red-black
tree or a Splay tree).

11. (∗2.5) UseM Ma ap p to implement a topological sort function. Topological sort is described in
[Knuth,1968] vol. 1 (second edition), pg 262.

12. (∗1.5) Make the sum program from §13.9[7] work correctly for names containing spaces; for
example, ‘‘thumb tack.’’

13. (∗2) Write r re ea ad dl li in ne e() templates for different kinds of lines. For example (item,count,price).
14. (∗2) Use the technique outlined forL Li it te er ra at te e in §13.4 to sort strings in reverse lexicographical

order. Make sure the technique works both for C++ implementations wherec ch ha ar r is s si ig gn ne ed d and
for C++ implementations where it isu un ns si ig gn ne ed d. Use a variant of that technique to provide a sort
that is not case-sensitive.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

354 Templates Chapter 13

15. (∗1.5) Construct an example that demonstrates at least three differences between a function tem-
plate and a macro (not counting the differences in definition syntax).

16. (∗2) Devise a scheme that ensures that the compiler tests general constraints on the template
arguments for every template for which an object is constructed. It is not sufficient just to test
constraints of the form ‘‘the argumentT T must be a class derived fromM My y_ _b ba as se e.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

14
_ __ _______________________________________

Exception Handling

Don´t interrupt me
while I´m interrupting.
– Winston S. Churchill

Error handling— grouping of exceptions— catching exceptions— catch all— re-
throw — resource management— a au ut to o_ _p pt tr r — exceptions andn ne ew w — resource exhaus-
tion — exceptions in constructors— exceptions in destructors— exceptions that are not
errors— exception specifications— unexpected exceptions— uncaught exceptions—
exceptions and efficiency— error-handling alternatives— standard exceptions—
advice— exercises.

14.1 Error Handling [except.error]

As pointed out in §8.3, the author of a library can detect run-time errors but does not in general
have any idea what to do about them. The user of a library may know how to cope with such errors
but cannot detect them– or else they would have been handled in the user’s code and not left for
the library to find. The notion of anexceptionis provided to help deal with such problems. The
fundamental idea is that a function that finds a problem it cannot cope withthrowsan exception,
hoping that its (direct or indirect) caller can handle the problem. A function that wants to handle
that kind of problem can indicate that it is willing tocatchthat exception (§2.4.2, §8.3).

This style of error handling compares favorably with more traditional techniques. Consider the
alternatives. Upon detecting a problem that cannot be handled locally, the program could:

[1] terminate the program,
[2] return a value representing ‘‘error,’’
[3] return a legal value and leave the program in an illegal state, or
[4] call a function supplied to be called in case of ‘‘error.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

356 Exception Handling Chapter 14

Case [1], ‘‘terminate the program,’’ is what happens by default when an exception isn’t caught.
For most errors, we can and must do better. In particular, a library that doesn’t know about the pur-
pose and general strategy of the program in which it is embedded cannot simplye ex xi it t() or
a ab bo or rt t() . A library that unconditionally terminates cannot be used in a program that cannot afford
to crash. One way of viewing exceptions is as a way of giving control to a caller when no meaning-
ful action can be taken locally.

Case [2], ‘‘return an error value,’’ isn’t always feasible because there is often no acceptable
‘‘error value.’’ For example, if a function returns ani in nt t, every i in nt t might be a plausible result.
Even where this approach is feasible, it is often inconvenient because every call must be checked
for the error value. This can easily double the size of a program (§14.8). Consequently, this
approach is rarely used systematically enough to detect all errors.

Case [3], ‘‘return a legal value and leave the program in an illegal state,’’ has the problem that
the calling function may not notice that the program has been put in an illegal state. For example,
many standard C library functions set the global variablee er rr rn no o to indicate an error (§20.4.1,
§22.3). However, programs typically fail to teste er rr rn no o consistently enough to avoid consequential
errors caused by values returned from failed calls. Furthermore, the use of global variables for
recording error conditions doesn’t work well in the presence of concurrency.

Exception handling is not meant to handle problems for which case [4], ‘‘call an error-handler
function,’’ is relevant. However, in the absence of exceptions, an error-handler function has
exactly the three other cases as alternatives for howit handles the error. For a further discussion of
error-handling functions and exceptions, see §14.4.5.

The exception-handling mechanism provides an alternative to the traditional techniques when
they are insufficient, inelegant, and error-prone. It provides a way of explicitly separating error-
handling code from ‘‘ordinary’’ code, thus making the program more readable and more amenable
to tools. The exception-handling mechanism provides a more regular style of error handling, thus
simplifying cooperation between separately written program fragments.

One aspect of the exception-handling scheme that will appear novel to C and Pascal program-
mers is that the default response to an error (especially to an error in a library) is to terminate the
program. The traditional response has been to muddle through and hope for the best. Thus, excep-
tion handling makes programs more ‘‘brittle’’ in the sense that more care and effort must be taken
to get a program to run acceptably. This seems preferable, though, to getting wrong results later in
the development process– or after the development process is considered complete and the pro-
gram is handed over to innocent users. Where termination is unacceptable, we can catch all excep-
tions (§14.3.2) or catch all exceptions of a specific kind (§14.6.2). Thus, an exception terminates a
program only if a programmer allows it to terminate. This is preferable to the unconditional termi-
nation that happens when a traditional incomplete recovery leads to a catastrophic error.

Sometimes people have tried to alleviate the unattractive aspects of ‘‘muddling through’’ by
writing out error messages, putting up dialog boxes asking the user for help, etc. Such approaches
are primarily useful in debugging situations in which the user is a programmer familiar with the
structure of the program. In the hands of nondevelopers, a library that asks the (possibly absent)
user/operator for help is unacceptable. Also, in many cases error messages have no place to go
(say, if the program runs in an environment in whichc ce er rr r doesn’t connect to anything a user
notices); they would be incomprehensible to an end user anyway. At a minimum, the error mes-
sage might be in the wrong natural language (say, in Finnish to a English user). Worse, the error

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.1 Error Handling 357

message would typically refer to library concepts completely unknown to a user (say, ‘‘bad argu-
ment to atan2,’’ caused by bad input to a graphics system). A good library doesn’t ‘‘blabber’’ in
this way. Exceptions provide a way for code that detects a problem from which it cannot recover to
pass the problem on to some part of the system that might be able to recover. Only a part of the
system that has some idea of the context in which the program runs has any chance of composing a
meaningful error message.

The exception-handling mechanism can be seen as a run-time analog to the compile-time type
checking and ambiguity control mechanisms. It makes the design process more important and can
increase the work needed to get an initial and buggy version of a program running. However, the
result is code that has a much better chance to run as expected, to run as an acceptable part of a
larger program, to be comprehensible to other programmers, and to be amenable to manipulation by
tools. Similarly, exception handling provides specific language features to support ‘‘good style’’ in
the same way other C++ features support ‘‘good style’’ that can be practiced only informally and
incompletely in languages such as C and Pascal.

It should be recognized that error handling will remain a difficult task and that the exception-
handling mechanism– although more formalized than the techniques it replaces– is still relatively
unstructured compared with language features involving only local control flow. The C++
exception-handling mechanism provides the programmer with a way of handling errors where they
are most naturally handled, given the structure of a system. Exceptions make the complexity of
error handling visible. However, exceptions are not the cause of that complexity. Be careful not to
blame the messenger for bad news.

This may be a good time to review §8.3, where the basic syntax, semantics, and style-of-use
aspects of exception handling are presented.

14.1.1 Alternative Views on Exceptions [except.views]

‘‘Exception’’ is one of those words that means different things to different people. The C++
exception-handling mechanism is designed to support handling of errors and other exceptional con-
ditions (hence the name). In particular, it is intended to support error handling in programs com-
posed of independently developed components.

The mechanism is designed to handle only synchronous exceptions, such as array range checks
and I/O errors. Asynchronous events, such as keyboard interrupts and certain arithmetic errors, are
not necessarily exceptional and are not handled directly by this mechanism. Asynchronous events
require mechanisms fundamentally different from exceptions (as defined here) to handle them
cleanly and efficiently. Many systems offer mechanisms, such as signals, to deal with asynchrony,
but because these tend to be system-dependent, they are not described here.

The exception-handling mechanism is a nonlocal control structure based on stack unwinding
(§14.4) that can be seen as an alternative return mechanism. There are therefore legitimate uses of
exceptions that have nothing to do with errors (§14.5). However, the primary aim of the
exception-handling mechanism and the focus of this chapter is error handling and the support of
fault tolerance.

Standard C++ doesn’t have the notion of a thread or a process. Consequently, exceptional cir-
cumstances relating to concurrency are not discussed here. The concurrency facilities available on
your system are described in its documentation. Here, I’ll just note that the C++ exception-

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

358 Exception Handling Chapter 14

handling mechanism was designed to be effective in a concurrent program as long as the program-
mer (or system) enforces basic concurrency rules, such as properly locking a shared data structure
while using it.

The C++ exception-handling mechanisms are provided to report and handle errors and excep-
tional events. However, the programmer must decide what it means to be exceptional in a given
program. This is not always easy (§14.5). Can an event that happens most times a program is run
be considered exceptional? Can an event that is planned for and handled be considered an error?
The answer to both questions is yes. ‘‘Exceptional’’ does not mean ‘‘almost never happens’’ or
‘‘disastrous.’’ It is better to think of an exception as meaning ‘‘some part of the system couldn’t do
what it was asked to do.’’ Usually, we can then try something else. Exceptiont th hr ro ow ws should be
infrequent compared to function calls or the structure of the system has been obscured. However,
we should expect most large programs tot th hr ro ow w andc ca at tc ch h at least some exceptions in the course of
a normal and successful run.

14.2 Grouping of Exceptions[except.grouping]

An exception is an object of some class representing an exceptional occurrence. Code that detects
an error (often a library)t th hr ro ow ws an object (§8.3). A piece of code expresses desire to handle an
exception by ac ca at tc ch h clause. The effect of at th hr ro ow w is to unwind the stack until a suitablec ca at tc ch h is
found (in a function that directly or indirectly invoked the function that threw the exception).

Often, exceptions fall naturally into families. This implies that inheritance can be useful to
structure exceptions and to help exception handling. For example, the exceptions for a mathemati-
cal library might be organized like this:

c cl la as ss s M Ma at th he er rr r { };
c cl la as ss s O Ov ve er rf fl lo ow w: p pu ub bl li ic c M Ma at th he er rr r { };
c cl la as ss s U Un nd de er rf fl lo ow w: p pu ub bl li ic c M Ma at th he er rr r { };
c cl la as ss s Z Ze er ro od di iv vi id de e: p pu ub bl li ic c M Ma at th he er rr r { };
/ / ...

This allows us to handle anyM Ma at th he er rr r without caring precisely which kind it is. For example:

v vo oi id d f f()
{

t tr ry y {
/ / ...

}
c ca at tc ch h (O Ov ve er rf fl lo ow w) {

/ / handle Overflow or anything derived from Overflow
}
c ca at tc ch h (M Ma at th he er rr r) {

/ / handle any Matherr that is not Overflow
}

}

Here, anO Ov ve er rf fl lo ow w is handled specifically. All otherM Ma at th he er rr r exceptions will be handled by the
general case.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.2 Grouping of Exceptions 359

Organizing exceptions into hierarchies can be important for robustness of code. For example,
consider how you would handle all exceptions from a library of mathematical functions without
such a grouping mechanism. This would have to be done by exhaustively listing the exceptions:

v vo oi id d g g()
{

t tr ry y {
/ / ...

}
c ca at tc ch h (O Ov ve er rf fl lo ow w) { /* ... */ }
c ca at tc ch h (U Un nd de er rf fl lo ow w) { /* ... */ }
c ca at tc ch h (Z Ze er ro od di iv vi id de e) { /* ... */ }

}

This is not only tedious, but a programmer can easily forget to add an exception to the list. Con-
sider what would be needed if we didn’t group math exceptions. When we added a new exception
to the math library, every piece of code that tried to handle every math exception would have to be
modified. In general, such universal update is not feasible after the initial release of the library.
Often, there is no way of finding every relevant piece of code. Even when there is, we cannot in
general assume that every piece of source code is available or that we would be willing to make
changes if it were. These recompilation and maintenance problems would lead to a policy that no
new exceptions can be added to a library after its first release;that would be unacceptable for
almost all libraries. This reasoning leads exceptions to be defined as per-library or per-subsystem
class hierarchies (§14.6.2).

Please note that neither the built-in mathematical operations nor the basic math library (shared
with C) reports arithmetic errors as exceptions. One reason for this is that detection of some arith-
metic errors, such as divide-by-zero, are asynchronous on many pipelined machine architectures.
The M Ma at th he er rr r hierarchy described here is only an illustration. The standard library exceptions are
described in §14.10.

14.2.1 Derived Exceptions [except.derived]

The use of class hierarchies for exception handling naturally leads to handlers that are interested
only in a subset of the information carried by exceptions. In other words, an exception is typically
caught by a handler for its base class rather than by a handler for its exact class. The semantics for
catching and naming an exception are identical to those of a function accepting an argument. That
is, the formal argument is initialized with the argument value (§7.2). This implies that the excep-
tion thrown is ‘‘sliced’’ to the exception caught (§12.2.3). For example:

c cl la as ss s M Ma at th he er rr r {
/ / ...
v vi ir rt tu ua al l v vo oi id d d de eb bu ug g_ _p pr ri in nt t() c co on ns st t { c ce er rr r << " M Ma at th h e er rr ro or r"; }

};

c cl la as ss s I In nt t_ _o ov ve er rf fl lo ow w: p pu ub bl li ic c M Ma at th he er rr r {
c co on ns st t c ch ha ar r* o op p;
i in nt t a a1 1, a a2 2;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

360 Exception Handling Chapter 14

p pu ub bl li ic c:
I In nt t_ _o ov ve er rf fl lo ow w(c co on ns st t c ch ha ar r* p p, i in nt t a a, i in nt t b b) { o op p = p p; a a1 1 = a a; a a2 2 = b b; }
v vi ir rt tu ua al l v vo oi id d d de eb bu ug g_ _p pr ri in nt t() c co on ns st t { c ce er rr r << o op p << ´(´ << a a1 1 << ´,´ << a a2 2 << ´)´; }
/ / ...

};

v vo oi id d f f()
{

t tr ry y {
g g() ;

}
c ca at tc ch h (M Ma at th he er rr r m m) {

/ / ...
}

}

When theM Ma at th he er rr r handler is entered,m m is a M Ma at th he er rr r object – even if the call tog g() threw
I In nt t_ _o ov ve er rf fl lo ow w. This implies that the extra information found in anI In nt t_ _o ov ve er rf fl lo ow w is inaccessible.

As always, pointers or references can be used to avoid losing information permanently. For
example, we might write:

i in nt t a ad dd d(i in nt t x x, i in nt t y y)
{

i if f ((x x>0 0 && y y>0 0 && x x>I IN NT T_ _M MA AX X- y y) || (x x<0 0 && y y<0 0 && x x<I IN NT T_ _M MI IN N- y y))
t th hr ro ow w I In nt t_ _o ov ve er rf fl lo ow w("+", x x, y y) ;

r re et tu ur rn n x x+y y; / / x+y will not overflow
}

v vo oi id d f f()
{

t tr ry y {
i in nt t i i1 1 = a ad dd d(1 1, 2 2) ;
i in nt t i i2 2 = a ad dd d(I IN NT T_ _M MA AX X,- 2 2) ;
i in nt t i i3 3 = a ad dd d(I IN NT T_ _M MA AX X, 2 2) ; / / here we go!

}
c ca at tc ch h (M Ma at th he er rr r& m m) {

/ / ...
m m. d de eb bu ug g_ _p pr ri in nt t() ;

}
}

The last call ofa ad dd d() triggers an exception that causesI In nt t_ _o ov ve er rf fl lo ow w: : d de eb bu ug g_ _p pr ri in nt t() to be
invoked. Had the exception been caught by value rather than by reference,
M Ma at th he er rr r: : d de eb bu ug g_ _p pr ri in nt t() would have been invoked instead.

14.2.2 Composite Exceptions [except.composite]

Not every grouping of exceptions is a tree structure. Often, an exception belongs to two groups.
For example:

c cl la as ss s N Ne et tf fi il le e_ _e er rr r : p pu ub bl li ic c N Ne et tw wo or rk k_ _e er rr r, p pu ub bl li ic c F Fi il le e_ _s sy ys st te em m_ _e er rr r { /* ... */ };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.2.2 Composite Exceptions 361

Such aN Ne et tf fi il le e_ _e er rr r can be caught by functions dealing with network exceptions:

v vo oi id d f f()
{

t tr ry y {
/ / something

}
c ca at tc ch h(N Ne et tw wo or rk k_ _e er rr r& e e) {

/ / ...
}

}

and also by functions dealing with file system exceptions:

v vo oi id d g g()
{

t tr ry y {
/ / something else

}
c ca at tc ch h(F Fi il le e_ _s sy ys st te em m_ _e er rr r& e e) {

/ / ...
}

}

This nonhierarchical organization of error handling is important where services, such as network-
ing, are transparent to users. In this case, the writer ofg g() might not even be aware that a network
is involved (see also §14.6).

14.3 Catching Exceptions[except.catch]

Consider:

v vo oi id d f f()
{

t tr ry y {
t th hr ro ow w E E() ;

}
c ca at tc ch h(H H) {

/ / when do we get here?
}

}

The handler is invoked:
[1] If H H is the same type asE E.
[2] If H H is an unambiguous public base ofE E.
[3] If H H andE E are pointer types and [1] or [2] holds for the types to which they refer.
[4] If H H is a reference and [1] or [2] holds for the type to whichH H refers.

In addition, we can addc co on ns st t to the type used to catch an exception in the same way that we can
add it to a function parameter. This doesn’t change the set of exceptions we can catch; it only
restricts us from modifying the exception caught.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

362 Exception Handling Chapter 14

In principle, an exception is copied when it is thrown, so the handler gets hold of a copy of the
original exception. In fact, an exception may be copied several times before it is caught. Conse-
quently, we cannot throw an exception that cannot be copied. The implementation may apply a
wide variety of strategies for storing and transmitting exceptions. It is guaranteed, however, that
there is sufficient memory to allown ne ew w to throw the standard out-of-memory exception,b ba ad d_ _a al ll lo oc c
(§14.4.5).

14.3.1 Re-Throw [except.rethrow]

Having caught an exception, it is common for a handler to decide that it can’t completely handle
the error. In that case, the handler typically does what can be done locally and then throws the
exception again. Thus, an error can be handled where it is most appropriate. This is the case even
when the information needed to best handle the error is not available in a single place, so that the
recovery action is best distributed over several handlers. For example:

v vo oi id d h h()
{

t tr ry y {
/ / code that might throw Math errors

}
c ca at tc ch h (M Ma at th he er rr r) {

i if f (c ca an n_ _h ha an nd dl le e_ _i it t_ _c co om mp pl le et te el ly y) {
/ / handle the Matherr

r re et tu ur rn n;
}
e el ls se e {

/ / do what can be done here

t th hr ro ow w; / / re-throw the exception
}

}
}

A re-throw is indicated by at th hr ro ow w without an operand. If a re-throw is attempted when there is no
exception to re-throw,t te er rm mi in na at te e() (§14.7) will be called. A compiler can detect and warn about
some, but not all, such cases.

The exception re-thrown is the original exception caught and not just the part of it that was
accessible as aM Ma at th he er rr r. In other words, had anI In nt t_ _o ov ve er rf fl lo ow w been thrown, a caller ofh h() could
still catch anI In nt t_ _o ov ve er rf fl lo ow w thath h() had caught as aM Ma at th he er rr r and decided to re-throw.

14.3.2 Catch Every Exception [except.every]

A degenerate version of this catch-and-rethrow technique can be important. As for functions, the
ellipsis ... indicates ‘‘any argument’’ (§7.6), soc ca at tc ch h(...) means ‘‘catch any exception.’’
For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.3.2 Catch Every Exception 363

v vo oi id d m m()
{

t tr ry y {
/ / something

}
c ca at tc ch h (...) { / / handle every exception

/ / cleanup
t th hr ro ow w;

}
}

That is, if any exception occurs as the result of executing the main part ofm m() , the cleanup action
in the handler is invoked. Once the local cleanup is done, the exception that caused the cleanup is
re-thrown to trigger further error handling. See §14.6.3.2 for a technique to gain information about
an exception caught by a... handler.

One important aspect of error handling in general and exception handling in particular is to
maintain invariants assumed by the program (§24.3.7.1). For example, ifm m() is supposed to leave
certain pointers in the state in which it found them, then we can write code in the handler to give
them acceptable values. Thus, a ‘‘catch every exception’’ handler can be used to maintain arbitrary
invariants. However, for many important cases such a handler is not the most elegant solution to
this problem (see §14.4).

14.3.2.1 Order of Handlers [except.order]

Because a derived exception can be caught by handlers for more than one exception type, the order
in which the handlers are written in at tr ry y statement is significant. The handlers are tried in order.
For example:

v vo oi id d f f()
{

t tr ry y {
/ / ...

}
c ca at tc ch h (s st td d: : i io os s_ _b ba as se e: : f fa ai il lu ur re e) {

/ / handle any stream io error (§14.10)
}
c ca at tc ch h (s st td d: : e ex xc ce ep pt ti io on n& e e) {

/ / handle any standard library exception (§14.10)
}
c ca at tc ch h (...) {

/ / handle any other exception (§14.3.2)
}

}

Because the compiler knows the class hierarchy, it can catch many logical mistakes. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

364 Exception Handling Chapter 14

v vo oi id d g g()
{

t tr ry y {
/ / ...

}
c ca at tc ch h (...) {

/ / handle every exception (§14.3.2)
}
c ca at tc ch h (s st td d: : e ex xc ce ep pt ti io on n& e e) {

/ / handle any standard library exception (§14.10)
}
c ca at tc ch h (s st td d: : b ba ad d_ _c ca as st t) {

/ / handle dynamic_cast failure (§15.4.2)
}

}

Here, thee ex xc ce ep pt ti io on n will never be considered. Even if we removed the ‘‘catch-all’’ handler,
b ba ad d_ _c ca as st t wouldn’t be considered because it is derived frome ex xc ce ep pt ti io on n.

14.4 Resource Management[except.resource]

When a function acquires a resource– that is, it opens a file, allocates some memory from the free
store, sets an access control lock, etc.,– it is often essential for the future running of the system that
the resource be properly released. Often that ‘‘proper release’’ is achieved by having the function
that acquired it release it before returning to its caller. For example:

v vo oi id d u us se e_ _f fi il le e(c co on ns st t c ch ha ar r* f fn n)
{

F FI IL LE E* f f = f fo op pe en n(f fn n," w w") ;

/ / use f

f fc cl lo os se e(f f) ;
}

This looks plausible until you realize that if something goes wrong after the call off fo op pe en n() and
before the call off fc cl lo os se e() , an exception may causeu us se e_ _f fi il le e() to be exited withoutf fc cl lo os se e()
being called. Exactly the same problem can occur in languages that do not support exception han-
dling. For example, the standard C library functionl lo on ng gj jm mp p() can cause the same problem. Even
an ordinaryr re et tu ur rn n-statement could exitu us se e_ _f fi il le ewithout closingf f.

A first attempt to makeu us se e_ _f fi il le e() to be fault-tolerant looks like this:

v vo oi id d u us se e_ _f fi il le e(c co on ns st t c ch ha ar r* f fn n)
{

F FI IL LE E* f f = f fo op pe en n(f fn n," r r") ;
t tr ry y {

/ / use f
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4 Resource Management 365

c ca at tc ch h (...) {
f fc cl lo os se e(f f) ;
t th hr ro ow w;

}
f fc cl lo os se e(f f) ;

}

The code using the file is enclosed in at tr ry y block that catches every exception, closes the file, and
re-throws the exception.

The problem with this solution is that it is verbose, tedious, and potentially expensive. Further-
more, any verbose and tedious solution is error-prone because programmers get bored. Fortunately,
there is a more elegant solution. The general form of the problem looks like this:

v vo oi id d a ac cq qu ui ir re e()
{

/ / acquire resource 1
/ / ...
/ / acquire resource n

/ / use resources

/ / release resource n
/ / ...
/ / release resource 1

}

It is typically important that resources are released in the reverse order of their acquisition. This
strongly resembles the behavior of local objects created by constructors and destroyed by
destructors. Thus, we can handle such resource acquisition and release problems by a suitable use
of objects of classes with constructors and destructors. For example, we can define a classF Fi il le e_ _p pt tr r
that acts like aF FI IL LE E* :

c cl la as ss s F Fi il le e_ _p pt tr r {
F FI IL LE E* p p;

p pu ub bl li ic c:
F Fi il le e_ _p pt tr r(c co on ns st t c ch ha ar r* n n, c co on ns st t c ch ha ar r* a a) { p p = f fo op pe en n(n n, a a) ; }
F Fi il le e_ _p pt tr r(F FI IL LE E* p pp p) { p p = p pp p; }
~F Fi il le e_ _p pt tr r() { f fc cl lo os se e(p p) ; }

o op pe er ra at to or r F FI IL LE E*() { r re et tu ur rn n p p; }
};

We can construct aF Fi il le e_ _p pt tr r given either aF FI IL LE E* or the arguments required forf fo op pe en n() . In either
case, aF Fi il le e_ _p pt tr r will be destroyed at the end of its scope and its destructor will close the file. Our
program now shrinks to this minimum:

v vo oi id d u us se e_ _f fi il le e(c co on ns st t c ch ha ar r* f fn n)
{

F Fi il le e_ _p pt tr r f f(f fn n," r r") ;
/ / use f

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

366 Exception Handling Chapter 14

The destructor will be called independently of whether the function is exited normally or exited
because an exception is thrown. That is, the exception-handling mechanisms enable us to remove
the error-handling code from the main algorithm. The resulting code is simpler and less error-
prone than its traditional counterpart.

The process of searching ‘‘up through the stack’’ to find a handler for an exception is com-
monly called ‘‘stack unwinding.’’ As the call stack is unwound, the destructors for constructed
local objects are invoked.

14.4.1 Using Constructors and Destructors [except.using]

The technique for managing resources using local objects is usually referred to as ‘‘resource acqui-
sition is initialization.’’ This is a general technique that relies on the properties of constructors and
destructors and their interaction with exception handling.

An object is not considered constructed until its constructor has completed. Then and only then
will stack unwinding call the destructor for the object. An object composed of sub-objects is con-
structed to the extent that its sub-objects have been constructed. An array is constructed to the
extent that its elements have been constructed (and only fully constructed elements are destroyed
during unwinding).

A constructor tries to ensure that its object is completely and correctly constructed. When that
cannot be achieved, a well-written constructor restores– as far as possible– the state of the system
to what it was before creation. Ideally, naively written constructors always achieve one of these
alternatives and don’t leave their objects in some ‘‘half-constructed’’ state. This can be achieved
by applying the ‘‘resource acquisition is initialization’’ technique to the members.

Consider a classX X for which a constructor needs to acquire two resources: a filex x and a locky y.
This acquisition might fail and throw an exception. ClassX X’s constructor must never return having
acquired the file but not the lock. Furthermore, this should be achieved without imposing a burden
of complexity on the programmer. We use objects of two classes,F Fi il le e_ _p pt tr r andL Lo oc ck k_ _p pt tr r, to repre-
sent the acquired resources. The acquisition of a resource is represented by the initialization of the
local object that represents the resource:

c cl la as ss s X X {
F Fi il le e_ _p pt tr r a aa a;
L Lo oc ck k_ _p pt tr r b bb b;

p pu ub bl li ic c:
X X(c co on ns st t c ch ha ar r* x x, c co on ns st t c ch ha ar r* y y)

: a aa a(x x," r rw w") , / / acquire ‘x’
b bb b(y y) / / acquire ‘y’

{}
/ / ...

};

Now, as in the local object case, the implementation can take care of all of the bookkeeping. The
user doesn’t have to keep track at all. For example, if an exception occurs aftera aa a has been con-
structed but beforeb bb b has been, then the destructor fora aa a but not forb bb b will be invoked.

This implies that where this simple model for acquisition of resources is adhered to, the author
of the constructor need not write explicit exception-handling code.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.1 Using Constructors and Destructors 367

The most common resource acquired in an ad-hoc manner is memory. For example:

c cl la as ss s Y Y {
i in nt t* p p;
v vo oi id d i in ni it t() ;

p pu ub bl li ic c:
Y Y(i in nt t s s) { p p = n ne ew w i in nt t[s s] ; i in ni it t() ; }
~Y Y() { d de el le et te e[] p p; }
/ / ...

};

This practice is common and can lead to ‘‘memory leaks.’’ If an exception is thrown byi in ni it t() ,
then the store acquired will not be freed; the destructor will not be called because the object wasn’t
completely constructed. A safe variant is:

c cl la as ss s Z Z {
v ve ec ct to or r<i in nt t> p p;
v vo oi id d i in ni it t() ;

p pu ub bl li ic c:
Z Z(i in nt t s s) : p p(s s) { i in ni it t() ; }
/ / ...

};

The memory used byp p is now managed byv ve ec ct to or r. If i in ni it t() throws an exception, the memory
acquired will be freed when the destructor forp p is (implicitly) invoked.

14.4.2 Auto_ptr [except.autoptr]

The standard library provides the template classa au ut to o_ _p pt tr r, which supports the ‘‘resource acquisition
is initialization’’ technique. Basically, ana au ut to o_ _p pt tr r is initialized by a pointer and can be derefer-
enced in the way that a pointer can. Also, the object pointed to will be implicitly deleted at the end
of thea au ut to o_ _p pt tr r’s scope. For example:

v vo oi id d f f(P Po oi in nt t p p1 1, P Po oi in nt t p p2 2, a au ut to o_ _p pt tr r<C Ci ir rc cl le e> p pc c, S Sh ha ap pe e* p pb b) / / remember to delete pb on exit
{

a au ut to o_ _p pt tr r<S Sh ha ap pe e> p p(n ne ew w R Re ec ct ta an ng gl le e(p p1 1, p p2 2)) ; / / p points to a rectangle
a au ut to o_ _p pt tr r<S Sh ha ap pe e> p pb bo ox x(p pb b) ;

p p-> r ro ot ta at te e(4 45 5) ; / / use auto_ptr<Shape> exactly as a Shape*
/ / ...
i if f (i in n_ _a a_ _m me es ss s) t th hr ro ow w M Me es ss s() ;
/ / ...

}

Here theR Re ec ct ta an ng gl le e, the S Sh ha ap pe e pointed to byp pb b, and theC Ci ir rc cl le e pointed to byp pc c are deleted
whether or not an exception is thrown.

To achieve thisownership semantics(also calleddestructive copy semantics), a au ut to o_ _p pt tr rs have a
copy semantics that differs radically from that of ordinary pointers: When onea au ut to o_ _p pt tr r is copied
into another, the source no longer points to anything. Because copying ana au ut to o_ _p pt tr r modifies it, a
c co on ns st t a au ut to o_ _p pt tr r cannot be copied.

Thea au ut to o_ _p pt tr r template is declared in<m me em mo or ry y>. It can be described by an implementation:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

368 Exception Handling Chapter 14

t te em mp pl la at te e<c cl la as ss s X X> c cl la as ss s s st td d: : a au ut to o_ _p pt tr r {
t te em mp pl la at te e <c cl la as ss s Y Y> s st tr ru uc ct t a au ut to o_ _p pt tr r_ _r re ef f { /* ... */ }; / / helper class
X X* p pt tr r;

p pu ub bl li ic c:
t ty yp pe ed de ef f X X e el le em me en nt t_ _t ty yp pe e;

e ex xp pl li ic ci it t a au ut to o_ _p pt tr r(X X* p p =0 0) t th hr ro ow w() { p pt tr r=0 0; }
a au ut to o_ _p pt tr r(a au ut to o_ _p pt tr r& a a) t th hr ro ow w() { p pt tr r=a a. p pt tr r; a a. p pt tr r=0 0; } / / note: not const auto_ptr&
t te em mp pl la at te e<c cl la as ss s Y Y> a au ut to o_ _p pt tr r(a au ut to o_ _p pt tr r<Y Y>& a a) t th hr ro ow w() { p pt tr r=a a. p pt tr r; a a. p pt tr r=0 0; }
a au ut to o_ _p pt tr r& o op pe er ra at to or r=(a au ut to o_ _p pt tr r& a a) t th hr ro ow w() { p pt tr r=a a. p pt tr r; a a. p pt tr r=0 0; }
t te em mp pl la at te e<c cl la as ss s Y Y> a au ut to o_ _p pt tr r& o op pe er ra at to or r=(a au ut to o_ _p pt tr r<Y Y>& a a) t th hr ro ow w() { p pt tr r=a a. p pt tr r; a a. p pt tr r=0 0; }
~a au ut to o_ _p pt tr r() t th hr ro ow w() { d de el le et te e p pt tr r; }

X X& o op pe er ra at to or r*() c co on ns st t t th hr ro ow w() { r re et tu ur rn n * p pt tr r; }
X X* o op pe er ra at to or r->() c co on ns st t t th hr ro ow w() { r re et tu ur rn n p pt tr r; }
X X* g ge et t() c co on ns st t t th hr ro ow w() { r re et tu ur rn n p pt tr r; } / / extract pointer
X X* r re el le ea as se e() t th hr ro ow w() { X X* t t = p pt tr r; p pt tr r=0 0; r re et tu ur rn n t t; } / / relinquish ownership
v vo oi id d r re es se et t(X X* p p =0 0) t th hr ro ow w() { i if f (p p!= p pt tr r) { d de el le et te e p pt tr r; p pt tr r=p p; } }

a au ut to o_ _p pt tr r(a au ut to o_ _p pt tr r_ _r re ef f<X X>) t th hr ro ow w() ; / / copy from auto_ptr_ref
t te em mp pl la at te e<c cl la as ss s Y Y> o op pe er ra at to or r a au ut to o_ _p pt tr r_ _r re ef f<Y Y>() t th hr ro ow w() ; / / copy from auto_ptr_ref
t te em mp pl la at te e<c cl la as ss s Y Y> o op pe er ra at to or r a au ut to o_ _p pt tr r<Y Y>() t th hr ro ow w() ; / / destructive copy from auto_ptr

};

The purpose ofa au ut to o_ _p pt tr r_ _r re ef f is to implement the destructive copy semantics for ordinarya au ut to o_ _p pt tr rs
while making it impossible to copy ac co on ns st t a au ut to o_ _p pt tr r. The template constructor and template
assignment ensures that ana au ut to o_ _p pt tr r<D D> can be implicitly converted to aa au ut to o_ _p pt tr r<B B> if a D D* can
be converted to aB B* . For example:

v vo oi id d g g(C Ci ir rc cl le e* p pc c)
{

a au ut to o_ _p pt tr r<C Ci ir rc cl le e> p p2 2 = p pc c; / / now p2 is responsible for deletion
a au ut to o_ _p pt tr r<C Ci ir rc cl le e> p p3 3 = p p2 2; / / now p3 is responsible for deletion (and p2 isn’t)
p p2 2-> m m = 7 7; / / programmer error: p2.get()==0
S Sh ha ap pe e* p ps s = p p3 3. g ge et t() ; / / extract the pointer from an auto_ptr
a au ut to o_ _p pt tr r<S Sh ha ap pe e> a ap ps s = p p3 3; / / transfer of ownership and convert type
a au ut to o_ _p pt tr r<C Ci ir rc cl le e> p p4 4 = p p; / / programmer error: now p4 is also responsible for deletion

}

The effect of having more than onea au ut to o_ _p pt tr r own an object is undefined; most likely the object will
be deleted twice (with bad effects).

Note thata au ut to o_ _p pt tr r’s destructive copy semantics means that it does not meet the requirements
for elements of a standard container or for standard algorithms such ass so or rt t() . For example:

v vo oi id d h h(v ve ec ct to or r< a au ut to o_ _p pt tr r<S Sh ha ap pe e*> >& v v) / / dangerous: use of auto_ptr in container
{

s so or rt t(v v. b be eg gi in n() , v v. e en nd d()) ; / / Don’t do this: The sort will probably mess up v
}

Clearly,a au ut to o_ _p pt tr r isn’t a general smart pointer. However, it provides the service for which it was
designed– exception safety for automatic pointers– with essentially no overhead.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.3 Caveat 369

14.4.3 Caveat [except.caveat]

Not all programs need to be resilient against all forms of failure, and not all resources are critical
enough to warrant the effort to protect them using ‘‘resource acquisition is initialization,’’
a au ut to o_ _p pt tr r, andc ca at tc ch h(...) . For example, for many programs that simply read an input and run to
completion, the most suitable response to a serious run-time error is to abort the process (after pro-
ducing a suitable diagnostic). That is, let the system release all acquired resources and let the user
re-run the program with a more suitable input. The strategy discussed here is intended for applica-
tions for which such a simplistic response to a run-time error is unacceptable. In particular, a
library designer usually cannot make assumptions about the fault tolerance requirements of a pro-
gram using the library and is thus forced to avoid all unconditional run-time failures and to release
all resources before a library function returns to the calling program. The ‘‘resource acquisition is
initialization’’ strategy, together with the use of exceptions to signal failure, is suitable for many
such libraries.

14.4.4 Exceptions and New [except.new]

Consider:

v vo oi id d f f(A Ar re en na a& a a, X X* b bu uf ff fe er r)
{

X X* p p1 1 = n ne ew w X X;
X X* p p2 2 = n ne ew w X X[1 10 0] ;

X X* p p3 3 = n ne ew w(b bu uf ff fe er r[1 10 0]) X X; / / place X in buffer (no deallocation needed)
X X* p p4 4 = n ne ew w(b bu uf ff fe er r[1 11 1]) X X[1 10 0] ;

X X* p p5 5 = n ne ew w(a a) X X; / / allocation from Arena a (deallocate from a)
X X* p p6 6 = n ne ew w(a a) X X[1 10 0] ;

}

What happens ifX X´ s s constructor throws an exception? Is the memory allocated by theo op pe er ra at to or r
n ne ew w() freed? For the ordinary case, the answer is yes, so the initializations ofp p1 1 andp p2 2 don’t
cause memory leaks.

When the placement syntax (§10.4.11) is used, the answer cannot be that simple. Some uses of
that syntax allocate memory, which then ought to be released; however, some don’t. Furthermore,
the point of using the placement syntax is to achieve nonstandard allocation, so nonstandard freeing
is typically required. Consequently, the action taken depends on the allocator used. If an allocator
Z Z: : o op pe er ra at to or r n ne ew w() is used, Z Z: : o op pe er ra at to or r d de el le et te e() is invoked if it exists; otherwise, no
deallocation is attempted. Arrays are handled equivalently (§15.6.1). This strategy correctly han-
dles the standard library placementn ne ew w operator (§10.4.11), as well as any case in which the pro-
grammer has provided a matching pair of allocation and deallocation functions.

14.4.5 Resource Exhaustion [except.exhaust]

A recurring programming problem is what to do when an attempt to acquire a resource fails. For
example, previously we blithely opened files (usingf fo op pe en n()) and requested memory from the free
store (using operatorn ne ew w) without worrying about what happened if the file wasn’t there or if we

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

370 Exception Handling Chapter 14

had run out of free store. When confronted with such problems, programmers come up with two
styles of solutions:

Resumption: Ask some caller to fix the problem and carry on.
Termination: Abandon the computation and return to some caller.

In the former case, a caller must be prepared to help out with resource acquisition problems in
unknown pieces of code. In the latter, a caller must be prepared to cope with failure of the attempt
to acquire the resource. The latter is in most cases far simpler and allows a system to maintain a
better separation of levels of abstraction. Note that it is not the program that terminates when one
uses the termination strategy; only an individual computation terminates. ‘‘Termination’’ is the tra-
ditional term for a strategy that returns from a ‘‘failed’’ computation to an error handler associated
with a caller (which may re-try the failed computation), rather than trying to repair a bad situation
and resume from the point at which the problem was detected.

In C++, the resumption model is supported by the function-call mechanism and the termination
model is supported by the exception-handling mechanism. Both can be illustrated by a simple
implementation and use of the standard libraryo op pe er ra at to or r n ne ew w() :

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t s si iz ze e)
{

f fo or r (;;) {
i if f (v vo oi id d* p p = m ma al ll lo oc c(s si iz ze e)) r re et tu ur rn n p p; / / try to find memory
i if f (_ _n ne ew w_ _h ha an nd dl le er r == 0 0) t th hr ro ow w b ba ad d_ _a al ll lo oc c() ; / / no handler: give up
_ _n ne ew w_ _h ha an nd dl le er r() ; / / ask for help

}
}

Here, I use the standard C librarym ma al ll lo oc c() to do the real search for memory; other implementa-
tions ofo op pe er ra at to or r n ne ew w() may choose other ways. If memory is found,o op pe er ra at to or r n ne ew w() can return
a pointer to it. Otherwise,o op pe er ra at to or r n ne ew w() calls the_ _n ne ew w_ _h ha an nd dl le er r. If the_ _n ne ew w_ _h ha an nd dl le er r can find
more memory form ma al ll lo oc c() to allocate, all is fine. If it can’t, the handler cannot return too op pe er ra at to or r
n ne ew w() without causing an infinite loop. The_ _n ne ew w_ _h ha an nd dl le er r() might then choose to throw an
exception, thus leaving the mess for some caller to handle:

v vo oi id d m my y_ _n ne ew w_ _h ha an nd dl le er r()
{

i in nt t n no o_ _o of f_ _b by yt te es s_ _f fo ou un nd d = f fi in nd d_ _s so om me e_ _m me em mo or ry y() ;
i if f (n no o_ _o of f_ _b by yt te es s_ _f fo ou un nd d < m mi in n_ _a al ll lo oc ca at ti io on n) t th hr ro ow w b ba ad d_ _a al ll lo oc c() ; / / give up

}

Somewhere, there ought to be atry_blockwith a suitable handler:

t tr ry y {
/ / ...

}
c ca at tc ch h (b ba ad d_ _a al ll lo oc c) {

/ / somehow respond to memory exhaustion
}

The_ _n ne ew w_ _h ha an nd dl le er r used in the implementation ofo op pe er ra at to or r n ne ew w() is a pointer to a function main-
tained by the standard functions se et t_ _n ne ew w_ _h ha an nd dl le er r() . If I want m my y_ _n ne ew w_ _h ha an nd dl le er r() to be used as

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.5 Resource Exhaustion 371

the_ _n ne ew w_ _h ha an nd dl le er r, I say:

s se et t_ _n ne ew w_ _h ha an nd dl le er r(& m my y_ _n ne ew w_ _h ha an nd dl le er r) ;

If I also want to catchb ba ad d_ _a al ll lo oc c, I might say:

v vo oi id d f f()
{

v vo oi id d(* o ol ld dn nh h)() = s se et t_ _n ne ew w_ _h ha an nd dl le er r(& m my y_ _n ne ew w_ _h ha an nd dl le er r) ;

t tr ry y {
/ / ...

}
c ca at tc ch h (b ba ad d_ _a al ll lo oc c) {

/ / ...
}
c ca at tc ch h (...) {

s se et t_ _n ne ew w_ _h ha an nd dl le er r(o ol ld dn nh h) ; / / re-set handler
t th hr ro ow w; / / re-throw

}

s se et t_ _n ne ew w_ _h ha an nd dl le er r(o ol ld dn nh h) ; / / re-set handler
}

Even better, avoid thec ca at tc ch h(...) handler by applying the ‘‘resource acquisition is initial-
ization’’ technique described in §14.4 to the_ _n ne ew w_ _h ha an nd dl le er r (§14.12[1]).

With the_ _n ne ew w_ _h ha an nd dl le er r, no extra information is passed along from where the error is detected
to the helper function. It is easy to pass more information. However, the more information that is
passed between the code detecting a run-time error and a function helping correct that error, the
more the two pieces of code become dependent on each other. This implies that changes to the one
piece of code require understanding of and maybe even changes to the other. To keep separate
pieces of software separate, it is usually a good idea to minimize such dependencies. The
exception-handling mechanism supports such separation better than do function calls to helper rou-
tines provided by a caller.

In general, it is wise to organize resource allocation in layers (levels of abstraction) and avoid
having one layer depend on help from the layer that called it. Experience with larger systems
shows that successful systems evolve in this direction.

Throwing an exception requires an object to throw. A C++ implementation is required to have
enough spare memory to be able to throwb ba ad d_ _a al ll lo oc c in case of memory exhaustion. However, it is
possible that throwing some other exception will cause memory exhaustion.

14.4.6 Exceptions in Constructors [except.ctor]

Exceptions provide a solution to the problem of how to report errors from a constructor. Because a
constructor does not return a separate value for a caller to test, the traditional (that is, non-
exception-handling) alternatives are:

[1] Return an object in a bad state, and trust the user to test the state.
[2] Set a nonlocal variable (e.g.,e er rr rn no o) to indicate that the creation failed, and trust the user to

test that variable.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

372 Exception Handling Chapter 14

[3] Don’t do any initialization in the constructor, and rely on the user to call an initialization
function before the first use.

[4] Mark the object ‘‘uninitialized’’ and have the first member function called for the object do
the real initialization, and that function can then report an error if initialization fails.

Exception handling allows the information that a construction failed to be transmitted out of the
constructor. For example, a simpleV Ve ec ct to or r class might protect itself from excessive demands on
memory like this:

c cl la as ss s V Ve ec ct to or r {
p pu ub bl li ic c:

c cl la as ss s S Si iz ze e { };

e en nu um m { m ma ax x = 3 32 20 00 00 0 };

V Ve ec ct to or r: : V Ve ec ct to or r(i in nt t s sz z)
{

i if f (s sz z<0 0 || m ma ax x<s sz z) t th hr ro ow w S Si iz ze e() ;
/ / ...

}
/ / ...

};

Code creatingV Ve ec ct to or rs can now catchV Ve ec ct to or r: : S Si iz ze e errors, and we can try to do something sensible
with them:

V Ve ec ct to or r* f f(i in nt t i i)
{

t tr ry y {
V Ve ec ct to or r* p p = n ne ew w V Ve ec ct to or r(i i) ;
/ / ...
r re et tu ur rn n p p;

}
c ca at tc ch h(V Ve ec ct to or r: : S Si iz ze e) {

/ / deal with size error
}

}

As always, the error handler itself can use the standard set of fundamental techniques for error
reporting and recovery. Each time an exception is passed along to a caller, the view of what went
wrong changes. If suitable information is passed along in the exception, the amount of information
available to deal with the problem could increase. In other words, the fundamental aim of the
error-handling techniques is to pass information about an error from the original point of detection
to a point where there is sufficient information available to recover from the problem, and to do so
reliably and conveniently.

The ‘‘resource acquisition is initialization’’ technique is the safest and most elegant way of han-
dling constructors that acquire more than one resource (§14.4). In essence, the technique reduces
the problem of handling many resources to repeated application of the (simple) technique for han-
dling one resource.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.6.1 Exceptions and Member Initialization 373

14.4.6.1 Exceptions and Member Initialization [except.member]

What happens if a member initializer (directly or indirectly) throws an exception? By default, the
exception is passed on to whatever invoked the constructor for the member’s class. However, the
constructor itself can catch such exceptions by enclosing the complete function body– including
the member initializer list– in a try-block. For example:

c cl la as ss s X X {
V Ve ec ct to or r v v;
/ / ...

p pu ub bl li ic c:
X X(i in nt t) ;
/ / ...

};

X X: : X X(i in nt t s s)
t tr ry y

: v v(s s) / / initialize v by s
{

/ / ...
}
c ca at tc ch h (V Ve ec ct to or r: : S Si iz ze e) { / / exceptions thrown for v are caught here

/ / ...
}

Copy constructors (§10.4.4.1) are special in that they are invoked implicitly and because they often
both acquire and release resources. In particular, the standard library assumes proper– non-
exception-throwing– behavior of copy constructors. For these reasons, care should be taken that a
copy constructor throws an exception only in truly disastrous circumstances. Complete recovery
from an exception in a copy constructor is unlikely to be feasible in every context of its use. To be
even potentially safe, a copy constructor must leave behind two objects, each of which fulfills the
invariant of its class (§24.3.7.1).

Naturally, copy assignment operators should be treated with as much care as copy constructors.

14.4.7 Exceptions in Destructors [except.dtor]

From the point of view of exception handling, a destructor can be called in one of two ways:
[1] Normal call: As the result of a normal exit from a scope (§10.4.3), ad de el le et te e (§10.4.5), etc.
[2] Call during exception handling: During stack unwinding (§14.4), the exception-handling

mechanism exits a scope containing an object with a destructor.
In the latter case, an exception may not escape from the destructor itself. If it does, it is considered
a failure of the exception-handling mechanism ands st td d: : t te er rm mi in na at te e() (§14.7) is called. After all,
there is no general way for the exception-handling mechanism or the destructor to determine
whether it is acceptable to ignore one of the exceptions in favor of handling the other.

If a destructor calls functions that may throw exceptions, it can protect itself. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

374 Exception Handling Chapter 14

X X: :~ X X()
t tr ry y {

f f() ; / / might throw
}
c ca at tc ch h (...) {

/ / do something
}

The standard library functionu un nc ca au ug gh ht t_ _e ex xc ce ep pt ti io on n() returnst tr ru ue e if an exception has been thrown
but hasn’t yet been caught. This allows the programmer to specify different actions in a destructor
depending on whether an object is destroyed normally or as part of stack unwinding.

14.5 Exceptions That Are Not Errors[except.not.error]

If an exception is expected and caught so that it has no bad effects on the behavior of the program,
then how can it be an error? Only because the programmer thinks of it as an error and of the
exception-handling mechanisms as tools for handling errors. Alternatively, one might think of the
exception-handling mechanisms as simply another control structure. For example:

v vo oi id d f f(Q Qu ue eu ue e<X X>& q q)
{

t tr ry y {
f fo or r (;;) {

X X m m = q q. g ge et t() ; / / throws ‘Empty’ if queue is empty
/ / ...

}
}
c ca at tc ch h (Q Qu ue eu ue e<X X>: : E Em mp pt ty y) {

r re et tu ur rn n;
}

}

This actually has some charm, so it is a case in which it is not entirely clear what should be consid-
ered an error and what should not.

Exception handling is a less structured mechanism than local control structures such asi if f and
f fo or r and is often less efficient when an exception is actually thrown. Therefore, exceptions should
be used only where the more traditional control structures are inelegant or impossible to use. Note
that the standard library offers aq qu ue eu ue eof arbitrary elements without using exceptions (§17.3.2).

Using exceptions as alternate returns can be an elegant technique for terminating search func-
tions– especially highly recursive search functions such as a lookup in a tree. For example:

v vo oi id d f fn nd d(T Tr re ee e* p p, c co on ns st t s st tr ri in ng g& s s)
{

i if f (s s == p p-> s st tr r) t th hr ro ow w p p; / / found s
i if f (p p-> l le ef ft t) f fn nd d(p p-> l le ef ft t, s s) ;
i if f (p p-> r ri ig gh ht t) f fn nd d(p p-> r ri ig gh ht t, s s) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.5 Exceptions That Are Not Errors 375

T Tr re ee e* f fi in nd d(T Tr re ee e* p p, c co on ns st t s st tr ri in ng g& s s)
{

t tr ry y {
f fn nd d(p p, s s) ;

}
c ca at tc ch h (T Tr re ee e* q q) { / / q– >str==s

r re et tu ur rn n q q;
}
r re et tu ur rn n 0 0;

}

However, such use of exceptions can easily be overused and lead to obscure code. Whenever rea-
sonable, one should stick to the ‘‘exception handling is error handling’’ view. When this is done,
code is clearly separated into two categories: ordinary code and error-handling code. This makes
code more comprehensible. Unfortunately, the real world isn’t so clear cut. Program organization
will (and to some extent should) reflect that.

Error handling is inherently difficult. Anything that helps preserve a clear model of what is an
error and how it is handled should be treasured.

14.6 Exception Specifications[except.spec]

Throwing or catching an exception affects the way a function relates to other functions. It can
therefore be worthwhile to specify the set of exceptions that might be thrown as part of the function
declaration. For example:

v vo oi id d f f(i in nt t a a) t th hr ro ow w (x x2 2, x x3 3) ;

This specifies thatf f() may throw only exceptionsx x2 2, x x3 3, and exceptions derived from these types,
but no others. When a function specifies what exceptions it might throw, it effectively offers a
guarantee to its callers. If during execution that function does something that tries to abrogate the
guarantee, the attempt will be transformed into a call ofs st td d: : u un ne ex xp pe ec ct te ed d() . The default meaning
of u un ne ex xp pe ec ct te ed d() is s st td d: : t te er rm mi in na at te e() , which in turn normally callsa ab bo or rt t() ; see §9.4.1.1 for
details.

In effect,

v vo oi id d f f() t th hr ro ow w (x x2 2, x x3 3)
{

/ / stuff
}

is equivalent to:

v vo oi id d f f()
t tr ry y
{

/ / stuff
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

376 Exception Handling Chapter 14

c ca at tc ch h (x x2 2) { t th hr ro ow w; } / / re-throw
c ca at tc ch h (x x3 3) { t th hr ro ow w; } / / re-throw
c ca at tc ch h (...) {

s st td d: : u un ne ex xp pe ec ct te ed d() ; / / unexpected() will not return
}

The most important advantage is that the functiondeclarationbelongs to an interface that is visible
to its callers. Functiondefinitions, on the other hand, are not universally available. Even when we
do have access to the source code of all our libraries, we strongly prefer not to have to look at it
very often. In addition, a function with anexception-specificationis shorter and clearer than the
equivalent hand-written version.

A function declared without anexception-specificationis assumed to throw every exception.
For example:

i in nt t f f() ; / / can throw any exception

A function that will throw no exceptions can be declared with an empty list:

i in nt t g g() t th hr ro ow w () ; / / no exception thrown

One might think that the default should be that a function throws no exceptions. However, that
would require exception specifications for essentially every function, would be a significant cause
for recompilation, and would inhibit cooperation with software written in other languages. This
would encourage programmers to subvert the exception-handling mechanisms and to write spurious
code to suppress exceptions. It would provide a false sense of security to people who failed to
notice the subversion.

14.6.1 Checking Exception Specifications [except.check.spec]

It is not possible to catch every violation of an interface specification at compile time. However,
much compile-time checking is done. The way to think aboutexception-specifications is to assume
that a functionwill throw any exception it can. The rules for compile-time checkingexception-
specifications outlaw easily detected absurdities.

If any declaration of a function has anexception-specification, every declaration of that function
(including the definition) must have anexception-specificationwith exactly the same set of excep-
tion types. For example:

i in nt t f f() t th hr ro ow w (s st td d: : b ba ad d_ _a al ll lo oc c) ;

i in nt t f f() / / error: exception-specification missing
{

/ / ...
}

Importantly,exception-specifications are not required to be checked exactly across compilation-unit
boundaries. Naturally, an implementation can check. However, for many large and long-lived sys-
tems, it is important that the implementation does not– or, if it does, that it carefully gives hard
errors only where violations will not be caught at run time.

The point is to ensure that adding an exception somewhere doesn’t force a complete update of
related exception specifications and a recompilation of all potentially affected code. A system can

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.6.1 Checking Exception Specifications 377

then function in a partially updated state relying on the dynamic (run-time) detection of unexpected
exceptions. This is essential for the maintenance of large systems in which major updates are
expensive and not all source code is accessible.

A virtual function may be overridden only by a function that has anexception-specificationat
least as restrictive as its own (explicit or implicit)exception-specification. For example:

c cl la as ss s B B {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d f f() ; / / can throw anything
v vi ir rt tu ua al l v vo oi id d g g() t th hr ro ow w(X X, Y Y) ;
v vi ir rt tu ua al l v vo oi id d h h() t th hr ro ow w(X X) ;

};

c cl la as ss s D D : p pu ub bl li ic c B B {
p pu ub bl li ic c:

v vo oi id d f f() t th hr ro ow w(X X) ; / / ok
v vo oi id d g g() t th hr ro ow w(X X) ; / / ok: D::g() is more restrictive than B::g()
v vo oi id d h h() t th hr ro ow w(X X, Y Y) ; / / error: D::h() is less restrictive than B::h()

};

This rule is really only common sense. If a derived class threw an exception that the original func-
tion didn’t advertise, a caller couldn’t be expected to catch it. On the other hand, an overriding
function that throws fewer exceptions clearly obeys the rule set out by the overridden function’s
exception-specification.

Similarly, you can assign a pointer to function that has a more restrictiveexception-
specificationto a pointer to function that has a less restrictiveexception-specification, but not vice
versa. For example:

v vo oi id d f f() t th hr ro ow w(X X) ;
v vo oi id d (* p pf f1 1)() t th hr ro ow w(X X, Y Y) = &f f; / / ok
v vo oi id d (* p pf f2 2)() t th hr ro ow w() = &f f; / / error: f() is less restrictive than pf2

In particular, you cannot assign a pointer to a function without anexception-specificationto a
pointer to function that has one:

v vo oi id d g g() ; / / might throw anything

v vo oi id d (* p pf f3 3)() t th hr ro ow w(X X) = &g g; / / error: g() less restrictive than pf3

An exception-specificationis not part of the type of a function and at ty yp pe ed de ef f may not contain one.
For example:

t ty yp pe ed de ef f v vo oi id d (* P PF F)() t th hr ro ow w(X X) ; / / error

14.6.2 Unexpected Exceptions [except.unexpected]

An exception-specificationcan lead to calls tou un ne ex xp pe ec ct te ed d() . Such calls are typically undesirable
except during testing. Such calls can be avoided through careful organization of exceptions and
specification of interfaces. Alternatively, calls tou un ne ex xp pe ec ct te ed d() can be intercepted and rendered
harmless.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

378 Exception Handling Chapter 14

A well-defined subsystem Y will often have all its exceptions derived from a classY Ye er rr r. For
example, given

c cl la as ss s S So om me e_ _Y Ye er rr r : p pu ub bl li ic c Y Ye er rr r { /* ... */ };

a function declared

v vo oi id d f f() t th hr ro ow w (X Xe er rr r, Y Ye er rr r, e ex xc ce ep pt ti io on n) ;

will pass anyY Ye er rr r on to its caller. In particular,f f() would handle aS So om me e_ _Y Ye er rr r by passing it on to
its caller. Thus, noY Ye er rr r in f f() will trigger u un ne ex xp pe ec ct te ed d() .

All exceptions thrown by the standard library are derived from classe ex xc ce ep pt ti io on n (§14.10).

14.6.3 Mapping Exceptions [except.mapping]

Occasionally, the policy of terminating a program upon encountering an unexpected exception is
too Draconian. In such cases, the behavior ofu un ne ex xp pe ec ct te ed d() must be modified into something
acceptable.

The simplest way of achieving that is to add the standard library exceptions st td d: : b ba ad d_ _e ex xc ce ep pt ti io on n
to anexception-specification. In that case,u un ne ex xp pe ec ct te ed d() will simply throwb ba ad d_ _e ex xc ce ep pt ti io on n instead
of invoking a function to try to cope. For example:

c cl la as ss s X X { };
c cl la as ss s Y Y { };

v vo oi id d f f() t th hr ro ow w(X X, s st td d: : b ba ad d_ _e ex xc ce ep pt ti io on n)
{

/ / ...
t th hr ro ow w Y Y() ; / / throw ‘‘bad’’ exception

}

Theexception-specificationwill catch the unacceptable exceptionY Y and throw an exception of type
b ba ad d_ _e ex xc ce ep pt ti io on n instead.

There is actually nothing particularly bad aboutb ba ad d_ _e ex xc ce ep pt ti io on n; it simply provides a mecha-
nism that is less drastic than callingt te er rm mi in na at te e() . However, it is still rather crude. In particular,
information about which exception caused the problem is lost.

14.6.3.1 User Mapping of Exceptions [except.user.mapping]

Consider a functiong g() written for a non-networked environment. Assume further thatg g() has
been declared with anexception-specificationso that it will throw only exceptions related to its
‘‘subsystem Y:’’

v vo oi id d g g() t th hr ro ow w(Y Ye er rr r) ;

Now assume that we need to callg g() in a networked environment.
Naturally,g g() will not know about network exceptions and will invokeu un ne ex xp pe ec ct te ed d() when it

encounters one. To useg g() in a distributed environment, we must either provide code that handles
network exceptions or rewriteg g() . Assuming a rewrite is infeasible or undesirable, we can handle
the problem by redefining the meaning ofu un ne ex xp pe ec ct te ed d() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.6.3.1 User Mapping of Exceptions 379

Memory exhaustion is dealt with by the_ _n ne ew w_ _h ha an nd dl le er r determined bys se et t_ _n ne ew w_ _h ha an nd dl le er r() .
Similarly, the response to an unexpected exception is determined by an_ _u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r set
by s st td d: : s se et t_ _u un ne ex xp pe ec ct te ed d() from <e ex xc ce ep pt ti io on n>:

t ty yp pe ed de ef f v vo oi id d(* u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r)() ;
u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r s se et t_ _u un ne ex xp pe ec ct te ed d(u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r) ;

To handle unexpected exceptions well, we first define a class to allow us to use the ‘‘resource
acquisition is initialization’’ technique foru un ne ex xp pe ec ct te ed d() functions:

c cl la as ss s S ST TC C { / / store and reset class
u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r o ol ld d;

p pu ub bl li ic c:
S ST TC C(u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r f f) { o ol ld d = s se et t_ _u un ne ex xp pe ec ct te ed d(f f) ; }
~S ST TC C() { s se et t_ _u un ne ex xp pe ec ct te ed d(o ol ld d) ; }

};

Then, we define a function with the meaning we want foru un ne ex xp pe ec ct te ed d() in this case:

c cl la as ss s Y Yu un ne ex xp pe ec ct te ed d : Y Ye er rr r { };

v vo oi id d t th hr ro ow wY Y() t th hr ro ow w(Y Yu un ne ex xp pe ec ct te ed d) { t th hr ro ow w Y Yu un ne ex xp pe ec ct te ed d() ; }

Used as anu un ne ex xp pe ec ct te ed d() function,t th hr ro ow wY Y() maps any unexpected exception intoY Yu un ne ex xp pe ec ct te ed d.
Finally, we provide a version ofg g() to be used in the networked environment:

v vo oi id d n ne et tw wo or rk ke ed d_ _g g() t th hr ro ow w(Y Ye er rr r)
{

S ST TC C x xx x(& t th hr ro ow wY Y) ; / / now unexpected() throws Yunexpected
g g() ;

}

BecauseY Yu un ne ex xp pe ec ct te ed d is derived fromY Ye er rr r, the exception-specificationis not violated. Had
t th hr ro ow wY Y() thrown an exception that did violate theexception-specification, t te er rm mi in na at te e() would
have been called.

By saving and restoring the_ _u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r, we make it possible for several subsystems
to control the handling of unexpected exceptions without interfering with each other. Basically,
this technique for mapping an unexpected exception into an expected one is a more flexible variant
of what the system offers in the form ofb ba ad d_ _e ex xc ce ep pt ti io on n.

14.6.3.2 Recovering the Type of an Exception [except.recover]

Mapping unexpected exceptions toY Yu un ne ex xp pe ec ct te ed d would allow a user ofn ne et tw wo or rk ke ed d_ _g g() to know
that an unexpected exception had been mapped intoY Yu un ne ex xp pe ec ct te ed d. However, such a user wouldn’t
know which exception had been mapped. That information was lost int th hr ro ow wY Y() . A simple tech-
nique allows that information to be recorded and passed on:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

380 Exception Handling Chapter 14

c cl la as ss s Y Yu un ne ex xp pe ec ct te ed d : p pu ub bl li ic c Y Ye er rr r {
p pu ub bl li ic c:

N Ne et tw wo or rk k_ _e ex xc ce ep pt ti io on n* p pe e;

Y Yu un ne ex xp pe ec ct te ed d(N Ne et tw wo or rk k_ _e ex xc ce ep pt ti io on n* p p) : p pe e(p p) { }
};

v vo oi id d t th hr ro ow wY Y() t th hr ro ow w(Y Yu un ne ex xp pe ec ct te ed d)
{

t tr ry y {
t th hr ro ow w; / / re-throw to be caught immediately!

}
c ca at tc ch h(N Ne et tw wo or rk k_ _e ex xc ce ep pt ti io on n& p p) {

t th hr ro ow w Y Yu un ne ex xp pe ec ct te ed d(& p p) ; / / throw mapped exception
}
c ca at tc ch h(...) {

t th hr ro ow w Y Yu un ne ex xp pe ec ct te ed d(0 0) ;
}

}

Re-throwing an exception and catching it allows us to get a handle on any exception of a type we
can name. Thet th hr ro ow wY Y() function is called fromu un ne ex xp pe ec ct te ed d() , which is conceptually called
from ac ca at tc ch h(...) handler. There therefore is definitely an exception to re-throw. It is not pos-
sible for anu un ne ex xp pe ec ct te ed d() function to ignore the exception and return. If it tries to,u un ne ex xp pe ec ct te ed d()
itself will throw ab ba ad d_ _e ex xc ce ep pt ti io on n (§14.6.3).

14.7 Uncaught Exceptions[except.uncaught]

If an exception is thrown but not caught, the functions st td d: : t te er rm mi in na at te e() will be called. Thet te er rm mi i- -
n na at te e() function will also be called when the exception-handling mechanism finds the stack cor-
rupted and when a destructor called during stack unwinding caused by an exception tries to exit
using an exception.

An unexpected exception is dealt with by the_ _u un ne ex xp pe ec ct te ed d_ _h ha an nd dl le er r determined by
s se et t_ _u un ne ex xp pe ec ct te ed d() . Similarly, the response to an uncaught exception is determined by an
_ _u un nc ca au ug gh ht t_ _h ha an nd dl le er r set bys st td d: : s se et t_ _t te er rm mi in na at te e() from <e ex xc ce ep pt ti io on n>:

t ty yp pe ed de ef f v vo oi id d(* t te er rm mi in na at te e_ _h ha an nd dl le er r)() ;
t te er rm mi in na at te e_ _h ha an nd dl le er r s se et t_ _t te er rm mi in na at te e(t te er rm mi in na at te e_ _h ha an nd dl le er r) ;

The return value is the previous function given tos se et t_ _t te er rm mi in na at te e() .
The reason fort te er rm mi in na at te e() is that exception handling must occasionally be abandoned for less

subtle error-handling techniques. For example,t te er rm mi in na at te e() could be used to abort a process or
maybe to re-initialize a system. The intent is fort te er rm mi in na at te e() to be a drastic measure to be applied
when the error-recovery strategy implemented by the exception-handling mechanism has failed and
it is time to go to another level of a fault tolerance strategy.

By default, t te er rm mi in na at te e() will call a ab bo or rt t() (§9.4.1.1). This default is the correct choice for
most users– especially during debugging.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.7 Uncaught Exceptions 381

An _ _u un nc ca au ug gh ht t_ _h ha an nd dl le er r is assumed not to return to its caller. If it tries to,t te er rm mi in na at te e() will
call a ab bo or rt t() .

Note thata ab bo or rt t() indicates abnormal exit from the program. The functione ex xi it t() can be used
to exit a program with a return value that indicates to the surrounding system whether the exit is
normal or abnormal (§9.4.1.1).

It is implementation-defined whether destructors are invoked when a program is terminated
because of an uncaught exception. On some systems, it is essential that the destructors are not
called so that the program can be resumed from the debugger. On other systems, it is architec-
turally close to impossiblenot to invoke the destructors while searching for a handler.

If you want to ensure cleanup when an uncaught exception happens, you can add a catch-all
handler (§14.3.2) tom ma ai in n() in addition to handlers for exceptions you really care about. For
example:

i in nt t m ma ai in n()
t tr ry y {

/ / ...
}
c ca at tc ch h (s st td d: : r ra an ng ge e_ _e er rr ro or r)
{

c ce er rr r << " r ra an ng ge e e er rr ro or r: N No ot t a ag ga ai in n! \ \n n";
}
c ca at tc ch h (s st td d: : b ba ad d_ _a al ll lo oc c)
{

c ce er rr r << " n ne ew w r ra an n o ou ut t o of f m me em mo or ry y\ \n n";
}
c ca at tc ch h (...) {

/ / ...
}

This will catch every exception, except those thrown by construction and destruction of global vari-
ables. There is no way of catching exceptions thrown during initialization of global variables. The
only way of gaining control in case oft th hr ro ow w from an initializer of a nonlocal static object is
s se et t_ _u un ne ex xp pe ec ct te ed d() (§14.6.2). This is another reason to avoid global variables whenever possible.

When an exception is caught, the exact point where it was thrown is generally not known. This
represents a loss of information compared to what a debugger might know about the state of a pro-
gram. In some C++ development environments, for some programs, and for some people, it might
therefore be preferablen no ot t to catch exceptions from which the program isn’t designed to recover.

14.8 Exceptions and Efficiency[except.efficiency]

In principle, exception handling can be implemented so that there is no run-time overhead when no
exception is thrown. In addition, this can be done so that throwing an exception isn’t all that
expensive compared to calling a function. Doing so without adding significant memory overhead
while maintaining compatibility with C calling sequences, debugger conventions, etc., is possible,
but hard. However, please remember that the alternatives to exceptions are not free either. It is not
unusual to find traditional systems in which half of the code is devoted to error handling.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

382 Exception Handling Chapter 14

Consider a simple functionf f() that appears to have nothing to do with exception handling:

v vo oi id d g g(i in nt t) ;

v vo oi id d f f()
{

s st tr ri in ng g s s;
/ / ...
g g(1 1) ;
g g(2 2) ;

}

However,g g() may throw an exception, sof f() must contain code ensuring thats s is destroyed cor-
rectly in case of an exception. However, hadg g() not thrown an exception it would have had to
report its error some other way. Consequently, the comparable code using ordinary code to handle
errors instead of exceptions isn’t the plain code above, but something like:

b bo oo ol l g g(i in nt t) ;

b bo oo ol l f f()
{

s st tr ri in ng g s s;
/ / ...
i if f (g g(1 1))

i if f (g g(2 2))
r re et tu ur rn n t tr ru ue e;

e el ls se e
r re et tu ur rn n f fa al ls se e;

e el ls se e
r re et tu ur rn n f fa al ls se e;

}

People don’t usually handle errors this systematically, though, and it is not always critical to do so.
However, when careful and systematic handling of errors is necessary, such housekeeping is best
left to a computer, that is, to the exception-handling mechanisms.

Exception-specifications (§14.6) can be most helpful in improving generated code. Had we
stated thatg g() didn’t throw an exception:

v vo oi id d g g(i in nt t) t th hr ro ow w() ;

the code generation forf f() could have been improved. It is worth observing that no traditional C
function throws an exception, so in most programs every C function can be declared with the empty
throw specificationt th hr ro ow w() . In particular, an implementation knows that only a few standard C
library functions (such asa at te ex xi it t() andq qs so or rt t()) can throw exceptions, and it can take advantage of
that fact to generate better code.

Before giving a ‘‘C function’’ an emptyexception-specification, t th hr ro ow w() , take a minute to
consider if it could possibly throw an exception. For example, it might have been converted to use
the C++ operatorn ne ew w, which can throwb ba ad d_ _a al ll lo oc c, or it might call a C++ library that throws an
exception.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.9 Error-Handling Alternatives 383

14.9 Error-Handling Alternatives [except.alternatives]

The purpose of the exception-handling mechanisms is to provide a means for one part of a program
to inform another part of a program that an ‘‘exceptional circumstance’’ has been detected. The
assumption is that the two parts of the program are written independently and that the part of the
program that handles the exception often can do something sensible about the error.

To use handlers effectively in a program, we need an overall strategy. That is, the various parts
of the program must agree on how exceptions are used and where errors are dealt with. The
exception-handling mechanisms are inherently nonlocal, so adherence to an overall strategy is
essential. This implies that the error-handling strategy is best considered in the earliest phases of a
design. It also implies that the strategy must be simple (relative to the complexity of the total pro-
gram) and explicit. Something complicated would not be consistently adhered to in an area as
inherently tricky as error recovery.

First of all, the idea that a single mechanism or technique can handle all errors must be dis-
pelled; it would lead to complexity. Successful fault-tolerant systems are multilevel. Each level
copes with as many errors as it can without getting too contorted and leaves the rest to higher lev-
els. The notion oft te er rm mi in na at te e() is intended to support this view by providing an escape if the
exception-handling mechanism itself is corrupted or if it has been incompletely used, thus leaving
exceptions uncaught. Similarly, the notion ofu un ne ex xp pe ec ct te ed d() is intended to provide an escape when
the strategy usingexception-specifications to provide firewalls fails.

Not every function should be a firewall. In most systems, it is not feasible to write every func-
tion to do sufficient checking to ensure that it either completes successfully or fails in a well-
defined manner. The reasons that this will not work varies from program to program and from pro-
grammer to programmer. However, for larger programs:

[1] The amount of work needed to ensure this notion of ‘‘reliability’’ is too great to be done
consistently.

[2] The overheads in time and space are too great for the system to run acceptably (there will be
a tendency to check for the same errors, such as invalid arguments, over and over again).

[3] Functions written in other languages won’t obey the rules.
[4] This purely local notion of ‘‘reliability’’ leads to complexities that actually become a burden

to overall system reliability.
However, separating the program into distinct subsystems that either complete successfully or fail
in well-defined ways is essential, feasible, and economical. Thus, a major library, subsystem, or
key function should be designed in this way. Exception specifications are intended for interfaces to
such libraries and subsystems.

Usually, we don’t have the luxury of designing all of the code of a system from scratch. There-
fore, to impose a general error-handling strategy on all parts of a program, we must take into
account program fragments implemented using strategies different from ours. To do this we must
address a variety of concerns relating to the way a program fragment manages resources and the
state in which it leaves the system after an error. The aim is to have the program fragment appear
to follow the general error-handling strategy even if it internally follows a different strategy.

Occasionally, it is necessary to convert from one style of error reporting to another. For exam-
ple, we might checke er rr rn no o and possibly throw an exception after a call to a C library or, conversely,
catch an exception and sete er rr rn no o before returning to a C program from a C++ library:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

384 Exception Handling Chapter 14

v vo oi id d c ca al ll lC C() t th hr ro ow w(C C_ _b bl le ew wi it t)
{

e er rr rn no o = 0 0;
c c_ _f fu un nc ct ti io on n() ;
i if f (e er rr rn no o) {

/ / cleanup, if possible and necessary
t th hr ro ow w C C_ _b bl le ew wi it t(e er rr rn no o) ;

}
}

e ex xt te er rn n " C C" v vo oi id d c ca al ll l_ _f fr ro om m_ _C C() t th hr ro ow w()
{

t tr ry y {
c c_ _p pl lu us s_ _p pl lu us s_ _f fu un nc ct ti io on n() ;

}
c ca at tc ch h (...) {

/ / cleanup, if possible and necessary
e er rr rn no o = E E_ _C CP PL LP PL LF FC CT TB BL LE EW WI IT T;

}
}

In such cases, it is important to be systematic enough to ensure that the conversion of error report-
ing styles is complete.

Error handling should be– as far as possible– hierarchical. If a function detects a run-time
error, it should not ask its caller for help with recovery or resource acquisition. Such requests set
up cycles in the system dependencies. That in turn makes the program hard to understand and
introduces the possibility of infinite loops in the error-handling and recovery code.

Simplifying techniques such as ‘‘resource acquisition is initialization’’ and simplifying assump-
tions such as ‘‘exceptions represent errors’’ should be used to make the error-handling code more
regular. See also §24.3.7.1 for ideas about how to use invariants and assertions to make the trigger-
ing of exceptions more regular.

14.10 Standard Exceptions[except.std]

Here is a table of standard exceptions and the functions, operators, and general facilities that throw
them:

Standard Exceptions (thrown by the language)__

Name Thrown by Reference Header___
b ba ad d_ _a al ll lo oc c new §6.2.6.2, §19.4.5 <new>
b ba ad d_ _c ca as st t dynamic_cast §15.4.1.1 <typeinfo>
b ba ad d_ _t ty yp pe ei id d typeid §15.4.4 <typeinfo>
b ba ad d_ _e ex xc ce ep pt ti io on n exception specification §14.6.3 <exception>___ 


















The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.10 Standard Exceptions 385

_ __
Standard Exceptions (thrown by the standard library)_ ___ __

Name Thrown by Reference Header_ __
o ou ut t_ _o of f_ _r ra an ng ge e at() §3.7.2, §16.3.3, §20.3.3 <stdexcept>

bitset<>::operator[]() §17.5.3 <stdexcept>
i in nv va al li id d_ _a ar rg gu um me en nt t bitset constructor §17.5.3.1 <stdexcept>
o ov ve er rf fl lo ow w_ _e er rr ro or r bitset<>::to_ulong() §17.5.3.3 <stdexcept>
i io os s_ _b ba as se e: :: :f fa ai il lu ur re e ios_base::clear() §21.3.6 <ios>_ __ 




















The library exceptions are part of a class hierarchy rooted in the standard library exception class
e ex xc ce ep pt ti io on n presented in<e ex xc ce ep pt ti io on n>:

c cl la as ss s e ex xc ce ep pt ti io on n {
p pu ub bl li ic c:

e ex xc ce ep pt ti io on n() t th hr ro ow w() ;
e ex xc ce ep pt ti io on n(c co on ns st t e ex xc ce ep pt ti io on n&) t th hr ro ow w() ;
e ex xc ce ep pt ti io on n& o op pe er ra at to or r=(c co on ns st t e ex xc ce ep pt ti io on n&) t th hr ro ow w() ;
v vi ir rt tu ua al l ~e ex xc ce ep pt ti io on n() t th hr ro ow w() ;

v vi ir rt tu ua al l c co on ns st t c ch ha ar r* w wh ha at t() c co on ns st t t th hr ro ow w() ;
p pr ri iv va at te e:

/ / ...
};

The hierarchy looks like this:

e ex xc ce ep pt ti io on n

l lo og gi ic c_ _e er rr ro or r r ru un nt ti im me e_ _e er rr ro or r

l le en ng gt th h_ _e er rr ro or r

d do om ma ai in n_ _e er rr ro or r

o ou ut t_ _o of f_ _r ra an ng ge e

i in nv va al li id d_ _a ar rg gu um me en nt t

r ra an ng ge e_ _e er rr ro or r

o ov ve er rf fl lo ow w_ _e er rr ro or r

u un nd de er rf fl lo ow w_ _e er rr ro or r

b ba ad d_ _a al ll lo oc c

b ba ad d_ _e ex xc ce ep pt ti io on n

b ba ad d_ _c ca as st t

b ba ad d_ _t ty yp pe ei id d

i io os s_ _b ba as se e: :: :f fa ai il lu ur re e

..

This seems rather elaborate for organizing the eight standard exceptions. This hierarchy attempts to
provide a framework for exceptions beyond the ones defined by the standard library. Logic errors
are errors that in principle could be caught either before the program starts executing or by tests of
arguments to functions and constructors. Run-time errors are all other errors. Some people view
this as a useful framework for all errors and exceptions; I don’t.

The standard library exception classes don’t add functions to the set provided bye ex xc ce ep pt ti io on n;
they simply define the required virtual functions appropriately. Thus, we can write:

v vo oi id d f f()
t tr ry y {

/ / use standard library
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

386 Exception Handling Chapter 14

c ca at tc ch h (e ex xc ce ep pt ti io on n& e e) {
c co ou ut t << " s st ta an nd da ar rd d l li ib br ra ar ry y e ex xc ce ep pt ti io on n " << e e. w wh ha at t() << ´ \ \n n´; / / well, maybe
/ / ...

}
c ca at tc ch h (...) {

c co ou ut t << " o ot th he er r e ex xc ce ep pt ti io on n\ \n n";
/ / ...

}

The standard exceptions are derived frome ex xc ce ep pt ti io on n. However, not every exception is, so it would
be a mistake to try to catch every exception by catchinge ex xc ce ep pt ti io on n. Similarly, it would be a mis-
take to assume that every exception derived frome ex xc ce ep pt ti io on n is a standard library exception: pro-
grammers can add their own exceptions to thee ex xc ce ep pt ti io on n hierarchy .

Note thate ex xc ce ep pt ti io on n operations do not themselves throw exceptions. In particular, this implies
that throwing a standard library exception doesn’t cause ab ba ad d_ _a al ll lo oc c exception. The exception-
handling mechanism keeps a bit of memory to itself for holding exceptions (possibly on the stack).
Naturally, it is possible to write code that eventually consumes all memory in the system, thus forc-
ing a failure.

Here is a function that– if called – tests whether the function call or the exception-handling
mechanism runs out of memory first:

v vo oi id d p pe er rv ve er rt te ed d()
{

t tr ry y {
t th hr ro ow w e ex xc ce ep pt ti io on n() ; / / recursive exception throw

}
c ca at tc ch h (e ex xc ce ep pt ti io on n& e e) {

p pe er rv ve er rt te ed d() ; / / recursive function call
c co ou ut t << e e. w wh ha at t() ;

}
}

The purpose of the output statement is simply to prevent the compiler from re-using the memory
occupied by the exception namede e.

14.11 Advice[except.advice]

[1] Use exceptions for error handling; §14.1, §14.5, §14.9.
[2] Don’t use exceptions where more local control structures will suffice; §14.1.
[3] Use the ‘‘resource allocation is initialization’’ technique to manage resources; §14.4.
[4] Not every program needs to be exception safe; §14.4.3.
[5] Use ‘‘resource allocation is initialization’’ and exception handlers to maintain invariants;

§14.3.2.
[6] Minimize the use oftry-blocks. Use ‘‘resource acquisition is initialization’’ instead of explicit

handler code; §14.4.
[7] Not every function needs to handle every possible error; §14.9.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.11 Advice 387

[8] Throw an exception to indicate failure in a constructor; §14.4.6.
[9] Avoid throwing exceptions from copy constructors; §14.4.6.1.
[10] Avoid throwing exceptions from destructors; §14.4.7.
[11] Havem ma ai in n() catch and report all exceptions; §14.7.
[12] Keep ordinary code and error-handling code separate; §14.4.5, §14.5.
[13] Be sure that every resource acquired in a constructor is released when throwing an exception

in that constructor; §14.4.
[14] Keep resource management hierarchical; §14.4.
[15] Useexception-specifications for major interfaces; §14.9.
[16] Beware of memory leaks caused by memory allocated byn ne ew w not being released in case of an

exception; §14.4.1, §14.4.2, §14.4.4.
[17] Assume that every exception that can be thrown by a function will be thrown; §14.6.
[18] Don’t assume that every exception is derived from classe ex xc ce ep pt ti io on n; §14.10.
[19] A library shouldn’t unilaterally terminate a program. Instead, throw an exception and let a

caller decide; §14.1.
[20] A library shouldn’t produce diagnostic output aimed at an end user. Instead, throw an excep-

tion and let a caller decide; §14.1.
[21] Develop an error-handling strategy early in a design; §14.9.

14.12 Exercises[except.exercises]

1. (∗2) Generalize theS ST TC C class (§14.6.3.1) to a template that can use the ‘‘resource acquisition is
initialization’’ technique to store and reset functions of a variety of types.

2. (∗3) Complete theP Pt tr r_ _t to o_ _T T class from §11.11 as a template that uses exceptions to signal run-
time errors.

3. (∗3) Write a function that searches a binary tree of nodes based on ac ch ha ar r* field for a match. If
a node containingh he el ll lo o is found, f fi in nd d(" h he el ll lo o") will return a pointer to that node. Use an
exception to indicate ‘‘not found.’’

4. (∗3) Define a classI In nt t that acts exactly like the built-in typei in nt t, except that it throws exceptions
rather than overflowing or underflowing.

5. (∗2.5) Take the basic operations for opening, closing, reading, and writing from the C interface
to your operating system and provide equivalent C++ functions that call the C functions but
throw exceptions in case of errors.

6. (∗2.5) Write a completeV Ve ec ct to or r template withR Ra an ng ge eandS Si iz ze eexceptions.
7. (∗1) Write a loop that computes the sum of aV Ve ec ct to or r as defined in §14.12[6] without examining

the size of theV Ve ec ct to or r. Why is this a bad idea?
8. (∗2.5) Consider using a classE Ex xc ce ep pt ti io on n as the base of all classes used as exceptions. What

should it look like? How should it be used? What good might it do? What disadvantages
might result from a requirement to use such a class?

9. (∗1) Given a

i in nt t m ma ai in n() { /* ... */ }

change it so that it catches all exceptions, turns them into error messages, anda ab bo or rt t() s. Hint:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

388 Exception Handling Chapter 14

c ca al ll l_ _f fr ro om m_ _C C() in §14.9 doesn’t quite handle all cases.
10. (∗2) Write a class or template suitable for implementing callbacks.
11. (∗2.5) Write aL Lo oc ck k class for some system supporting concurrency.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

15
_ __ _______________________________________

Class Hierarchies

Abstraction is selective ignorance.
– Andrew Koenig

Multiple inheritance— ambiguity resolution— inheritance andusing-declarations —
replicated base classes— virtual base classes— uses of multiple inheritance— access
control — protected — access to base classes— run-time type information—
d dy yn na am mi ic c_ _c ca as st t — static and dynamic casts— casting from virtual bases— t ty yp pe ei id d —
extended type information— uses and misuses of run-time type information— pointers
to members— free store— virtual constructors— advice— exercises.

15.1 Introduction and Overview[hier.intro]

This chapter discusses how derived classes and virtual functions interact with other language facili-
ties such as access control, name lookup, free store management, constructors, pointers, and type
conversions. It has five main parts:

§15.2 Multiple Inheritance
§15.3 Access Control
§15.4 Run-time Type Identification
§15.5 Pointers to Members
§15.6 Free Store Use

In general, a class is constructed from a lattice of base classes. Because most such lattices histori-
cally have been trees, aclass latticeis often called aclass hierarchy. We try to design classes so
that users need not be unduly concerned about the way a class is composed out of other classes. In
particular, the virtual call mechanism ensures that when we call a functionf f() on an object, the
same function is called whichever class in the hierarchy provided the declaration off f() used for
the call. This chapter focuses on ways to compose class lattices and to control access to parts of
classes and on facilities for navigating class lattices at compile time and run time.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

390 Class Hierarchies Chapter 15

15.2 Multiple Inheritance [hier.mi]

As shown in §2.5.4 and §12.3, a class can have more than one direct base class, that is, more than
one class specified after the: in the class declaration. Consider a simulation in which concurrent
activities are represented by a classT Ta as sk k and data gathering and display is achieved through a class
D Di is sp pl la ay ye ed d. We can then define a class of simulated entities, classS Sa at te el ll li it te e:

c cl la as ss s S Sa at te el ll li it te e : p pu ub bl li ic c T Ta as sk k, p pu ub bl li ic c D Di is sp pl la ay ye ed d {
/ / ...

};

The use of more than one immediate base class is usually calledmultiple inheritance. In contrast,
having just one direct base class is calledsingle inheritance.

In addition to whatever operations are defined specifically for aS Sa at te el ll li it te e, the union of opera-
tions onT Ta as sk ks andD Di is sp pl la ay ye ed ds can be applied. For example:

v vo oi id d f f(S Sa at te el ll li it te e& s s)
{

s s. d dr ra aw w() ; / / Displayed::draw()
s s. d de el la ay y(1 10 0) ; / / Task::delay()
s s. t tr ra an ns sm mi it t() ; / / Satellite::transmit()

}

Similarly, aS Sa at te el ll li it te ecan be passed to functions that expect aT Ta as sk k or aD Di is sp pl la ay ye ed d. For example:

v vo oi id d h hi ig gh hl li ig gh ht t(D Di is sp pl la ay ye ed d*) ;
v vo oi id d s su us sp pe en nd d(T Ta as sk k*) ;

v vo oi id d g g(S Sa at te el ll li it te e* p p)
{

h hi ig gh hl li ig gh ht t(p p) ; / / pass a pointer to the Displayed part of the Satellite
s su us sp pe en nd d(p p) ; / / pass a pointer to the Task part of the Satellite

}

The implementation of this clearly involves some (simple) compiler technique to ensure that func-
tions expecting aT Ta as sk k see a different part of aS Sa at te el ll li it te e than do functions expecting aD Di is sp pl la ay ye ed d.
Virtual functions work as usual. For example:

c cl la as ss s T Ta as sk k {
/ / ...
v vi ir rt tu ua al l v vo oi id d p pe en nd di in ng g() = 0 0;

};

c cl la as ss s D Di is sp pl la ay ye ed d {
/ / ...
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() = 0 0;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2 Multiple Inheritance 391

c cl la as ss s S Sa at te el ll li it te e : p pu ub bl li ic c T Ta as sk k, p pu ub bl li ic c D Di is sp pl la ay ye ed d {
/ / ...
v vo oi id d p pe en nd di in ng g() ; / / override Task::pending()
v vo oi id d d dr ra aw w() ; / / override Displayed::draw()

};

This ensures thatS Sa at te el ll li it te e: : d dr ra aw w() and S Sa at te el ll li it te e: : p pe en nd di in ng g() will be called for aS Sa at te el ll li it te e
treated as aD Di is sp pl la ay ye ed d and aT Ta as sk k, respectively.

Note that with single inheritance (only), the programmer’s choices for implementing the classes
D Di is sp pl la ay ye ed d, T Ta as sk k, andS Sa at te el ll li it te e would be limited. AS Sa at te el ll li it te e could be aT Ta as sk k or aD Di is sp pl la ay ye ed d, but
not both (unlessT Ta as sk k was derived fromD Di is sp pl la ay ye ed d or vice versa). Either alternative involves a loss
of flexibility.

Why would anyone want a classS Sa at te el ll li it te e? Contrary to some people’s conjectures, theS Sa at te el ll li it te e
example is real. There really was– and maybe there still is– a program constructed along the
lines used to describe multiple inheritance here. It was used to study the design of communication
systems involving satellites, ground stations, etc. Given such a simulation, we can answer ques-
tions about traffic flow, determine proper responses to a ground station that is being blocked by a
rainstorm, consider tradeoffs between satellite connections and Earth-bound connections, etc. Such
simulations do involve a variety of display and debugging operations. Also, we do need to store
the state of objects such asS Sa at te el ll li it te es and their subcomponents for analysis, debugging, and error
recovery.

15.2.1 Ambiguity Resolution [hier.ambig]

Two base classes may have member functions with the same name. For example:

c cl la as ss s T Ta as sk k {
/ / ...
v vi ir rt tu ua al l d de eb bu ug g_ _i in nf fo o* g ge et t_ _d de eb bu ug g() ;

};

c cl la as ss s D Di is sp pl la ay ye ed d {
/ / ...
v vi ir rt tu ua al l d de eb bu ug g_ _i in nf fo o* g ge et t_ _d de eb bu ug g() ;

};

When aS Sa at te el ll li it te e is used, these functions must be disambiguated:

v vo oi id d f f(S Sa at te el ll li it te e* s sp p)
{

d de eb bu ug g_ _i in nf fo o* d di ip p = s sp p-> g ge et t_ _d de eb bu ug g() ; / / error: ambiguous
d di ip p = s sp p-> T Ta as sk k: : g ge et t_ _d de eb bu ug g() ; / / ok
d di ip p = s sp p-> D Di is sp pl la ay ye ed d: : g ge et t_ _d de eb bu ug g() ; / / ok

}

However, explicit disambiguation is messy, so it is usually best to resolve such problems by defin-
ing a new function in the derived class:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

392 Class Hierarchies Chapter 15

c cl la as ss s S Sa at te el ll li it te e : p pu ub bl li ic c T Ta as sk k, p pu ub bl li ic c D Di is sp pl la ay ye ed d {
/ / ...

d de eb bu ug g_ _i in nf fo o* g ge et t_ _d de eb bu ug g() / / override Task::get_debug() and Displayed::get_debug()
{

d de eb bu ug g_ _i in nf fo o* d di ip p1 1 = T Ta as sk k: : g ge et t_ _d de eb bu ug g() ;
d de eb bu ug g_ _i in nf fo o* d di ip p2 2 = D Di is sp pl la ay ye ed d: : g ge et t_ _d de eb bu ug g() ;
r re et tu ur rn n d di ip p1 1-> m me er rg ge e(d di ip p2 2) ;

}
};

This localizes the information aboutS Sa at te el ll li it te e’s base classes. BecauseS Sa at te el ll li it te e: : g ge et t_ _d de eb bu ug g()
overrides theg ge et t_ _d de eb bu ug g() functions from both of its base classes,S Sa at te el ll li it te e: : g ge et t_ _d de eb bu ug g() is
called whereverg ge et t_ _d de eb bu ug g() is called for aS Sa at te el ll li it te eobject.

A qualified nameT Te el ls st ta ar r: : d dr ra aw w can refer to ad dr ra aw w declared either inT Te el ls st ta ar r or in one of its
base classes. For example:

c cl la as ss s T Te el ls st ta ar r : p pu ub bl li ic c S Sa at te el ll li it te e {
/ / ...
v vo oi id d d dr ra aw w()
{

d dr ra aw w() ; / / oops!: recursive call
S Sa at te el ll li it te e: : d dr ra aw w() ; / / finds Displayed::draw
D Di is sp pl la ay ye ed d: : d dr ra aw w() ;
S Sa at te el ll li it te e: : D Di is sp pl la ay ye ed d: : d dr ra aw w() ; / / redundant double qualification

}
};

In other words, if aS Sa at te el ll li it te e: : d dr ra aw w doesn’t resolve to ad dr ra aw w declared inS Sa at te el ll li it te e, the compiler
recursively looks in its base classes; that is, it looks forT Ta as sk k: : d dr ra aw w and D Di is sp pl la ay ye ed d: : d dr ra aw w. If
exactly one match is found, that name will be used. Otherwise,S Sa at te el ll li it te e: : d dr ra aw w is either not found
or is ambiguous.

15.2.2 Inheritance and Using-Declarations [hier.using]

Overload resolution is not applied across different class scopes (§7.4). In particular, ambiguities
between functions from different base classes are not resolved based on argument types.

When combining essentially unrelated classes, such asT Ta as sk k and D Di is sp pl la ay ye ed d in the S Sa at te el ll li it te e
example, similarity in naming typically does not indicate a common purpose. When such name
clashes occur, they often come as quite a surprise to the programmer. For example:

c cl la as ss s T Ta as sk k {
/ / ...
v vo oi id d d de eb bu ug g(d do ou ub bl le e p p) ; / / print info only if priority is lower than p

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.2 Inheritance and Using-Declarations 393

c cl la as ss s D Di is sp pl la ay ye ed d {
/ / ...
v vo oi id d d de eb bu ug g(i in nt t v v) ; / / the higher the ‘v,’ the more debug information is printed

};

c cl la as ss s S Sa at te el ll li it te e : p pu ub bl li ic c T Ta as sk k, p pu ub bl li ic c D Di is sp pl la ay ye ed d {
/ / ...

};

v vo oi id d g g(S Sa at te el ll li it te e* p p)
{

p p-> d de eb bu ug g(1 1) ; / / error: ambiguous. Displayed::debug(int) or Task::debug(double) ?
p p-> T Ta as sk k: : d de eb bu ug g(1 1) ; / / ok
p p-> D Di is sp pl la ay ye ed d: : d de eb bu ug g(1 1) ; / / ok

}

What if the use of the same name in different base classes was the result of a deliberate design deci-
sion and the user wanted selection based on the argument types? In that case, ausing-declaration
(§8.2.2) can bring the functions into a common scope. For example:

c cl la as ss s A A {
p pu ub bl li ic c:

i in nt t f f(i in nt t) ;
c ch ha ar r f f(c ch ha ar r) ;
/ / ...

};

c cl la as ss s B B {
p pu ub bl li ic c:

d do ou ub bl le e f f(d do ou ub bl le e) ;
/ / ...

};

c cl la as ss s A AB B: p pu ub bl li ic c A A, p pu ub bl li ic c B B {
p pu ub bl li ic c:

u us si in ng g A A: : f f;
u us si in ng g B B: : f f;
c ch ha ar r f f(c ch ha ar r) ; / / hides A::f(char)
A AB B f f(A AB B) ;

};

v vo oi id d g g(A AB B& a ab b)
{

a ab b. f f(1 1) ; / / A::f(int)
a ab b. f f(´ a a´) ; / / AB::f(char)
a ab b. f f(2 2. 0 0) ; / / B::f(double)
a ab b. f f(a ab b) ; / / AB::f(AB)

}

Using-declarations allow a programmer to compose a set of overloaded functions from base classes
and the derived class. Functions declared in the derived class hide functions that would otherwise
be available from a base. Virtual functions from bases can be overridden as ever (§15.2.3.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

394 Class Hierarchies Chapter 15

A using-declaration(§8.2.2) in a class definition must refer to members of a base class. A
using-declarationmay not be used for a member of a class from outside that class, its derived
classes, and their member functions. Ausing-directive(§8.2.3) may not appear in a class definition
and may not be used for a class.

A using-declarationcannot be used to gain access to additional information. It is simply a
mechanism for making accessible information more convenient to use (§15.3.2.2).

15.2.3 Replicated Base Classes [hier.replicated]

With the ability of specifying more than one base class comes the possibility of having a class as a
base twice. For example, hadT Ta as sk k andD Di is sp pl la ay ye ed d each been derived from aL Li in nk k class, aS Sa at te el ll li it te e
would have twoL Li in nk ks:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* n ne ex xt t;

};

c cl la as ss s T Ta as sk k : p pu ub bl li ic c L Li in nk k {
/ / the Link is used to maintain a list of all Tasks (the scheduler list)
/ / ...

};

c cl la as ss s D Di is sp pl la ay ye ed d : p pu ub bl li ic c L Li in nk k {
/ / the Link is used to maintain a list of all Displayed objects (the display list)
/ / ...

};

This causes no problems. Two separateL Li in nk k objects are used to represent the links, and the two
lists do not interfere with each other. Naturally, one cannot refer to members of theL Li in nk k class
without risking an ambiguity (§15.2.3.1). AS Sa at te el ll li it te eobject could be drawn like this:

L Li in nk k L Li in nk k

T Ta as sk k D Di is sp pl la ay ye ed d

S Sa at te el ll li it te e

..

Examples of where the common base class shouldn’t be represented by two separate objects can be
handled using a virtual base class (§15.2.4).

Usually, a base class that is replicated the wayL Li in nk k is here is an implementation detail that
shouldn’t be used from outside its immediate derived class. If such a base must be referred to from
a point where more than one copy of the base is visible, the reference must be explicitly qualified to
resolve the ambiguity. For example:

v vo oi id d m me es ss s_ _w wi it th h_ _l li in nk ks s(S Sa at te el ll li it te e* p p)
{

p p-> n ne ex xt t = 0 0; / / error: ambiguous (which Link?)
p p-> L Li in nk k: : n ne ex xt t = 0 0; / / error: ambiguous (which Link?)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.3 Replicated Base Classes 395

p p-> T Ta as sk k: : L Li in nk k: : n ne ex xt t = 0 0; / / ok
p p-> D Di is sp pl la ay ye ed d: : L Li in nk k: : n ne ex xt t = 0 0; / / ok
/ / ...

}

This is exactly the mechanism used to resolve ambiguous references to members (§15.2.1).

15.2.3.1 Overriding [hier.override]

A virtual function of a replicated base class can be overridden by a (single) function in a derived
class. For example, one might represent the ability of an object to read itself from a file and write
itself back to a file like this:

c cl la as ss s S St to or ra ab bl le e {
p pu ub bl li ic c:

v vi ir rt tu ua al l c co on ns st t c ch ha ar r* g ge et t_ _f fi il le e() = 0 0;
v vi ir rt tu ua al l v vo oi id d r re ea ad d() = 0 0;
v vi ir rt tu ua al l v vo oi id d w wr ri it te e() = 0 0;
v vi ir rt tu ua al l ~S St to or ra ab bl le e() { w wr ri it te e() ; } / / to be called from overriding destructors (see §15.2.4.1)

};

Naturally, several programmers might rely on this to develop classes that can be used indepen-
dently or in combination to build more elaborate classes. For example, one way of stopping and
restarting a simulation is to store components of a simulation and then restore them later. That idea
might be implemented like this:

c cl la as ss s T Tr ra an ns sm mi it tt te er r : p pu ub bl li ic c S St to or ra ab bl le e {
p pu ub bl li ic c:

v vo oi id d w wr ri it te e() ;
/ / ...

};

c cl la as ss s R Re ec ce ei iv ve er r : p pu ub bl li ic c S St to or ra ab bl le e {
p pu ub bl li ic c:

v vo oi id d w wr ri it te e() ;
/ / ...

};

c cl la as ss s R Ra ad di io o : p pu ub bl li ic c T Tr ra an ns sm mi it tt te er r, p pu ub bl li ic c R Re ec ce ei iv ve er r {
p pu ub bl li ic c:

c co on ns st t c ch ha ar r* g ge et t_ _f fi il le e() ;
v vo oi id d r re ea ad d() ;
v vo oi id d w wr ri it te e() ;
/ / ...

};

Typically, an overriding function calls its base class versions and then does the work specific to the
derived class:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

396 Class Hierarchies Chapter 15

v vo oi id d R Ra ad di io o: : w wr ri it te e()
{

T Tr ra an ns sm mi it tt te er r: : w wr ri it te e() ;
R Re ec ce ei iv ve er r: : w wr ri it te e() ;
/ / write radio-specific information

}

Casting from a replicated base class to a derived class is discussed in §15.4.2. For a technique for
overriding each of thew wr ri it te e() functions with separate functions from derived classes, see §25.6.

15.2.4 Virtual Base Classes [hier.vbase]

TheR Ra ad di io o example in the previous subsection works because classS St to or ra ab bl le e can be safely, conve-
niently, and efficiently replicated. Often, that is not the case for the kind of class that makes a good
building block for other classes. For example, we might defineS St to or ra ab bl le e to hold the name of the
file to be used for storing the object:

c cl la as ss s S St to or ra ab bl le e {
p pu ub bl li ic c:

S St to or ra ab bl le e(c co on ns st t c ch ha ar r* s s) ;
v vi ir rt tu ua al l v vo oi id d r re ea ad d() = 0 0;
v vi ir rt tu ua al l v vo oi id d w wr ri it te e() = 0 0;
v vi ir rt tu ua al l ~S St to or ra ab bl le e() ;

p pr ri iv va at te e:
c co on ns st t c ch ha ar r* s st to or re e;

S St to or ra ab bl le e(c co on ns st t S St to or ra ab bl le e&) ;
S St to or ra ab bl le e& o op pe er ra at to or r=(c co on ns st t S St to or ra ab bl le e&) ;

};

Given this apparently minor change toS St to or ra ab bl le e, we must must change the design ofR Ra ad di io o. All
parts of an object must share a single copy ofS St to or ra ab bl le e; otherwise, it becomes unnecessarily hard to
avoid storing multiple copies of the object. One mechanism for specifying such sharing is a virtual
base class. Everyv vi ir rt tu ua al l base of a derived class is represented by the same (shared) object. For
example:

c cl la as ss s T Tr ra an ns sm mi it tt te er r : p pu ub bl li ic c v vi ir rt tu ua al l S St to or ra ab bl le e {
p pu ub bl li ic c:

v vo oi id d w wr ri it te e() ;
/ / ...

};

c cl la as ss s R Re ec ce ei iv ve er r : p pu ub bl li ic c v vi ir rt tu ua al l S St to or ra ab bl le e {
p pu ub bl li ic c:

v vo oi id d w wr ri it te e() ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.4 Virtual Base Classes 397

c cl la as ss s R Ra ad di io o : p pu ub bl li ic c T Tr ra an ns sm mi it tt te er r, p pu ub bl li ic c R Re ec ce ei iv ve er r {
p pu ub bl li ic c:

v vo oi id d w wr ri it te e() ;
/ / ...

};

Or graphically:

S St to or ra ab bl le e

R Re ec ce ei iv ve er r T Tr ra an ns sm mi it tt te er r

R Ra ad di io o

..

Compare this diagram with the drawing of theS Sa at te el ll li it te e object in §15.2.3 to see the difference
between ordinary inheritance and virtual inheritance. In an inheritance graph, every base class of a
given name that is specified to be virtual will be represented by a single object of that class. On the
other hand, each base class not specifiedv vi ir rt tu ua al l will have its own sub-object representing it.

15.2.4.1 Programming Virtual Bases [hier.vbase.prog]

When defining the functions for a class with a virtual base, the programmer in general cannot know
whether the base will be shared with other derived classes. This can be a problem when imple-
menting a service that requires a base class function to be called exactly once. For example, the
language ensures that a constructor of a virtual base is called exactly once. The constructor of a
virtual base is invoked (implicitly or explicitly) from the constructor for the complete object (the
constructor for the most derived class). For example:

c cl la as ss s A A { / / no constructor
/ / ...

};

c cl la as ss s B B {
p pu ub bl li ic c:

B B() ; / / default constructor
/ / ...

};

c cl la as ss s C C {
p pu ub bl li ic c:

C C(i in nt t) ; / / no default constructor
};

c cl la as ss s D D : v vi ir rt tu ua al l p pu ub bl li ic c A A, v vi ir rt tu ua al l p pu ub bl li ic c B B, v vi ir rt tu ua al l p pu ub bl li ic c C C
{

D D() { /* ... */ } / / error: no default constructor for C
D D(i in nt t i i) : C C(i i) { /* ... */ }; / / ok
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

398 Class Hierarchies Chapter 15

The constructor for a virtual base is called before the constructors for its derived classes.
Where needed, the programmer can simulate this scheme by calling a virtual base class function

only from the most derived class. For example, assume we have a basicW Wi in nd do ow w class that knows
how to draw its contents:

c cl la as ss s W Wi in nd do ow w {
/ / basic stuff
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() ;

};

In addition, we have various ways of decorating a window and adding facilities:

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r : p pu ub bl li ic c v vi ir rt tu ua al l W Wi in nd do ow w {
/ / border stuff
v vo oi id d o ow wn n_ _d dr ra aw w() ; / / display the border
v vo oi id d d dr ra aw w() ;

};

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _m me en nu u : p pu ub bl li ic c v vi ir rt tu ua al l W Wi in nd do ow w {
/ / menu stuff
v vo oi id d o ow wn n_ _d dr ra aw w() ; / / display the menu
v vo oi id d d dr ra aw w() ;

};

Theo ow wn n_ _d dr ra aw w() functions need not be virtual because they are meant to be called from within a
virtual d dr ra aw w() function that ‘‘knows’’ the type of the object for which it was called.

From this, we can compose a plausibleC Cl lo oc ck k class:

c cl la as ss s C Cl lo oc ck k : p pu ub bl li ic c W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r, p pu ub bl li ic c W Wi in nd do ow w_ _w wi it th h_ _m me en nu u {
/ / clock stuff
v vo oi id d o ow wn n_ _d dr ra aw w() ; / / display the clock face and hands
v vo oi id d d dr ra aw w() ;

};

Or graphically:

W Wi in nd do ow w

W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r W Wi in nd do ow w_ _w wi it th h_ _m me en nu u

C Cl lo oc ck k

..

Thed dr ra aw w() functions can now be written using theo ow wn n_ _d dr ra aw w() functions so that a caller of any
d dr ra aw w() getsW Wi in nd do ow w: : d dr ra aw w() invoked exactly once. This is done independently of the kind of
W Wi in nd do ow w for whichd dr ra aw w() is invoked:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.4.1 Programming Virtual Bases 399

v vo oi id d W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r: : d dr ra aw w()
{

W Wi in nd do ow w: : d dr ra aw w() ;
o ow wn n_ _d dr ra aw w() ; / / display the border

}

v vo oi id d W Wi in nd do ow w_ _w wi it th h_ _m me en nu u: : d dr ra aw w()
{

W Wi in nd do ow w: : d dr ra aw w() ;
o ow wn n_ _d dr ra aw w() ; / / display the menu

}

v vo oi id d C Cl lo oc ck k: : d dr ra aw w()
{

W Wi in nd do ow w: : d dr ra aw w() ;
W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r: : o ow wn n_ _d dr ra aw w() ;
W Wi in nd do ow w_ _w wi it th h_ _m me en nu u: : o ow wn n_ _d dr ra aw w() ;
o ow wn n_ _d dr ra aw w() ; / / display the clock face and hands

}

Casting from av vi ir rt tu ua al l base class to a derived class is discussed in §15.4.2.

15.2.5 Using Multiple Inheritance [hier.using.mi]

The simplest and most obvious use of multiple inheritance is to ‘‘glue’’ two otherwise unrelated
classes together as part of the implementation of a third class. TheS Sa at te el ll li it te e class built out of the
T Ta as sk k and D Di is sp pl la ay ye ed d classes in §15.2 is an example of this. This use of multiple inheritance is
crude, effective, and important, but not very interesting. Basically, it saves the programmer from
writing a lot of forwarding functions. This technique does not affect the overall design of a pro-
gram significantly and can occasionally clash with the wish to keep implementation details hidden.
However, a technique doesn’t have to be clever to be useful.

Using multiple inheritance to provide implementations for abstract classes is more fundamental
in that it affects the way a program is designed. ClassB BB B_ _i iv va al l_ _s sl li id de er r (§12.3) is an example:

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r
: p pu ub bl li ic c I Iv va al l_ _s sl li id de er r / / interface
, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r / / implementation

{
/ / implementation of functions required by ‘Ival_slider’ and ‘BBslider’
/ / using the facilities provided by ‘BBslider’

};

In this example, the two base classes play logically distinct roles. One base is a public abstract
class providing the interface and the other is a protected concrete class providing implementation
‘‘details.’’ These roles are reflected in both the style of the classes and in the access control pro-
vided. The use of multiple inheritance is close to essential here because the derived class needs to
override virtual functions from both the interface and the implementation.

Multiple inheritance allows sibling classes to share information without introducing a depen-
dence on a unique common base class in a program. This is the case in which the so-called

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

400 Class Hierarchies Chapter 15

diamond-shaped inheritanceoccurs (for example, theR Ra ad di io o (§15.2.4) andC Cl lo oc ck k (§15.2.4.1)). A
virtual base class, as opposed to an ordinary base class, is needed if the base class cannot be repli-
cated.

I find that a diamond-shaped inheritance lattice is most manageable if either the virtual base
class or the classes directly derived from it are abstract classes. For example, consider again the
I Iv va al l_ _b bo ox x classes from §12.4. In the end, I made all theI Iv va al l_ _b bo ox x classes abstract to reflect their
role as pure interfaces. Doing that allowed me to place all implementation details in specific imple-
mentation classes. Also, all sharing of implementation details was done in the classical hierarchy
of the windows system used for the implementation.

It would make sense for the class implementing aP Po op pu up p_ _i iv va al l_ _s sl li id de er r to share most of the
implementation of the class implementing a plainI Iv va al l_ _s sl li id de er r. After all, these implementation
classes would share everything except the handling of prompts. However, it would then seem natu-
ral to avoid replication ofI Iv va al l_ _s sl li id de er r objects within the resulting slider implementation objects.
Therefore, we could makeI Iv va al l_ _s sl li id de er r a virtual base:

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c v vi ir rt tu ua al l I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r { /* ... */ };
c cl la as ss s P Po op pu up p_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c v vi ir rt tu ua al l I Iv va al l_ _s sl li id de er r { /* ... */ };
c cl la as ss s B BB B_ _p po op pu up p_ _i iv va al l_ _s sl li id de er r

: p pu ub bl li ic c v vi ir rt tu ua al l P Po op pu up p_ _i iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB B_ _i iv va al l_ _s sl li id de er r { /* ... */ };

or graphically:

I Iv va al l_ _s sl li id de er r

P Po op pu up p_ _i iv va al l_ _s sl li id de er r B BB B_ _i iv va al l_ _s sl li id de er r

B BB B_ _p po op pu up p_ _i iv va al l_ _s sl li id de er r

B BB Bs sl li id de er r

..

It is easy to imagine further interfaces derived fromP Po op pu up p_ _i iv va al l_ _s sl li id de er r and further implementation
classes derived from such classes andB BB B_ _p po op pu up p_ _s sl li id de er r.

If we take this idea to its logical conclusion, all of the derivations from the abstract classes that
constitute our application’s interfaces would become virtual. This does indeed seem to be the most
logical, general, and flexible approach. The reason I didn’t do that was partly historical and partly
because the most obvious and common techniques for implementing virtual bases impose time and
space overhead that make their extensive use within a class unattractive. Should this overhead
become an issue for an otherwise attractive design, note that an object representing anI Iv va al l_ _s sl li id de er r
usually holds only a virtual table pointer. As noted in §15.2.4, such an abstract class holding no
variable data can be replicated without ill effects. Thus, we can eliminate the virtual base in favor
of ordinary ones:

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r { /* ... */ };
c cl la as ss s P Po op pu up p_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { /* ... */ };
c cl la as ss s B BB B_ _p po op pu up p_ _i iv va al l_ _s sl li id de er r

: p pu ub bl li ic c P Po op pu up p_ _i iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB B_ _i iv va al l_ _s sl li id de er r { /* ... */ };

or graphically:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.5 Using Multiple Inheritance 401

I Iv va al l_ _s sl li id de er r I Iv va al l_ _s sl li id de er r

P Po op pu up p_ _i iv va al l_ _s sl li id de er r B BB B_ _i iv va al l_ _s sl li id de er r

B BB B_ _p po op pu up p_ _i iv va al l_ _s sl li id de er r

B BB Bs sl li id de er r

..

This is most likely a viable optimization to the admittedly cleaner alternative presented previously.

15.2.5.1 Overriding Virtual Base Functions [hier.dominance]

A derived class can override a virtual function of its direct or indirect virtual base class. In particu-
lar, two different classes might override different virtual functions from the virtual base. In that
way, several derived classes can contribute implementations to the interface presented by a virtual
base class. For example, theW Wi in nd do ow w class might have functionss se et t_ _c co ol lo or r() andp pr ro om mp pt t() . In
that case,W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r might overrides se et t_ _c co ol lo or r() as part of controlling the color
scheme andW Wi in nd do ow w_ _w wi it th h_ _m me en nu u might overridep pr ro om mp pt t() as part of its control of user interac-
tions:

c cl la as ss s W Wi in nd do ow w {
/ / ...
v vi ir rt tu ua al l s se et t_ _c co ol lo or r(C Co ol lo or r) = 0 0; / / set background color
v vi ir rt tu ua al l v vo oi id d p pr ro om mp pt t() = 0 0;

};

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r : p pu ub bl li ic c v vi ir rt tu ua al l W Wi in nd do ow w {
/ / ...
s se et t_ _c co ol lo or r(C Co ol lo or r) ; / / control background color

};

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _m me en nu u : p pu ub bl li ic c v vi ir rt tu ua al l W Wi in nd do ow w {
/ / ...
v vo oi id d p pr ro om mp pt t() ; / / control user interactions

};

c cl la as ss s M My y_ _w wi in nd do ow w : p pu ub bl li ic c W Wi in nd do ow w_ _w wi it th h_ _m me en nu u, p pu ub bl li ic c W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r {
/ / ...

};

What if different derived classes override the same function? This is allowed if and only if some
overriding class is derived from every other class that overrides the function. That is, one function
must override all others. For example,M My y_ _w wi in nd do ow w could overridep pr ro om mp pt t() to improve on what
W Wi in nd do ow w_ _w wi it th h_ _m me en nu u provides:

c cl la as ss s M My y_ _w wi in nd do ow w : p pu ub bl li ic c W Wi in nd do ow w_ _w wi it th h_ _m me en nu u, p pu ub bl li ic c W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r {
/ / ...
v vo oi id d p pr ro om mp pt t() ; / / don’t leave user interactions to base

};

or graphically:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

402 Class Hierarchies Chapter 15

W Wi in nd do ow w { s se et t_ _c co ol lo or r(), p pr ro om mp pt t() }

W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r { s se et t_ _c co ol lo or r() } W Wi in nd do ow w_ _w wi it th h_ _m me en nu u { p pr ro om mp pt t() }

M My y_ _w wi in nd do ow w { p pr ro om mp pt t() }

If two classes override a base class function, but neither overrides the other, the class hierarchy is
an error. No virtual function table can be constructed because a call to that function on the com-
plete object would have been ambiguous. For example, hadR Ra ad di io o in §15.2.4 not declared
w wr ri it te e() , the declarations ofw wr ri it te e() in R Re ec ce ei iv ve er r and T Tr ra an ns sm mi it tt te er r would have caused an error
when definingR Ra ad di io o. As with R Ra ad di io o, such a conflict is resolved by adding an overriding function
to the most derived class.

A class that provides some– but not all– of the implementation for a virtual base class is often
called a ‘‘mixin.’’

15.3 Access Control[hier.access]

A member of a class can bep pr ri iv va at te e, p pr ro ot te ec ct te ed d, orp pu ub bl li ic c:
– If it is p pr ri iv va at te e, its name can be used only by member functions and friends of the class in

which it is declared.
– If it is p pr ro ot te ec ct te ed d, its name can be used only by member functions and friends of the class in

which it is declared and by member functions and friends of classes derived from this class
(see §11.5).

– If it is p pu ub bl li ic c, its name can be used by any function.
This reflects the view that there are three kinds of functions accessing a class: functions implement-
ing the class (its friends and members), functions implementing a derived class (the derived class’
friends and members), and other functions. This can be presented graphically:

. ..
..
..
..
..
..
.

public:
protected:
private:

general users

derived class’ member functions and friends

own member functions and friends

The access control is applied uniformly to names. What a name refers to does not affect the control
of its use. This means that we can have private member functions, types, constants, etc., as well as
private data members. For example, an efficient non-intrusive (§16.2.1) list class often requires
data structures to keep track of elements. Such information is best kept private:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.3 Access Control 403

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t {
p pr ri iv va at te e:

s st tr ru uc ct t L Li in nk k { T T v va al l; L Li in nk k* n ne ex xt t; };
s st tr ru uc ct t C Ch hu un nk k {

e en nu um m { c ch hu un nk k_ _s si iz ze e = 1 15 5 };
L Li in nk k v v[c ch hu un nk k_ _s si iz ze e] ;
C Ch hu un nk k* n ne ex xt t;

};
c cl la as ss s U Un nd de er rf fl lo ow w { };

C Ch hu un nk k* a al ll lo oc ca at te ed d;
L Li in nk k* f fr re ee e;
L Li in nk k* g ge et t_ _f fr re ee e() ;
L Li in nk k* h he ea ad d;

p pu ub bl li ic c:
v vo oi id d i in ns se er rt t(T T) ;
T T g ge et t() ;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d L Li is st t<T T>: : i in ns se er rt t(T T v va al l)
{

L Li in nk k* l ln nk k = g ge et t_ _f fr re ee e() ;
l ln nk k-> v va al l = v va al l;
l ln nk k-> n ne ex xt t = h he ea ad d;
h he ea ad d = l ln nk k;

}

t te em mp pl la at te e<c cl la as ss s T T> L Li is st t<T T>: : L Li in nk k* L Li is st t<T T>: : g ge et t_ _f fr re ee e()
{

i if f (f fr re ee e == 0 0) {
/ / allocate a new chunk and place its Links on the free list

}
L Li in nk k* p p = f fr re ee e;
f fr re ee e = f fr re ee e-> n ne ex xt t;
r re et tu ur rn n p p;

}

t te em mp pl la at te e<c cl la as ss s T T> T T L Li is st t<T T>: : g ge et t()
{

i if f (h he ea ad d == 0 0) t th hr ro ow w U Un nd de er rf fl lo ow w() ;

L Li in nk k* p p= h he ea ad d;
h he ea ad d = p p-> n ne ex xt t;
p p-> n ne ex xt t = f fr re ee e;
f fr re ee e = p p;
r re et tu ur rn n p p-> v va al l;

}

TheL Li is st t<T T> scope is entered by sayingL Li is st t<T T>: : in a member function definition. Because the
return type ofg ge et t_ _f fr re ee e() is mentioned before the nameL Li is st t<T T>: : g ge et t_ _f fr re ee e() is mentioned, the
full nameL Li is st t<T T>: : L Li in nk k must be used instead of the abbreviationL Li in nk k<T T>.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

404 Class Hierarchies Chapter 15

Nonmember functions (except friends) do not have such access:

v vo oi id d w wo ou ul ld d_ _b be e_ _m me ed dd dl le er r(L Li is st t<T T>* p p)
{

L Li is st t<T T>: : L Li in nk k* q q = 0 0; / / error: List<T>::Link is private
/ / ...
q q = p p-> f fr re ee e; / / error: List<T>::free is private
/ / ...
i if f (L Li is st t<T T>: : C Ch hu un nk k: : c ch hu un nk k_ _s si iz ze e > 3 31 1) { / / error: List<T>::Chunk::chunk_size is private

/ / ...
}

}

In ac cl la as ss s, a member is by default private; in as st tr ru uc ct t, a member is by default public (§10.2.8).

15.3.1 Protected Members [hier.protected]

As an example of how to usep pr ro ot te ec ct te ed d members, consider theW Wi in nd do ow w example from §15.2.4.1.
The o ow wn n_ _d dr ra aw w() functions were (deliberately) incomplete in the service they provided. They
were designed as building blocks for use by derived classes (only) and are not safe or convenient
for general use. Thed dr ra aw w() operations, on the other hand, were designed for general use. This
distinction can be expressed by separating the interface of theW Wi in nd do ow w classes in two, thep pr ro ot te ec ct te ed d
interface and thep pu ub bl li ic c interface:

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _b bo or rd de er r {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d d dr ra aw w() ;
/ / ...

p pr ro ot te ec ct te ed d:
v vo oi id d o ow wn n_ _d dr ra aw w() ;
/ / other tool-building stuff

p pr ri iv va at te e:
/ / representation, etc.

};

A derived class can access a base class’ protected members only for objects of its own type:

c cl la as ss s B Bu uf ff fe er r {
p pr ro ot te ec ct te ed d:

c ch ha ar r a a[1 12 28 8] ;
/ / ...

};

c cl la as ss s L Li in nk ke ed d_ _b bu uf ff fe er r : p pu ub bl li ic c B Bu uf ff fe er r { /* ... */ };

c cl la as ss s C Cy yc cl li ic c_ _b bu uf ff fe er r : p pu ub bl li ic c B Bu uf ff fe er r {
/ / ...
v vo oi id d f f(L Li in nk ke ed d_ _b bu uf ff fe er r* p p) {

a a[0 0] = 0 0; / / ok: access to cyclic_buffer’s own protected member
p p-> a a[0 0] = 0 0; / / error: access to protected member of different type

}
};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.3.1 Protected Members 405

This prevents subtle errors that would otherwise occur when one derived class corrupts data
belonging to other derived classes.

15.3.1.1 Use of Protected Members [hier.protected.use]

The simple private/public model of data hiding serves the notion of concrete types (§10.3) well.
However, when derived classes are used, there are two kinds of users of a class: derived classes and
‘‘the general public.’’ The members and friends that implement the operations on the class operate
on the class objects on behalf of these users. The private/public model allows the programmer to
distinguish clearly between the implementers and the general public, but it does not provide a way
of catering specifically to derived classes.

Members declaredp pr ro ot te ec ct te ed d are far more open to abuse than members declaredp pr ri iv va at te e. In
particular, declaring data members protected is usually a design error. Placing significant amounts
of data in a common class for all derived classes to use leaves that data open to corruption. Worse,
protected data, like public data, cannot easily be restructured because there is no good way of find-
ing every use. Thus, protected data becomes a software maintenance problem.

Fortunately, you don’t have to use protected data;p pr ri iv va at te e is the default in classes and is usually
the better choice. In my experience, there have always been alternatives to placing significant
amounts of information in a common base class for derived classes to use directly.

Note that none of these objections are significant for protected memberfunctions; p pr ro ot te ec ct te ed d is a
fine way of specifying operations for use in derived classes. TheI Iv va al l_ _s sl li id de er r in §12.4.2 is an exam-
ple of this. Had the implementation class beenp pr ri iv va at te e in this example, further derivation would
have been infeasible.

Technical examples illustrating access to members can be found in §C.11.1.

15.3.2 Access to Base Classes [hier.base.access]

Like a member, a base class can be declaredp pr ri iv va at te e, p pr ro ot te ec ct te ed d, orp pu ub bl li ic c. For example:

c cl la as ss s X X : p pu ub bl li ic c B B { /* ... */ };
c cl la as ss s Y Y : p pr ro ot te ec ct te ed d B B { /* ... */ };
c cl la as ss s Z Z : p pr ri iv va at te e B B { /* ... */ };

Public derivation makes the derived class a subtype of its base; this is the most common form of
derivation. Protected and private derivation are used to represent implementation details. Protected
bases are useful in class hierarchies in which further derivation is the norm; theI Iv va al l_ _s sl li id de er r from
§12.4.2 is a good example of that. Private bases are most useful when defining a class by restrict-
ing the interface to a base so that stronger guarantees can be provided. For example,V Ve ec c adds
range checking to its private basev ve ec ct to or r (§3.7.1) and thel li is st t of pointers template adds type check-
ing to itsl li is st t<v vo oi id d*> base (§13.5).

The access specifier for a base class can be left out. In that case, the base defaults to a private
base for ac cl la as ss s and a public base for as st tr ru uc ct t. For example:

c cl la as ss s X XX X : B B { /* ... */ }; / / B is a private base
s st tr ru uc ct t Y YY Y : B B { /* ... */ }; / / B is a public base

For readability, it is best always to use an explicit access specifier.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

406 Class Hierarchies Chapter 15

The access specifier for a base class controls the access to members of the base class and the
conversion of pointers and references from the derived class type to the base class type. Consider a
classD D derived from a base classB B:

– If B B is ap pr ri iv va at te e base, its public and protected members can be used only by member func-
tions and friends ofD D. Only friends and members ofD D can convert aD D* to aB B* .

– If B B is a p pr ro ot te ec ct te ed d base, its public and protected members can be used only by member
functions and friends ofD D and by member functions and friends of classes derived fromD D.
Only friends and members ofD D and friends and members of classes derived fromD D can
convert aD D* to aB B* .

– If B B is ap pu ub bl li ic c base, its public members can be used by any function. In addition, its pro-
tected members can be used by members and friends ofD D and members and friends of
classes derived fromD D. Any function can convert aD D* to aB B* .

This basically restates the rules for member access (§15.3). We choose access for bases in the same
way as for members. For example, I chose to makeB BB Bw wi in nd do ow w a p pr ro ot te ec ct te ed d base ofI Iv va al l_ _s sl li id de er r
(§12.4.2) becauseB BB Bw wi in nd do ow w was part of the implementation ofI Iv va al l_ _s sl li id de er r rather than part of its
interface. However, I couldn’t completely hideB BB Bw wi in nd do ow w by making it a private base because I
wanted to be able to derive further classes fromI Iv va al l_ _s sl li id de er r, and those derived classes would need
access to the implementation.

Technical examples illustrating access to bases can be found in §C.11.2.

15.3.2.1 Multiple Inheritance and Access Control [hier.mi.access]

If a name or a base class can be reached through multiple paths in a multiple inheritance lattice, it is
accessible if it is accessible through any path. For example:

s st tr ru uc ct t B B {
i in nt t m m;
s st ta at ti ic c i in nt t s sm m;
/ / ...

};

c cl la as ss s D D1 1 : p pu ub bl li ic c v vi ir rt tu ua al l B B { /* ... */ } ;
c cl la as ss s D D2 2 : p pu ub bl li ic c v vi ir rt tu ua al l B B { /* ... */ } ;
c cl la as ss s D DD D : p pu ub bl li ic c D D1 1, p pr ri iv va at te e D D2 2 { /* ... */ };

D DD D* p pd d = n ne ew w D DD D;
B B* p pb b = p pd d; / / ok: accessible through D1
i in nt t i i1 1 = p pd d-> m m; / / ok: accessible through D1

If a single entity is reachable through several paths, we can still refer to it without ambiguity. For
example:

c cl la as ss s X X1 1 : p pu ub bl li ic c B B { /* ... */ } ;
c cl la as ss s X X2 2 : p pu ub bl li ic c B B { /* ... */ } ;
c cl la as ss s X XX X : p pu ub bl li ic c X X1 1, p pu ub bl li ic c X X2 2 { /* ... */ };

X XX X* p px xx x = n ne ew w X XX X;
i in nt t i i1 1 = p px xx x-> m m; / / error, ambiguous: XX::X1::B::m or XX::X2::B::m
i in nt t i i2 2 = p px xx x-> s sm m; / / ok: there is only one B::sm in an XX

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.3.2.1 Multiple Inheritance and Access Control 407

15.3.2.2 Using-Declarations and Access Control [hier.access.using]

A using-declarationcannot be used to gain access to additional information. It is simply a mecha-
nism for making accessible information more convenient to use. On the other hand, once access is
available, it can be granted to other users. For example:

c cl la as ss s B B {
p pr ri iv va at te e:

i in nt t a a;
p pr ro ot te ec ct te ed d:

i in nt t b b;
p pu ub bl li ic c:

i in nt t c c;
};

c cl la as ss s D D : p pu ub bl li ic c B B {
p pu ub bl li ic c:

u us si in ng g B B: : a a; / / error: B::a is private
u us si in ng g B B: : b b; / / make B::b publically available through D

};

When ausing-declarationis combined with private or protected derivation, it can be used to spec-
ify interfaces to some, but not all, of the facilities usually offered by a class. For example:

c cl la as ss s B BB B : p pr ri iv va at te e B B { / / give access to B::b and B::c, but not B::a
u us si in ng g B B: : b b;
u us si in ng g B B: : c c;

};

See also §15.2.2.

15.4 Run-Time Type Information[hier.rtti]

A plausible use of theI Iv va al l_ _b bo ox xes defined in §12.4 would be to hand them to a system that con-
trolled a screen and have that system hand objects back to the application program whenever some
activity had occurred. This is how many user-interfaces work. However, a user-interface system
will not know about ourI Iv va al l_ _b bo ox xes. The system’s interfaces will be specified in terms of the
system’s own classes and objects rather than our application’s classes. This is necessary and
proper. However, it does have the unpleasant effect that we lose information about the type of
objects passed to the system and later returned to us.

Recovering the ‘‘lost’’ type of an object requires us to somehow ask the object to reveal its
type. Any operation on an object requires us to have a pointer or reference of a suitable type for the
object. Consequently, the most obvious and useful operation for inspecting the type of an object at
run time is a type conversion operation that returns a valid pointer if the object is of the expected
type and a null pointer if it isn’t. Thed dy yn na am mi ic c_ _c ca as st t operator does exactly that. For example,
assume that ‘‘the system’’ invokesm my y_ _e ev ve en nt t_ _h ha an nd dl le er r() with a pointer to aB BB Bw wi in nd do ow w, where an
activity has occurred. I then might invoke my application code usingI Iv va al l_ _b bo ox x’s d do o_ _s so om me et th hi in ng g() :

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

408 Class Hierarchies Chapter 15

v vo oi id d m my y_ _e ev ve en nt t_ _h ha an nd dl le er r(B BB Bw wi in nd do ow w* p pw w)
{

i if f (I Iv va al l_ _b bo ox x* p pb b = d dy yn na am mi ic c_ _c ca as st t<I Iv va al l_ _b bo ox x*>(p pw w)) / / does pw point to an Ival_box?
p pb b-> d do o_ _s so om me et th hi in ng g() ;

e el ls se e {
/ / Oops! unexpected event

}
}

One way of explaining what is going on is thatd dy yn na am mi ic c_ _c ca as st t translates from the implementation-
oriented language of the user-interface system to the language of the application. It is important to
note what isnot mentioned in this example: the actual type of the object. The object will be a par-
ticular kind ofI Iv va al l_ _b bo ox x, say anI Iv va al l_ _s sl li id de er r, implemented by a particular kind ofB BB Bw wi in nd do ow w, say a
B BB Bs sl li id de er r. It is neither necessary nor desirable to make the actual type of the object explicit in this
interaction between ‘‘the system’’ and the application. An interface exists to represent the essen-
tials of an interaction. In particular, a well-designed interface hides inessential details.

Graphically, the action of

p pb b = d dy yn na am mi ic c_ _c ca as st t<I Iv va al l_ _b bo ox x*>(p pw w)

can be represented like this:

B BB Bw wi in nd do ow w

B BB Bs sl li id de er r

I Iv va al l_ _b bo ox x

I Iv va al l_ _s sl li id de er r

B BB B_ _i iv va al l_ _s sl li id de er r

p pw w p pb b

..

. .

The arrows fromp pw w andp pb b represent the pointers into the object passed, whereas the rest of the
arrows represent the inheritance relationships between the different parts of the object passed.

The use of type information at run time is conventionally referred to as ‘‘run-time type informa-
tion’’ and often abbreviated to RTTI.

Casting from a base class to a derived class is often called adowncastbecause of the convention
of drawing inheritance trees growing from the root down. Similarly, a cast from a derived class to
a base is called anupcast. A cast that goes from a base to a sibling class, like the cast fromB BB Bw wi in n- -
d do ow w to I Iv va al l_ _b bo ox x, is called acrosscast.

15.4.1 Dynamic_cast [hier.dynamic.cast]

Thed dy yn na am mi ic c_ _c ca as st t operator takes two operands, a type bracketed by< and>, and a pointer or refer-
ence bracketed by(and) .

Consider first the pointer case:

d dy yn na am mi ic c_ _c ca as st t<T T*>(p p)

If p p is of typeT T* or an accessible base class ofT T, the result is exactly as if we had simply assigned
p p to aT T* . For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.1 Dynamic_cast 409

c cl la as ss s B BB B_ _i iv va al l_ _s sl li id de er r : p pu ub bl li ic c I Iv va al l_ _s sl li id de er r, p pr ro ot te ec ct te ed d B BB Bs sl li id de er r {
/ / ...

};

v vo oi id d f f(B BB B_ _i iv va al l_ _s sl li id de er r* p p)
{

I Iv va al l_ _s sl li id de er r* p pi i1 1 = p p; / / ok
I Iv va al l_ _s sl li id de er r* p pi i2 2 = d dy yn na am mi ic c_ _c ca as st t<I Iv va al l_ _s sl li id de er r*>(p p) ; / / ok

B BB Bs sl li id de er r* p pb bb b1 1 = p p; / / error: BBslider is a protected base
B BB Bs sl li id de er r* p pb bb b2 2 = d dy yn na am mi ic c_ _c ca as st t<B BB Bs sl li id de er r*>(p p) ; / / ok: pbb2 becomes 0

}

That is the uninteresting case. However, it is reassuring to know thatd dy yn na am mi ic c_ _c ca as st t doesn’t allow
accidental violation of the protection of private and protected base classes.

The purpose ofd dy yn na am mi ic c_ _c ca as st t is to deal with the case in which the correctness of the conversion
cannot be determined by the compiler. In that case,

d dy yn na am mi ic c_ _c ca as st t<T T*>(p p)

looks at the object pointed to byp p (if any). If that object is of classT T or has a unique base class of
type T T, thend dy yn na am mi ic c_ _c ca as st t returns a pointer of typeT T* to that object; otherwise,0 0 is returned. If
the value ofp p is 0 0, d dy yn na am mi ic c_ _c ca as st t<T T*>(p p) returns0 0. Note the requirement that the conversion
must be to a uniquely identified object. It is possible to construct examples where the conversion
fails and0 0 is returned because the object pointed to byp p has more than one sub-object representing
bases of typeT T (see §15.4.2).

A d dy yn na am mi ic c_ _c ca as st t requires a pointer or a reference to a polymorphic type to do a downcast or a
crosscast. For example:

c cl la as ss s M My y_ _s sl li id de er r: p pu ub bl li ic c I Iv va al l_ _s sl li id de er r { / / polymorphic base (Ival_slider has virtual functions)
/ / ...

};

c cl la as ss s M My y_ _d da at te e : p pu ub bl li ic c D Da at te e { / / base not polymorphic (Date has no virtual functions)
/ / ...

};

v vo oi id d g g(I Iv va al l_ _b bo ox x* p pb b, D Da at te e* p pd d)
{

M My y_ _s sl li id de er r* p pd d1 1 = d dy yn na am mi ic c_ _c ca as st t<M My y_ _s sl li id de er r*>(p pb b) ; / / ok
M My y_ _d da at te e* p pd d2 2 = d dy yn na am mi ic c_ _c ca as st t<M My y_ _d da at te e*>(p pd d) ; / / error: Date not polymorphic

}

Requiring the pointer’s type to be polymorphic simplifies the implementation ofd dy yn na am mi ic c_ _c ca as st t
because it makes it easy to find a place to hold the necessary information about the object’s type. A
typical implementation will attach a ‘‘type information object’’ to an object by placing a pointer to
the type information in the object’s virtual function table (§2.5.5). For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

410 Class Hierarchies Chapter 15

.
v vp pt tr r
.

" "M My y_ _b bo ox x" "
b ba as se es s

. .

" "I Iv va al l_ _s sl li id de er r" "

. .

.

v vt tb bl l: :

M My y_ _b bo ox x: :

t ty yp pe e_ _i in nf fo o: :

t ty yp pe e_ _i in nf fo o: :

The dashed arrow represents an offset that allows the start of the complete object to be found given
only a pointer to a polymorphic sub-object. It is clear thatd dy yn na am mi ic c_ _c ca as st t can be efficiently imple-
mented. All that is involved are a few comparisons oft ty yp pe e_ _i in nf fo o objects representing base classes;
no expensive lookups or string comparisons are needed.

Restrictingd dy yn na am mi ic c_ _c ca as st t to polymorphic types also makes sense from a logical point of view.
This is, if an object has no virtual functions, it cannot safely be manipulated without knowledge of
its exact type. Consequently, care should be taken not to get such an object into a context in which
its type isn’t known. If its typeis known, we don’t need to used dy yn na am mi ic c_ _c ca as st t.

The target type ofd dy yn na am mi ic c_ _c ca as st t need not be polymorphic. This allows us to wrap a concrete
type in a polymorphic type, say for transmission through an object I/O system (see §25.4.1), and
then ‘‘unwrap’’ the concrete type later. For example:

c cl la as ss s I Io o_ _o ob bj j { / / base class for object I/O system
v vi ir rt tu ua al l I Io o_ _o ob bj j* c cl lo on ne e() = 0 0;

};

c cl la as ss s I Io o_ _d da at te e : p pu ub bl li ic c D Da at te e, p pu ub bl li ic c I Io o_ _o ob bj j { };

v vo oi id d f f(I Io o_ _o ob bj j* p pi io o)
{

D Da at te e* p pd d = d dy yn na am mi ic c_ _c ca as st t<D Da at te e*>(p pi io o) ;
/ / ...

}

A d dy yn na am mi ic c_ _c ca as st t to v vo oi id d* can be used to determine the address of the beginning of an object of
polymorphic type. For example:

v vo oi id d g g(I Iv va al l_ _b bo ox x* p pb b, D Da at te e* p pd d)
{

v vo oi id d* p pd d1 1 = d dy yn na am mi ic c_ _c ca as st t<v vo oi id d*>(p pb b) ; / / ok
v vo oi id d* p pd d2 2 = d dy yn na am mi ic c_ _c ca as st t<v vo oi id d*>(p pd d) ; / / error: Date not polymorphic

}

This is only useful for interaction with very low-level functions.

15.4.1.1 Dynamic_cast of References [hier.re.cast]

To get polymorphic behavior, an object must be manipulated through a pointer or a reference.
When ad dy yn na am mi ic c_ _c ca as st t is used for a pointer type, a0 0 indicates failure. That is neither feasible nor
desirable for references.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.1.1 Dynamic_cast of References 411

Given a pointer result, we must consider the possibility that the result is0 0; that is, that the
pointer doesn’t point to an object. Consequently, the result of ad dy yn na am mi ic c_ _c ca as st t of a pointer should
always be explicitly tested. For a pointerp p, d dy yn na am mi ic c_ _c ca as st t<T T*>(p p) can be seen as the question,
‘‘Is the object pointed to byp p of typeT T?’’

On the other hand, we may legitimately assume that a reference refers to an object. Conse-
quently,d dy yn na am mi ic c_ _c ca as st t<T T&>(r r) of a referencer r is not a question but an assertion: ‘‘The object
referred to byr r is of typeT T.’’ The result of ad dy yn na am mi ic c_ _c ca as st t for a reference is implicitly tested by
the implementation ofd dy yn na am mi ic c_ _c ca as st t itself. If the operand of ad dy yn na am mi ic c_ _c ca as st t to a reference isn’t of
the expected type, ab ba ad d_ _c ca as st t exception is thrown. For example:

v vo oi id d f f(I Iv va al l_ _b bo ox x* p p, I Iv va al l_ _b bo ox x& r r)
{

i if f (I Iv va al l_ _s sl li id de er r* i is s = d dy yn na am mi ic c_ _c ca as st t<I Iv va al l_ _s sl li id de er r*>(p p)) { / / does p point to an Ival_slider?
/ / use ‘is’

}
e el ls se e {

/ / *p not a slider
}

I Iv va al l_ _s sl li id de er r& i is s = d dy yn na am mi ic c_ _c ca as st t<I Iv va al l_ _s sl li id de er r&>(r r) ; / / r references an Ival_slider!
/ / use ‘is’

}

The difference in results of a failed dynamic pointer cast and a failed dynamic reference cast
reflects a fundamental difference between references and pointers. If a user wants to protect against
bad casts to references, a suitable handler must be provided. For example:

v vo oi id d g g()
{

t tr ry y {
f f(n ne ew w B BB B_ _i iv va al l_ _s sl li id de er r,* n ne ew w B BB B_ _i iv va al l_ _s sl li id de er r) ; / / arguments passed as Ival_boxs
f f(n ne ew w B BB Bd di ia al l,* n ne ew w B BB Bd di ia al l) ; / / arguments passed as Ival_boxs

}
c ca at tc ch h (b ba ad d_ _c ca as st t) { / / §14.10

/ / ...
}

}

The first call tof f() will return normally, while the second will cause ab ba ad d_ _c ca as st t exception that
will be caught byg g() .

Explicit tests against0 0 can be– and therefore occasionally will be– accidentally omitted. If
that worries you, you can write a conversion function that throws an exception instead returning0 0
(§15.8[1]) in case of failure.

15.4.2 Navigating Class Hierarchies [hier.navigate]

When only single inheritance is used, a class and its base classes constitute a tree rooted in a single
base class. This is simple but often constraining. When multiple inheritance is used, there is no
single root. This in itself doesn’t complicate matters much. However, if a class appears more than

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

412 Class Hierarchies Chapter 15

once in a hierarchy, we must be a bit careful when we refer to the object or objects that represent
that class.

Naturally, we try to keep hierarchies as simple as our application allows (and no simpler).
However, once a nontrivial hierarchy has been made we soon need to navigate it to find an appro-
priate class to use as an interface. This need occurs in two variants. That is, sometimes, we want to
explicitly name an object of a base class or a member of a base class; §15.2.3 and §15.2.4.1 are
examples of this. At other times, we want to get a pointer to the object representing a base or
derived class of an object given a pointer to a complete object or some sub-object; §15.4 and
§15.4.1 are examples of this.

Here, we consider how to navigate a class hierarchy using type conversions (casts) to gain a
pointer of the desired type. To illustrate the mechanisms available and the rules that guide them,
consider a lattice containing both a replicated base and a virtual base:

c cl la as ss s C Co om mp po on ne en nt t : p pu ub bl li ic c v vi ir rt tu ua al l S St to or ra ab bl le e { /* ... */ };
c cl la as ss s R Re ec ce ei iv ve er r : p pu ub bl li ic c C Co om mp po on ne en nt t { /* ... */ };
c cl la as ss s T Tr ra an ns sm mi it tt te er r : p pu ub bl li ic c C Co om mp po on ne en nt t { /* ... */ };
c cl la as ss s R Ra ad di io o : p pu ub bl li ic c R Re ec ce ei iv ve er r, p pu ub bl li ic c T Tr ra an ns sm mi it tt te er r { /* ... */ };

Or graphically:

S St to or ra ab bl le e

C Co om mp po on ne en nt t C Co om mp po on ne en nt t

R Re ec ce ei iv ve er r T Tr ra an ns sm mi it tt te er r

R Ra ad di io o

..

Here, aR Ra ad di io o object has two sub-objects of classC Co om mp po on ne en nt t. Consequently, ad dy yn na am mi ic c_ _c ca as st t
from S St to or ra ab bl le e to C Co om mp po on ne en nt t within aR Ra ad di io o will be ambiguous and return a0 0. There is simply no
way of knowing whichC Co om mp po on ne en nt t the programmer wanted:

v vo oi id d h h1 1(R Ra ad di io o& r r)
{

S St to or ra ab bl le e* p ps s = &r r;
/ / ...
C Co om mp po on ne en nt t* p pc c = d dy yn na am mi ic c_ _c ca as st t<C Co om mp po on ne en nt t*>(p ps s) ; / / pc = 0

}

This ambiguity is not in general detectable at compile time:

v vo oi id d h h2 2(S St to or ra ab bl le e* p ps s) / / ps might or might not point to a Component
{

C Co om mp po on ne en nt t* p pc c = d dy yn na am mi ic c_ _c ca as st t<C Co om mp po on ne en nt t*>(p ps s) ;
/ / ...

}

This kind of run-time ambiguity detection is needed only for virtual bases. For ordinary bases,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.2 Navigating Class Hierarchies 413

there is always a unique sub-object of a given cast (or none) when downcasting (that is, towards a
derived class; §15.4). The equivalent ambiguity occurs when upcasting (that is, towards a base;
§15.4) and such ambiguities are caught at compile time.

15.4.2.1 Static and Dynamic Casts [hier.static.cast]

A d dy yn na am mi ic c_ _c ca as st t can cast from a polymorphic virtual base class to a derived class or a sibling class
(§15.4.1). As st ta at ti ic c_ _c ca as st t (§6.2.7) does not examine the object it casts from, so it cannot:

v vo oi id d g g(R Ra ad di io o& r r)
{

R Re ec ce ei iv ve er r* p pr re ec c = &r r; / / Receiver is ordinary base of Radio
R Ra ad di io o* p pr r = s st ta at ti ic c_ _c ca as st t<R Ra ad di io o*>(p pr re ec c) ; / / ok, unchecked
p pr r = d dy yn na am mi ic c_ _c ca as st t<R Ra ad di io o*>(p pr re ec c) ; / / ok, run-time checked

S St to or ra ab bl le e* p ps s = &r r; / / Storable is virtual base of Radio
p pr r = s st ta at ti ic c_ _c ca as st t<R Ra ad di io o*>(p ps s) ; / / error: cannot cast from virtual base
p pr r = d dy yn na am mi ic c_ _c ca as st t<R Ra ad di io o*>(p ps s) ; / / ok, run-time checked

}

Thed dy yn na am mi ic c_ _c ca as st t requires a polymorphic operand because there is no information stored in a non-
polymorphic object that can be used to find the objects for which it represents a base. In particular,
an object of a type with layout constraints determined by some other language– such as Fortran or
C – may be used as a virtual base class. For objects of such types, only static type information will
be available. However, the information needed to provide run-time type identification includes the
information needed to implement thed dy yn na am mi ic c_ _c ca as st t.

Why would anyone want to use as st ta at ti ic c_ _c ca as st t for class hierarchy navigation? There is a small
run-time cost associated with the use of ad dy yn na am mi ic c_ _c ca as st t (§15.4.1). More significantly, there are
millions of lines of code that were written befored dy yn na am mi ic c_ _c ca as st t became available. This code relies
on alternative ways of making sure that a cast is valid, so the checking done byd dy yn na am mi ic c_ _c ca as st t is
seen as redundant. However, such code is typically written using the C-style cast (§6.2.7); often
obscure errors remain. Where possible, use the saferd dy yn na am mi ic c_ _c ca as st t.

The compiler cannot assume anything about the memory pointed to by av vo oi id d* . This implies
that d dy yn na am mi ic c_ _c ca as st t – which must look into an object to determine its type– cannot cast from a
v vo oi id d* . For that, as st ta at ti ic c_ _c ca as st t is needed. For example:

R Ra ad di io o* f f(v vo oi id d* p p)
{

S St to or ra ab bl le e* p ps s = s st ta at ti ic c_ _c ca as st t<S St to or ra ab bl le e*>(p p) ; / / trust the programmer
r re et tu ur rn n d dy yn na am mi ic c_ _c ca as st t<R Ra ad di io o*>(p ps s) ;

}

Both d dy yn na am mi ic c_ _c ca as st t ands st ta at ti ic c_ _c ca as st t respectc co on ns st t and access controls. For example:

c cl la as ss s U Us se er rs s : p pr ri iv va at te e s se et t<P Pe er rs so on n> { /* ... */ };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

414 Class Hierarchies Chapter 15

v vo oi id d f f(U Us se er rs s* p pu u, c co on ns st t R Re ec ce ei iv ve er r* p pc cr r)
{

s st ta at ti ic c_ _c ca as st t<s se et t<P Pe er rs so on n>*>(p pu u) ; / / error: access violation
d dy yn na am mi ic c_ _c ca as st t<s se et t<P Pe er rs so on n>*>(p pu u) ; / / error: access violation

s st ta at ti ic c_ _c ca as st t<R Re ec ce ei iv ve er r*>(p pc cr r) ; / / error: can’t cast away const
d dy yn na am mi ic c_ _c ca as st t<R Re ec ce ei iv ve er r*>(p pc cr r) ; / / error: can’t cast away const

R Re ec ce ei iv ve er r* p pr r = c co on ns st t_ _c ca as st t<R Re ec ce ei iv ve er r*>(p pc cr r) ; / / ok
/ / ...

}

It is not possible to cast to a private base class, and ‘‘casting awayc co on ns st t’’ requires ac co on ns st t_ _c ca as st t
(§6.2.7). Even then, using the result is safe only provided the object wasn’t originally declared
c co on ns st t (§10.2.7.1) .

15.4.3 Class Object Construction and Destruction [hier.class.obj]

A class object is more than simply a region of memory (§4.9.6). A class object is built from ‘‘raw
memory’’ by its constructors and it reverts to ‘‘raw memory’’ as its destructors are executed. Con-
struction is bottom up, destruction is top down, and a class object is an object to the extent that it
has been constructed or destroyed. This is reflected in the rules for RTTI, exception handling
(§14.4.7), and virtual functions.

It is extremely unwise to rely on details of the order of construction and destruction, but that
order can be observed by calling virtual functions,d dy yn na am mi ic c_ _c ca as st t, or t ty yp pe ei id d (§15.4.4) at a point
where the object isn’t complete. For example, if the constructor forC Co om mp po on ne en nt t in the hierarchy
from §15.4.2 calls a virtual function, it will invoke a version defined forS St to or ra ab bl le e or C Co om mp po on ne en nt t,
but not one fromR Re ec ce ei iv ve er r, T Tr ra an ns sm mi it tt te er r, or R Ra ad di io o. At that point of construction, the object isn’t
yet aR Ra ad di io o; it is merely a partially constructed object. It is best to avoid calling virtual functions
during construction and destruction.

15.4.4 Typeid and Extended Type Information [hier.typeid]

The d dy yn na am mi ic c_ _c ca as st t operator serves most needs for information about the type of an object at run
time. Importantly, it ensures that code written using it works correctly with classes derived from
those explicitly mentioned by the programmer. Thus,d dy yn na am mi ic c_ _c ca as st t preserves flexibility and
extensibility in a manner similar to virtual functions.

However, it is occasionally essential to know the exact type of an object. For example, we
might like to know the name of the object’s class or its layout. Thet ty yp pe ei id d operator serves this pur-
pose by yielding an object representing the type of its operand. Hadt ty yp pe ei id d() been a function, its
declaration would have looked something like this:

c cl la as ss s t ty yp pe e_ _i in nf fo o;
c co on ns st t t ty yp pe e_ _i in nf fo o& t ty yp pe ei id d(t ty yp pe e_ _n na am me e) t th hr ro ow w(b ba ad d_ _t ty yp pe ei id d) ; / / pseudo declaration
c co on ns st t t ty yp pe e_ _i in nf fo o& t ty yp pe ei id d(e ex xp pr re es ss si io on n) ; / / pseudo declaration

That is,t ty yp pe ei id d() returns a reference to a standard library type calledt ty yp pe e_ _i in nf fo o defined in<t ty yp pe e- -
i in nf fo o>. Given atype-nameas its operand,t ty yp pe ei id d() returns a reference to at ty yp pe e_ _i in nf fo o that repre-
sents thetype-name. Given anexpressionas its operand,t ty yp pe ei id d() returns a reference to a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.4 Typeid and Extended Type Information 415

t ty yp pe e_ _i in nf fo o that represents the type of the object denoted by theexpression. A t ty yp pe ei id d() is most
commonly used to find the type of an object referred to by a reference or a pointer:

v vo oi id d f f(S Sh ha ap pe e& r r, S Sh ha ap pe e* p p)
{

t ty yp pe ei id d(r r) ; / / type of object referred to by r
t ty yp pe ei id d(* p p) ; / / type of object pointed to by p
t ty yp pe ei id d(p p) ; / / type of pointer, that is, Shape* (uncommon, except as a mistake)

}

If the value of a pointer or a reference operand is0 0, t ty yp pe ei id d() throws ab ba ad d_ _t ty yp pe ei id d exception.
The implementation-independent part oft ty yp pe e_ _i in nf fo o looks like this:

c cl la as ss s t ty yp pe e_ _i in nf fo o {
p pu ub bl li ic c:

v vi ir rt tu ua al l ~t ty yp pe e_ _i in nf fo o() ; / / is polymorphic

b bo oo ol l o op pe er ra at to or r==(c co on ns st t t ty yp pe e_ _i in nf fo o&) c co on ns st t; / / can be compared
b bo oo ol l o op pe er ra at to or r!=(c co on ns st t t ty yp pe e_ _i in nf fo o&) c co on ns st t;
b bo oo ol l b be ef fo or re e(c co on ns st t t ty yp pe e_ _i in nf fo o&) c co on ns st t; / / ordering

c co on ns st t c ch ha ar r* n na am me e() c co on ns st t; / / name of type
p pr ri iv va at te e:

t ty yp pe e_ _i in nf fo o(c co on ns st t t ty yp pe e_ _i in nf fo o&) ; / / prevent copying
t ty yp pe e_ _i in nf fo o& o op pe er ra at to or r=(c co on ns st t t ty yp pe e_ _i in nf fo o&) ; / / prevent copying
/ / ...

};

The b be ef fo or re e() function allowst ty yp pe e_ _i in nf fo os to be sorted. There is no relation between the relation-
ships defined byb be ef fo or re eand inheritance relationships.

It is not guaranteed that there is only onet ty yp pe e_ _i in nf fo o object for each type in the system. In fact,
where dynamically linked libraries are used it can be hard for an implementation to avoid duplicate
t ty yp pe e_ _i in nf fo o objects. Consequently, we should use== on t ty yp pe e_ _i in nf fo o objects to test equality, rather
than== on pointers to such objects.

We sometimes want to know the exact type of an object so as to perform some standard service
on the whole object (and not just on some base of the object). Ideally, such services are presented
as virtual functions so that the exact type needn’t be known. In some cases, no common interface
can be assumed for every object manipulated, so the detour through the exact type becomes neces-
sary (§15.4.4.1). Another, much simpler, use has been to obtain the name of a class for diagnostic
output:

#i in nc cl lu ud de e<t ty yp pe ei in nf fo o>

v vo oi id d g g(C Co om mp po on ne en nt t* p p)
{

c co ou ut t << t ty yp pe ei id d(* p p). n na am me e() ;
}

The character representation of a class’ name is implementation-defined. This C-style string
resides in memory owned by the system, so the programmer should not attempt tod de el le et te e[] it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

416 Class Hierarchies Chapter 15

15.4.4.1 Extended Type Information [hier.extended]

Typically, finding the exact type of an object is simply the first step to acquiring and using more-
detailed information about that type.

Consider how an implementation or a tool could make information about types available to
users at run time. Suppose I have a tool that generates descriptions of object layouts for each class
used. I can put these descriptors into am ma ap p to allow user code to find the layout information:

m ma ap p<c co on ns st t c ch ha ar r*, L La ay yo ou ut t> l la ay yo ou ut t_ _t ta ab bl le e;

v vo oi id d f f(B B* p p)
{

L La ay yo ou ut t& x x = l la ay yo ou ut t_ _t ta ab bl le e[t ty yp pe ei id d(* p p). n na am me e()] ;
/ / use x

}

Someone else might provide a completely different kind of information:

s st tr ru uc ct t T TI I_ _e eq q {
b bo oo ol l o op pe er ra at to or r()(c co on ns st t t ty yp pe e_ _i in nf fo o* p p, c co on ns st t t ty yp pe e_ _i in nf fo o* q q) { r re et tu ur rn n * p p==* q q; }

};

s st tr ru uc ct t T TI I_ _h ha as sh h {
i in nt t o op pe er ra at to or r()(c co on ns st t t ty yp pe e_ _i in nf fo o* p p) ; / / compute hash value (§17.6.2.2)

};

h ha as sh h_ _m ma ap p<t ty yp pe e_ _i in nf fo o*, I Ic co on n, h ha as sh h_ _f fc ct t, T TI I_ _h ha as sh h, T TI I_ _e eq q> i ic co on n_ _t ta ab bl le e; / / §17.6

v vo oi id d g g(B B* p p)
{

I Ic co on n& i i = i ic co on n_ _t ta ab bl le e[& t ty yp pe ei id d(* p p)] ;
/ / use i

}

This way of associatingt ty yp pe ei id ds with information allows several people or tools to associate differ-
ent information with types totally independently of each other:

" "T T" "
...

object
layout

. .

l la ay yo ou ut t_ _t ta ab bl le e: :

. .
...

& &t ty yp pe ei id d((T T))
...

icon
representation

of
type

. .

i ic co on n_ _t ta ab bl le e: :

This is most important because the likelihood is zero that someone can come up with a single set of
information that satisfies every user.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.5 Uses and Misuses of RTTI 417

15.4.5 Uses and Misuses of RTTI [hier.misuse]

One should use explicit run-time type information only when necessary. Static (compile-time)
checking is safer, implies less overhead, and– where applicable– leads to better-structured pro-
grams. For example, RTTI can be used to write thinly disguisedswitch-statements:

/ / misuse of run-time type information:

v vo oi id d r ro ot ta at te e(c co on ns st t S Sh ha ap pe e& r r)
{

i if f (t ty yp pe ei id d(r r) == t ty yp pe ei id d(C Ci ir rc cl le e)) {
/ / do nothing

}
e el ls se e i if f (t ty yp pe ei id d(r r) == t ty yp pe ei id d(T Tr ri ia an ng gl le e)) {

/ / rotate triangle
}
e el ls se e i if f (t ty yp pe ei id d(r r) == t ty yp pe ei id d(S Sq qu ua ar re e)) {

/ / rotate square
}
/ / ...

}

Usingd dy yn na am mi ic c_ _c ca as st t rather thant ty yp pe ei id d would improve this code only marginally.
Unfortunately, this is not a strawman example; such code really does get written. For many

people trained in languages such as C, Pascal, Modula-2, and Ada, there is an almost irresistible
urge to organize software as a set ofswitch-statements. This urge should usually be resisted. Use
virtual functions (§2.5.5, §12.2.6) rather than RTTI to handle most cases when run-time discrimina-
tion based on type is needed.

Many examples of proper use of RTTI arise when some service code is expressed in terms of
one class and a user wants to add functionality through derivation. The use ofI Iv va al l_ _b bo ox x in §15.4 is
an example of this. If the user is willing and able to modify the definitions of the library classes,
sayB BB Bw wi in nd do ow w, then the use of RTTI can be avoided; otherwise, it is needed. Even if the user is
willing to modify the base classes, such modification may cause its own problems. For example, it
may be necessary to introduce dummy implementations of virtual functions in classes for which
those functions are not needed or not meaningful. This problem is discussed in some detail in
§24.4.3. A use of RTTI to implement a simple object I/O system can be found in §25.4.1.

For people with a background in languages that rely heavily on dynamic type checking, such as
Smalltalk or Lisp, it is tempting to use RTTI in conjunction with overly general types. Consider:

/ / misuse of run-time type information:

c cl la as ss s O Ob bj je ec ct t { /* ... */ }; / / polymorphic

c cl la as ss s C Co on nt ta ai in ne er r : p pu ub bl li ic c O Ob bj je ec ct t {
p pu ub bl li ic c:

v vo oi id d p pu ut t(O Ob bj je ec ct t*) ;
O Ob bj je ec ct t* g ge et t() ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

418 Class Hierarchies Chapter 15

c cl la as ss s S Sh hi ip p : p pu ub bl li ic c O Ob bj je ec ct t { /* ... */ };

S Sh hi ip p* f f(S Sh hi ip p* p ps s, C Co on nt ta ai in ne er r* c c)
{

c c-> p pu ut t(p ps s) ;
/ / ...
O Ob bj je ec ct t* p p = c c-> g ge et t() ;
i if f (S Sh hi ip p* q q = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p*>(p p)) { / / run-time check

r re et tu ur rn n q q;
}
e el ls se e {

/ / do something else (typically, error handling)
}

}

Here, classO Ob bj je ec ct t is an unnecessary implementation artifact. It is overly general because it does
not correspond to an abstraction in the application domain and forces the application programmer
to use an implementation-level abstraction. Problems of this kind are often better solved by using
container templates that hold only a single kind of pointer:

S Sh hi ip p* f f(S Sh hi ip p* p ps s, l li is st t<S Sh hi ip p*>& c c)
{

c c. p pu us sh h_ _f fr ro on nt t(p ps s) ;
/ / ...
r re et tu ur rn n c c. p po op p_ _f fr ro on nt t() ;

}

Combined with the use of virtual functions, this technique handles most cases.

15.5 Pointers to Members[hier.ptom]

Many classes provide simple, very general interfaces intended to be invoked in several different
ways. For example, many ‘‘object-oriented’’ user-interfaces define a set of requests to which every
object represented on the screen should be prepared to respond. In addition, such requests can be
presented directly or indirectly from programs. Consider a simple variant of this idea:

c cl la as ss s S St td d_ _i in nt te er rf fa ac ce e {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d s st ta ar rt t() = 0 0;
v vi ir rt tu ua al l v vo oi id d s su us sp pe en nd d() = 0 0;
v vi ir rt tu ua al l v vo oi id d r re es su um me e() = 0 0;
v vi ir rt tu ua al l v vo oi id d q qu ui it t() = 0 0;
v vi ir rt tu ua al l v vo oi id d f fu ul ll l_ _s si iz ze e() = 0 0;
v vi ir rt tu ua al l v vo oi id d s sm ma al ll l() = 0 0;

v vi ir rt tu ua al l ~S St td d_ _i in nt te er rf fa ac ce e() {}
};

The exact meaning of each operation is defined by the object on which it is invoked. Often, there is
a layer of software between the person or program issuing the request and the object receiving it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.5 Pointers to Members 419

Ideally, such intermediate layers of software should not have to know anything about the individual
operations such asr re es su um me e() and f fu ul ll l_ _s si iz ze e() . If they did, the intermediate layers would have to
be updated each time the set of operations changed. Consequently, such intermediate layers simply
transmit some data representing the operation to be invoked from the source of the request to its
recipient.

One simple way of doing that is to send as st tr ri in ng g representing the operation to be invoked. For
example, to invokes su us sp pe en nd d() we could send the string" "s su us sp pe en nd d" ". However, someone has to cre-
ate that string and someone has to decode it to determine to which operation it corresponds– if
any. Often, that seems indirect and tedious. Instead, we might simply send an integer representing
the operation. For example,2 2 might be used to means su us sp pe en nd d() . However, while an integer may
be convenient for machines to deal with, it can get pretty obscure for people. We still have to write
code to determine that2 2 meanss su us sp pe en nd d() and to invokes su us sp pe en nd d() .

C++ offers a facility for indirectly referring to a member of a class. A pointer to a member is a
value that identifies a member of a class. You can think of it as the position of the member in an
object of the class, but of course an implementation takes into account the differences between data
members, virtual functions, non-virtual functions, etc.

ConsiderS St td d_ _i in nt te er rf fa ac ce e. If I want to invokes su us sp pe en nd d() for some object without mentioning
s su us sp pe en nd d() directly, I need a pointer to member referring toS St td d_ _i in nt te er rf fa ac ce e: : s su us sp pe en nd d() . I also
need a pointer or reference to the object I want to suspend. Consider a trivial example:

t ty yp pe ed de ef f v vo oi id d (S St td d_ _i in nt te er rf fa ac ce e: :* P Ps st td d_ _m me em m)() ; / / pointer to member type

v vo oi id d f f(S St td d_ _i in nt te er rf fa ac ce e* p p)
{

P Ps st td d_ _m me em m s s = &S St td d_ _i in nt te er rf fa ac ce e: : s su us sp pe en nd d;

p p-> s su us sp pe en nd d() ; / / direct call

(p p->* s s)() ; / / call through pointer to member
}

A pointer to membercan be obtained by applying the address-of operator& to a fully qualified
class member name, for example,&S St td d_ _i in nt te er rf fa ac ce e: : s su us sp pe en nd d. A variable of type ‘‘pointer to mem-
ber of classX X’’ is declared using a declarator of the formX X: :* .

The use oft ty yp pe ed de ef f to compensate for the lack of readability of the C declarator syntax is typi-
cal. However, please note how theX X: :* declarator matches the traditional* declarator exactly.

A pointer to memberm m can be used in combination with an object. The operators->* and.*
allow the programmer to express such combinations. For example,p p->* m m bindsm m to the object
pointed to byp p, ando ob bj j.* m m bindsm m to the objecto ob bj j. The result can be used in accordance with
m m’s type. It is not possible to store the result of a->* or a.* operation for later use.

Naturally, if we knew which member we wanted to call we would invoke it directly rather than
mess with pointers to members. Just like ordinary pointers to functions, pointers to member func-
tions are used when we need to refer to a function without having to know its name. However, a
pointer to member isn’t a pointer to a piece of memory the way a pointer to a variable or a pointer
to a function is. It is more like an offset into a structure or an index into an array. When a pointer
to member is combined with a pointer to an object of the right type, it yields something that identi-
fies a particular member of a particular object.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

420 Class Hierarchies Chapter 15

This can be represented graphically like this:

X X: :: :s st ta ar rt t
. .

X X: :: :s su us sp pe en nd d

v vt tb bl l: :
s s

p p ..

Because a pointer to a virtual member (s s in this example) is a kind of offset, it does not depend on
an object’s location in memory. A pointer to a virtual member can therefore safely be passed
between different address spaces as long as the same object layout is used in both. Like pointers to
ordinary functions, pointers to non-virtual member functions cannot be exchanged between address
spaces.

Note that the function invoked through the pointer to function can bev vi ir rt tu ua al l. For example,
when we calls su us sp pe en nd d() through a pointer to function, we get the rights su us sp pe en nd d() for the object to
which the pointer to function is applied. This is an essential aspect of pointers to functions.

An interpreter might use pointers to members to invoke functions presented as strings:

m ma ap p<s st tr ri in ng g, S St td d_ _i in nt te er rf fa ac ce e*> v va ar ri ia ab bl le e;
m ma ap p<s st tr ri in ng g, P Ps st td d_ _m me em m> o op pe er ra at ti io on n;

v vo oi id d c ca al ll l_ _m me em mb be er r(s st tr ri in ng g v va ar r, s st tr ri in ng g o op pe er r)
{

(v va ar ri ia ab bl le e[v va ar r]->* o op pe er ra at ti io on n[o op pe er r])() ; / / var.oper()
}

A critical use of pointers to member functions is found inm me em m_ _f fu un n() (§3.8.5, §18.4).
A static member isn’t associated with a particular object, so a pointer to a static member is sim-

ply an ordinary pointer. For example:

c cl la as ss s T Ta as sk k {
/ / ...
s st ta at ti ic c v vo oi id d s sc ch he ed du ul le e() ;

};

v vo oi id d (* p p)() = &T Ta as sk k: : s sc ch he ed du ul le e; / / ok
v vo oi id d (T Ta as sk k: :* p pm m)() = &T Ta as sk k: : s sc ch he ed du ul le e; / / error: ordinary pointer assigned

/ / to pointer to member

Pointers to data members are described in §C.12.

15.5.1 Base and Derived Classes [hier.contravariance]

A derived class has at least the members that it inherits from its base classes. Often it has more.
This implies that we can safely assign a pointer to a member of a base class to a pointer to a mem-
ber of a derived class, but not the other way around. This property is often calledcontravariance.
For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.5.1 Base and Derived Classes 421

c cl la as ss s t te ex xt t : p pu ub bl li ic c S St td d_ _i in nt te er rf fa ac ce e {
p pu ub bl li ic c:

v vo oi id d s st ta ar rt t() ;
v vo oi id d s su us sp pe en nd d() ;
/ / ...
v vi ir rt tu ua al l v vo oi id d p pr ri in nt t() ;

p pr ri iv va at te e:
v ve ec ct to or r s s;

};

v vo oi id d (S St td d_ _i in nt te er rf fa ac ce e: :* p pm mi i)() = &t te ex xt t: : p pr ri in nt t; / / error
v vo oi id d (t te ex xt t: :* p pm mt t)() = &S St td d_ _i in nt te er rf fa ac ce e: : s st ta ar rt t; / / ok

This contravariance rule appears to be the opposite of the rule that says we can assign a pointer to a
derived class to a pointer to its base class. In fact, both rules exist to preserve the fundamental
guarantee that a pointer may never point to an object that doesn’t at least have the properties that
the pointer promises. In this case,S St td d_ _i in nt te er rf fa ac ce e: :* can be applied to anyS St td d_ _i in nt te er rf fa ac ce e, and most
such objects presumably are not of typet te ex xt t. Consequently, they do not have the member
t te ex xt t: : p pr ri in nt t with which we tried to initializep pm mi i. By refusing the initialization, the compiler saves
us from a run-time error.

15.6 Free Store[hier.free]

It is possible to take over memory management for a class by definingo op pe er ra at to or r n ne ew w() ando op pe er ra a- -
t to or r d de el le et te e() (§6.2.6.2). However, replacing the globalo op pe er ra at to or r n ne ew w() ando op pe er ra at to or r d de el le et te e() is
not for the fainthearted. After all, someone else might rely on some aspect of the default behavior
or might even have supplied other versions of these functions.

A more selective, and often better, approach is to supply these operations for a specific class.
This class might be the base for many derived classes. For example, we might like to have the
E Em mp pl lo oy ye ee e class from §12.2.6 provide a specialized allocator and deallocator for itself and all of its
derived classes:

c cl la as ss s E Em mp pl lo oy ye ee e {
/ / ...

p pu ub bl li ic c:
/ / ...
v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t) ;
v vo oi id d o op pe er ra at to or r d de el le et te e(v vo oi id d*, s si iz ze e_ _t t) ;

};

Membero op pe er ra at to or r n ne ew w() s ando op pe er ra at to or r d de el le et te e() s are implicitlys st ta at ti ic c members. Consequently,
they don’t have at th hi is s pointer and do not modify an object. They provide storage that a constructor
can initialize and a destructor can clean up.

v vo oi id d* E Em mp pl lo oy ye ee e: : o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t s s)
{

/ / allocate ‘s’ bytes of memory and return a pointer to it
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

422 Class Hierarchies Chapter 15

v vo oi id d E Em mp pl lo oy ye ee e: : o op pe er ra at to or r d de el le et te e(v vo oi id d* p p, s si iz ze e_ _t t s s)
{

/ / assume ‘p’ points to ‘s’ bytes of memory allocated by Employee::operator new()
/ / and free that memory for reuse

}

The use of the hitherto mysteriouss si iz ze e_ _t t argument now becomes obvious. It is the size of the
object actually deleted. Deleting a ‘‘plain’’E Em mp pl lo oy ye ee e gives an argument value of
s si iz ze eo of f(E Em mp pl lo oy ye ee e) ; deleting aM Ma an na ag ge er r gives an argument value ofs si iz ze eo of f(M Ma an na ag ge er r) . This
allows a class-specific allocator to avoid storing size information with each allocation. Naturally, a
class-specific allocator can store such information (like a general-purpose allocator must) and
ignore thes si iz ze e_ _t t argument too op pe er ra at to or r d de el le et te e() . However, that makes it harder to improve signif-
icantly on the speed and memory consumption of a general-purpose allocator.

How does a compiler know how to supply the right size too op pe er ra at to or r d de el le et te e() ? As long as the
type specified in thed de el le et te e operation matches the actual type of the object, this is easy. However,
that is not always the case:

c cl la as ss s M Ma an na ag ge er r : p pu ub bl li ic c E Em mp pl lo oy ye ee e {
i in nt t l le ev ve el l;
/ / ...

};

v vo oi id d f f()
{

E Em mp pl lo oy ye ee e* p p = n ne ew w M Ma an na ag ge er r; / / trouble (the exact type is lost)
d de el le et te e p p;

}

In this case, the compiler will not get the size right. As when an array is deleted, the user must help.
This is done by adding a virtual destructor to the base class,E Em mp pl lo oy ye ee e:

c cl la as ss s E Em mp pl lo oy ye ee e {
p pu ub bl li ic c:

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t) ;
v vo oi id d o op pe er ra at to or r d de el le et te e(v vo oi id d*, s si iz ze e_ _t t) ;
v vi ir rt tu ua al l ~E Em mp pl lo oy ye ee e() ;
/ / ...

};

Even an empty destructor will do:

E Em mp pl lo oy ye ee e: :~ E Em mp pl lo oy ye ee e() { }

In principle, deallocation is then done from within the destructor (which knows the size). Further-
more, the presence of a destructor inE Em mp pl lo oy ye ee e ensures that every class derived from it will be sup-
plied with a destructor (thus getting the size right), even if the derived class doesn’t have a user-
defined destructor. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.6 Free Store 423

v vo oi id d f f()
{

E Em mp pl lo oy ye ee e* p p = n ne ew w M Ma an na ag ge er r;
d de el le et te e p p; / / now fine (Employee is polymorphic)

}

Allocation is done by a (compiler-generated) call:

E Em mp pl lo oy ye ee e: : o op pe er ra at to or r n ne ew w(s si iz ze eo of f(M Ma an na ag ge er r))

and deallocation by a (compiler-generated) call:

E Em mp pl lo oy ye ee e: : o op pe er ra at to or r d de el le et te e(p p, s si iz ze eo of f(M Ma an na ag ge er r))

In other words, if you want to supply an allocator/deallocator pair that works correctly for derived
classes, you must either supply a virtual destructor in the base class or refrain from using thes si iz ze e_ _t t
argument in the deallocator. Naturally, the language could have been designed to save you from
such concerns. However, that can be done only by also ‘‘saving’’ you from the benefits of the opti-
mizations possible in the less safe system.

15.6.1 Array Allocation [hier.array]

The o op pe er ra at to or r n ne ew w() and o op pe er ra at to or r d de el le et te e() functions allow a user to take over allocation and
deallocation of individual objects;o op pe er ra at to or r n ne ew w[]() ando op pe er ra at to or r d de el le et te e[]() serve exactly the
same role for the allocation and deallocation of arrays. For example:

c cl la as ss s E Em mp pl lo oy ye ee e {
p pu ub bl li ic c:

v vo oi id d* o op pe er ra at to or r n ne ew w[](s si iz ze e_ _t t) ;
v vo oi id d o op pe er ra at to or r d de el le et te e[](v vo oi id d*, s si iz ze e_ _t t) ;
/ / ...

};

v vo oi id d f f(i in nt t s s)
{

E Em mp pl lo oy ye ee e* p p = n ne ew w E Em mp pl lo oy ye ee e[s s] ;
/ / ...
d de el le et te e[] p p;

}

Here, the memory needed will be obtained by a call,

E Em mp pl lo oy ye ee e: : o op pe er ra at to or r n ne ew w[](s si iz ze eo of f(E Em mp pl lo oy ye ee e)* s s+d de el lt ta a)

whered de el lt ta a is some minimal implementation-defined overhead, and released by a call:

E Em mp pl lo oy ye ee e: : o op pe er ra at to or r d de el le et te e[](p p, s s* s si iz ze eo of f(E Em mp pl lo oy ye ee e)+ d de el lt ta a)

The number of elements (s s) is ‘‘remembered’’ by the system.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

424 Class Hierarchies Chapter 15

15.6.2 “Virtual Constructors ” [hier.vctor]

After hearing about virtual destructors, the obvious question is, ‘‘Can constructors be virtual?’’
The short answer is no; a slightly longer one is, no, but you can easily get the effect you are looking
for.

To construct an object, a constructor needs the exact type of the object it is to create. Conse-
quently, a constructor cannot be virtual. Furthermore, a constructor is not quite an ordinary func-
tion. In particular, it interacts with memory management routines in ways ordinary member func-
tions don’t. Consequently, you cannot have a pointer to a constructor.

Both of these restrictions can be circumvented by defining a function that calls a constructor
and returns a constructed object. This is fortunate because creating a new object without knowing
its exact type is often useful. TheI Iv va al l_ _b bo ox x_ _m ma ak ke er r (§12.4.4) is an example of a class designed
specifically to do that. Here, I present a different variant of that idea, where objects of a class can
provide users with a clone (copy) of themselves or a new object of their type. Consider:

c cl la as ss s E Ex xp pr r {
p pu ub bl li ic c:

E Ex xp pr r() ; / / default constructor
E Ex xp pr r(c co on ns st t E Ex xp pr r&) ; / / copy constructor

v vi ir rt tu ua al l E Ex xp pr r* n ne ew w_ _e ex xp pr r() { r re et tu ur rn n n ne ew w E Ex xp pr r() ; }
v vi ir rt tu ua al l E Ex xp pr r* c cl lo on ne e() { r re et tu ur rn n n ne ew w E Ex xp pr r(* t th hi is s) ; }
/ / ...

};

Because functions such asn ne ew w_ _e ex xp pr r() and c cl lo on ne e() are virtual and they (indirectly) construct
objects, they are often called ‘‘virtual constructors’’– by a strange misuse of the English language.
Each simply uses a constructor to create a suitable object.

A derived class can overriden ne ew w_ _e ex xp pr r() and/orc cl lo on ne e() to return an object of its own type:

c cl la as ss s C Co on nd d : p pu ub bl li ic c E Ex xp pr r {
p pu ub bl li ic c:

C Co on nd d() ;
C Co on nd d(c co on ns st t C Co on nd d&) ;

C Co on nd d* n ne ew w_ _e ex xp pr r() { r re et tu ur rn n n ne ew w C Co on nd d() ; }
C Co on nd d* c cl lo on ne e() { r re et tu ur rn n n ne ew w C Co on nd d(* t th hi is s) ; }
/ / ...

};

This means that given an object of classE Ex xp pr r, a user can create a new object of ‘‘just the same
type.’’ For example:

v vo oi id d u us se er r(E Ex xp pr r* p p)
{

E Ex xp pr r* p p2 2 = p p-> n ne ew w_ _e ex xp pr r() ;
/ / ...

}

The pointer assigned top p2 2 is of an appropriate, but unknown, type.
The return type ofC Co on nd d: : n ne ew w_ _e ex xp pr r() andC Co on nd d: : c cl lo on ne e() wasC Co on nd d* rather thanE Ex xp pr r* .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.6.2 “Virtual Constructors ” 425

This allows aC Co on nd d to be cloned without loss of type information. For example:

v vo oi id d u us se er r2 2(C Co on nd d* p pc c, E Ex xp pr r* p pe e)
{

C Co on nd d* p p2 2 = p pc c-> c cl lo on ne e() ;
C Co on nd d* p p3 3 = p pe e-> c cl lo on ne e() ; / / error
/ / ...

}

The type of an overriding function must be the same as the type of the virtual function it overrides,
except that the return type may be relaxed. That is, if the original return type wasB B* , then the
return type of the overriding function may beD D* , providedB B is a public base ofD D. Similarly, a
return type ofB B& may be relaxed toD D&.

Note that a similar relaxation of the rules for argument types would lead to type violations (see
§15.8 [12]).

15.7 Advice[hier.advice]

[1] Use ordinary multiple inheritance to express a union of features; §15.2, §15.2.5.
[2] Use multiple inheritance to separate implementation details from an interface; §15.2.5.
[3] Use av vi ir rt tu ua al l base to represent something common to some, but not all, classes in a hierarchy;

§15.2.5.
[4] Avoid explicit type conversion (casts); §15.4.5.
[5] Used dy yn na am mi ic c_ _c ca as st t where class hierarchy navigation is unavoidable; §15.4.1.
[6] Preferd dy yn na am mi ic c_ _c ca as st t overt ty yp pe ei id d; §15.4.4.
[7] Preferp pr ri iv va at te e to p pr ro ot te ec ct te ed d; §15.3.1.1.
[8] Don’t declare data membersp pr ro ot te ec ct te ed d; §15.3.1.1.
[9] If a class defineso op pe er ra at to or r d de el le et te e() , it should have a virtual destructor; §15.6.
[10] Don’t call virtual functions during construction or destruction; §15.4.3.
[11] Use explicit qualification for resolution of member names sparingly and preferably use it in

overriding functions; §15.2.1

15.8 Exercises[hier.exercises]

1. (∗1) Write a templatep pt tr r_ _c ca as st t that works liked dy yn na am mi ic c_ _c ca as st t, except that it throwsb ba ad d_ _c ca as st t
rather than returning0 0.

2. (∗2) Write a program that illustrates the sequence of constructor calls at the state of an object
relative to RTTI during construction. Similarly illustrate destruction.

3. (∗3.5) Implement a version of a Reversi/Othello board game. Each player can be either a
human or the computer. Focus on getting the program correct and (then) getting the computer
player ‘‘smart’’ enough to be worth playing against.

4. (∗3) Improve the user interface of the game from §15.8[3].
5. (∗3) Define a graphical object class with a plausible set of operations to serve as a common base

class for a library of graphical objects; look at a graphics library to see what operations were

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

426 Class Hierarchies Chapter 15

supplied there. Define a database object class with a plausible set of operations to serve as a
common base class for objects stored as sequences of fields in a database; look at a database
library to see what operations were supplied there. Define a graphical database object with and
without the use of multiple inheritance and discuss the relative merits of the two solutions.

6. (∗2) Write a version of thec cl lo on ne e() operation from §15.6.2 that can place its cloned object in
an A Ar re en na a (see §10.4.11) passed as an argument. Implement a simpleA Ar re en na a as a class derived
from A Ar re en na a.

7. (∗2) Without looking in the book, write down as many C++ keywords you can.
8. (∗2) Write a standards-conforming C++ program containing a sequence of at least ten consecu-

tive keywords not separated by identifiers, operators, punctuation characters, etc.
9. (∗2.5) Draw a plausible memory layout for aR Ra ad di io o as defined in §15.2.3.1. Explain how a vir-

tual function call could be implemented.
10. (∗2) Draw a plausible memory layout for aR Ra ad di io o as defined in §15.2.4. Explain how a virtual

function call could be implemented.
11. (∗3) Consider howd dy yn na am mi ic c_ _c ca as st t might be implemented. Define and implement ad dc ca as st t tem-

plate that behaves liked dy yn na am mi ic c_ _c ca as st t but relies on functions and data you define only. Make
sure that you can add new classes to the system without having to change the definitions of
d dc ca as st t or previously-written classes.

12. (∗2) Assume that the type-checking rules for arguments were relaxed in a way similar to the
relaxation for return types so that a function taking aD De er ri iv ve ed d* could overwrite aB Ba as se e* . Then
write a program that would corrupt an object of classD De er ri iv ve ed d without using a cast. Describe a
safe relaxation of the overriding rules for argument types.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Part III

The Standard Library

This part describes the C++ standard library. It presents the design of the library and
key techniques used in its implementation. The aim is to provide understanding of
how to use the library, to demonstrate generally useful design and programming tech-
niques, and to show how to extend the library in the ways in which it was intended to
be extended.

Chapters

16 Library Organization and Containers
17 Standard Containers
18 Algorithms and Function Objects
19 Iterators and Allocators
20 Strings
21 Streams
22 Numerics

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

428 The Standard Library Part III

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

16
_ __ _______________________________________

Library Organization and Containers

It was new. It was singular.
It was simple. It must succeed!

– H. Nelson

Design criteria for the standard library— library organization— standard headers—
language support— container design— iterators— based containers— STL containers
— v ve ec ct to or r — iterators— element access— constructors— modifiers— list operations
— size and capacity— v ve ec ct to or r<b bo oo ol l>— advice— exercises.

16.1 Standard Library Design[org.intro]

What ought to be in the standard C++ library? One ideal is for a programmer to be able to find
every interesting, significant, and reasonably general class, function, template, etc., in a library.
However, the question here is not, ‘‘What ought to be insomelibrary?’’ but ‘‘What ought to be in
thestandardlibrary?’’ The answer ‘‘Everything!’’ is a reasonable first approximation to an answer
to the former question but not to the latter. A standard library is something that every implementer
must supply so that every programmer can rely on it.

The C++ standard library:
[1] Provides support for language features, such as memory management (§6.2.6) and run-

time type information (§15.4).
[2] Supplies information about implementation-defined aspects of the language, such as the

largestf fl lo oa at t value (§22.2).
[3] Supplies functions that cannot be implemented optimally in the language itself for every

system, such ass sq qr rt t() (§22.3) andm me em mm mo ov ve e() (§19.4.6).
[4] Supplies nonprimitive facilities that a programmer can rely on for portability, such as lists

(§17.2.2), maps (§17.4.1), sort functions (§18.7.1), and I/O streams (Chapter 21).
[5] Provides a framework for extending the facilities it provides, such as conventions and

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

430 Library Organization and Containers Chapter 16

support facilities that allow a user to provide I/O of a user-defined type in the style of I/O
for built-in types.

[6] Provides the common foundation for other libraries.
In addition, a few facilities– such as random-number generators (§22.7)– are provided by the
standard library simply because it is conventional and useful to do so.

The design of the library is primarily determined by the last three roles. These roles are closely
related. For example, portability is commonly an important design criterion for a specialized
library, and common container types such as lists and maps are essential for convenient communi-
cation between separately developed libraries.

The last role is especially important from a design perspective because it helps limit the scope
of the standard library and places constraints on its facilities. For example, string and list facilities
are provided in the standard library. If they were not, separately developed libraries could commu-
nicate only by using built-in types. However, pattern matching and graphics facilities are not pro-
vided. Such facilities are obviously widely useful, but they are rarely directly involved in commu-
nication between separately developed libraries.

Unless a facility is somehow needed to support these roles, it can be left to some library outside
the standard. For good and bad, leaving something out of the standard library opens the opportu-
nity for different libraries to offer competing realizations of an idea.

16.1.1 Design Constraints [org.constraints]

The roles of a standard library impose several constraints on its design. The facilities offered by
the C++ standard library are designed to be:

[1] Invaluable and affordable to essentially every student and professional programmer,
including the builders of other libraries.

[2] Used directly or indirectly by every programmer for everything within the scope of the
library.

[3] Efficient enough to provide genuine alternatives to hand-coded functions, classes, and tem-
plates in the implementation of further libraries.

[4] Either policy-free or give the user the option to supply policies as arguments.
[5] Primitive in the mathematical sense. That is, a component that serves two weakly related

roles will almost certainly suffer overheads compared to individual components designed
to perform only a single role.

[6] Convenient, efficient, and reasonably safe for common uses.
[7] Complete at what they do. The standard library may leave major functions to other

libraries, but if it takes on a task, it must provide enough functionality so that individual
users or implementers need not replace it to get the basic job done.

[8] Blend well with and augment built-in types and operations.
[9] Type safe by default.
[10] Supportive of commonly accepted programming styles.
[11] Extensible to deal with user-defined types in ways similar to the way built-in types and

standard-library types are handled.
For example, building the comparison criteria into a sort function is unacceptable because the same
data can be sorted according to different criteria. This is why the C standard libraryq qs so or rt t() takes

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.1.1 Design Constraints 431

a comparison function as an argument rather than relying on something fixed, say, the< operator
(§7.7). On the other hand, the overhead imposed by a function call for each comparison compro-
misesq qs so or rt t() as a building block for further library building. For almost every data type, it is
easy to do a comparison without imposing the overhead of a function call.

Is that overhead serious? In most cases, probably not. However, the function call overhead can
dominate the execution time for some algorithms and cause users to seek alternatives. The tech-
nique of supplying comparison criteria through a template argument described in §13.4 solves that
problem. The example illustrates the tension between efficiency and generality. A standard library
is not just required to perform its tasks. It must also perform them efficiently enough not to tempt
users to supply their own mechanisms. Otherwise, implementers of more advanced features are
forced to bypass the standard library in order to remain competitive. This would add a burden to
the library developer and seriously complicate the lives of users wanting to stay platform-
independent or to use several separately developed libraries.

The requirements of ‘‘primitiveness’’ and ‘‘convenience of common uses’’ appear to conflict.
The former requirement precludes exclusively optimizing the standard library for common cases.
However, components serving common, but nonprimitive, needs can be included in the standard
library in addition to the primitive facilities, rather than as replacements. The cult of orthogonality
must not prevent us from making life convenient for the novice and the casual user. Nor should it
cause us to leave the default behavior of a component obscure or dangerous.

16.1.2 Standard Library Organization [org.org]
The facilities of the standard library are defined in thes st td d namespace and presented as a set of
headers. The headers identify the major parts of the library. Thus, listing them gives an overview
of the library and provides a guide to the description of the library in this and subsequent chapters.

The rest of this subsection is a list of headers grouped by function, accompanied by brief expla-
nations and annotated by references to where they are discussed. The grouping is chosen to match
the organization of the standard. A reference to the standard (such as §s.18.1) means that the facil-
ity is not discussed here.

A standard header with a name starting with the letterc c is equivalent to a header in the C stan-
dard library. For every header<c cX X> defining names in thes st td d namespace, there is a header<X X. h h>
defining the same names in the global namespace (see §9.2.2).

_ ___
Containers_ __ ___

< <v ve ec ct to or r> > one-dimensional array of T T §16.3
< <l li is st t> > doubly-linked list of T T §17.2.2
< <d de eq qu ue e> > double-ended queue of T T §17.2.3
< <q qu ue eu ue e> > queue of T T §17.3.2
< <s st ta ac ck k> > stack of T T §17.3.1
< <m ma ap p> > associative array of T T §17.4.1
< <s se et t> > set of T T §17.4.3
< <b bi it ts se et t> > array of booleans §17.5.3_ ___ 
























The associative containersm mu ul lt ti im ma ap p andm mu ul lt ti is se et t can be found in<m ma ap p> and<s se et t>, respectively.
Thep pr ri io or ri it ty y_ _q qu ue eu ue e is declared in<q qu ue eu ue e>.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

432 Library Organization and Containers Chapter 16

_ ___
General Utilities_ __ ___

< <u ut ti il li it ty y> > operators and pairs §17.1.4, §17.4.1.2
< <f fu un nc ct ti io on na al l> > function objects §18.4
< <m me em mo or ry y> > allocators for containers §19.4.4
< <c ct ti im me e> > C-style date and time §s.20.5_ ___ 














The <m me em mo or ry y> header also contains thea au ut to o_ _p pt tr r template that is primarily used to smooth the
interaction between pointers and exceptions (§14.4.2).

_ ___
Iterators_ __ ___

< <i it te er ra at to or r> > iterators and iterator support Chapter 19_ ___ 







Iterators provide the mechanism to make standard algorithms generic over the standard containers
and similar types (§2.7.2, §19.2.1).

_ ___
Algorithms_ __ ___

< <a al lg go or ri it th hm m> > general algorithms Chapter 18
< <c cs st td dl li ib b> > b bs se ea ar rc ch h() q qs so or rt t() §18.11_ ___ 










A typical general algorithm can be applied to any sequence (§3.8, §18.3) of any type of elements.
The C standard library functionsb bs se ea ar rc ch h() andq qs so or rt t() apply to built-in arrays with elements of
types without user-defined copy constructors and destructors only (§7.7).

_ ___
Diagnostics_ __ ___

< <e ex xc ce ep pt ti io on n> > exception class §14.10
< <s st td de ex xc ce ep pt t> > standard exceptions §14.10
< <c ca as ss se er rt t> > assert macro §24.3.7.2
< <c ce er rr rn no o> > C-style error handling §20.4.1_ ___ 














Assertions relying on exceptions are described in §24.3.7.1.
_ __

Strings_ ___ __
< <s st tr ri in ng g> > string of T T Chapter 20
< <c cc ct ty yp pe e> > character classification §20.4.2
< <c cw wt ty yp pe e> > wide-character classification §20.4.2
< <c cs st tr ri in ng g> > C-style string functions §20.4.1
< <c cw wc ch ha ar r> > C-style wide-character string functions §20.4
< <c cs st td dl li ib b> > C-style string functions §20.4.1_ __ 




















The <c cs st tr ri in ng g> header declares thes st tr rl le en n() , s st tr rc cp py y() , etc., family of functions. The<c cs st td dl li ib b>
declaresa at to of f() anda at to oi i() that convert C-style strings to numeric values.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.1.2 Standard Library Organization 433

_ ___
Input/Output_ __ ___

< <i io os sf fw wd d> > forward declarations of I/O facilities §21.1
< <i io os st tr re ea am m> > standard iostream objects and operations§21.2.1
< <i io os s> > iostream bases §21.2.1
< <s st tr re ea am mb bu uf f> > stream buffers §21.6
< <i is st tr re ea am m> > input stream template §21.3.1
< <o os st tr re ea am m> > output stream template §21.2.1
< <i io om ma an ni ip p> > manipulators §21.4.6.2
< <s ss st tr re ea am m> > streams to/from strings §21.5.3
< <c cs st td dl li ib b> > character classification functions §20.4.2
< <f fs st tr re ea am m> > streams to/from files §21.5.1
< <c cs st td di io o> > p pr ri in nt tf f() family of I/O §21.8
< <c cw wc ch ha ar r> > p pr ri in nt tf f() -style I/O of wide characters §21.8_ ___ 


































Manipulators are objects used to manipulate the state of a stream (e.g., changing the format of
floating-point output) by applying them to the stream (§21.4.6).

_ __
Localization_ ___ __

< <l lo oc ca al le e> > represent cultural differences §21.7
< <c cl lo oc ca al le e> > represent cultural differences C-style§21.7_ __ 










A l lo oc ca al le e localizes differences such as the output format for dates, the symbol used to represent cur-
rency, and string collation criteria that vary among different natural languages and cultures.

_ ___
Language Support_ __ ___

< <l li im mi it ts s> > numeric limits §22.2
< <c cl li im mi it ts s> > C-style numeric scalar-limit macros §22.2.1
< <c cf fl lo oa at t> > C-style numeric floating-point limit macros §22.2.1
< <n ne ew w> > dynamic memory management §16.1.3
< <t ty yp pe ei in nf fo o> > run-time type identification support §15.4.1
< <e ex xc ce ep pt ti io on n> > exception-handling support §14.10
< <c cs st td dd de ef f> > C library language support §6.2.1
< <c cs st td da ar rg g> > variable-length function argument lists §7.6
< <c cs se et tj jm mp p> > C-style stack unwinding §s.18.7
< <c cs st td dl li ib b> > program termination §9.4.1.1
< <c ct ti im me e> > system clock §s.18.7
< <c cs si ig gn na al l> > C-style signal handling §s.18.7_ ___ 


































The<c cs st td dd de ef f> header defines the type of values returned bys si iz ze eo of f() , s si iz ze e_ _t t, the type of the result
of pointer subtraction,p pt tr rd di if ff f_ _t t (§6.2.1), and the infamousN NU UL LL L macro (§5.1.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

434 Library Organization and Containers Chapter 16

_ __
Numerics_ ___ __

< <c co om mp pl le ex x> > complex numbers and operations§22.5
< <v va al la ar rr ra ay y> > numeric vectors and operations §22.4
< <n nu um me er ri ic c> > generalized numeric operations §22.6
< <c cm ma at th h> > standard mathematical functions §22.3
< <c cs st td dl li ib b> > C-style random numbers §22.7_ __ 
















For historical reasons,a ab bs s() , f fa ab bs s() , andd di iv v() are found in<c cs st td dl li ib b> rather than in<c cm ma at th h>
with the rest of the mathematical functions (§22.3).

A user or a library implementer is not allowed to add or subtract declarations from the standard
headers. Nor is it acceptable to try to change the contents of headers by defining macros before
they are included or to try to change the meaning of the declarations in the headers by declarations
in their context (§9.2.3). Any program or implementation that plays such games does not conform
to the standard, and programs that rely on such tricks are not portable. Even if they work today, the
next release of any part of an implementation may break them. Avoid such trickery.

For a standard library facility to be used its header must be included. Writing out the relevant
declarations yourself isnot a standards-conforming alternative. The reason is that some implemen-
tations optimize compilation based on standard header inclusion and others provide optimized
implementations of standard library facilities triggered by the headers. In general, implementers
use standard headers in ways programmers cannot predict and shouldn’t have to know about.

A programmer can, however, specialize utility templates, such ass sw wa ap p() (§16.3.9), for
nonstandard-library, user-defined types.

16.1.3 Language Support [org.lang]

A small part of the standard library is language support; that is, facilities that must be present for a
program to run because language features depend on them.

The library functions supporting operatorsn ne ew w and d de el le et te e are discussed in §6.2.6, §10.4.11,
§14.4.4, and §15.6; they are presented in<n ne ew w>.

Run-time type identification relies on classt ty yp pe e_ _i in nf fo o, which is described in §15.4.4 and pre-
sented in<t ty yp pe ei in nf fo o>.

The standard exception classes are discussed in §14.10 and presented in<n ne ew w>, <t ty yp pe ei in nf fo o>,
<i io os s>, <e ex xc ce ep pt ti io on n>, and<s st td de ex xc ce ep pt t>.

Program start and termination are discussed in §3.2, §9.4, and §10.4.9.

16.2 Container Design[org.cont]

A container is an object that holds other objects. Examples are lists, vectors, and associative arrays.
In general, you can add objects to a container and remove objects from it.

Naturally, this idea can be presented to users in many different ways. The C++ standard library
containers were designed to meet two criteria: to provide the maximum freedom in the design of an
individual container, while at the same time allowing containers to present a common interface to
users. This allows optimal efficiency in the implementation of containers and enables users to
write code that is independent of the particular container used.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2 Container Design 435

Container designs typically meet just one or the other of these two design criteria. The con-
tainer and algorithms part of the standard library (often called the STL) can be seen as a solution to
the problem of simultaneously providing generality and efficiency. The following sections present
the strengths and weaknesses of two traditional styles of containers as a way of approaching the
design of the standard containers.

16.2.1 Specialized Containers and Iterators [org.specialized]

The obvious approach to providing a vector and a list is to define each in the way that makes the
most sense for its intended use:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { / / optimal
p pu ub bl li ic c:

e ex xp pl li ic ci it t V Ve ec ct to or r(s si iz ze e_ _t t n n) ; / / initialize to hold n objects with value T()

T T& o op pe er ra at to or r[](s si iz ze e_ _t t) ; / / subscripting
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { / / optimal
p pu ub bl li ic c:

c cl la as ss s L Li in nk k { /* ... */ };

L Li is st t() ; / / initially empty
v vo oi id d p pu ut t(T T*) ; / / put before current element
T T* g ge et t() ; / / get current element

/ / ...
};

Each class provides operations that are close to ideal for their use, and for each class we can choose
a suitable representation without worrying about other kinds of containers. This allows the imple-
mentations of operations to be close to optimal. In particular, the most common operations such as
p pu ut t() for aL Li is st t ando op pe er ra at to or r[]() for aV Ve ec ct to or r are small and easily inlined.

A common use of most kinds of containers is to iterate through the container looking at the ele-
ments one after the other. This is typically done by defining an iterator class appropriate to the
kind of container (see §11.5 and §11.14[7]).

However, a user iterating over a container often doesn’t care whether data is stored in aL Li is st t or a
V Ve ec ct to or r. In that case, the code iterating should not depend on whether aL Li is st t or aV Ve ec ct to or r was used.
Ideally, the same piece of code should work in both cases.

A solution is to define an iterator class that provides a get-next-element operation that can be
implemented for any container. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s I It to or r { / / common interface (abstract class §2.5.4, §12.3)
p pu ub bl li ic c:

/ / return 0 to indicate no-more-elements

v vi ir rt tu ua al l T T* f fi ir rs st t() = 0 0; / / pointer to first element
v vi ir rt tu ua al l T T* n ne ex xt t() = 0 0; / / pointer to next element

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

436 Library Organization and Containers Chapter 16

We can now provide implementations forV Ve ec ct to or rs andL Li is st ts:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r_ _i it to or r : p pu ub bl li ic c I It to or r<T T> { / / Vector implementation
V Ve ec ct to or r<T T>& v v;
s si iz ze e_ _t t i in nd de ex x; / / index of current element

p pu ub bl li ic c:
V Ve ec ct to or r_ _i it to or r(V Ve ec ct to or r<T T>& v vv v) : v v(v vv v) , i in nd de ex x(0 0) { }
T T* f fi ir rs st t() { r re et tu ur rn n (v v. s si iz ze e()) ? &v v[i in nd de ex x=0 0] : 0 0; }
T T* n ne ex xt t() { r re et tu ur rn n (++ i in nd de ex x<v v. s si iz ze e()) ? &v v[i in nd de ex x] : 0 0; }

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t_ _i it to or r : p pu ub bl li ic c I It to or r<T T> { / / List implementation
L Li is st t<T T>& l ls st t;
L Li is st t<T T>: : L Li in nk k p p; / / points to current element

p pu ub bl li ic c:
L Li is st t_ _i it to or r(L Li is st t<T T>&) ;
T T* f fi ir rs st t() ;
T T* n ne ex xt t() ;

};

Or graphically, using dashed lines to represent ‘‘implemented using:’’

V Ve ec ct to or r L Li is st t

I It to or r

V Ve ec ct to or r_ _i it to or r L Li is st t_ _i it to or r
.
.

The internal structure of the two iterators is quite different, but that doesn’t matter to users. We can
now write code that iterates over anything for which we can implement anI It to or r. For example:

i in nt t c co ou un nt t(I It to or r<c ch ha ar r>& i ii i, c ch ha ar r t te er rm m)
{

i in nt t c c = 0 0;
f fo or r (c ch ha ar r* p p = i ii i. f fi ir rs st t() ; p p; p p=i ii i. n ne ex xt t()) i if f (* p p==t te er rm m) c c++;
r re et tu ur rn n c c;

}

There is a snag, however. The operations on anI It to or r iterator are simple, yet they incur the overhead
of a (virtual) function call. In many situations, this overhead is minor compared to what else is
being done. However, iterating through a simple container is the critical operation in many high-
performance systems and a function call is many times more expensive than the integer addition or
pointer dereferencing that implementsn ne ex xt t() for a v ve ec ct to or r and al li is st t. Consequently, this model is
unsuitable, or at least not ideal, for a standard library.

However, this container-and-iterator model has been successfully used in many systems. For
years, it was my favorite for most applications. Its strengths and weaknesses can be summarized
like this:

+ Individual containers are simple and efficient.
+ Little commonality is required of containers. Iterators and wrapper classes (§25.7.1) can be

used to fit independently developed containers into a common framework.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2.1 Specialized Containers and Iterators 437

+ Commonality of use is provided through iterators (rather than through a general container
type; §16.2.2).

+ Different iterators can be defined to serve different needs for the same container.
+ Containers are by default type safe and homogeneous (that is, all elements in a container are

of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and withs st tr ru uc ct ts with externally-imposed layouts.

– Each iterator access incurs the overhead of a virtual function call. The time overhead can be
serious compared to simple inlined access functions.

– A hierarchy of iterator classes tends to get complicated.
– There is nothing in common for every container and nothing in common for every object in

every container. This complicates the provision of universal services such as persistence
and object I/O.

A + indicates an advantage and a- indicates a disadvantage.
I consider the flexibility provided by iterators especially important. A common interface, such

as I It to or r, can be provided long after the design and implementation of containers (here,V Ve ec ct to or r and
L Li is st t). When we design, we typically first invent something fairly concrete. For example, we
design an array and invent a list. Only later do we discover an abstraction that covers both arrays
and lists in a given context.

As a matter of fact, we can do this ‘‘late abstraction’’ several times. Suppose we want to repre-
sent a set. A set is a very different abstraction fromI It to or r, yet we can provide aS Se et t interface to
V Ve ec ct to or r andL Li is st t in much the same way that I providedI It to or r as an interface toV Ve ec ct to or r andL Li is st t:

V Ve ec ct to or r L Li is st t

S Se et t I It to or r

V Ve ec ct to or r_ _s se et t L Li is st t_ _s se et t V Ve ec ct to or r_ _i it to or r L Li is st t_ _i it to or r
.
.

Thus, late abstraction using abstract classes allows us to provide different implementations of a
concept even when there is no significant similarity between the implementations. For example,
lists and vectors have some obvious commonality, but we could easily implement anI It to or r for an
i is st tr re ea am m.

Logically, the last two points on the list are the main weaknesses of the approach. That is, even
if the function call overhead for iterators and similar interfaces to containers were eliminated (as is
possible in some contexts), this approach would not be ideal for a standard library.

Non-intrusive containers incur a small overhead in time and space for some containers com-
pared with intrusive containers. I have not found this a problem. Should it become a problem, an
iterator such asI It to or r can be provided for an intrusive container (§16.5[11]).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

438 Library Organization and Containers Chapter 16

16.2.2 Based Containers [org.based]

One can define an intrusive container without relying on templates or any other way of parameter-
izing a type declaration. For example:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* p pr re e;
L Li in nk k* s su uc c;
/ / ...

};

c cl la as ss s L Li is st t {
L Li in nk k* h he ea ad d;
L Li in nk k* c cu ur rr r; / / current element

p pu ub bl li ic c:
L Li in nk k* g ge et t() ; / / remove and return current element
v vo oi id d p pu ut t(L Li in nk k*) ; / / insert before current element
/ / ...

};

A L Li is st t is now a list ofL Li in nk ks, and it can hold objects of any type derived fromL Li in nk k. For example:

c cl la as ss s S Sh hi ip p : p pu ub bl li ic c L Li in nk k { /* ... */ };

v vo oi id d f f(L Li is st t* l ls st t)
{

w wh hi il le e (L Li in nk k* p po o = l ls st t-> g ge et t()) {
i if f (S Sh hi ip p* p ps s = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p*>(p po o)) { / / Ship must be polymorphic (§15.4.1)

/ / use ship
}
e el ls se e {

/ / Oops, do something else
}

}
}

Simula defined its standard containers in this style, so this approach can be considered the original
for languages supporting object-oriented programming. These days, a common class for all objects
is usually calledO Ob bj je ec ct t or something similar. AnO Ob bj je ec ct t class typically provides other common
services in addition to serving as a link for containers.

Often, but not necessarily, this approach is extended to provide a common container type:

c cl la as ss s C Co on nt ta ai in ne er r : p pu ub bl li ic c O Ob bj je ec ct t {
p pu ub bl li ic c:

v vi ir rt tu ua al l O Ob bj je ec ct t* g ge et t() ; / / remove and return current element
v vi ir rt tu ua al l v vo oi id d p pu ut t(O Ob bj je ec ct t*) ; / / insert before current element
v vi ir rt tu ua al l O Ob bj je ec ct t*& o op pe er ra at to or r[](s si iz ze e_ _t t) ; / / subscripting
/ / ...

};

Note that the operations provided byC Co on nt ta ai in ne er r are virtual so that individual containers can over-
ride them appropriately:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2.2 Based Containers 439

c cl la as ss s L Li is st t : p pu ub bl li ic c C Co on nt ta ai in ne er r {
p pu ub bl li ic c:

O Ob bj je ec ct t* g ge et t() ;
v vo oi id d p pu ut t(O Ob bj je ec ct t*) ;
/ / ...

};

c cl la as ss s V Ve ec ct to or r : p pu ub bl li ic c C Co on nt ta ai in ne er r {
p pu ub bl li ic c:

O Ob bj je ec ct t*& o op pe er ra at to or r[](s si iz ze e_ _t t) ;
/ / ...

};

One problem arises immediately. What operations do we wantC Co on nt ta ai in ne er r to provide? We could
provide only the operations that every container can support. However, the intersection of the sets
of operations on all containers is a ridiculously narrow interface. In fact, in many interesting cases
that intersection is empty. So, realistically, we must provide the union of essential operations on
the variety of containers we intend to support. Such a union of interfaces to a set of concepts is
called afat interface(§24.4.3).

We can either provide default implementations of the functions in the fat interface or force
every derived class to implement every function by making them pure virtual functions. In either
case, we end up with a lot of functions that simply report a run-time error. For example:

c cl la as ss s C Co on nt ta ai in ne er r : p pu ub bl li ic c O Ob bj je ec ct t {
p pu ub bl li ic c:

s st tr ru uc ct t B Ba ad d_ _o op p { / / exception class
c co on ns st t c ch ha ar r* p p;
B Ba ad d_ _o op p(c co on ns st t c ch ha ar r* p pp p) : p p(p pp p) { }

};

v vi ir rt tu ua al l v vo oi id d p pu ut t(O Ob bj je ec ct t*) { t th hr ro ow w B Ba ad d_ _o op p(" p pu ut t") ; }
v vi ir rt tu ua al l O Ob bj je ec ct t* g ge et t() { t th hr ro ow w B Ba ad d_ _o op p(" g ge et t") ; }
v vi ir rt tu ua al l O Ob bj je ec ct t*& o op pe er ra at to or r[](i in nt t) { t th hr ro ow w B Ba ad d_ _o op p("[]") ; }
/ / ...

};

If we want to protect against the possibility of a container that does not supportg ge et t() , we must
catchC Co on nt ta ai in ne er r: : B Ba ad d_ _o op p somewhere. We could now write theS Sh hi ip p example like this:

c cl la as ss s S Sh hi ip p : p pu ub bl li ic c O Ob bj je ec ct t { /* ... */ };

v vo oi id d f f1 1(C Co on nt ta ai in ne er r* p pc c)
{

t tr ry y {
w wh hi il le e (O Ob bj je ec ct t* p po o = p pc c-> g ge et t()) {

i if f (S Sh hi ip p* p ps s = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p*>(p po o)) {
/ / use ship

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

440 Library Organization and Containers Chapter 16

e el ls se e {
/ / Oops, do something else

}
}

}
c ca at tc ch h (C Co on nt ta ai in ne er r: : B Ba ad d_ _o op p& b ba ad d) {

/ / Oops, do something else
}

}

This is tedious, so the checking forB Ba ad d_ _o op p will typically be elsewhere. By relying on exceptions
caught elsewhere, we can reduce the example to:

v vo oi id d f f2 2(C Co on nt ta ai in ne er r* p pc c)
{

w wh hi il le e (O Ob bj je ec ct t* p po o = p pc c-> g ge et t()) {
S Sh hi ip p& s s = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p&>(* p po o) ;
/ / use ship

}
}

However, I find unnecessary reliance on run-time checking distasteful and inefficient. In this kind
of case, I prefer the statically-checked alternative:

v vo oi id d f f3 3(I It to or r<S Sh hi ip p>* i i)
{

w wh hi il le e (S Sh hi ip p* p ps s = i i-> n ne ex xt t()) {
/ / use ship

}
}

The strengths and weakness of the ‘‘based object’’ approach to container design can be summarized
like this (see also §16.5[10]):

– Operations on individual containers incur virtual function overhead.
– All containers must be derived fromC Co on nt ta ai in ne er r. This implies the use of fat interfaces,

requires a large degree of foresight, and relies on run-time type checking. Fitting an inde-
pendently developed container into the common framework is awkward at best (see
§16.5[12]).

+ The common baseC Co on nt ta ai in ne er r makes it easy to use containers that supply similar sets of
operations interchangeably.

– Containers are heterogeneous and not type safe by default (all we can rely on is that ele-
ments are of typeO Ob bj je ec ct t*). When desired, type-safe and homogeneous containers can be
defined using templates.

– The containers are intrusive (that is, every element must be of a type derived fromO Ob bj je ec ct t).
Objects of built-in types and structs with externally imposed layouts cannot be placed
directly in containers.

– An element retrieved from a container must be given a proper type using explicit type con-
version before it can be used.

+ ClassC Co on nt ta ai in ne er r and classO Ob bj je ec ct t are handles for implementing services for every object or

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2.2 Based Containers 441

every container. This greatly eases the provision of universal services such as persistence
and object I/O.

As before (§16.2.1),+ indicates an advantage and- indicates a disadvantage.
Compared to the approach using unrelated containers and iterators, the based-object approach

unnecessarily pushes complexity onto the user, imposes significant run-time overheads, and
restricts the kinds of objects that can be placed in a container. In addition, for many classes, to
derive fromO Ob bj je ec ct t is to expose an implementation detail. Thus, this approach is far from ideal for
a standard library.

However, the generality and flexibility of this approach should not be underestimated. Like its
alternatives, it has been used successfully in many applications. Its strengths lie in areas in which
efficiency is less important than the simplicity afforded by a singleC Co on nt ta ai in ne er r interface and ser-
vices such as object I/O.

16.2.3 STL Containers [org.stl]

The standard library containers and iterators (often called the STL framework, §3.10) can be under-
stood as an approach to gain the best of the two traditional models described previously. That
wasn’t the way the STL was designed, though. The STL was the result of a single-minded search
for uncompromisingly efficient and generic algorithms.

The aim of efficiency rules out hard-to-inline virtual functions for small, frequently-used access
functions. Therefore, we cannot present a standard interface to containers or a standard iterator
interface as an abstract class. Instead, each kind of container supports a standard set of basic opera-
tions. To avoid the problems of fat interfaces (§16.2.2, §24.4.3), operations that cannot be effi-
ciently implemented for all containers are not included in the set of common operations. For exam-
ple, subscripting is provided forv ve ec ct to or r but not forl li is st t. In addition, each kind of container provides
its own iterators that support a standard set of iterator operations.

The standard containers are not derived from a common base. Instead, every container imple-
ments all of the standard container interface. Similarly, there is no common iterator base class. No
explicit or implicit run-time type checking is involved in using the standard containers and itera-
tors.

The important and difficult issue of providing common services for all containers is handled
through ‘‘allocators’’ passed as template arguments (§19.4.3) rather than through a common base.

Before I go into details and code examples, the strengths and weaknesses of the STL approach
can be summarized:

+ Individual containers are simple and efficient (not quite as simple as truly independent con-
tainers can be, but just as efficient).

+ Each container provides a set of standard operations with standard names and semantics.
Additional operations are provided for a particular container type as needed. Furthermore,
wrapper classes (§25.7.1) can be used to fit independently developed containers into a com-
mon framework (§16.5[14]).

+ Additional commonality of use is provided through standard iterators. Each container pro-
vides iterators that support a set of standard operations with standard names and semantics.
An iterator type is defined for each particular container type so that these iterators are as
simple and efficient as possible.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

442 Library Organization and Containers Chapter 16

+ To serve different needs for containers, different iterators and other generalized interfaces
can be defined in addition to the standard iterators.

+ Containers are by default type-safe and homogeneous (that is, all elements in a container are
of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and withs st tr ru uc ct ts with externally imposed layouts.

+ Intrusive containers can be fitted into the general framework. Naturally, an intrusive con-
tainer will impose constraints on its element types.

+ Each container takes an argument, called ana al ll lo oc ca at to or r, which can be used as a handle for
implementing services for every container. This greatly eases the provision of universal ser-
vices such as persistence and object I/O (§19.4.3).

– There is no standard run-time representation of containers or iterators that can be passed as a
function argument (although it is easy to define such representations for the standard con-
tainers and iterators where needed for a particular application; §19.3).

As before (§16.2.1),+ indicates an advantage and- indicates a disadvantage.
In other words, containers and iterators do not have fixed standard representations. Instead,

each container provides a standard interface in the form of a set of operations so that containers can
be used interchangeably. Iterators are handled similarly. This implies minimal overheads in time
and space while allowing users to exploit commonality both at the level of containers (as with the
based-object approach) and at the level of iterators (as with the specialized container approach).

The STL approach relies heavily on templates. To avoid excessive code replication, partial spe-
cialization to provide shared implementations for containers of pointers is usually required (§13.5).

16.3 Vector[org.vector]

Here,v ve ec ct to or r is described as an example of a complete standard container. Unless otherwise stated,
what is said aboutv ve ec ct to or r holds for every standard container. Chapter 17 describes features peculiar
to l li is st ts,s se et ts,m ma ap ps, etc. The facilities offered byv ve ec ct to or r – and similar containers– are described in
some detail. The aim is to give an understanding both of the possible uses ofv ve ec ct to or r and of its role
in the overall design of the standard library.

An overview of the standard containers and the facilities they offer can be found in §17.1.
Below, v ve ec ct to or r is introduced in stages: member types, iterators, element access, constructors, stack
operations, list operations, size and capacity, helper functions, andv ve ec ct to or r<b bo oo ol l>.

16.3.1 Types [org.types]

The standardv ve ec ct to or r is a template defined in namespaces st td d and presented in<v ve ec ct to or r>. It first
defines a set of standard names of types:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s s st td d: : v ve ec ct to or r {
p pu ub bl li ic c:

/ / types:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.1 Types 443

t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e; / / type of element
t ty yp pe ed de ef f A A a al ll lo oc ca at to or r_ _t ty yp pe e; / / type of memory manager
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di if ff fe er re en nc ce e_ _t ty yp pe e;

t ty yp pe ed de ef f implementation_dependent1i it te er ra at to or r; / / T*
t ty yp pe ed de ef f implementation_dependent2c co on ns st t_ _i it te er ra at to or r; / / const T*
t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<i it te er ra at to or r> r re ev ve er rs se e_ _i it te er ra at to or r;
t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<c co on ns st t_ _i it te er ra at to or r> c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r;

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : p po oi in nt te er r p po oi in nt te er r; / / pointer to element
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _p po oi in nt te er r c co on ns st t_ _p po oi in nt te er r;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : r re ef fe er re en nc ce e r re ef fe er re en nc ce e; / / reference to element
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _r re ef fe er re en nc ce e c co on ns st t_ _r re ef fe er re en nc ce e;

/ / ...
};

Every standard container defines these typenames as members. Each defines them in the way most
appropriate to its implementation.

The type of the container’s elements is passed as the first template argument and is known as its
v va al lu ue e_ _t ty yp pe e. The a al ll lo oc ca at to or r_ _t ty yp pe e, which is optionally supplied as the second template argument,
defines how thev va al lu ue e_ _t ty yp pe e interacts with various memory management mechanisms. In particular,
an allocator supplies the functions that a container uses to allocate and deallocate memory for its
elements. Allocators are discussed in §19.4. In general,s si iz ze e_ _t ty yp pe e specifies the type used for
indexing into the container, andd di if ff fe er re en nc ce e_ _t ty yp pe e is the type of the result of subtracting two iterators
for a container. For most containers, they correspond tos si iz ze e_ _t t andp pt tr rd di if ff f_ _t t (§6.2.1).

Iterators were introduced in §2.7.2 and are described in detail in Chapter 19. They can be
thought of as pointers to elements of the container. Every container provides a type calledi it te er ra at to or r
for pointing to elements. It also provides ac co on ns st t_ _i it te er ra at to or r type for use when elements don’t need
to be modified. As with pointers, we use the saferc co on ns st t version unless there is a reason to do oth-
erwise. The actual types ofv ve ec ct to or r’s iterators are implementation-defined. The obvious definitions
for a conventionally-definedv ve ec ct to or r would beT T* andc co on ns st t T T* , respectively.

The reverse iterator types forv ve ec ct to or r are constructed from the standardr re ev ve er rs se e_ _i it te er ra at to or r tem-
plates (§19.2.5). They present a sequence in the reverse order.

As shown in §3.8.1, these member typenames allow a user to write code using a container with-
out having to know about the actual types involved. In particular, they allow a user to write code
that will work for any standard container. For example:

t te em mp pl la at te e<c cl la as ss s C C> t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e s su um m(c co on ns st t C C& c c)
{

t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e s s = 0 0;
t ty yp pe en na am me e C C: : c co on ns st t_ _i it te er ra at to or r p p = c c. b be eg gi in n() ; / / start at the beginning
w wh hi il le e (p p!= c c. e en nd d()) { / / continue until the end

s s += * p p; / / get value of element
++p p; / / make p point to next element

}
r re et tu ur rn n s s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

444 Library Organization and Containers Chapter 16

Having to addt ty yp pe en na am me e before the names of member types of a template parameter is a nuisance.
However, the compiler isn’t psychic. There is no general way for it to know whether a member of
a template argument type is a typename (§C.13.5).

As for pointers, prefix* means dereference the iterator (§2.7.2, §19.2.1) and++ means incre-
ment the iterator.

16.3.2 Iterators [org.begin]

As shown in the previous subsection, iterators can be used to navigate containers without the pro-
grammers having to know the actual type used to identify elements. A few key member functions
allow the programmer to get hold of the ends of the sequence of elements:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / iterators:

i it te er ra at to or r b be eg gi in n() ; / / points to first element
c co on ns st t_ _i it te er ra at to or r b be eg gi in n() c co on ns st t;
i it te er ra at to or r e en nd d() ; / / points to one-past-last element
c co on ns st t_ _i it te er ra at to or r e en nd d() c co on ns st t;

r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() ; / / points to first element of reverse sequence
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() c co on ns st t;
r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() ; / / points to one-past-last element of reverse sequence
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() c co on ns st t;

/ / ...
};

Theb be eg gi in n()/ e en nd d() pair gives the elements of the container in the ordinary element order. That
is, element0 0 is followed by element1 1, element2 2, etc. Ther rb be eg gi in n()/ r re en nd d() pair gives the ele-
ments in the reverse order. That is, elementn n- 1 1 is followed by elementn n- 2 2, elementn n- 3 3, etc.
For example, a sequence seen like this using ani it te er ra at to or r:

b be eg gi in n() e en nd d()

A B C
.

..

.

can be viewed like this using ar re ev ve er rs se e_ _i it te er ra at to or r (§19.2.5):

r rb be eg gi in n() r re en nd d()

C B A
.

..

.

This allows us to use algorithms in a way that views a sequence in the reverse order. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.2 Iterators 445

t te em mp pl la at te e<c cl la as ss s C C>
t ty yp pe en na am me e C C: : i it te er ra at to or r f fi in nd d_ _l la as st t(c co on ns st t C C& c c, t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v v)
{

r re et tu ur rn n f fi in nd d_ _f fi ir rs st t(c c. r rb be eg gi in n() , c c. r re en nd d() , v v). b ba as se e() ;
}

Theb ba as se e() function returns ani it te er ra at to or r corresponding to ther re ev ve er rs se e_ _i it te er ra at to or r (§19.2.5). Without
reverse iterators, we could have had to write something like:

t te em mp pl la at te e<c cl la as ss s C C>
t ty yp pe en na am me e C C: : i it te er ra at to or r f fi in nd d_ _l la as st t(c co on ns st t C C& c c, t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v v)
{

t ty yp pe en na am me e C C: : i it te er ra at to or r p p = c c. e en nd d() ; / / search backwards from end
w wh hi il le e (p p!= c c. b be eg gi in n()) {

-- p p;
i if f (* p p==v v) r re et tu ur rn n p p;

}
r re et tu ur rn n p p;

}

A reverse iterator is a perfectly ordinary iterator, so we could have written:

t te em mp pl la at te e<c cl la as ss s C C>
t ty yp pe en na am me e C C: : r re ev ve er rs se e_ _i it te er ra at to or r f fi in nd d_ _l la as st t(c co on ns st t C C& c c, t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v v)
{

t ty yp pe en na am me e C C: : r re ev ve er rs se e_ _i it te er ra at to or r p p = c c. r rb be eg gi in n() ; / / view sequence in reverse order
w wh hi il le e (p p!= c c. r re en nd d()) {

i if f (* p p==v v) r re et tu ur rn n p p;
++p p; / / note: not decrement (--)

}
r re et tu ur rn n p p;

}

16.3.3 Element Access [org.element]

One important aspect of av ve ec ct to or r compared with other containers is that one can easily and effi-
ciently access individual elements in any order:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / element access:

r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e n n) ; / / unchecked access
c co on ns st t_ _r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e n n) c co on ns st t;

r re ef fe er re en nc ce e a at t(s si iz ze e_ _t ty yp pe e n n) ; / / checked access
c co on ns st t_ _r re ef fe er re en nc ce e a at t(s si iz ze e_ _t ty yp pe e n n) c co on ns st t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

446 Library Organization and Containers Chapter 16

r re ef fe er re en nc ce e f fr ro on nt t() ; / / first element
c co on ns st t_ _r re ef fe er re en nc ce e f fr ro on nt t() c co on ns st t;
r re ef fe er re en nc ce e b ba ac ck k() ; / / last element
c co on ns st t_ _r re ef fe er re en nc ce e b ba ac ck k() c co on ns st t;

/ / ...
};

Indexing is done byo op pe er ra at to or r[]() anda at t() ; o op pe er ra at to or r[]() provides unchecked access, whereas
a at t() does a range check and throwso ou ut t_ _o of f_ _r ra an ng ge e if an index is out of range. For example:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v, i in nt t i i1 1, i in nt t i i2 2)
t tr ry y {

f fo or r(i in nt t i i = 0 0; i i < v v. s si iz ze e() ; i i++) {
/ / range already checked: use unchecked v[i] here

}

v v. a at t(i i1 1) = v v. a at t(i i2 2) ; / / check range on access

/ / ...
}
c ca at tc ch h(o ou ut t_ _o of f_ _r ra an ng ge e) {

/ / oops: out-of-range error
}

This illustrates one idea for use. That is, if the range has already been checked, the unchecked sub-
scripting operator can be used safely; otherwise, it is wise to use the range-checkeda at t() function.
This distinction is important when efficiency is at a premium. When that is not the case or when it
is not perfectly obvious whether a range has been correctly checked, it is safer to use a vector with a
checked[] operator (such asV Ve ec c from §3.7.1) or a checked iterator (§19.3).

The default access is unchecked to match arrays. Also, you can build a safe (checked) facility
on top of a fast one but not a faster facility on top of a slower one.

The access operations return values of typer re ef fe er re en nc ce e or c co on ns st t_ _r re ef fe er re en nc ce e depending on
whether or not they are applied to ac co on ns st t object. A reference is some suitable type for accessing
elements. For the simple and obvious implementation ofv ve ec ct to or r<X X>, r re ef fe er re en nc ce e is simplyX X& and
c co on ns st t_ _r re ef fe er re en nc ce e is simply c co on ns st t X X&. The effect of trying to create an out-of-range reference is
undefined. For example:

v vo oi id d f f(v ve ec ct to or r<d do ou ub bl le e>& v v)
{

d do ou ub bl le e d d = v v[v v. s si iz ze e()] ; / / undefined: bad index

l li is st t<c ch ha ar r> l ls st t;
c ch ha ar r c c = l ls st t. f fr ro on nt t() ; / / undefined: list is empty

}

Of the standard sequences, onlyv ve ec ct to or r andd de eq qu ue e (§17.2.3) support subscripting. The reason is the
desire not to confuse users by providing fundamentally inefficient operations. For example, sub-
scripting could have been provided forl li is st t (§17.2.2), but doing that would have been dangerously
inefficient (that is,O O(n n)).

The membersf fr ro on nt t() andb ba ac ck k() return references to the first and last element, respectively.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.3 Element Access 447

They are most useful where these elements are known to exist and in code where these elements are
of particular interest. Av ve ec ct to or r used as as st ta ac ck k (§16.3.5) is an obvious example. Note thatf fr ro on nt t()
returns a reference to the element to whichb be eg gi in n() returns an iterator. I often think off fr ro on nt t() as
the first element andb be eg gi in n() as a pointer to the first element. The correspondence between
b ba ac ck k() ande en nd d() is less simple:b ba ac ck k() is the last element ande en nd d() points to the last-plus-one
element position.

16.3.4 Constructors [org.ctor]

Naturally,v ve ec ct to or r provides a complete set (§11.7) of constructors, destructor, and copy operations:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / constructors, etc.:

e ex xp pl li ic ci it t v ve ec ct to or r(c co on ns st t A A& = A A()) ;
e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ; / / n copies of val
t te em mp pl la at te e <c cl la as ss s I In n> / / In must be an input iterator (§19.2.1)

v ve ec ct to or r(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t A A& = A A()) ; / / copy from [first:last[
v ve ec ct to or r(c co on ns st t v ve ec ct to or r& x x) ;

~v ve ec ct to or r() ;

v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& x x) ;

t te em mp pl la at te e <c cl la as ss s I In n> / / In must be an input iterator (§19.2.1)
v vo oi id d a as ss si ig gn n(I In n f fi ir rs st t, I In n l la as st t) ; / / copy from [first:last[

v vo oi id d a as ss si ig gn n(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l) ; / / n copies of val

/ / ...
};

A v ve ec ct to or r provides fast access to arbitrary elements, but changing its size is relatively expensive.
Consequently, we typically give an initial size when we create av ve ec ct to or r. For example:

v ve ec ct to or r<R Re ec co or rd d> v vr r(1 10 00 00 00 0) ;

v vo oi id d f f(i in nt t s s1 1, i in nt t s s2 2)
{

v ve ec ct to or r<i in nt t> v vi i(s s1 1) ;

v ve ec ct to or r<d do ou ub bl le e>* p p = n ne ew w v ve ec ct to or r<d do ou ub bl le e>(s s2 2) ;
}

Elements of a vector allocated this way are initialized by the default constructor for the element
type. That is, each ofv vr r’s 1 10 00 00 00 0 elements is initialized byR Re ec co or rd d() and each ofv vi i’s s s1 1 elements
is initialized byi in nt t() . Note that the default constructor for a built-in type performs initialization to
0 0 of the appropriate type (§4.9.5, §10.4.2).

If a type does not have a default constructor, it is not possible to create a vector with elements
of that type without explicitly providing the value of each element. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

448 Library Organization and Containers Chapter 16

c cl la as ss s N Nu um m { / / infinite precision
p pu ub bl li ic c:

N Nu um m(l lo on ng g) ;
/ / no default constructor
/ / ...

};

v ve ec ct to or r<N Nu um m> v v1 1(1 10 00 00 0) ; / / error: no default Num
v ve ec ct to or r<N Nu um m> v v2 2(1 10 00 00 0, N Nu um m(0 0)) ; / / ok

Since av ve ec ct to or r cannot have a negative number of elements, its size must be non-negative. This is
reflected in the requirement thatv ve ec ct to or r’s s si iz ze e_ _t ty yp pe e must be anu un ns si ig gn ne ed d type. This allows a
greater range of vector sizes on some architectures. However, it can also lead to surprises:

v vo oi id d f f(i in nt t i i)
{

v ve ec ct to or r<c ch ha ar r> v vc c0 0(- 1 1) ; / / fairly easy for compiler to warn against
v ve ec ct to or r<c ch ha ar r> v vc c1 1(i i) ;

}

v vo oi id d g g()
{

f f(- 1 1) ; / / trick f() into accepting a large positive number!
}

In the callf f(- 1 1) , - 1 1 is converted into a (rather large) positive integer (§C.6.3). If we are lucky,
the compiler will find a way of complaining.

The size of av ve ec ct to or r can also be provided implicitly by giving the initial set of elements. This is
done by supplying the constructor with a sequence of values from which to construct thev ve ec ct to or r.
For example:

v vo oi id d f f(c co on ns st t l li is st t<X X>& l ls st t)
{

v ve ec ct to or r<X X> v v1 1(l ls st t. b be eg gi in n() , l ls st t. e en nd d()) ; / / copy elements from list

c ch ha ar r p p[] = " d de es sp pa ai ir r";
v ve ec ct to or r<c ch ha ar r> v v2 2(p p,& p p[s si iz ze eo of f(p p)- 1 1]) ; / / copy characters from C-style string

}

In each case, thev ve ec ct to or r constructor adjusts the size of thev ve ec ct to or r as it copies elements from its
input sequence.

Thev ve ec ct to or r constructors that can be invoked with a single argument are declarede ex xp pl li ic ci it t to pre-
vent accidental conversions (§11.7.1). For example:

v ve ec ct to or r<i in nt t> v v1 1(1 10 0) ; / / ok: vector of 10 ints
v ve ec ct to or r<i in nt t> v v2 2 = v ve ec ct to or r<i in nt t>(1 10 0) ; / / ok: vector of 10 ints
v ve ec ct to or r<i in nt t> v v3 3 = v v2 2; / / ok: v3 is a copy of v2
v ve ec ct to or r<i in nt t> v v4 4 = 1 10 0; / / error: attempted implicit conversion of 10 to vector<int>

The copy constructor and the copy-assignment operators copy the elements of av ve ec ct to or r. For a
v ve ec ct to or r with many elements, that can be an expensive operation, sov ve ec ct to or rs are typically passed by
reference. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.4 Constructors 449

v vo oi id d f f1 1(v ve ec ct to or r<i in nt t>&) ; / / common style
v vo oi id d f f2 2(c co on ns st t v ve ec ct to or r<i in nt t>&) ; / / common style
v vo oi id d f f3 3(v ve ec ct to or r<i in nt t>) ; / / rare style

v vo oi id d h h()
{

v ve ec ct to or r<i in nt t> v v(1 10 00 00 00 0) ;

/ / ...

f f1 1(v v) ; / / pass a reference
f f2 2(v v) ; / / pass a reference
f f3 3(v v) ; / / copy the 10000 elements into a new vector for f3() to use

}

The a as ss si ig gn n functions exist to provide counterparts to the multi-argument constructors. They are
needed because= takes a single right-hand operand, soa as ss si ig gn n() is used where a default argument
value or a range of values is needed. For example:

c cl la as ss s B Bo oo ok k {
/ / ...

};

v vo oi id d f f(v ve ec ct to or r<N Nu um m>& v vn n, v ve ec ct to or r<c ch ha ar r>& v vc c, v ve ec ct to or r<B Bo oo ok k>& v vb b, l li is st t<B Bo oo ok k>& l lb b)
{

v vn n. a as ss si ig gn n(1 10 0, N Nu um m(0 0)) ; / / assign vector of 10 copies of Num(0) to vn

c ch ha ar r s s[] = " l li it te er ra al l";
v vc c. a as ss si ig gn n(s s,& s s[s si iz ze eo of f(s s)- 1 1]) ; / / assign "literal" to vc

v vb b. a as ss si ig gn n(l lb b. b be eg gi in n() , l lb b. e en nd d()) ; / / assign list elements

/ / ...
}

Thus, we can initialize av ve ec ct to or r with any sequence of its element type and similarly assign any such
sequence. Importantly, this is done without explicitly introducing a multitude of constructors and
conversion functions. Note that assignment completely changes the elements of a vector. Concep-
tually, all old elements are erased and the new ones are inserted. After assignment, the size of a
v ve ec ct to or r is the number of elements assigned. For example:

v vo oi id d f f()
{

v ve ec ct to or r<c ch ha ar r> v v(1 10 0,´ x x´) ; / / v.size()==10, each element has the value ’x’
v v. a as ss si ig gn n(5 5,´ a a´) ; / / v.size()==5, each element has the value ’a’
/ / ...

}

Naturally, whata as ss si ig gn n() does could be done indirectly by first creating a suitablev ve ec ct to or r and then
assigning that. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

450 Library Organization and Containers Chapter 16

v vo oi id d f f2 2(v ve ec ct to or r<B Bo oo ok k>& v vh h, l li is st t<B Bo oo ok k>& l lb b)
{

v ve ec ct to or r<B Bo oo ok k> v vt t(l lb b. b be eg gi in n() , l lb b. e en nd d()) ;
v vh h = v vt t;
/ / ...

}

However, this can be both ugly and inefficient.
Constructing av ve ec ct to or r with two arguments of the same type can lead to an apparent ambiguity:

v ve ec ct to or r<i in nt t> v v(1 10 0, 5 50 0) ; / / vector(size,value) or vector(iterator1,iterator2)? vector(size,value)!

However, ani in nt t isn’t an iterator and the implementation must ensure that this actually invokes

v ve ec ct to or r(v ve ec ct to or r<i in nt t>: : s si iz ze e_ _t ty yp pe e, c co on ns st t i in nt t&, c co on ns st t v ve ec ct to or r<i in nt t>: : a al ll lo oc ca at to or r_ _t ty yp pe e&) ;

rather than

v ve ec ct to or r(v ve ec ct to or r<i in nt t>: : i it te er ra at to or r, v ve ec ct to or r<i in nt t>: : i it te er ra at to or r, c co on ns st t v ve ec ct to or r<i in nt t>: : a al ll lo oc ca at to or r_ _t ty yp pe e&) ;

The library achieves this by suitable overloading of the constructors and handles the equivalent
ambiguities fora as ss si ig gn n() andi in ns se er rt t() (§16.3.6) similarly.

16.3.5 Stack Operations [org.stack]

Most often, we think of av ve ec ct to or r as a compact data structure that we can index to access elements.
However, we can ignore this concrete notion and viewv ve ec ct to or r as an example of the more abstract
notion of a sequence. Looking at av ve ec ct to or r this way, and observing common uses of arrays and
v ve ec ct to or rs, it becomes obvious that stack operations make sense for av ve ec ct to or r:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / stack operations:

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T& x x) ; / / add to end
v vo oi id d p po op p_ _b ba ac ck k() ; / / remove last element
/ / ...

};

These functions treat av ve ec ct to or r as a stack by manipulating its end. For example:

v vo oi id d f f(v ve ec ct to or r<c ch ha ar r>& s s)
{

s s. p pu us sh h_ _b ba ac ck k(´ a a´) ;
s s. p pu us sh h_ _b ba ac ck k(´ b b´) ;
s s. p pu us sh h_ _b ba ac ck k(´ c c´) ;
s s. p po op p_ _b ba ac ck k() ;
i if f (s s[s s. s si iz ze e()- 1 1] != ´ b b´) e er rr ro or r(" i im mp po os ss si ib bl le e!") ;
s s. p po op p_ _b ba ac ck k() ;
i if f (s s. b ba ac ck k() != ´ a a´) e er rr ro or r(" s sh ho ou ul ld d n ne ev ve er r h ha ap pp pe en n!") ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.5 Stack Operations 451

Each timep pu us sh h_ _b ba ac ck k() is called, thev ve ec ct to or r s s grows by one element and that element is added at
the end. Sos s[s s. s si iz ze e()- 1 1] , also known ass s. b ba ac ck k() (§16.3.3), is the element most recently
pushed onto thev ve ec ct to or r.

Except for the wordv ve ec ct to or r instead ofs st ta ac ck k, there is nothing unusual in this. The suffix_ _b ba ac ck k
is used to emphasize that elements are added to the end of thev ve ec ct to or r rather than to the beginning.
Adding an element to the end of av ve ec ct to or r could be an expensive operation because extra memory
needs to be allocated to hold it. However, an implementation must ensure that repeated stack oper-
ations incur growth-related overhead only infrequently.

Note thatp po op p_ _b ba ac ck k() does not return a value. It just pops, and if we want to know what was
on the top of the stack before the pop, we must look. This happens not to be my favorite style of
stack (§2.5.3, §2.5.4), but it’s arguably more efficient and it’s the standard.

Why would one do stack-like operations on av ve ec ct to or r? An obvious reason is to implement a
s st ta ac ck k (§17.3.1), but a more common reason is to construct av ve ec ct to or r incrementally. For example,
we might want to read av ve ec ct to or r of points from input. However, we don’t know how many points
will be read, so we can’t allocate a vector of the right size and then read into it. Instead, we might
write:

v ve ec ct to or r<P Po oi in nt t> c ci it ti ie es s;

v vo oi id d a ad dd d_ _p po oi in nt ts s(P Po oi in nt t s se en nt ti in ne el l)
{

P Po oi in nt t b bu uf f;

w wh hi il le e (c ci in n >> b bu uf f) {
i if f (b bu uf f == s se en nt ti in ne el l) r re et tu ur rn n;
/ / check new point
c ci it ti ie es s. p pu us sh h_ _b ba ac ck k(b bu uf f) ;

}
}

This ensures that thev ve ec ct to or r expands as needed. If all we needed to do with a new point were to put
it into the v ve ec ct to or r, we might have initializedc ci it ti ie es s directly from input in a constructor (§16.3.4).
However, it is common to do a bit of processing on input and expand a data structure gradually as a
program progresses;p pu us sh h_ _b ba ac ck k() supports that.

In C programs, this is one of the most common uses of the C standard library functionr re ea al l- -
l lo oc c() . Thus,v ve ec ct to or r – and, in general, any standard container– provides a more general, more
elegant, and no less efficient alternative tor re ea al ll lo oc c() .

Thes si iz ze e() of a v ve ec ct to or r is implicitly increased byp pu us sh h_ _b ba ac ck k() so thev ve ec ct to or r cannot overflow
(as long as there is memory available to acquire; see §19.4.1). However, av ve ec ct to or r can underflow:

v vo oi id d f f()
{

v ve ec ct to or r<i in nt t> v v;
v v. p po op p_ _b ba ac ck k() ; / / undefined effect: the state of v becomes undefined
v v. p pu us sh h_ _b ba ac ck k(7 7) ; / / undefined effect (the state of v is undefined), probably bad

}

The effect of underflow is undefined, but the obvious implementation ofp po op p_ _b ba ac ck k() causes mem-
ory not owned by thev ve ec ct to or r to be overwritten. Like overflow, underflow must be avoided.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

452 Library Organization and Containers Chapter 16

16.3.6 List Operations [org.list]

Thep pu us sh h_ _b ba ac ck k() , p po op p_ _b ba ac ck k() , andb ba ac ck k() operations (§16.3.5) allow av ve ec ct to or r to be used effec-
tively as a stack. However, it is sometimes also useful to add elements in the middle of av ve ec ct to or r
and to remove elements from av ve ec ct to or r:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / list operations:

i it te er ra at to or r i in ns se er rt t(i it te er ra at to or r p po os s, c co on ns st t T T& x x) ; / / add x before ’pos’
v vo oi id d i in ns se er rt t(i it te er ra at to or r p po os s, s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& x x) ;
t te em mp pl la at te e <c cl la as ss s I In n> / / In must be an input iterator (§19.2.1)

v vo oi id d i in ns se er rt t(i it te er ra at to or r p po os s, I In n f fi ir rs st t, I In n l la as st t) ; / / insert elements from sequence

i it te er ra at to or r e er ra as se e(i it te er ra at to or r p po os s) ; / / remove element at pos
i it te er ra at to or r e er ra as se e(i it te er ra at to or r f fi ir rs st t, i it te er ra at to or r l la as st t) ; / / erase sequence
v vo oi id d c cl le ea ar r() ; / / erase all elements

/ / ...
};

To see how these operations work, let’s do some (nonsensical) manipulation of av ve ec ct to or r of names
of fruit. First, we define thev ve ec ct to or r and populate it with some names:

v ve ec ct to or r<s st tr ri in ng g> f fr ru ui it t;

f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" p pe ea ac ch h") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" a ap pp pl le e") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" k ki iw wi if fr ru ui it t") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" p pe ea ar r") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" s st ta ar rf fr ru ui it t") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" g gr ra ap pe e") ;

If I take a dislike to fruits whose names start with the letterp p, I can remove those names like this:

s so or rt t(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d()) ;
v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p1 1 = f fi in nd d_ _i if f(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , i in ni it ti ia al l(´ p p´)) ;
v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p2 2 = f fi in nd d_ _i if f(p p1 1, f fr ru ui it t. e en nd d() , i in ni it ti ia al l_ _n no ot t(´ p p´)) ;
f fr ru ui it t. e er ra as se e(p p1 1, p p2 2) ;

In other words, sort thev ve ec ct to or r, find the first and the last fruit with a name that starts with the letter
p p, and erase those elements fromf fr ru ui it t. How to write predicate functions such asi in ni it ti ia al l(x x) (is the
initial letterx x?) andi in ni it ti ia al l_ _n no ot t() (is the initial letter different fromp p?) is explained in §18.4.2.

The e er ra as se e(p p1 1, p p2 2) operation removes elements starting fromp p1 1 up to and not includingp p2 2.
This can be illustrated graphically:

f fr ru ui it t[]:
p p1 1 p p2 2
| |
v v v v

a ap pp pl le e g gr ra ap pe e k ki iw wi if fr ru ui it t p pe ea ac ch h p pe ea ar r s st ta ar rf fr ru ui it t

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.6 List Operations 453

Thee er ra as se e(p p1 1, p p2 2) removesp pe ea ac ch h andp pe ea ar r, yielding:

f fr ru ui it t[]:

a ap pp pl le e g gr ra ap pe e k ki iw wi if fr ru ui it t s st ta ar rf fr ru ui it t

As usual, the sequence specified by the user is from the beginning to one-past-the-end of the
sequence affected by the operation.

It would be tempting to write:

v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p1 1 = f fi in nd d_ _i if f(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , i in ni it ti ia al l(´ p p´)) ;
v ve ec ct to or r<s st tr ri in ng g>: : r re ev ve er rs se e_ _i it te er ra at to or r p p2 2 = f fi in nd d_ _i if f(f fr ru ui it t. r rb be eg gi in n() , f fr ru ui it t. r re en nd d() , i in ni it ti ia al l(´ p p´)) ;
f fr ru ui it t. e er ra as se e(p p1 1, p p2 2+1 1) ; / / oops!: type error

However, v ve ec ct to or r<f fr ru ui it t>: : i it te er ra at to or r and v ve ec ct to or r<f fr ru ui it t>: : r re ev ve er rs se e_ _i it te er ra at to or r need not be the same
type, so we couldn’t rely on the call ofe er ra as se e() to compile. To be used with ani it te er ra at to or r, a
r re ev ve er rs se e_ _i it te er ra at to or r must be explicitly converted:

f fr ru ui it t. e er ra as se e(p p1 1, p p2 2. b ba as se e()) ; / / extract iterator from reverse_iterator (§19.2.5)

Erasing an element from av ve ec ct to or r changes the size of thev ve ec ct to or r, and the elements after the erased
elements are copied into the freed positions. In this example,f fr ru ui it t. s si iz ze e() becomes4 4 and thes st ta ar r- -
f fr ru ui it t that used to bef fr ru ui it t[5 5] is nowf fr ru ui it t[3 3] .

Naturally, it is also possible toe er ra as se e() a single element. In that case, only an iterator for that
element is needed (rather than a pair of iterators). For example,

f fr ru ui it t. e er ra as se e(f fi in nd d(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() ," s st ta ar rf fr ru ui it t")) ;
f fr ru ui it t. e er ra as se e(f fr ru ui it t. b be eg gi in n()+ 1 1) ;

gets rid of thes st ta ar rf fr ru ui it t and theg gr ra ap pe e, thus leavingf fr ru ui it t with two elements:

f fr ru ui it t[]:

a ap pp pl le e k ki iw wi if fr ru ui it t

It is also possible to insert elements into a vector. For example:

f fr ru ui it t. i in ns se er rt t(f fr ru ui it t. b be eg gi in n()+ 1 1," c ch he er rr ry y") ;
f fr ru ui it t. i in ns se er rt t(f fr ru ui it t. e en nd d() ," c cr ra an nb be er rr ry y") ;

The new element is inserted before the position mentioned, and the elements from there to the end
are moved to make space. We get:

f fr ru ui it t[]:

a ap pp pl le e c ch he er rr ry y k ki iw wi if fr ru ui it t c cr ra an nb be er rr ry y

Note thatf f. i in ns se er rt t(f f. e en nd d() , x x) is equivalent tof f. p pu us sh h_ _b ba ac ck k(x x) .
We can also insert whole sequences:

f fr ru ui it t. i in ns se er rt t(f fr ru ui it t. b be eg gi in n()+ 2 2, c ci it tr ru us s. b be eg gi in n() , c ci it tr ru us s. e en nd d()) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

454 Library Organization and Containers Chapter 16

If c ci it tr ru us s is a container

c ci it tr ru us s[]:

l le em mo on n g gr ra ap pe ef fr ru ui it t o or ra an ng ge e l li im me e

we get:

f fr ru ui it t[]:

a ap pp pl le e c ch he er rr ry y l le em mo on n g gr ra ap pe ef fr ru ui it t o or ra an ng ge e l li im me e k ki iw wi if fr ru ui it t c cr ra an nb be er rr ry y

The elements ofc ci it tr ru us s are copied intof fr ru ui it t by i in ns se er rt t() . The value ofc ci it tr ru us s is unchanged.
Clearly, i in ns se er rt t() ande er ra as se e() are more general than are operations that affect only the tail end

of av ve ec ct to or r (§16.3.5). They can also be more expensive. For example, to make room for a new ele-
ment, i in ns se er rt t() may have to reallocate every element to a new part of memory. If insertions into
and deletions from a container are common, maybe that container should be al li is st t rather than a
v ve ec ct to or r. A l li is st t is optimized fori in ns se er rt t() ande er ra as se e() rather than for subscripting (§16.3.3).

Insertion into and erasure from av ve ec ct to or r (but not al li is st t or an associative container such asm ma ap p)
potentially move elements around. Consequently, an iterator pointing to an element of av ve ec ct to or r
may after ani in ns se er rt t() or e er ra as se e() point to another element or to no element at all. Never access an
element through an invalid iterator; the effect is undefined and quite likely disastrous. In particular,
beware of using the iterator that was used to indicate where an insertion took place;i in ns se er rt t()
makes its first argument invalid. For example:

v vo oi id d d du up pl li ic ca at te e_ _e el le em me en nt ts s(v ve ec ct to or r<s st tr ri in ng g>& f f)
{

f fo or r(v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p = f f. b be eg gi in n() ; p p!= f f. e en nd d() ; ++p p) f f. i in ns se er rt t(p p,* p p) ;/ / No!
}

Just think of it (§16.5[15]). Av ve ec ct to or r implementation would move all elements– or at least all ele-
ments afterp p – to make room for the new element.

The operationc cl le ea ar r() erases all elements of a container. Thus,c c. c cl le ea ar r() is a shorthand for
c c. e er ra as se e(c c. b be eg gi in n() , c c. e en nd d()) . After c c. c cl le ea ar r() , c c. s si iz ze e() is 0 0.

16.3.7 Addressing Elements [org.addressing]

Most often, the target of ane er ra as se e() or i in ns se er rt t() is a well-known place (such asb be eg gi in n() or
e en nd d()), the result of a search operation (such asf fi in nd d()), or a location found during an iteration.
In such cases, we have an iterator pointing to the relevant element. However, we often refer to ele-
ments of av ve ec ct to or r by subscripting. How do we get an iterator suitable as an argument fore er ra as se e()
or i in ns se er rt t() for the element with index7 7 of a containerc c? Since that element is the 7th element
after the beginning,c c. b be eg gi in n()+ 7 7 is a good answer. Other alternatives that may seem plausible by
analogy to arrays should be avoided. Consider:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d f f(C C& c c)
{

c c. e er ra as se e(c c. b be eg gi in n()+ 7 7) ; / / ok
c c. e er ra as se e(& c c[7 7]) ; / / not general

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.7 Addressing Elements 455

c c. e er ra as se e(c c+7 7) ; / / error: adding 7 to a container makes no sense
c c. e er ra as se e(c c. b ba ac ck k()) ; / / error: c.back() is a reference, not an iterator
c c. e er ra as se e(c c. e en nd d()- 2 2) ; / / ok (second to last element)
c c. e er ra as se e(c c. r rb be eg gi in n()+ 2 2) ; / / error: vector::reverse_iterator and vector::iterator

/ / are different types
c c. e er ra as se e((c c. r rb be eg gi in n()+ 2 2). b ba as se e()) ; / / obscure, but ok (see §19.2.5)

}

The most tempting alternative,&c c[7 7] , actually happens to work with the obvious implementation
of v ve ec ct to or r, wherec c[7 7] refers directly to the element and its address is a valid iterator. However,
this is not true for other containers. For example, al li is st t or m ma ap p iterator is almost certainly not a
simple pointer to an element. Consequently, their iterators do not support[] . Therefore,&c c[7 7]
would be an error that the compiler catches.

The alternativesc c+7 7 andc c. b ba ac ck k() are simple type errors. A container is not a numeric vari-
able to which we can add7 7, andc c. b ba ac ck k() is an element with a value like" p pe ea ar r" that does not
identify the pear’s location in the containerc c.

16.3.8 Size and Capacity [org.size]

So far,v ve ec ct to or r has been described with minimal reference to memory management. Av ve ec ct to or r grows
as needed. Usually, that is all that matters. However, it is possible to ask directly about the way a
v ve ec ct to or r uses memory, and occasionally it is worthwhile to affect it directly. The operations are:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / capacity:

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t; / / number of elements
b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n s si iz ze e()== 0 0; }
s si iz ze e_ _t ty yp pe e m ma ax x_ _s si iz ze e() c co on ns st t; / / size of the largest possible vector
v vo oi id d r re es si iz ze e(s si iz ze e_ _t ty yp pe e s sz z, T T v va al l = T T()) ; / / added elements initialized by val

s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t; / / size of the memory (in number of elements) allocated
v vo oi id d r re es se er rv ve e(s si iz ze e_ _t ty yp pe e n n) ; / / make room for a total of n elements; don’t initialize

/ / throw a length_error if n>max_size()
/ / ...

};

At any given time, av ve ec ct to or r holds a number of elements. This number can be obtained by calling
s si iz ze e() and can be changed usingr re es si iz ze e() . Thus, a user can determine the size of a vector and
change it if it seems insufficient or excessive. For example:

c cl la as ss s H Hi is st to og gr ra am m {
v ve ec ct to or r<i in nt t> c co ou un nt t;

p pu ub bl li ic c:
H Hi is st to og gr ra am m(i in nt t h h) : c co ou un nt t(m ma ax x(h h, 8 8)) {}
v vo oi id d r re ec co or rd d(i in nt t i i) ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

456 Library Organization and Containers Chapter 16

v vo oi id d H Hi is st to og gr ra am m: : r re ec co or rd d(i in nt t i i)
{

i if f (i i<0 0) i i = 0 0;
i if f (c co ou un nt t. s si iz ze e()<= i i) c co ou un nt t. r re es si iz ze e(i i+i i) ; / / make lots of room
c co ou un nt t[i i]++;

}

Using r re es si iz ze e() on av ve ec ct to or r is very similar to using the C standard library functionr re ea al ll lo oc c() on a
C array allocated on the free store.

When av ve ec ct to or r is resized to accommodate more (or fewer) elements, all of its elements may be
moved to new locations. Consequently, it is a bad idea to keep pointers to elements in av ve ec ct to or r that
might be resized; afterr re es si iz ze e() , such pointers could point to deallocated memory. Instead, we can
keep indices. Note thatp pu us sh h_ _b ba ac ck k() , i in ns se er rt t() , ande er ra as se e() implicitly resize av ve ec ct to or r.

In addition to the elements held, an application may keep some space for potential expansion.
A programmer who knows that expansion is likely can tell thev ve ec ct to or r implementation tor re es se er rv ve e()
space for future expansion. For example:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* n ne ex xt t;
L Li in nk k(L Li in nk k* n n =0 0) : n ne ex xt t(n n) {}
/ / ...

};

v ve ec ct to or r<L Li in nk k> v v;

v vo oi id d c ch ha ai in n(s si iz ze e_ _t t n n) / / fill v with n Links so that each Link points to its predecessor
{

v v. r re es se er rv ve e(n n) ;
v v. p pu us sh h_ _b ba ac ck k(L Li in nk k(0 0)) ;
f fo or r (i in nt t i i = 1 1; i i<n n; i i++) v v. p pu us sh h_ _b ba ac ck k(L Li in nk k(& v v[i i- 1 1])) ;
/ / ...

}

A call v v. r re es se er rv ve e(n n) ensures that no allocation will be needed when the size ofv v is increased until
v v. s si iz ze e() exceedsn n.

Reserving space in advance has two advantages. First, even a simple-minded implementation
can then allocate sufficient space in one operation rather than slowly acquiring enough memory
along the way. However, in many cases there is a logical advantage that outweighs the potential
efficiency gain. The elements of a container are potentially relocated when av ve ec ct to or r grows. Thus,
the links built between the elements ofv v in the previous example are guaranteed only because the
call of r re es se er rv ve e() ensures that there are no allocations while the vector is being built. That is, in
some casesr re es se er rv ve e() provides a guarantee of correctness in addition to whatever efficiency
advantages it gives.

That same guarantee can be used to ensure that potential memory exhaustion and potentially
expensive reallocation of elements take place at predictable times. For programs with stringent
real-time constraints, this can be of great importance.

Note thatr re es se er rv ve e() doesn’t change the size of av ve ec ct to or r. Thus, it does not have to initialize any
new elements. In both respects, it differs fromr re es si iz ze e() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.8 Size and Capacity 457

In the same way ass si iz ze e() gives the current number of elements,c ca ap pa ac ci it ty y() gives the current
number of reserved memory slots;c c. c ca ap pa ac ci it ty y()- c c. s si iz ze e() is the number of elements that can be
inserted without causing reallocation.

Decreasing the size of av ve ec ct to or r doesn’t decrease its capacity. It simply leaves room for the
v ve ec ct to or r to grow into later. If you want to give memory back to the system, assign a new value to the
v ve ec ct to or r. For example:

v v = v ve ec ct to or r<i in nt t>(4 4, 9 99 9) ;

A v ve ec ct to or r gets the memory it needs for its elements by calling member functions of its allocator
(supplied as a template parameter). The default allocator, calleda al ll lo oc ca at to or r (§19.4.1), usesn ne ew w to
obtain storage so that it will throwb ba ad d_ _a al ll lo oc c if no more storage is obtainable. Other allocators can
use different strategies (see §19.4.2).

The r re es se er rv ve e() andc ca ap pa ac ci it ty y() functions are unique tov ve ec ct to or r and similar compact containers.
Containers such asl li is st t do not provide equivalents.

16.3.9 Other Member Functions [org.etc]

Many algorithms– including important sort algorithms– involve swapping elements. The obvious
way of swapping (§13.5.2) simply copies elements. However, av ve ec ct to or r is typically implemented
with a structure that acts as a handle (§13.5, §17.1.3) to the elements. Thus, twov ve ec ct to or rs can be
swapped much more efficiently by interchanging the handles;v ve ec ct to or r: : s sw wa ap p() does that. The
time difference between this and the defaults sw wa ap p() is orders of magnitude in important cases:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...

v vo oi id d s sw wa ap p(v ve ec ct to or r&) ;

a al ll lo oc ca at to or r_ _t ty yp pe e g ge et t_ _a al ll lo oc ca at to or r() c co on ns st t;
};

The g ge et t_ _a al ll lo oc ca at to or r() function gives the programmer a chance to get hold of av ve ec ct to or r’s allocator
(§16.3.1, §16.3.4). Typically, the reason for this is to ensure that data from an application that is
related to av ve ec ct to or r is allocated similarly to thev ve ec ct to or r itself (§19.4.1).

16.3.10 Helper Functions [org.algo]

Two v ve ec ct to or rs can be compared using== and<:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A>
b bo oo ol l s st td d: : o op pe er ra at to or r==(c co on ns st t v ve ec ct to or r<T T, A A>& x x, c co on ns st t v ve ec ct to or r<T T, A A>& y y) ;

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A>
b bo oo ol l s st td d: : o op pe er ra at to or r<(c co on ns st t v ve ec ct to or r<T T, A A>& x x, c co on ns st t v ve ec ct to or r<T T, A A>& y y) ;

Two v ve ec ct to or rs v v1 1 andv v2 2 compare equal ifv v1 1. s si iz ze e()== v v2 2. s si iz ze e() andv v1 1[n n]== v v2 2[n n] for every
valid indexn n. Similarly, < is a lexicographical ordering. In other words,< for v ve ec ct to or rs could be
defined like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

458 Library Organization and Containers Chapter 16

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A>
i in nl li in ne e b bo oo ol l s st td d: : o op pe er ra at to or r<(c co on ns st t v ve ec ct to or r<T T, A A>& x x, c co on ns st t v ve ec ct to or r<T T, A A>& y y)
{

r re et tu ur rn n l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(x x. b be eg gi in n() , x x. e en nd d() , y y. b be eg gi in n() , y y. e en nd d()) ;/ / see §18.9
}

This means thatx x is less thany y if the first elementx x[i i] that is not equal to the corresponding ele-
menty y[i i] is less thany y[i i] , or x x. s si iz ze e()< y y. s si iz ze e() with everyx x[i i] equal to its corresponding
y y[i i] .

The standard library also provides!= , <=, >, and>=, with definitions that correspond to those
of == and<.

Becauses sw wa ap p() is a member, it is called using thev v1 1. s sw wa ap p(v v2 2) syntax. However, not every
type has as sw wa ap p() member, so generic algorithms use the conventionals sw wa ap p(a a, b b) syntax. To
make that work forv ve ec ct to or rs also, the standard library provides the specialization:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A> v vo oi id d s st td d: : s sw wa ap p(v ve ec ct to or r<T T, A A>& x x, v ve ec ct to or r<T T, A A>& y y)
{

x x. s sw wa ap p(y y) ;
}

16.3.11 Vector<bool> [org.vector.bool]

The specialization (§13.5)v ve ec ct to or r<b bo oo ol l> is provided as a compactv ve ec ct to or r of b bo oo ol l. A b bo oo ol l variable
is addressable, so it takes up at least one byte. However, it is easy to implementv ve ec ct to or r<b bo oo ol l> so
that each element takes up only a bit.

The usualv ve ec ct to or r operations work forv ve ec ct to or r<b bo oo ol l> and retain their usual meanings. In particu-
lar, subscripting and iteration work as expected. For example:

v vo oi id d f f(v ve ec ct to or r<b bo oo ol l>& v v)
{

f fo or r (i in nt t i i = 0 0; i i<v v. s si iz ze e() ; ++i i) c ci in n >> v v[i i] ; / / iterate using subscripting

t ty yp pe ed de ef f v ve ec ct to or r<b bo oo ol l>: : c co on ns st t_ _i it te er ra at to or r V VI I;
f fo or r (V VI I p p = v v. b be eg gi in n() ; p p!= v v. e en nd d() ; ++p p) c co ou ut t<<* p p; / / iterate using iterators

}

To achieve this, an implementation must simulate addressing of a single bit. Since a pointer cannot
address a unit of memory smaller than a byte,v ve ec ct to or r<b bo oo ol l>: : i it te er ra at to or r cannot be a pointer. In par-
ticular, one cannot rely onb bo oo ol l* as an iterator for av ve ec ct to or r<b bo oo ol l>:

v vo oi id d f f(v ve ec ct to or r<b bo oo ol l>& v v)
{

b bo oo ol l* p p = v v. b be eg gi in n() ; / / error: type mismatch
/ / ...

}

A technique for addressing a single bit is outlined in §17.5.3.
The library also providesb bi it ts se et t as a set of Boolean values with Boolean set operations

(§17.5.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.4 Advice 459

16.4 Advice[org.advice]

[1] Use standard library facilities to maintain portability; §16.1.
[2] Don’t try to redefine standard library facilities; §16.1.2.
[3] Don’t believe that the standard library is best for everything.
[4] When building a new facility, consider whether it can be presented within the framework

offered by the standard library; §16.3.
[5] Remember that standard library facilities are defined in namespaces st td d; §16.1.2.
[6] Declare standard library facilities by including its header, not by explicit declaration; §16.1.2.
[7] Take advantage of late abstraction; §16.2.1.
[8] Avoid fat interfaces; §16.2.2.
[9] Prefer algorithms with reverse iterators over explicit loops dealing with reverse order; §16.3.2.
[10] Useb ba as se e() to extract ani it te er ra at to or r from ar re ev ve er rs se e_ _i it te er ra at to or r; §16.3.2.
[11] Pass containers by reference; §16.3.4.
[12] Use iterator types, such asl li is st t<c ch ha ar r>: : i it te er ra at to or r, rather than pointers to refer to elements of a

container; §16.3.1.
[13] Usec co on ns st t iterators where you don’t need to modify the elements of a container; §16.3.1.
[14] Usea at t() , directly or indirectly, if you want range checking; §16.3.3.
[15] Usep pu us sh h_ _b ba ac ck k() or r re es si iz ze e() on a container rather thanr re ea al ll lo oc c() on an array; §16.3.5.
[16] Don’t use iterators into a resizedv ve ec ct to or r; §16.3.8.
[17] User re es se er rv ve e() to avoid invalidating iterators; §16.3.8.
[18] When necessary, user re es se er rv ve e() to make performance predictable; §16.3.8.

16.5 Exercises[org.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (∗1.5) Create av ve ec ct to or r<c ch ha ar r> containing the letters of the alphabet in order. Print the elements

of that vector in order and in reverse order.
2. (∗1.5) Create av ve ec ct to or r<s st tr ri in ng g> and read a list of names of fruits fromc ci in n into it. Sort the list

and print it.
3. (∗1.5) Using thev ve ec ct to or r from §16.5[2], write a loop to print the names of all fruits with the ini-

tial lettera a.
4. (∗1) Using thev ve ec ct to or r from §16.5[2], write a loop to delete all fruits with the initial lettera a.
5. (∗1) Using thev ve ec ct to or r from §16.5[2], write a loop to delete all citrus fruits.
6. (∗1.5) Using thev ve ec ct to or r from §16.5[2], write a loop to delete all fruits that you don’t like.
7. (∗2) Complete theV Ve ec ct to or r, L Li is st t, andI It to or r classes from §16.2.1.
8. (∗2.5) Given anI It to or r class, consider how to provide iterators for forwards iteration, backwards

iteration, iteration over a container that might change during an iteration, and iteration over an
immutable container. Organize this set of containers so that a user can interchangeably use iter-
ators that provide sufficient functionality for an algorithm. Minimize replication of effort in the
implementation of the containers. What other kinds of iterators might a user need? List the
strengths and weaknesses of your approach.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

460 Library Organization and Containers Chapter 16

9. (∗2) Complete theC Co on nt ta ai in ne er r, V Ve ec ct to or r, andL Li is st t classes from §16.2.2.
10. (∗2.5) Generate 10,000 uniformly distributed random numbers in the range 0 to 1,023 and store

them in (a) an standard libraryv ve ec ct to or r, (b) a V Ve ec ct to or r from §16.5[7], and (3) aV Ve ec ct to or r from
§16.5[9]. In each case, calculate the arithmetic mean of the elements of the vector (as if you
didn’t know it already). Time the resulting loops. Estimate, measure, and compare the memory
consumption for the three styles of vectors.

11. (∗1.5) Write an iterator to allowV Ve ec ct to or r from §16.2.2 to be used as a container in the style of
§16.2.1.

12. (∗1.5) Write a class derived fromC Co on nt ta ai in ne er r to allow V Ve ec ct to or r from §16.2.1 to be used as a con-
tainer in the style of §16.2.2.

13. (∗2) Write classes to allowV Ve ec ct to or r from §16.2.1 andV Ve ec ct to or r from §16.2.2 to be used as standard
containers.

14. (∗2) Write a template that implements a container with the same member functions and member
types as the standardv ve ec ct to or r for an existing (nonstandard, non-student-exercise) container type.
Do not modify the (pre)existing container type. How would you deal with functionality offered
by the nonstandardv ve ec ct to or r but not by the standardv ve ec ct to or r?

15. (∗1.5) Outline the possible behavior ofd du up pl li ic ca at te e_ _e el le em me en nt ts s() from §16.3.6 for a
v ve ec ct to or r<s st tr ri in ng g> with the three elementsd do on n´ t t d do o t th hi is s.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

17
_ __ _______________________________________

Standard Containers

Now is a good time to put your work
on a firm theoretical foundation.

– Sam Morgan

Standard containers— container and operation summaries— efficiency — representa-
tion — element requirements— sequences— v ve ec ct to or r — l li is st t — d de eq qu ue e — adapters—
s st ta ac ck k — q qu ue eu ue e — p pr ri io or ri it ty y_ _q qu ue eu ue e — associative containers— m ma ap p — comparisons—
m mu ul lt ti im ma ap p — s se et t — m mu ul lt ti is se et t — ‘‘almost containers’’— b bi it ts se et t — arrays— hash tables
— implementing ah ha as sh h_ _m ma ap p — advice— exercises.

17.1 Standard Containers[cont.intro]

The standard library defines two kinds of containers: sequences and associative containers. The
sequences are all much likev ve ec ct to or r (§16.3). Except where otherwise stated, the member types and
functions mentioned forv ve ec ct to or r can also be used for any other container and produce the same
effect. In addition, associative containers provide element access based on keys (§3.7.4).

Built-in arrays (§5.2),s st tr ri in ng gs (Chapter 20),v va al la ar rr ra ay ys (§22.4), andb bi it ts se et ts (§17.5.3) hold ele-
ments and can therefore be considered containers. However, these types are not fully-developed
standard containers. If they were, that would interfere with their primary purpose. For example, a
built-in array cannot both hold its own size and remain layout-compatible with C arrays.

A key idea for the standard containers is that they should be logically interchangeable wherever
reasonable. The user can then choose between them based on efficiency concerns and the need for
specialized operations. For example, if lookup based on a key is common, am ma ap p (§17.4.1) can be
used. On the other hand, if general list operations dominate, al li is st t (§17.2.2) can be used. If many
additions and removals of elements occur at the ends of the container, ad de eq qu ue e (double-ended
queue, §17.2.3), as st ta ac ck k (§17.3.1), or aq qu ue eu ue e (§17.3.2) should be considered. In addition, a user
can design additional containers to fit into the framework provided by the standard containers

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

462 Standard Containers Chapter 17

(§17.6). By default, av ve ec ct to or r (§16.3) should be used; it will be implemented to perform well over a
wide range of uses.

The idea of treating different kinds of containers– and more generally all kinds of information
sources– in uniform ways leads to the notion of generic programming (§2.7.2, §3.8). The standard
library provides many generic algorithms to support this idea (Chapter 18). Such algorithms can
save the programmer from having to deal directly with details of individual containers.

17.1.1 Operations Summary [cont.operations]

This section lists the common and almost common members of the standard containers. For more
details, read your standard headers (<v ve ec ct to or r>, <l li is st t>, <m ma ap p>, etc.; §16.1.2).

_ __
Member Types (§16.3.1)_ ___ __

v va al lu ue e_ _t ty yp pe e Type of element.
a al ll lo oc ca at to or r_ _t ty yp pe e Type of memory manager.
s si iz ze e_ _t ty yp pe e Type of subscripts, element counts, etc.
d di if ff fe er re en nc ce e_ _t ty yp pe e Type of difference between iterators.
i it te er ra at to or r Behaves likev va al lu ue e_ _t ty yp pe e* .
c co on ns st t_ _i it te er ra at to or r Behaves likec co on ns st t v va al lu ue e_ _t ty yp pe e* .
r re ev ve er rs se e_ _i it te er ra at to or r View container in reverse order; likev va al lu ue e_ _t ty yp pe e* .
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r View container in reverse order; likec co on ns st t v va al lu ue e_ _t ty yp pe e* .
r re ef fe er re en nc ce e Behaves likev va al lu ue e_ _t ty yp pe e&.
c co on ns st t_ _r re ef fe er re en nc ce e Behaves likec co on ns st t v va al lu ue e_ _t ty yp pe e&.
k ke ey y_ _t ty yp pe e Type of key (for associative containers only).
m ma ap pp pe ed d_ _t ty yp pe e Type ofm ma ap pp pe ed d_ _v va al lu ue e (for associative containers only).
k ke ey y_ _c co om mp pa ar re e Type of comparison criterion (for associative containers only)._ __ 




































A container can be viewed as a sequence either in the order defined by the container’si it te er ra at to or r or in
reverse order. For an associative container, the order is based on the container’s comparison crite-
rion (by default<):

_ ___
Iterators (§16.3.2)_ __ ___

b be eg gi in n(()) Points to first element.
e en nd d(()) Points to one-past-last element.
r rb be eg gi in n(()) Points to first element of reverse sequence.
r re en nd d(()) Points to one-past-last element of reverse sequence._ ___ 














Some elements can be accessed directly:
_ __

Element Access (§16.3.3)_ ___ __
f fr ro on nt t(()) First element.
b ba ac ck k(()) Last element.
[[]] Subscripting, unchecked access (not for list).
a at t(()) Subscripting, checked access (not for list)._ __ 














The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.1 Operations Summary 463

Most containers provide efficient operations at the end (back) of their sequence of elements. In
addition, lists and deques provide the equivalent operations on the start (front) of their sequences:

_ ___
Stack and Queue Operations (§16.3.5, §17.2.2.2)_ __ ___

p pu us sh h_ _b ba ac ck k(()) Add to end.
p po op p_ _b ba ac ck k(()) Remove last element.
p pu us sh h_ _f fr ro on nt t(()) Add new first element (for list and deque only).
p po op p_ _f fr ro on nt t(()) Remove first element (for list and deque only)._ ___ 














Containers provide list operations:
_ ___

List Operations (§16.3.6)_ __ ___
i in ns se er rt t((p p, ,x x)) Add x x beforep p.
i in ns se er rt t((p p, ,n n, ,x x)) Add n n copies ofx x beforep p.
i in ns se er rt t((p p, ,f fi ir rs st t, ,l la as st t)) Add elements from [f fi ir rs st t:l la as st t[beforep p.
e er ra as se e((p p)) Remove element atp p.
e er ra as se e((f fi ir rs st t, ,l la as st t)) Erase [f fi ir rs st t:l la as st t[.
c cl le ea ar r(()) Erase all elements._ ___ 




















All containers provide operations related to the number of elements and a few other operations:
_ __

Other Operations (§16.3.8, §16.3.9, §16.3.10)_ ___ __
s si iz ze e(()) Number of elements.
e em mp pt ty y(()) Is the container empty?
m ma ax x_ _s si iz ze e(()) Size of the largest possible container.
c ca ap pa ac ci it ty y(()) Space allocated forv ve ec ct to or r (for vector only).
r re es se er rv ve e(()) Reserve space for future expansion (for vector only).
r re es si iz ze e(()) Change size of container (for vector, list, and deque only).
s sw wa ap p(()) Swap elements of two containers.
g ge et t_ _a al ll lo oc ca at to or r(()) Get a copy of the container’s allocator.
= == = Is the content of two containers the same?
! != = Is the content of two containers different?
< < Is one container lexicographically before another?_ __ 
































Containers provide a variety of constructors and assignment operations:
_ __

Constructors, etc. (§16.3.4)_ ___ __
c co on nt ta ai in ne er r(()) Empty container.
c co on nt ta ai in ne er r((n n)) n n elements default value (not for associative containers).
c co on nt ta ai in ne er r((n n, ,x x)) n n copies ofx x (not for associative containers).
c co on nt ta ai in ne er r((f fi ir rs st t, ,l la as st t)) Initial elements from [f fi ir rs st t:l la as st t[.
c co on nt ta ai in ne er r((x x)) Copy constructor; initial elements from containerx x.
˜ ˜c co on nt ta ai in ne er r(()) Destroy the container and all of its elements._ __ 




















The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

464 Standard Containers Chapter 17

_ __
Assignments (§16.3.4)_ ___ __

o op pe er ra at to or r= =((x x)) Copy assignment; elements from containerx x.
a as ss si ig gn n((n n, ,x x)) Assignn n copies ofx x (not for associative containers).
a as ss si ig gn n((f fi ir rs st t, ,l la as st t)) Assign from [f fi ir rs st t:l la as st t[._ __ 












Associative containers provide lookup based on keys:
_ __

Associative Operations (§17.4.1)_ ___ __
o op pe er ra at to or r[[]]((k k)) Access the element with keyk k (for containers with unique keys).
f fi in nd d((k k)) Find the element with keyk k.
l lo ow we er r_ _b bo ou un nd d((k k)) Find the first element with keyk k.
u up pp pe er r_ _b bo ou un nd d((k k)) Find the first element with key greater thank k.
e eq qu ua al l_ _r ra an ng ge e((k k)) Find thel lo ow we er r_ _b bo ou un nd d andu up pp pe er r_ _b bo ou un nd d of elements with keyk k.
k ke ey y_ _c co om mp p(()) Copy of the key comparison object.
v va al lu ue e_ _c co om mp p(()) Copy of them ma ap pp pe ed d_ _v va al lu ue ecomparison object._ __ 






















In addition to these common operations, most containers provide a few specialized operations.

17.1.2 Container Summary [cont.summary]

The standard containers can be summarized like this:
_ ___

Standard Container Operations_ __ ___
[] List Front Back (Stack) Iterators

Operations Operations Operations
§16.3.3 §16.3.6 §17.2.2.2 §16.3.5 §19.2.1
§17.4.1.3 §20.3.9 §20.3.9 §20.3.12_ ___

v ve ec ct to or r const O(n)+ const+ Ran
l li is st t const const const Bi
d de eq qu ue e const O(n) const const Ran_ ___
s st ta ac ck k const+
q qu ue eu ue e const const+
p pr ri io or ri it ty y_ _q qu ue eu ue e O(log(n)) O(log(n))_ ___
m ma ap p O(log(n)) O(log(n))+ Bi
m mu ul lt ti im ma ap p O(log(n))+ Bi
s se et t O(log(n))+ Bi
m mu ul lt ti is se et t O(log(n))+ Bi_ ___
s st tr ri in ng g const O(n)+ O(n)+ const+ Ran
a ar rr ra ay y const Ran
v va al la ar rr ra ay y const Ran
b bi it ts se et t const_ ___ 


















































In the iteratorscolumn,R Ra an n means random-access iterator andB Bi i means bidirectional iterator; the
operations for a bidirectional operator are a subset of those of a random-access iterator (§19.2.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.2 Container Summary 465

Other entries are measures of the efficiency of the operations. Ac co on ns st t entry means the operation
takes an amount of time that does not depend on the number of elements in the container. Another
conventional notation forconstant timeis O O(1 1) . An O O(n n) entry means the entry takes time pro-
portional to the number of elements involved. A+ suffix indicates that occasionally a significant
extra cost is incurred. For example, inserting an element into al li is st t has a fixed cost (so it is listed as
c co on ns st t), whereas the same operation on av ve ec ct to or r involves moving the elements following the inser-
tion point (so it is listed asO O(n n)). Occasionally, all elements must be relocated (so I added a+).
The ‘‘big O’’ notation is conventional. I added the+ for the benefit of programmers who care
about predictability in addition to average performance. A conventional term forO O(n n)+ is
amortized linear time.

Naturally, if a constant is large it can dwarf a small cost proportional to the number of elements.
However, for large data structuresc co on ns st t tends to mean ‘‘cheap,’’O O(n n) to mean ‘‘expensive,’’ and
O O(l lo og g(n n)) to mean ‘‘fairly cheap.’’ For even moderately large values ofn n, O O(l lo og g(n n)) is closer
to constant time than toO O(n n) . People who care about cost must take a closer look. In particular,
they must understand what elements are counted to get then n. No basic operation is ‘‘very expen-
sive,’’ that is,O O(n n* n n) or worse.

Except fors st tr ri in ng g, the measures of costs listed here reflect requirements in the standard. The
s st tr ri in ng g estimates are my assumptions.

These measures of complexity and cost are upper bounds. The measures exist to give users
some guidance as to what they can expect from implementations. Naturally, implementers will try
to do better in important cases.

17.1.3 Representation [cont.rep]

The standard doesn’t prescribe a particular representation for each standard container. Instead, the
standard specifies the container interfaces and some complexity requirements. Implementers will
choose appropriate and often cleverly optimized implementations to meet the general requirements.
A container will almost certainly be represented by a data structure holding the elements accessed
through a handle holding size and capacity information. For av ve ec ct to or r, the element data structure is
most likely an array:

s si iz ze e
r re ep p

. .
elements

.
..
.

extra space

v ve ec ct to or r:

Similarly, al li is st t is most likely represented by a set of links pointing to the elements:

r re ep p l li is st t:

elements:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

466 Standard Containers Chapter 17

A m ma ap p is most likely implemented as a (balanced) tree of nodes pointing to (key,value) pairs:

r re ep p
...

m ma ap p:
node

node

(key,value) pairs:

A s st tr ri in ng g might be implemented as outlined in §11.12 or maybe as a sequence of arrays holding a
few characters each:

r re ep p s st tr ri in ng g:

segment descriptors

string segments:

17.1.4 Element Requirements [cont.elem]

Elements in a container are copies of the objects inserted. Thus, to be an element of a container, an
object must be of a type that allows the container implementation to copy it. The container may
copy elements using a copy constructor or an assignment; in either case, the result of the copy must
be an equivalent object. This roughly means that any test for equality that you can devise on the
value of the objects must deem the copy equal to the original. In other words, copying an element
must work much like an ordinary copy of built-in types (including pointers). For example,

X X& X X: : o op pe er ra at to or r=(c co on ns st t X X& a a) / / proper assignment operator
{

/ / copy all of a’s members to *this
r re et tu ur rn n * t th hi is s;

}

makesX X acceptable as an element type for a standard container, but

v vo oi id d Y Y: : o op pe er ra at to or r=(c co on ns st t Y Y& a a) / / improper assignment operator
{

/ / zero out all of a’s members
}

rendersY Y unsuitable becauseY Y’s assignment has neither the conventional return type nor the con-
ventional semantics.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.4 Element Requirements 467

Some violations of the rules for standard containers can be detected by a compiler, but others
cannot and might then cause unexpected behavior. For example, a copy operation that throws an
exception might leave a partially copied element behind. It could even leave the container itself in
a state that could cause trouble later. Such copy operations are themselves bad design (§14.4.6.1).

When copying elements isn’t right, the alternative is to put pointers to objects into containers
instead of the objects themselves. The most obvious example is polymorphic types (§2.5.4,
§12.2.6). For example, we usev ve ec ct to or r<S Sh ha ap pe e*> rather thanv ve ec ct to or r<S Sh ha ap pe e> to preserve polymor-
phic behavior.

17.1.4.1 Comparisons [cont.comp]

Associative containers require that their elements can be ordered. So do many operations that can
be applied to containers (for examples so or rt t()). By default, the< operator is used to define the
order. If < is not suitable, the programmer must provide an alternative (§17.4.1.5, §18.4.2). The
ordering criterion must define astrict weak ordering. Informally, this means that both less-than
and equality must be transitive. That is, for an ordering criterionc cm mp p:

[1] c cm mp p(x x, x x) is f fa al ls se e.
[2] If c cm mp p(x x, y y) andc cm mp p(y y, z z) , thenc cm mp p(x x, z z) .
[3] Define e eq qu ui iv v(x x, y y) to be !(c cm mp p(x x, y y)|| c cm mp p(y y, x x)) . If e eq qu ui iv v(x x, y y) and e eq qu ui iv v(y y, z z) ,

thene eq qu ui iv v(x x, z z) .
Consider:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ; / / use< for comparison
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;/ / use cmp

The first version uses< and the second uses a user-supplied comparisonc cm mp p. For example, we
might decide to sortf fr ru ui it t using a comparison that isn’t case-sensitive. We do that by defining a
function object (§11.9, §18.4) that does the comparison when invoked for a pair ofs st tr ri in ng gs:

c cl la as ss s N No oc ca as se e { / / case-insensitive string compare
p pu ub bl li ic c:

b bo oo ol l o op pe er ra at to or r()(c co on ns st t s st tr ri in ng g&, c co on ns st t s st tr ri in ng g&) c co on ns st t;
};

b bo oo ol l N No oc ca as se e: : o op pe er ra at to or r()(c co on ns st t s st tr ri in ng g& x x, c co on ns st t s st tr ri in ng g& y y) c co on ns st t
/ / return true if x is lexicographically less than y, not taking case into account

{
s st tr ri in ng g: : c co on ns st t_ _i it te er ra at to or r p p = x x. b be eg gi in n() ;
s st tr ri in ng g: : c co on ns st t_ _i it te er ra at to or r q q = y y. b be eg gi in n() ;

w wh hi il le e (p p!= x x. e en nd d() && q q!= y y. e en nd d() && t to ou up pp pe er r(* p p)== t to ou up pp pe er r(* q q)) {
++p p;
++q q;

}
i if f (p p == x x. e en nd d()) r re et tu ur rn n q q != y y. e en nd d() ;
r re et tu ur rn n t to ou up pp pe er r(* p p) < t to ou up pp pe er r(* q q) ;

}

We can calls so or rt t() using that comparison criterion. For example, given:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

468 Standard Containers Chapter 17

f fr ru ui it t:
a ap pp pl le e p pe ea ar r A Ap pp pl le e P Pe ea ar r l le em mo on n

Sorting usings so or rt t(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , N No oc ca as se e()) would yield:

f fr ru ui it t:
A Ap pp pl le e a ap pp pl le e l le em mo on n P Pe ea ar r p pe ea ar r

whereas plains so or rt t(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d()) would give:

f fr ru ui it t:
A Ap pp pl le e P Pe ea ar r a ap pp pl le e l le em mo on n p pe ea ar r

assuming a character set in which uppercase letters precede lowercase letters.
Beware that< on C-style strings (that is,c ch ha ar r*) does not define lexicographical order

(§13.5.2). Thus, associative containers will not work as most people would expect them to when
C-style strings are used as keys. To make them work properly, a less-than operation that compares
based on lexicographical order must be used. For example:

s st tr ru uc ct t C Cs st tr ri in ng g_ _l le es ss s {
b bo oo ol l o op pe er ra at to or r()(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) c co on ns st t { r re et tu ur rn n s st tr rc cm mp p(p p, q q)< 0 0; }

};

m ma ap p<c ch ha ar r*, i in nt t, C Cs st tr ri in ng g_ _l le es ss s> m m; / / map that uses strcmp() to compare const char* keys

17.1.4.2 Other Relational Operators [cont.relops]

By default, containers and algorithms use< when they need to do a less-than comparison. When
the default isn’t right, a programmer can supply a comparison criterion. However, no mechanism is
provided for also passing an equality test. Instead, when a programmer supplies a comparisonc cm mp p,
equality is tested using two comparisons. For example:

i if f (x x == y y) / / not done where the user supplied a comparison

i if f (! c cm mp p(x x, y y) && ! c cm mp p(y y, x x)) / / done where the user supplied a comparison cmp

This saves us from having to add an equality parameter to every associative container and most
algorithms. It may look expensive, but the library doesn’t check for equality very often, and in
50% of the cases, only a single call ofc cm mp p() is needed.

Using an equivalence relationship defined by less-than (by default<) rather than equality (by
default ==) also has practical uses. For example, associative containers (§17.4) compare keys
using an equivalence test!(c cm mp p(x x, y y)|| c cm mp p(y y, x x)) . This implies that equivalent keys need not
be equal. For example, am mu ul lt ti im ma ap p (§17.4.2) that uses case-insensitive comparison as its compari-
son criteria will consider the stringsL La as st t, l la as st t, l lA As st t, l la aS St t, andl la as sT T equivalent, even though== for
strings deems them different. This allows us to ignore differences we consider insignificant when
sorting.

Given< and==, we can easily construct the rest of the usual comparisons. The standard library
defines them in the namespaces st td d: : r re el l_ _o op ps s and presents them in<u ut ti il li it ty y>:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.4.2 Other Relational Operators 469

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l r re el l_ _o op ps s: : o op pe er ra at to or r!=(c co on ns st t T T& x x, c co on ns st t T T& y y) { r re et tu ur rn n !(x x==y y) ; }
t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l r re el l_ _o op ps s: : o op pe er ra at to or r>(c co on ns st t T T& x x, c co on ns st t T T& y y) { r re et tu ur rn n y y<x x; }
t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l r re el l_ _o op ps s: : o op pe er ra at to or r<=(c co on ns st t T T& x x, c co on ns st t T T& y y) { r re et tu ur rn n !(y y<x x) ; }
t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l r re el l_ _o op ps s: : o op pe er ra at to or r>=(c co on ns st t T T& x x, c co on ns st t T T& y y) { r re et tu ur rn n !(x x<y y) ; }

Placing these operations inr re el l_ _o op ps s ensures that they are easy to use when needed, yet they don’t
get created implicitly unless extracted from that namespace:

v vo oi id d f f()
{

u us si in ng g n na am me es sp pa ac ce e s st td d;
/ / !=, >, etc., not generated by default

}

v vo oi id d g g()
{

u us si in ng g n na am me es sp pa ac ce e s st td d;
u us si in ng g n na am me es sp pa ac ce e s st td d: : r re el l_ _o op ps s;
/ / !=, >, etc., generated by default

}

The != , etc., operations are not defined directly ins st td d because they are not always needed and
sometimes their definition would interfere with user code. For example, if I were writing a general-
ized math library, I would wantmyrelational operators and not the standard library versions.

17.2 Sequences[cont.seq]

Sequences follow the pattern described forv ve ec ct to or r (§16.3). The fundamental sequences provided by
the standard library are:

v ve ec ct to or r l li is st t d de eq qu ue e

From these,

s st ta ac ck k q qu ue eu ue e p pr ri io or ri it ty y_ _q qu ue eu ue e

are created by providing suitable interfaces. These sequences are calledcontainer adapters,
sequence adapters, or simplyadapters(§17.3).

17.2.1 Vector [cont.vector]

The standardv ve ec ct to or r is described in detail in §16.3. The facilities for reserving space (§16.3.8) are
unique tov ve ec ct to or r. By default, subscripting using[] is not range checked. If a check is needed, use
a at t() (§16.3.3), a checked vector (§3.7.1), or a checked iterator (§19.3). Av ve ec ct to or r provides
random-access iterators (§19.2.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

470 Standard Containers Chapter 17

17.2.2 List [cont.list]

A l li is st t is a sequence optimized for insertion and deletion of elements. Compared tov ve ec ct to or r (and
d de eq qu ue e; §17.2.3), subscripting would be painfully slow, so subscripting is not provided forl li is st t.
Consequently,l li is st t provides bidirectional iterators (§19.2.1) rather than random-access iterators.
This implies that al li is st t will typically be implemented using some form of a doubly-linked list (see
§17.8[16]).

A l li is st t provides all of the member types and operations offered byv ve ec ct to or r (§16.3), with the
exceptions of subscripting,c ca ap pa ac ci it ty y() , andr re es se er rv ve e() :

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s s st td d: : l li is st t {
p pu ub bl li ic c:

/ / types and operations like vector’s, except [], at(), capacity(), and reserve()
/ / ...

};

17.2.2.1 Splice, Sort, and Merge [cont.splice]

In addition to the general sequence operations,l li is st t provides several operations specially suited for
list manipulation:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s l li is st t {
p pu ub bl li ic c:

/ / ...
/ / list-specific operations:

v vo oi id d s sp pl li ic ce e(i it te er ra at to or r p po os s, l li is st t& x x) ; / / move all elements from x to before
/ / pos in this list without copying.

v vo oi id d s sp pl li ic ce e(i it te er ra at to or r p po os s, l li is st t& x x, i it te er ra at to or r p p) ; / / move *p from x to before
/ / pos in this list without copying.

v vo oi id d s sp pl li ic ce e(i it te er ra at to or r p po os s, l li is st t& x x, i it te er ra at to or r f fi ir rs st t, i it te er ra at to or r l la as st t) ;

v vo oi id d m me er rg ge e(l li is st t&) ; / / merge sorted lists
t te em mp pl la at te e <c cl la as ss s C Cm mp p> v vo oi id d m me er rg ge e(l li is st t&, C Cm mp p) ;

v vo oi id d s so or rt t() ;
t te em mp pl la at te e <c cl la as ss s C Cm mp p> v vo oi id d s so or rt t(C Cm mp p) ;

/ / ...
};

Thesel li is st t operations are allstable; that is, they preserve the relative order of elements that have
equivalent values.

The f fr ru ui it t examples from §16.3.6 work withf fr ru ui it t defined to be al li is st t. In addition, we can
extract elements from one list and insert them into another by a single ‘‘splice’’ operation. Given:

f fr ru ui it t:
a ap pp pl le e p pe ea ar r

c ci it tr ru us s:
o or ra an ng ge e g gr ra ap pe ef fr ru ui it t l le em mo on n

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.2.2.1 Splice, Sort, and Merge 471

we can splice theo or ra an ng ge e from c ci it tr ru us s into f fr ru ui it t like this:

l li is st t<s st tr ri in ng g>: : i it te er ra at to or r p p = f fi in nd d_ _i if f(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , i in ni it ti ia al l(´ p p´)) ;
f fr ru ui it t. s sp pl li ic ce e(p p, c ci it tr ru us s, c ci it tr ru us s. b be eg gi in n()) ;

The effect is to remove the first element fromc ci it tr ru us s (c ci it tr ru us s. b be eg gi in n()) and place it just before the
first element off fr ru ui it t with the initial letterp p, thereby giving:

f fr ru ui it t:
a ap pp pl le e o or ra an ng ge e p pe ea ar r

c ci it tr ru us s:
g gr ra ap pe ef fr ru ui it t l le em mo on n

Note thats sp pl li ic ce e() doesn’t copy elements the wayi in ns se er rt t() does (§16.3.6). It simply modifies the
l li is st t data structures that refer to the element.

In addition to splicing individual elements and ranges, we cans sp pl li ic ce e() all elements of al li is st t:

f fr ru ui it t. s sp pl li ic ce e(f fr ru ui it t. b be eg gi in n() , c ci it tr ru us s) ;

This yields:

f fr ru ui it t:
g gr ra ap pe ef fr ru ui it t l le em mo on n a ap pp pl le e o or ra an ng ge e p pe ea ar r

c ci it tr ru us s:
<e em mp pt ty y>

Each version ofs sp pl li ic ce e() takes as its second argument thel li is st t from which elements are taken. This
allows elements to be removed from their originall li is st t. An iterator alone wouldn’t allow that
because there is no general way to determine the container holding an element given only an itera-
tor to that element (§18.6).

Naturally, an iterator argument must be a valid iterator for thel li is st t into which it is supposed to
point. That is, it must point to an element of thatl li is st t or be thel li is st t’s e en nd d() . If not, the result is
undefined and possibly disastrous. For example:

l li is st t<s st tr ri in ng g>: : i it te er ra at to or r p p = f fi in nd d_ _i if f(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , i in ni it ti ia al l(´ p p´)) ;
f fr ru ui it t. s sp pl li ic ce e(p p, c ci it tr ru us s, c ci it tr ru us s. b be eg gi in n()) ; / / ok
f fr ru ui it t. s sp pl li ic ce e(p p, c ci it tr ru us s, f fr ru ui it t. b be eg gi in n()) ; / / error: fruit.begin() doesn’t point into citrus
c ci it tr ru us s. s sp pl li ic ce e(p p, f fr ru ui it t, f fr ru ui it t. b be eg gi in n()) ; / / error: p doesn’t point into citrus

The firsts sp pl li ic ce e() is ok even thoughc ci it tr ru us s is empty.
A m me er rg ge e() combines two sorted lists by removing the elements from onel li is st t and entering

them into the other while preserving order. For example,

f f1 1:
a ap pp pl le e q qu ui in nc ce e p pe ea ar r

f f2 2:
l le em mo on n g gr ra ap pe ef fr ru ui it t o or ra an ng ge e l li im me e

can be sorted and merged like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

472 Standard Containers Chapter 17

f f1 1. s so or rt t() ;
f f2 2. s so or rt t() ;
f f1 1. m me er rg ge e(f f2 2) ;

This yields:

f f1 1:
a ap pp pl le e g gr ra ap pe ef fr ru ui it t l le em mo on n l li im me e o or ra an ng ge e p pe ea ar r q qu ui in nc ce e

f f2 2:
<e em mp pt ty y>

If one of the lists being merged is not sorted,m me er rg ge e() will still produce a list containing the union
of elements of the two lists. However, there are no guarantees made about the order of the result.

Like s sp pl li ic ce e() , m me er rg ge e() refrains from copying elements. Instead, it removes elements from
the source list and splices them into the target list. After anx x. m me er rg ge e(y y) , they y list is empty.

17.2.2.2 Front Operations [cont.front]

Operations that refer to the first element of al li is st t are provided to complement the operations refer-
ring to the last element provided by every sequence (§16.3.6):

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s l li is st t {
p pu ub bl li ic c:

/ / ...
/ / element access:

r re ef fe er re en nc ce e f fr ro on nt t() ; / / reference to first element
c co on ns st t_ _r re ef fe er re en nc ce e f fr ro on nt t() c co on ns st t;

v vo oi id d p pu us sh h_ _f fr ro on nt t(c co on ns st t T T&) ; / / add new first element
v vo oi id d p po op p_ _f fr ro on nt t() ; / / remove first element

/ / ...
};

The first element of a container is called itsf fr ro on nt t. For al li is st t, front operations are as efficient and
convenient as back operations (§16.3.5). When there is a choice, back operations should be pre-
ferred over front operations. Code written using back operations can be used for av ve ec ct to or r as well as
for a l li is st t. So if there is a chance that the code written using al li is st t will ever evolve into a generic
algorithm applicable to a variety of containers, it is best to prefer the more widely available back
operations. This is a special case of the rule that to achieve maximal flexibility, it is usually wise to
use the minimal set of operations to do a task (§17.1.4.1).

17.2.2.3 Other Operations [cont.list.etc]

Insertion and removal of elements are particularly efficient forl li is st ts. This, of course, leads people
to preferl li is st ts when these operations are frequent. That, in turn, makes it worthwhile to support
common ways of removing elements directly:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.2.2.3 Other Operations 473

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s l li is st t {
p pu ub bl li ic c:

/ / ...

v vo oi id d r re em mo ov ve e(c co on ns st t T T& v va al l) ;
t te em mp pl la at te e <c cl la as ss s P Pr re ed d> v vo oi id d r re em mo ov ve e_ _i if f(P Pr re ed d p p) ;

v vo oi id d u un ni iq qu ue e() ; / / remove duplicates using ==
t te em mp pl la at te e <c cl la as ss s B Bi in nP Pr re ed d> v vo oi id d u un ni iq qu ue e(B Bi in nP Pr re ed d b b) ; / / remove duplicates using b

v vo oi id d r re ev ve er rs se e() ; / / reverse order of elements
};

For example, given

f fr ru ui it t:
a ap pp pl le e o or ra an ng ge e g gr ra ap pe ef fr ru ui it t l le em mo on n o or ra an ng ge e l li im me e p pe ea ar r q qu ui in nc ce e

we can remove all elements with the value" o or ra an ng ge e" like this:

f fr ru ui it t. r re em mo ov ve e(" o or ra an ng ge e") ;

yielding:

f fr ru ui it t:
a ap pp pl le e g gr ra ap pe ef fr ru ui it t l le em mo on n l li im me e p pe ea ar r q qu ui in nc ce e

Often, it is more interesting to remove all elements that meet some criterion rather than simply all
elements with a given value. Ther re em mo ov ve e_ _i if f() operation does that. For example,

f fr ru ui it t. r re em mo ov ve e_ _i if f(i in ni it ti ia al l(´ l l´)) ;

removes every element with the initial´ l l´ from f fr ru ui it t giving:

f fr ru ui it t:
a ap pp pl le e g gr ra ap pe ef fr ru ui it t p pe ea ar r q qu ui in nc ce e

A common reason for removing elements is to eliminate duplicates. Theu un ni iq qu ue e() operation is
provided for that. For example:

f fr ru ui it t. s so or rt t() ;
f fr ru ui it t. u un ni iq qu ue e() ;

The reason for sorting is thatu un ni iq qu ue e removes only duplicates that appear consecutively. For exam-
ple, had fruit contained:

a ap pp pl le e p pe ea ar r a ap pp pl le e a ap pp pl le e p pe ea ar r

a simplef fr ru ui it t. u un ni iq qu ue e() would have produced

a ap pp pl le e p pe ea ar r a ap pp pl le e p pe ea ar r

whereas sorting first gives:

a ap pp pl le e p pe ea ar r

If only certain duplicates should be eliminated, we can provide a predicate to specify which

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

474 Standard Containers Chapter 17

duplicates we want to remove. For example, we might define a binary predicate (§18.4.2)
i in ni it ti ia al l2 2(x x) to compares st tr ri in ng gs that have the initialx x but yield f fa al ls se e for everys st tr ri in ng g that doesn’t.
Given:

p pe ea ar r p pe ea ar r a ap pp pl le e a ap pp pl le e

we can remove consecutive duplicates of everyf fr ru ui it t with the initialp p by a call

f fr ru ui it t. u un ni iq qu ue e(i in ni it ti ia al l2 2(´ p p´)) ;

This would give

p pe ea ar r a ap pp pl le e a ap pp pl le e

As noted in §16.3.2, we sometimes want to view a container in reverse order. For al li is st t, it is possi-
ble to reverse the elements so that the first becomes the last, etc., without copying the elements.
Ther re ev ve er rs se e() operation is provided to do that. Given:

f fr ru ui it t:
b ba an na an na a c ch he er rr ry y l li im me e s st tr ra aw wb be er rr ry y

f fr ru ui it t. r re ev ve er rs se e() produces:

f fr ru ui it t:
s st tr ra aw wb be er rr ry y l li im me e c ch he er rr ry y b ba an na an na a

An element that is removed from a list is destroyed. However, note that destroying a pointer does
not imply that the object it points to isd de el le et te ed. If you want a container of pointers thatd de el le et te es ele-
ments pointed to when the pointer is removed from the container or the container is destroyed, you
must write one yourself (§17.8[13]).

17.2.3 Deque [cont.deque]

A d de eq qu ue e (it rhymes with check) is a double-ended queue. That is, ad de eq qu ue e is a sequence optimized
so that operations at both ends are about as efficient as for al li is st t, whereas subscripting approaches
the efficiency of av ve ec ct to or r:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s s st td d: : d de eq qu ue e {
/ / types and operations like vector (§16.3.3, §16.3.5, §16.3.6)
/ / plus front operations (§17.2.2.2) like list

};

Insertion and deletion of elements ‘‘in the middle’’ havev ve ec ct to or r-like (in)efficiencies rather than
l li is st t-like efficiencies. Consequently, ad de eq qu ue e is used where additions and deletions take place ‘‘at
the ends.’’ For example, we might use ad de eq qu ue e to model a section of a railroad or to represent a
deck of cards in a game:

d de eq qu ue e<c ca ar r> s si id di in ng g_ _n no o_ _3 3;
d de eq qu ue e<C Ca ar rd d> b bo on nu us s;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.3 Sequence Adapters 475

17.3 Sequence Adapters[cont.adapters]

The v ve ec ct to or r, l li is st t, andd de eq qu ue e sequences cannot be built from each other without loss of efficiency.
On the other hand,s st ta ac ck ks andq qu ue eu ue es can be elegantly and efficiently implemented using those
three basic sequences. Therefore,s st ta ac ck k andq qu ue eu ue e are defined not as separate containers, but as
adaptors of basic containers.

A container adapter provides a restricted interface to a container. In particular, adapters do not
provide iterators; they are intended to be used only through their specialized interfaces.

The techniques used to create a container adapter from a container are generally useful for non-
intrusively adapting the interface of a class to the needs of its users.

17.3.1 Stack [cont.stack]

Thes st ta ac ck k container adapter is defined in<s st ta ac ck k>. It is so simple that the best way to describe it is
to present an implementation:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s C C = d de eq qu ue e<T T> > c cl la as ss s s st td d: : s st ta ac ck k {
p pr ro ot te ec ct te ed d:

C C c c;
p pu ub bl li ic c:

t ty yp pe ed de ef f t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e C C: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f C C c co on nt ta ai in ne er r_ _t ty yp pe e;

e ex xp pl li ic ci it t s st ta ac ck k(c co on ns st t C C& a a = C C()) : c c(a a) { }

b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n c c. e em mp pt ty y() ; }
s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n c c. s si iz ze e() ; }

v va al lu ue e_ _t ty yp pe e& t to op p() { r re et tu ur rn n c c. b ba ac ck k() ; }
c co on ns st t v va al lu ue e_ _t ty yp pe e& t to op p() c co on ns st t { r re et tu ur rn n c c. b ba ac ck k() ; }

v vo oi id d p pu us sh h(c co on ns st t v va al lu ue e_ _t ty yp pe e& x x) { c c. p pu us sh h_ _b ba ac ck k(x x) ; }
v vo oi id d p po op p() { c c. p po op p_ _b ba ac ck k() ; }

};

That is, as st ta ac ck k is simply an interface to a container of the type passed to it as a template argument.
All s st ta ac ck k does is to eliminate the non-stack operations on its container from the interface and give
b ba ac ck k() , p pu us sh h_ _b ba ac ck k() , andp po op p_ _b ba ac ck k() their conventional names:t to op p() , p pu us sh h() , andp po op p() .

By default, as st ta ac ck k makes ad de eq qu ue e to hold its elements, but any sequence that providesb ba ac ck k() ,
p pu us sh h_ _b ba ac ck k() , andp po op p_ _b ba ac ck k() can be used. For example:

s st ta ac ck k<c ch ha ar r> s s1 1; / / uses a deque<char> to store elements of type char
s st ta ac ck k< i in nt t, v ve ec ct to or r<i in nt t> > s s2 2; / / uses a vector<int> to store elements of type int

It is possible to supply an existing container to initialize a stack. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

476 Standard Containers Chapter 17

v vo oi id d p pr ri in nt t_ _b ba ac ck kw wa ar rd ds s(v ve ec ct to or r<i in nt t>& v v)
{

s st ta ac ck k<i in nt t> s st ta at te e(v v) ; / / initialize state from v
w wh hi il le e (s st ta at te e. s si iz ze e()) {

c co ou ut t << s st ta at te e. t to op p() ;
s st ta at te e. p po op p() ;

}
}

However, the elements of a container argument are copied, so supplying an existing container can
be expensive.

Elements are added to as st ta ac ck k usingp pu us sh h_ _b ba ac ck k() on the container that is used to store the ele-
ments. Consequently, as st ta ac ck k cannot overflow as long as there is memory available on the machine
for the container to acquire (using its allocator; see §19.4).

On the other hand, as st ta ac ck k can underflow:

v vo oi id d f f()
{

s st ta ac ck k<i in nt t> s s;
s s. p pu us sh h(2 2) ;
i if f (s s. e em mp pt ty y()) { / / underflow is preventable

/ / don’t pop
}
e el ls se e { / / but not impossible

s s. p po op p() ; / / fine: s.size() becomes 0
s s. p po op p() ; / / undefined effect, probably bad

}
}

Note that one does notp po op p() an element to use it. Instead, thet to op p() is accessed and then
p po op p() ’d when it is no longer needed. This is not too inconvenient, and it is more efficient when
thep po op p() isn’t necessary:

v vo oi id d f f(s st ta ac ck k<c ch ha ar r>& s s)
{

i if f (s s. t to op p()==´ c c´) s s. p po op p() ; / / remove optional initial ’c’
/ / ...

}

Unlike fully developed containers,s st ta ac ck k (like other container adapters) doesn’t have an allocator
template parameter. Instead, thes st ta ac ck k and its users rely on the allocator from the container used to
implement thes st ta ac ck k.

17.3.2 Queue [cont.queue]

Defined in<q qu ue eu ue e>, aq qu ue eu ue e is an interface to a container that allows the insertion of elements at
theb ba ac ck k() and the extraction of elements at thef fr ro on nt t() :

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.3.2 Queue 477

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s C C = d de eq qu ue e<T T> > c cl la as ss s s st td d: : q qu ue eu ue e {
p pr ro ot te ec ct te ed d:

C C c c;
p pu ub bl li ic c:

t ty yp pe ed de ef f t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e C C: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f C C c co on nt ta ai in ne er r_ _t ty yp pe e;

e ex xp pl li ic ci it t q qu ue eu ue e(c co on ns st t C C& a a = C C()) : c c(a a) { }

b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n c c. e em mp pt ty y() ; }
s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n c c. s si iz ze e() ; }

v va al lu ue e_ _t ty yp pe e& f fr ro on nt t() { r re et tu ur rn n c c. f fr ro on nt t() ; }
c co on ns st t v va al lu ue e_ _t ty yp pe e& f fr ro on nt t() c co on ns st t { r re et tu ur rn n c c. f fr ro on nt t() ; }

v va al lu ue e_ _t ty yp pe e& b ba ac ck k() { r re et tu ur rn n c c. b ba ac ck k() ; }
c co on ns st t v va al lu ue e_ _t ty yp pe e& b ba ac ck k() c co on ns st t { r re et tu ur rn n c c. b ba ac ck k() ; }

v vo oi id d p pu us sh h(c co on ns st t v va al lu ue e_ _t ty yp pe e& x x) { c c. p pu us sh h_ _b ba ac ck k(x x) ; }
v vo oi id d p po op p() { c c. p po op p_ _f fr ro on nt t() ; }

};

By default, aq qu ue eu ue e makes ad de eq qu ue e to hold its elements, but any sequence that providesf fr ro on nt t() ,
b ba ac ck k() , p pu us sh h_ _b ba ac ck k() , and p po op p_ _f fr ro on nt t() can be used. Because av ve ec ct to or r does not provide
p po op p_ _f fr ro on nt t() , av ve ec ct to or r cannot be used as the underlying container for a queue.

Queues seem to pop up somewhere in every system. One might define a server for a simple
message-based system like this:

s st tr ru uc ct t M Me es ss sa ag ge e {
/ / ...

};

v vo oi id d s se er rv ve er r(q qu ue eu ue e<M Me es ss sa ag ge e>& q q)
{

w wh hi il le e(! q q. e em mp pt ty y()) {
M Me es ss sa ag ge e& m m = q q. f fr ro on nt t() ; / / get hold of message
m m. s se er rv vi ic ce e() ; / / call function to serve request
q q. p po op p() ; / / destroy message

}
}

Messages would be put on theq qu ue eu ue eusingp pu us sh h() .
If the requester and the server are running in different processes or threads, some form of syn-

chronization of the queue access would be necessary. For example:

v vo oi id d s se er rv ve er r2 2(q qu ue eu ue e<M Me es ss sa ag ge e>& q q, L Lo oc ck k& l lc ck k)
{

w wh hi il le e(! q q. e em mp pt ty y()) {
M Me es ss sa ag ge e m m;
{ L Lo oc ck kP Pt tr r h h(l lc ck k) ; / / hold lock only while extracting message (see §14.4.7)

i if f (q q. e em mp pt ty y()) r re et tu ur rn n; / / somebody else got the message

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

478 Standard Containers Chapter 17

m m = q q. f fr ro on nt t() ;
q q. p po op p() ;

}
m m. s se er rv vi ic ce e() ; / / call function to serve request

}
}

There is no standard definition of concurrency or locking in C++ or in the world in general. Have a
look to see what your system has to offer and how to access it from C++ (§17.8[8]).

17.3.3 Priority Queue [cont.pqueue]

A p pr ri io or ri it ty y_ _q qu ue eu ue e is a queue in which each element is given a priority that controls the order in
which the elements get to bet to op p() :

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s C C = v ve ec ct to or r<T T>, c cl la as ss s C Cm mp p = l le es ss s<t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e> >
c cl la as ss s s st td d: : p pr ri io or ri it ty y_ _q qu ue eu ue e {
p pr ro ot te ec ct te ed d:

C C c c;
C Cm mp p c cm mp p;

p pu ub bl li ic c:
t ty yp pe ed de ef f t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e C C: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f C C c co on nt ta ai in ne er r_ _t ty yp pe e;

e ex xp pl li ic ci it t p pr ri io or ri it ty y_ _q qu ue eu ue e(c co on ns st t C Cm mp p& a a1 1 = C Cm mp p() , c co on ns st t C C& a a2 2 = C C())
: c c(a a2 2) , c cm mp p(a a1 1) { }

t te em mp pl la at te e <c cl la as ss s I In n>
p pr ri io or ri it ty y_ _q qu ue eu ue e(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t C Cm mp p& = C Cm mp p() , c co on ns st t C C& = C C()) ;

b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n c c. e em mp pt ty y() ; }
s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n c c. s si iz ze e() ; }

c co on ns st t v va al lu ue e_ _t ty yp pe e& t to op p() c co on ns st t { r re et tu ur rn n c c. f fr ro on nt t() ; }

v vo oi id d p pu us sh h(c co on ns st t v va al lu ue e_ _t ty yp pe e&) ;
v vo oi id d p po op p() ;

};

The declaration ofp pr ri io or ri it ty y_ _q qu ue eu ue e is found in<q qu ue eu ue e>.
By default, thep pr ri io or ri it ty y_ _q qu ue eu ue e simply compares elements using the< operator andp po op p()

returns the largest element:

s st tr ru uc ct t M Me es ss sa ag ge e {
i in nt t p pr ri io or ri it ty y;
b bo oo ol l o op pe er ra at to or r<(c co on ns st t M Me es ss sa ag ge e& x x) c co on ns st t { r re et tu ur rn n p pr ri io or ri it ty y < x x. p pr ri io or ri it ty y; }
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.3.3 Priority Queue 479

v vo oi id d s se er rv ve er r(p pr ri io or ri it ty y_ _q qu ue eu ue e<M Me es ss sa ag ge e>& q q, L Lo oc ck k& l lc ck k)
{

w wh hi il le e(! q q. e em mp pt ty y()) {
M Me es ss sa ag ge e m m;
{ L Lo oc ck kP Pt tr r h h(l lc ck k) ; / / hold lock only while extracting message (see §14.4.7)

i if f (q q. e em mp pt ty y()) r re et tu ur rn n; / / somebody else got the message
m m = q q. t to op p() ;
q q. p po op p() ;

}
m m. s se er rv vi ic ce e() ; / / call function to serve request

}
}

This example differs from theq qu ue eu ue e example (§17.3.2) in thatm me es ss sa ag ge es s with higher priority will
get served first. The order in which elements with equal priority come to the head of the queue is
not defined. Two elements are considered of equal priority if neither has higher priority than the
other (§17.4.1.5).

An alternative to< for comparison can be provided as a template argument. For example, we
could sort strings in a case-insensitive manner by placing them in

p pr ri io or ri it ty y_ _q qu ue eu ue e<s st tr ri in ng g, N No oc ca as se e> p pq q; / / use Nocase::operator()() for comparisons (§17.1.4.1)

usingp pq q. p pu us sh h() and then retrieving them usingp pq q. t to op p() andp pq q. p po op p() .
Objects defined by templates given different template arguments are of different types

(§13.6.3.1). For example:

v vo oi id d f f(p pr ri io or ri it ty y_ _q qu ue eu ue e<s st tr ri in ng g>& p pq q1 1)
{

p pq q = p pq q1 1; / / error: type mismatch
}

We can supply a comparison criterion without affecting the type of ap pr ri io or ri it ty y_ _q qu ue eu ue e by providing
a comparison object of the appropriate type as a constructor argument. For example:

s st tr ru uc ct t S St tr ri in ng g_ _c cm mp p { / / type used to express comparison criteria at run time
S St tr ri in ng g_ _c cm mp p(i in nt t n n = 0 0) ; / / use comparison criteria n
/ / ...

};

v vo oi id d g g(p pr ri io or ri it ty y_ _q qu ue eu ue e<s st tr ri in ng g, S St tr ri in ng g_ _c cm mp p>& p pq q)
{

p pr ri io or ri it ty y_ _q qu ue eu ue e<s st tr ri in ng g> p pq q2 2(S St tr ri in ng g_ _c cm mp p(n no oc ca as se e)) ;
p pq q = p pq q2 2; / / ok: pq and pq2 are of the same type, pq now also uses String_cmp(nocase)

}

Keeping elements in order isn’t free, but it needn’t be expensive either. One useful way of imple-
menting ap pr ri io or ri it ty y_ _q qu ue eu ue e is to use a tree structure to keep track of the relative positions of ele-
ments. This gives anO O(l lo og g(n n)) cost of bothp pu us sh h() andp po op p() .

By default, ap pr ri io or ri it ty y_ _q qu ue eu ue e makes av ve ec ct to or r to hold its elements, but any sequence that pro-
vides f fr ro on nt t() , p pu us sh h_ _b ba ac ck k() , p po op p_ _b ba ac ck k() , and random iterators can be used. Ap pr ri io or ri it ty y_ _q qu ue eu ue e
is most likely implemented using ah he ea ap p (§18.8).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

480 Standard Containers Chapter 17

17.4 Associative Containers[cont.assoc]

An associative arrayis one of the most useful general, user-defined types. In fact, it is often a
built-in type in languages primarily concerned with text processing and symbolic processing. An
associative array, often called amap and sometimes called adictionary, keeps pairs of values.
Given one value, called thekey, we can access the other, called themapped value. An associative
array can be thought of as an array for which the index need not be an integer:

t te em mp pl la at te e<c cl la as ss s K K, c cl la as ss s V V> c cl la as ss s A As ss so oc c {
p pu ub bl li ic c:

V V& o op pe er ra at to or r[](c co on ns st t K K&) ; / / return a reference to the V corresponding to K
/ / ...

};

Thus, a key of typeK K names a mapped value of typeV V.
Associative containers are a generalization of the notion of an associative array. Them ma ap p is a

traditional associative array, where a single value is associated with each unique key. Am mu ul lt ti im ma ap p
is an associative array that allows duplicate elements for a given key, ands se et t andm mu ul lt ti is se et t can be
seen as degenerate associative arrays in which no value is associated with a key.

17.4.1 Map [cont.map]

A m ma ap p is a sequence of (key,value) pairs that provides for fast retrieval based on the key. At most
one value is held for each key; in other words, each key in am ma ap p is unique. Am ma ap p provides bidi-
rectional iterators (§19.2.1).

Them ma ap p requires that a less-than operation exist for its key types (§17.1.4.1) and keeps its ele-
ments sorted so that iteration over am ma ap p occurs in order. For elements for which there is no obvi-
ous order or when there is no need to keep the container sorted, we might consider using a
h ha as sh h_ _m ma ap p (§17.6).

17.4.1.1 Types [cont.map.types]

A m ma ap p has the usual container member types (§16.3.1) plus a few relating to its specific function:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s s st td d: : m ma ap p {
p pu ub bl li ic c:

/ / types:

t ty yp pe ed de ef f K Ke ey y k ke ey y_ _t ty yp pe e;
t ty yp pe ed de ef f T T m ma ap pp pe ed d_ _t ty yp pe e;

t ty yp pe ed de ef f p pa ai ir r<c co on ns st t K Ke ey y, T T> v va al lu ue e_ _t ty yp pe e;

t ty yp pe ed de ef f C Cm mp p k ke ey y_ _c co om mp pa ar re e;
t ty yp pe ed de ef f A A a al ll lo oc ca at to or r_ _t ty yp pe e;

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : r re ef fe er re en nc ce e r re ef fe er re en nc ce e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _r re ef fe er re en nc ce e c co on ns st t_ _r re ef fe er re en nc ce e;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.1 Types 481

t ty yp pe ed de ef f implementation_defined1 i it te er ra at to or r;
t ty yp pe ed de ef f implementation_defined2 c co on ns st t_ _i it te er ra at to or r;

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di if ff fe er re en nc ce e_ _t ty yp pe e;

t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<i it te er ra at to or r> r re ev ve er rs se e_ _i it te er ra at to or r;
t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<c co on ns st t_ _i it te er ra at to or r> c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r;
/ / ...

};

Note that thev va al lu ue e_ _t ty yp pe e of a m ma ap p is a (key,value)p pa ai ir r. The type of the mapped values is referred
to as them ma ap pp pe ed d_ _t ty yp pe e. Thus, am ma ap p is a sequence ofp pa ai ir r<c co on ns st t K Ke ey y, m ma ap pp pe ed d_ _t ty yp pe e> elements.

As usual, the actual iterator types are implementation-defined. Since am ma ap p most likely is
implemented using some form of a tree, these iterators usually provide some form of tree traversal.

The reverse iterators are constructed from the standardr re ev ve er rs se e_ _i it te er ra at to or r templates (§19.2.5).

17.4.1.2 Iterators and Pairs [cont.map.iter]

A m ma ap p provides the usual set of functions that return iterators (§16.3.2):

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > > c cl la as ss s m ma ap p {

p pu ub bl li ic c:
/ / ...
/ / iterators:

i it te er ra at to or r b be eg gi in n() ;
c co on ns st t_ _i it te er ra at to or r b be eg gi in n() c co on ns st t;

i it te er ra at to or r e en nd d() ;
c co on ns st t_ _i it te er ra at to or r e en nd d() c co on ns st t;

r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() ;
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() c co on ns st t;

r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() ;
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() c co on ns st t;

/ / ...
};

Iteration over am ma ap p is simply an iteration over a sequence ofp pa ai ir r<c co on ns st t K Ke ey y, m ma ap pp pe ed d_ _t ty yp pe e> ele-
ments. For example, we might print out the entries of a phone book like this:

v vo oi id d f f(m ma ap p<s st tr ri in ng g, n nu um mb be er r>& p ph ho on ne e_ _b bo oo ok k)
{

t ty yp pe ed de ef f m ma ap p<s st tr ri in ng g, n nu um mb be er r>: : c co on ns st t_ _i it te er ra at to or r C CI I;
f fo or r (C CI I p p = p ph ho on ne e_ _b bo oo ok k. b be eg gi in n() ; p p!= p ph ho on ne e_ _b bo oo ok k. e en nd d() ; ++p p)

c co ou ut t << p p-> f fi ir rs st t << ´ \ \t t´ << p p-> s se ec co on nd d << ´ \ \n n´;
}

A m ma ap p iterator presents the elements in ascending order of its keys (§17.4.1.5). Therefore, the
p ph ho on ne e_ _b bo oo ok k entries will be output in lexicographical order.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

482 Standard Containers Chapter 17

We refer to the first element of anyp pa ai ir r as f fi ir rs st t and the second ass se ec co on nd d independently of
what types they actually are:

t te em mp pl la at te e <c cl la as ss s T T1 1, c cl la as ss s T T2 2> s st tr ru uc ct t s st td d: : p pa ai ir r {
t ty yp pe ed de ef f T T1 1 f fi ir rs st t_ _t ty yp pe e;
t ty yp pe ed de ef f T T2 2 s se ec co on nd d_ _t ty yp pe e;

T T1 1 f fi ir rs st t;
T T2 2 s se ec co on nd d;

p pa ai ir r() : f fi ir rs st t(T T1 1()) , s se ec co on nd d(T T2 2()) { }
p pa ai ir r(c co on ns st t T T1 1& x x, c co on ns st t T T2 2& y y) : f fi ir rs st t(x x) , s se ec co on nd d(y y) { }
t te em mp pl la at te e<c cl la as ss s U U, c cl la as ss s V V>

p pa ai ir r(c co on ns st t p pa ai ir r<U U, V V>& p p) : f fi ir rs st t(p p. f fi ir rs st t) , s se ec co on nd d(p p. s se ec co on nd d) { }
};

The last constructor exists to allow conversions in the initializer (§13.6.2). For example:

p pa ai ir r<i in nt t, d do ou ub bl le e> f f(c ch ha ar r c c, i in nt t i i)
{

r re et tu ur rn n p pa ai ir r<i in nt t, d do ou ub bl le e>(c c, i i) ; / / conversions required
}

In am ma ap p, the key is the first element of the pair and the mapped value is the second.
The usefulness ofp pa ai ir r is not limited to the implementation ofm ma ap p, so it is a standard library

class in its own right. The definition ofp pa ai ir r is found in<u ut ti il li it ty y>. A function to make it conve-
nient to createp pa ai ir rs is also provided:

t te em mp pl la at te e <c cl la as ss s T T1 1, c cl la as ss s T T2 2> p pa ai ir r<T T1 1, T T2 2> s st td d: : m ma ak ke e_ _p pa ai ir r(T T1 1 t t1 1, T T2 2 t t2 2)
{

r re et tu ur rn n p pa ai ir r<T T1 1, T T2 2>(t t1 1, t t2 2) ;
}

A p pa ai ir r is by default initialized to the default values of its element types. In particular, this implies
that elements of built-in types are initialized to0 0 (§5.1.1) ands st tr ri in ng gs are initialized to the empty
string (§20.3.4). A type without a default constructor can be an element of ap pa ai ir r only provided the
pair is explicitly initialized.

17.4.1.3 Subscripting [cont.map.element]

The characteristicm ma ap p operation is the associative lookup provided by the subscript operator:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s m ma ap p {
p pu ub bl li ic c:

/ / ...

m ma ap pp pe ed d_ _t ty yp pe e& o op pe er ra at to or r[](c co on ns st t k ke ey y_ _t ty yp pe e& k k) ; / / access element with key k

/ / ...
};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.3 Subscripting 483

The subscript operator performs a lookup on the key given as an index and returns the correspond-
ing value. If the key isn’t found, an element with the key and the default value of them ma ap pp pe ed d_ _t ty yp pe e
is inserted into them ma ap p. For example:

v vo oi id d f f()
{

m ma ap p<s st tr ri in ng g, i in nt t> m m; / / map starting out empty
i in nt t x x = m m[" H He en nr ry y"] ; / / create new entry for "Henry", initialize to 0, return 0
m m[" H Ha ar rr ry y"] = 7 7; / / create new entry for "Harry", initialize to 0, and assign 7
i in nt t y y = m m[" H He en nr ry y"] ; / / return the value from "Henry"’s entry
m m[" H Ha ar rr ry y"] = 9 9; / / change the value from "Harry"’s entry to 9

}

As a slightly more realistic example, consider a program that calculates sums of items presented as
input in the form of (item-name,value) pairs such as

n na ai il l 1 10 00 0 h ha am mm me er r 2 2 s sa aw w 3 3 s sa aw w 4 4 h ha am mm me er r 7 7 n na ai il l 1 10 00 00 0 n na ai il l 2 25 50 0

and also calculates the sum for each item. The main work can be done while reading the (item-
name,value) pairs into am ma ap p:

v vo oi id d r re ea ad di it te em ms s(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

s st tr ri in ng g w wo or rd d;
i in nt t v va al l = 0 0;
w wh hi il le e (c ci in n >> w wo or rd d >> v va al l) m m[w wo or rd d] += v va al l;

}

The subscript operationm m[w wo or rd d] identifies the appropriate(s st tr ri in ng g, i in nt t) pair and returns a refer-
ence to itsi in nt t part. This code takes advantage of the fact that a new element gets itsi in nt t value set to
0 0 by default.

A m ma ap p constructed byr re ea ad di it te em ms s() can then be output using a conventional loop:

i in nt t m ma ai in n()
{

m ma ap p<s st tr ri in ng g, i in nt t> t tb bl l;
r re ea ad di it te em ms s(t tb bl l) ;

i in nt t t to ot ta al l = 0 0;
t ty yp pe ed de ef f m ma ap p<s st tr ri in ng g, i in nt t>: : c co on ns st t_ _i it te er ra at to or r C CI I;

f fo or r (C CI I p p = t tb bl l. b be eg gi in n() ; p p!= t tb bl l. e en nd d() ; ++p p) {
t to ot ta al l += p p-> s se ec co on nd d;
c co ou ut t << p p-> f fi ir rs st t << ´ \ \t t´ << p p-> s se ec co on nd d << ´ \ \n n´;

}

c co ou ut t << "---------------- \ \n nt to ot ta al l\ \t t" << t to ot ta al l << ´ \ \n n´;

r re et tu ur rn n ! c ci in n;
}

Given the input above, the output is:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

484 Standard Containers Chapter 17

h ha am mm me er r 9 9
n na ai il l 1 13 35 50 0
s sa aw w 7 7

t to ot ta al l 1 13 36 66 6

Note that the items are printed in lexical order (§17.4.1, §17.4.1.5).
A subscripting operation must find the key in them ma ap p. This, of course, is not as cheap as sub-

scripting an array with an integer. The cost isO O(l lo og g(s si iz ze e_ _o of f_ _m ma ap p)) , which is acceptable for
many applications. For applications for which this is too expensive, a hashed container is often the
answer (§17.6).

Subscripting am ma ap p adds a default element when the key is not found. Therefore, there is no
version of o op pe er ra at to or r[]() for c co on ns st t m ma ap ps. Furthermore, subscripting can be used only if the
m ma ap pp pe ed d_ _t ty yp pe e (value type) has a default value. If the programmer simply wants to see if a key is
present, thef fi in nd d() operation (§17.4.1.6) can be used to locate ak ke ey y without modifying them ma ap p.

17.4.1.4 Constructors [cont.map.ctor]

A m ma ap p provides the usual complement of constructors, etc. (§16.3.4) :

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p =l le es ss s<K Ke ey y>,
c cl la as ss s A A =a al ll lo oc ca at to or r<p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s m ma ap p {
p pu ub bl li ic c:

/ / ...
/ / construct/copy/destroy:

e ex xp pl li ic ci it t m ma ap p(c co on ns st t C Cm mp p& = C Cm mp p() , c co on ns st t A A& = A A()) ;
t te em mp pl la at te e <c cl la as ss s I In n> m ma ap p(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t C Cm mp p& = C Cm mp p() , c co on ns st t A A& = A A()) ;
m ma ap p(c co on ns st t m ma ap p&) ;

~m ma ap p() ;

m ma ap p& o op pe er ra at to or r=(c co on ns st t m ma ap p&) ;

/ / ...
};

Copying a container implies allocating space for its elements and making copies of each element
(§16.3.4). This can be very expensive and should be done only when necessary. Consequently,
containers such asm ma ap ps tend to be passed by reference.

The member template constructor takes a sequence ofp pa ai ir r<c co on ns st t K Ke ey y, T T>s described by a pair
input iteratorI In n. It i in ns se er rt t() s (§17.4.1.7) the elements from the sequence into them ma ap p.

17.4.1.5 Comparisons [cont.map.comp]

To find an element in am ma ap p given a key, them ma ap p operations must compare keys. Also, iterators
traverse am ma ap p in order of increasing key values, so insertion will typically also compare keys (to
place an element into a tree structure representing them ma ap p).

By default, the comparison used for keys is< (less than), but an alternative can be provided as a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.5 Comparisons 485

template parameter or as a constructor argument (see §17.3.3). The comparison given is a compari-
son of keys, but thev va al lu ue e_ _t ty yp pe e of a m ma ap p is a (key,value) pair. Consequently,v va al lu ue e_ _c co om mp p() is
provided to compare such pairs using the key comparison function:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s m ma ap p {
p pu ub bl li ic c:

/ / ...

t ty yp pe ed de ef f C Cm mp p k ke ey y_ _c co om mp pa ar re e;

c cl la as ss s v va al lu ue e_ _c co om mp pa ar re e : p pu ub bl li ic c b bi in na ar ry y_ _f fu un nc ct ti io on n<v va al lu ue e_ _t ty yp pe e, v va al lu ue e_ _t ty yp pe e, b bo oo ol l> {
f fr ri ie en nd d c cl la as ss s m ma ap p;
p pr ro ot te ec ct te ed d:

C Cm mp p c cm mp p;
v va al lu ue e_ _c co om mp pa ar re e(C Cm mp p c c) : c cm mp p(c c) {}

p pu ub bl li ic c:
b bo oo ol l o op pe er ra at to or r()(c co on ns st t T T& x x, c co on ns st t T T& y y) c co on ns st t { r re et tu ur rn n c cm mp p(x x. f fi ir rs st t, y y. f fi ir rs st t) ; }

};

k ke ey y_ _c co om mp pa ar re e k ke ey y_ _c co om mp p() c co on ns st t;
v va al lu ue e_ _c co om mp pa ar re e v va al lu ue e_ _c co om mp p() c co on ns st t;

/ / ...
};

For example:

m ma ap p<s st tr ri in ng g, i in nt t> m m1 1;
m ma ap p<s st tr ri in ng g, i in nt t, N No oc ca as se e> m m2 2; / / specify comparison type (§17.1.4.1)
m ma ap p<s st tr ri in ng g, i in nt t, S St tr ri in ng g_ _c cm mp p> m m3 3; / / specify comparison type (§17.1.4.1)
m ma ap p<s st tr ri in ng g, i in nt t> m m4 4(S St tr ri in ng g_ _c cm mp p(l li it te er ra ar ry y)) ; / / pass comparison object

The k ke ey y_ _c co om mp p() andv va al lu ue e_ _c co om mp p() member functions make it possible to query am ma ap p for the
kind of comparisons used for keys and values. This is usually done to supply the same comparison
criterion to some other container or algorithm. For example:

v vo oi id d f f(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

m ma ap p<s st tr ri in ng g, i in nt t> m mm m; / / compare using< by default
m ma ap p<s st tr ri in ng g, i in nt t> m mm mm m(m m. k ke ey y_ _c co om mp p()) ; / / compare the way m does
/ / ...

}

See §17.1.4.1 for an example of how to define a particular comparison and §18.4 for an explanation
of function objects in general.

17.4.1.6 Map Operations [cont.map.map]

The crucial idea form ma ap ps and indeed for all associative containers is to gain information based on a
key. Several specialized operations are provided for that:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

486 Standard Containers Chapter 17

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s m ma ap p {
p pu ub bl li ic c:

/ / ...
/ / map operations:

i it te er ra at to or r f fi in nd d(c co on ns st t k ke ey y_ _t ty yp pe e& k k) ; / / find element with key k
c co on ns st t_ _i it te er ra at to or r f fi in nd d(c co on ns st t k ke ey y_ _t ty yp pe e& k k) c co on ns st t;

s si iz ze e_ _t ty yp pe e c co ou un nt t(c co on ns st t k ke ey y_ _t ty yp pe e& k k) c co on ns st t; / / find number of elements with key k

i it te er ra at to or r l lo ow we er r_ _b bo ou un nd d(c co on ns st t k ke ey y_ _t ty yp pe e& k k) ; / / find first element with key k
c co on ns st t_ _i it te er ra at to or r l lo ow we er r_ _b bo ou un nd d(c co on ns st t k ke ey y_ _t ty yp pe e& k k) c co on ns st t;
i it te er ra at to or r u up pp pe er r_ _b bo ou un nd d(c co on ns st t k ke ey y_ _t ty yp pe e& k k) ; / / find first element with key greater than k
c co on ns st t_ _i it te er ra at to or r u up pp pe er r_ _b bo ou un nd d(c co on ns st t k ke ey y_ _t ty yp pe e& k k) c co on ns st t;

p pa ai ir r<i it te er ra at to or r, i it te er ra at to or r> e eq qu ua al l_ _r ra an ng ge e(c co on ns st t k ke ey y_ _t ty yp pe e& k k) ;
p pa ai ir r<c co on ns st t_ _i it te er ra at to or r, c co on ns st t_ _i it te er ra at to or r> e eq qu ua al l_ _r ra an ng ge e(c co on ns st t k ke ey y_ _t ty yp pe e& k k) c co on ns st t;

/ / ...
};

A m m. f fi in nd d(k k) operation simply yields an iterator to an element with the keyk k. If there is no such
element, the iterator returned ism m. e en nd d() . For a container with unique keys, such asm ma ap p ands se et t,
the resulting iterator will point to the unique element with the keyk k. For a container with non-
unique keys, such asm mu ul lt ti im ma ap p andm mu ul lt ti is se et t, the resulting iterator will point to the first element that
has that key. For example:

v vo oi id d f f(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

m ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r p p = m m. f fi in nd d(" G Go ol ld d") ;
i if f (p p!= m m. e en nd d()) { / / if "Gold" was found

/ / ...
}
e el ls se e i if f (m m. f fi in nd d(" S Si il lv ve er r")!= m m. e en nd d()) { / / look for "Silver"

/ / ...
}
/ / ...

}

For a m mu ul lt ti im ma ap p (§17.4.2), finding the first match is rarely as useful as finding all matches;
m m. l lo ow we er r_ _b bo ou un nd d(k k) andm m. u up pp pe er r_ _b bo ou un nd d(k k) give the beginning and the end of the subsequence
of elements ofm m with the keyk k. As usual, the end of a sequence is an iterator to the one-past-the-
last element of the sequence. For example:

v vo oi id d f f(m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r l lb b = m m. l lo ow we er r_ _b bo ou un nd d(" G Go ol ld d") ;
m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r u ub b = m m. u up pp pe er r_ _b bo ou un nd d(" G Go ol ld d") ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.6 Map Operations 487

f fo or r (m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r p p = l lb b; p p!= u ub b; ++p p) {
/ / ...

}
}

Finding the upper bound and lower bound by two separate operations is neither elegant nor effi-
cient. Consequently, the operatione eq qu ua al l_ _r ra an ng ge e() is provided to deliver both. For example:

v vo oi id d f f(m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

t ty yp pe ed de ef f m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r M MI I;
p pa ai ir r<M MI I, M MI I> g g = m m. e eq qu ua al l_ _r ra an ng ge e(" G Go ol ld d") ;

f fo or r (M MI I p p = g g. f fi ir rs st t; p p!= g g. s se ec co on nd d; ++p p) {
/ / ...

}
}

If l lo ow we er r_ _b bo ou un nd d(k k) doesn’t findk k, it returns an iterator to the first element that has a key greater
thank k, or e en nd d() if no such greater element exists. This way of reporting failure is also used by
u up pp pe er r_ _b bo ou un nd d() ande eq qu ua al l_ _r ra an ng ge e() .

17.4.1.7 List Operations [cont.map.modifier]

The conventional way of entering a value into an associative array is simply to assign to it using
subscripting. For example:

p ph ho on ne e_ _b bo oo ok k[" O Or rd de er r d de ep pa ar rt tm me en nt t"] = 8 82 22 26 63 33 39 9;

This will make sure that the Order department has the desired entry in thep ph ho on ne e_ _b bo oo ok k indepen-
dently of whether it had a prior entry. It is also possible toi in ns se er rt t() entries directly and to remove
entries usinge er ra as se e() :

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s m ma ap p {
p pu ub bl li ic c:

/ / ...
/ / list operations:

p pa ai ir r<i it te er ra at to or r, b bo oo ol l> i in ns se er rt t(c co on ns st t v va al lu ue e_ _t ty yp pe e& v va al l) ; / / insert (key,value) pair
i it te er ra at to or r i in ns se er rt t(i it te er ra at to or r p po os s, c co on ns st t v va al lu ue e_ _t ty yp pe e& v va al l) ; / / pos is just a hint
t te em mp pl la at te e <c cl la as ss s I In n> v vo oi id d i in ns se er rt t(I In n f fi ir rs st t, I In n l la as st t) ; / / insert elements from sequence

v vo oi id d e er ra as se e(i it te er ra at to or r p po os s) ; / / erase the element pointed to
s si iz ze e_ _t ty yp pe e e er ra as se e(c co on ns st t k ke ey y_ _t ty yp pe e& k k) ; / / erase element with key k (if present)
v vo oi id d e er ra as se e(i it te er ra at to or r f fi ir rs st t, i it te er ra at to or r l la as st t) ; / / erase range
v vo oi id d c cl le ea ar r() ;

/ / ...
};

The operationm m. i in ns se er rt t(v va al l) attempts to add a(K Ke ey y, T T) pair v va al l to m m. Sincem ma ap ps rely on

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

488 Standard Containers Chapter 17

unique keys, insertion takes place only if there is not already an element in them m with that key.
The return value ofm m. i in ns se er rt t(v va al l) is ap pa ai ir r<i it te er ra at to or r, b bo oo ol l>. Theb bo oo ol l is t tr ru ue e if v va al l was actually
inserted. The iterator refers to the element ofm m holding the keyk k. For example:

v vo oi id d f f(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

p pa ai ir r<s st tr ri in ng g, i in nt t> p p9 99 9(" P Pa au ul l", 9 99 9) ;

p pa ai ir r<m ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r, b bo oo ol l> p p = m m. i in ns se er rt t(p p9 99 9) ;
i if f (p p. s se ec co on nd d) {

/ / "Paul" was inserted
}
e el ls se e {

/ / "Paul" was there already
}
m ma ap p<s st tr ri in ng g, i in nt t>: : i it te er ra at to or r i i = p p. f fi ir rs st t; / / points to m["Paul"]
/ / ...

}

Usually, we do not care whether a key is newly inserted or was present in them ma ap p before the
i in ns se er rt t() . When we are interested, it is often because we want to register the fact that a value is in
am ma ap p somewhere else (outside them ma ap p). The other two versions ofi in ns se er rt t() do not return an indi-
cation of whether a value was actually inserted.

Specifying a position,i in ns se er rt t(p po os s, v va al l) , is simply a hint to the implementation to start the
search for the keyv va al l at p po os s. If the hint is good, significant performance improvements can result.
If the hint is bad, you’d have done better without it both notationally and efficiency-wise. For
example:

v vo oi id d f f(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

m m[" D Di il lb be er rt t"] = 3 3; / / neat, possibly less efficient
m m. i in ns se er rt t(m m. b be eg gi in n() , m ma ak ke e_ _p pa ai ir r(c co on ns st t s st tr ri in ng g(" D Do og gb be er rt t") , 9 99 9)) ; / / ugly

}

In fact, [] is little more than a convenient notation fori in ns se er rt t() . The result ofm m[k k] is equivalent
to the result of(*(m m. i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(k k, V V())). f fi ir rs st t)). s se ec co on nd d, whereV V() is the default
value for the mapped type. When you understand that equivalence, you probably understand asso-
ciative containers.

Because[] always usesV V() , you cannot use subscripting on am ma ap p with a value type that does
not have a default value. This is an unfortunate limitation of the standard associative containers.
However, the requirement of a default value is not a fundamental property of associative containers
(see §17.6.2).

You can erase elements specified by a key. For example:

v vo oi id d f f(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

i in nt t c co ou un nt t = p ph ho on ne e_ _b bo oo ok k. e er ra as se e(" R Ra at tb be er rt t") ;
/ / ...

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.7 List Operations 489

The integer returned is the number of erased elements. In particular,c co ou un nt t is 0 0 if there was no ele-
ment with the key" R Ra at tb be er rt t" to erase. For am mu ul lt ti im ma ap p or m mu ul lt ti is se et t, the value can be larger than1 1.
Alternatively, one can erase an element given an iterator pointing to it or a range of elements given
a sequence. For example:

v vo oi id d g g(m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

m m. e er ra as se e(m m. f fi in nd d(" C Ca at tb be er rt t")) ;
m m. e er ra as se e(m m. f fi in nd d(" A Al li ic ce e") , m m. f fi in nd d(" W Wa al ll ly y")) ;

}

Naturally, it is faster to erase an element for which you already have an iterator than to first find the
element given its key and then erase it. Aftere er ra as se e() , the iterator cannot be used again because
the element to which it pointed is no longer there. Erasinge en nd d() is harmless.

17.4.1.8 Other Functions [cont.map.etc]

Finally, am ma ap p provides the usual functions dealing with the number of elements and a specialized
s sw wa ap p() :

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s m ma ap p {
p pu ub bl li ic c:

/ / ...
/ / capacity:

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t; / / number of elements
s si iz ze e_ _t ty yp pe e m ma ax x_ _s si iz ze e() c co on ns st t; / / size of largest possible map
b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n s si iz ze e()== 0 0; }

v vo oi id d s sw wa ap p(m ma ap p&) ;
};

As usual, a value returned bys si iz ze e() or m ma ax x_ _s si iz ze e() is a number of elements.
In addition,m ma ap p provides==, != , <, >, <=, >=, ands sw wa ap p() as nonmember functions:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p, c cl la as ss s A A>
b bo oo ol l o op pe er ra at to or r==(c co on ns st t m ma ap p<K Ke ey y, T T, C Cm mp p, A A>&, c co on ns st t m ma ap p<K Ke ey y, T T, C Cm mp p, A A>&) ;

/ / similarly !=, <, >, <=, and>=

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p, c cl la as ss s A A>
v vo oi id d s sw wa ap p(m ma ap p<K Ke ey y, T T, C Cm mp p, A A>&, m ma ap p<K Ke ey y, T T, C Cm mp p, A A>&) ;

Why would anyone want to compare twom ma ap ps? When we specifically compare twom ma ap ps, we usu-
ally want to know not just if them ma ap ps differ, but also how they differ if they do. In such cases, we
don’t use== or != . However, by providing==, <, ands sw wa ap p() for every container, we make it
possible to write algorithms that can be applied to every container. For example, these functions
allow us tos so or rt t() av ve ec ct to or r of m ma ap ps and to have as se et t of m ma ap ps.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

490 Standard Containers Chapter 17

17.4.2 Multimap [cont.multimap]

A m mu ul lt ti im ma ap p is like am ma ap p, except that it allows duplicate keys:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>,
c cl la as ss s A A = a al ll lo oc ca at to or r< p pa ai ir r<c co on ns st t K Ke ey y, T T> > >

c cl la as ss s s st td d: : m mu ul lt ti im ma ap p {
p pu ub bl li ic c:

/ / like map, except:

i it te er ra at to or r i in ns se er rt t(c co on ns st t v va al lu ue e_ _t ty yp pe e&) ; / / returns iterator, not pair

/ / no subscript operator []
};

For example (usingC Cs st tr ri in ng g_ _l le es ss s from §17.1.4.1 to compare C-style strings):

v vo oi id d f f(m ma ap p<c ch ha ar r*, i in nt t, C Cs st tr ri in ng g_ _l le es ss s>& m m, m mu ul lt ti im ma ap p<c ch ha ar r*, i in nt t, C Cs st tr ri in ng g_ _l le es ss s>& m mm m)
{

m m. i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(" x x", 4 4)) ;
m m. i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(" x x", 5 5)) ; / / no effect: there already is an entry for "x" (§17.4.1.7)
/ / now m["x"] == 4

m mm m. i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(" x x", 4 4)) ;
m mm m. i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(" x x", 5 5)) ;
/ / mm now holds both ("x",4) and ("x",5)

}

This implies thatm mu ul lt ti im ma ap p cannot support subscripting by key values in the waym ma ap p does. The
e eq qu ua al l_ _r ra an ng ge e() , l lo ow we er r_ _b bo ou un nd d() , and u up pp pe er r_ _b bo ou un nd d() operations (§17.4.1.6) are the primary
means of accessing multiple values with the same key.

Naturally, where several values can exist for a single key, am mu ul lt ti im ma ap p is preferred over am ma ap p.
That happens far more often than people first think when they hear aboutm mu ul lt ti im ma ap p. In some ways,
am mu ul lt ti im ma ap p is even cleaner and more elegant than am ma ap p.

Because a person can easily have several phone numbers, a phone book is a good example of a
m mu ul lt ti im ma ap p. I might print my phone numbers like this:

v vo oi id d p pr ri in nt t_ _n nu um mb be er rs s(c co on ns st t m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>& p ph ho on ne e_ _b bo oo ok k)
{

t ty yp pe ed de ef f m mu ul lt ti im ma ap p<s st tr ri in ng g, i in nt t>: : c co on ns st t_ _i it te er ra at to or r I I;
p pa ai ir r<I I, I I> b b = p ph ho on ne e_ _b bo oo ok k. e eq qu ua al l_ _r ra an ng ge e(" S St tr ro ou us st tr ru up p") ;
f fo or r (I I i i = b b. f fi ir rs st t; i i != b b. s se ec co on nd d; ++i i) c co ou ut t << i i-> s se ec co on nd d << ´ \ \n n´;

}

For a m mu ul lt ti im ma ap p, the argument to i in ns se er rt t() is always inserted. Consequently, the
m mu ul lt ti im ma ap p: : i in ns se er rt t() returns an iterator rather than ap pa ai ir r<i it te er ra at to or r, b bo oo ol l> like m ma ap p does. For uni-
formity, the library could have provided the general form ofi in ns se er rt t() for bothm ma ap p andm mu ul lt ti im ma ap p
even though theb bo oo ol l would have been redundant for am mu ul lt ti im ma ap p. Yet another design alternative
would have been to provide a simplei in ns se er rt t() that didn’t return ab bo oo ol l in either case and then sup-
ply users ofm ma ap p with some other way of figuring out whether a key was newly inserted. This is a
case in which different interface design ideas clash.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.3 Set 491

17.4.3 Set [cont.set]

A s se et t can be seen as am ma ap p (§17.4.1), where the values are irrelevant, so we keep track of only the
keys. This leads to only minor changes to the user interface:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<K Ke ey y> >
c cl la as ss s s st td d: : s se et t {
p pu ub bl li ic c:

/ / like map except:

t ty yp pe ed de ef f K Ke ey y v va al lu ue e_ _t ty yp pe e; / / the key itself is the value
t ty yp pe ed de ef f C Cm mp p v va al lu ue e_ _c co om mp pa ar re e;
/ / no subscript operator []

};

Defining v va al lu ue e_ _t ty yp pe e as thek ke ey y_ _t ty yp pe e type is a trick to allow code that usesm ma ap ps ands se et ts to be
identical in many cases.

Note thats se et t relies on a comparison operation (by default<) rather than equality (==). This
implies that equivalence of elements is defined by inequality (§17.1.4.1) and that iteration through
as se et t has a well-defined order.

Like m ma ap p, s se et t provides==, != , <, >, <=, >=, ands sw wa ap p() .

17.4.4 Multiset [cont.multiset]

A m mu ul lt ti is se et t is as se et t that allows duplicate keys:

t te em mp pl la at te e <c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s C Cm mp p = l le es ss s<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<K Ke ey y> >
c cl la as ss s s st td d: : m mu ul lt ti is se et t {
p pu ub bl li ic c:

/ / like set, except:
i it te er ra at to or r i in ns se er rt t(c co on ns st t v va al lu ue e_ _t ty yp pe e&) ; / / returns iterator, not pair

};

Thee eq qu ua al l_ _r ra an ng ge e() , l lo ow we er r_ _b bo ou un nd d() , andu up pp pe er r_ _b bo ou un nd d() operations (§17.4.1.6) are the primary
means of accessing multiple occurrences of a key.

17.5 Almost Containers[cont.etc]

Built-in arrays (§5.2),s st tr ri in ng gs (Chapter 20),v va al la ar rr ra ay ys (§22.4), andb bi it ts se et ts (§17.5.3) hold elements
and can therefore be considered containers for many purposes. However, each lacks some aspect or
other of the standard container interface, so these ‘‘almost containers’’ are not completely inter-
changeable with fully developed containers such asv ve ec ct to or r andl li is st t.

17.5.1 String [cont.string]

A b ba as si ic c_ _s st tr ri in ng g provides subscripting, random-access iterators, and most of the notational conve-
niences of a container (Chapter 20). However,b ba as si ic c_ _s st tr ri in ng g does not provide as wide a selection of
types as elements. It also is optimized for use as a string of characters and is typically used in ways
that differ significantly from a container.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

492 Standard Containers Chapter 17

17.5.2 Valarray [cont.valarray]

A v va al la ar rr ra ay y (§22.4) is a vector for optimized numeric computation. Consequently, av va al la ar rr ra ay y
doesn’t attempt to be a general container. Av va al la ar rr ra ay y provides many useful numeric operations.
However, of the standard container operations (§17.1.1), it offers onlys si iz ze e() and a subscript oper-
ator (§22.4.2). A pointer to an element of av va al la ar rr ra ay y is a random-access iterator (§19.2.1).

17.5.3 Bitset [cont.bitset]

Often, aspects of a system, such as the state of an input stream (§21.3.3), are represented as a set of
flags indicating binary conditions such as good/bad, true/false, and on/off. C++ supports the notion
of small sets of flags efficiently through bitwise operations on integers (§6.2.4). These operations
include& (and),| (or), ^ (exclusive or),<< (shift left), and>> (shift right). Classb bi it ts se et t<N N> gen-
eralizes this notion and offers greater convenience by providing operations on a set ofN N bits
indexed from0 0 throughN N- 1 1, whereN N is known at compile time. For sets of bits that don’t fit into
a l lo on ng g i in nt t, using ab bi it ts se et t is much more convenient than using integers directly. For smaller sets,
there may be an efficiency tradeoff. If you want to name the bits, rather than numbering them,
using as se et t (§17.4.3), an enumeration (§4.8), or a bitfield (§C.8.1) are alternatives.

A b bi it ts se et t<N N> is an array ofN N bits. A b bi it ts se et t differs from av ve ec ct to or r<b bo oo ol l> (§16.3.11) by being of
fixed size, froms se et t (§17.4.3) by having its bits indexed by integers rather than associatively by
value, and from bothv ve ec ct to or r<b bo oo ol l> ands se et t by providing operations to manipulate the bits.

It is not possible to address a single bit directly using a built-in pointer (§5.1). Consequently,
b bi it ts se et t provides a reference-to-bit type. This is actually a generally useful technique for addressing
objects for which a built-in pointer for some reason is unsuitable:

t te em mp pl la at te e<s si iz ze e_ _t t N N> c cl la as ss s s st td d: : b bi it ts se et t {
p pu ub bl li ic c:

c cl la as ss s r re ef fe er re en nc ce e { / / reference to a single bit:
f fr ri ie en nd d c cl la as ss s b bi it ts se et t;
r re ef fe er re en nc ce e() ;

p pu ub bl li ic c: / / b[i] refers to the (i+1)’th bit:
~r re ef fe er re en nc ce e() ;
r re ef fe er re en nc ce e& o op pe er ra at to or r=(b bo oo ol l x x) ; / / for b[i] = x;
r re ef fe er re en nc ce e& o op pe er ra at to or r=(c co on ns st t r re ef fe er re en nc ce e&) ; / / for b[i] = b[j];
b bo oo ol l o op pe er ra at to or r~() c co on ns st t; / / return ˜b[i]
o op pe er ra at to or r b bo oo ol l() c co on ns st t; / / for x = b[i];
r re ef fe er re en nc ce e& f fl li ip p() ; / / b[i].flip();

};

/ / ...
};

Theb bi it ts se et t template is defined in namespaces st td d and presented in<b bi it ts se et t>.
For historical reasons,b bi it ts se et t differs somewhat in style from other standard library classes. For

example, if an index (also known as abit position) is out of range, ano ou ut t_ _o of f_ _r ra an ng ge e exception is
thrown. No iterators are provided. Bit positions are numbered right to left in the same way bits
often are in a word, so the value ofb b[i i] is p po ow w(i i, 2 2) . Thus, a bitset can be thought of as anN N-bit
binary number:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.5.3 Bitset 493

1 1 1 1 0 1 1 1 0 1

9 8 7 6 5 4 3 2 1 0

bitset<10>:

position:

17.5.3.1 Constructors [cont.bitset.ctor]

A b bi it ts se et t can be constructed with default values, from the bits in anu un ns si ig gn ne ed d l lo on ng g i in nt t, or from a
s st tr ri in ng g:

t te em mp pl la at te e<s si iz ze e_ _t t N N> c cl la as ss s b bi it ts se et t {
p pu ub bl li ic c:

/ / ...
/ / constructors:

b bi it ts se et t() ; / / N zero-bits
b bi it ts se et t(u un ns si ig gn ne ed d l lo on ng g v va al l) ; / / bits from val

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A> / / Tr is a character trait (§20.2)
e ex xp pl li ic ci it t b bi it ts se et t(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>& s st tr r, / / bits from string str

b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>: : s si iz ze e_ _t ty yp pe e p po os s = 0 0,
b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>: : s si iz ze e_ _t ty yp pe e n n = b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>: : n np po os s) ;

/ / ...
};

The default value of a bit is0 0. When anu un ns si ig gn ne ed d l lo on ng g i in nt t argument is supplied, each bit in the
integer is used to initialize the corresponding bit in the bitset (if any). Ab ba as si ic c_ _s st tr ri in ng g (Chapter 20)
argument does the same, except that the character´ 0 0´ gives the bitvalue0 0, the characteŕ1 1´ gives
the bitvalue1 1, and other characters cause ani in nv va al li id d_ _a ar rg gu um me en nt t exception to be thrown. By default,
a complete string is used for initialization. However, in the style of ab ba as si ic c_ _s st tr ri in ng g constructor
(§20.3.4), a user can specify that only the range of characters fromp po os s to the end of the string or to
p po os s+n n are to be used. For example:

v vo oi id d f f()
{

b bi it ts se et t<1 10 0> b b1 1; / / all 0

b bi it ts se et t<1 16 6> b b2 2 = 0 0x xa aa aa aa a; / / 1010101010101010
b bi it ts se et t<3 32 2> b b3 3 = 0 0x xa aa aa aa a; / / 00000000000000001010101010101010

b bi it ts se et t<1 10 0> b b4 4(" 1 10 01 10 01 10 01 10 01 10 0") ; / / 1010101010
b bi it ts se et t<1 10 0> b b5 5(" 1 10 01 11 10 01 11 11 10 01 11 11 11 10 0", 4 4) ; / / 0111011110
b bi it ts se et t<1 10 0> b b6 6(" 1 10 01 11 10 01 11 11 10 01 11 11 11 10 0", 2 2, 8 8) ; / / 0011011101

b bi it ts se et t<1 10 0> b b7 7(" n n0 0g g0 00 0d d") ; / / invalid_argument thrown
b bi it ts se et t<1 10 0> b b8 8 = " n n0 0g g0 00 0d d"; / / error: no char* to bitset conversion

}

A key idea in the design ofb bi it ts se et t is that an optimized implementation can be provided for bitsets
that fit in a single word. The interface reflects this assumption.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

494 Standard Containers Chapter 17

17.5.3.2 Bit Manipulation Operations [cont.bitset.oper]

A b bi it ts se et t provides the operators for accessing individual bits and for manipulating all bits in the set:

t te em mp pl la at te e<s si iz ze e_ _t t N N> c cl la as ss s s st td d: : b bi it ts se et t {
p pu ub bl li ic c:

/ / ...
/ / bitset operations:

r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t t p po os s) ; / / b[i]

b bi it ts se et t& o op pe er ra at to or r&=(c co on ns st t b bi it ts se et t& s s) ; / / and
b bi it ts se et t& o op pe er ra at to or r|=(c co on ns st t b bi it ts se et t& s s) ; / / or
b bi it ts se et t& o op pe er ra at to or r^=(c co on ns st t b bi it ts se et t& s s) ; / / exclusive or

b bi it ts se et t& o op pe er ra at to or r<<=(s si iz ze e_ _t t n n) ; / / logical left shift (fill with zeros)
b bi it ts se et t& o op pe er ra at to or r>>=(s si iz ze e_ _t t n n) ; / / logical right shift (fill with zeros)

b bi it ts se et t& s se et t() ; / / set every bit to 1
b bi it ts se et t& s se et t(s si iz ze e_ _t t p po os s, i in nt t v va al l = 1 1) ; / / b[pos]=val

b bi it ts se et t& r re es se et t() ; / / set every bit to 0
b bi it ts se et t& r re es se et t(s si iz ze e_ _t t p po os s) ; / / b[pos]=0

b bi it ts se et t& f fl li ip p() ; / / change the value of every bit
b bi it ts se et t& f fl li ip p(s si iz ze e_ _t t p po os s) ; / / change the value of b[pos]

b bi it ts se et t o op pe er ra at to or r~() c co on ns st t { r re et tu ur rn n b bi it ts se et t<N N>(* t th hi is s). f fl li ip p() ; } / / make complement set
b bi it ts se et t o op pe er ra at to or r<<(s si iz ze e_ _t t n n) c co on ns st t { r re et tu ur rn n b bi it ts se et t<N N>(* t th hi is s)<<= n n; } / / make shifted set
b bi it ts se et t o op pe er ra at to or r>>(s si iz ze e_ _t t n n) c co on ns st t { r re et tu ur rn n b bi it ts se et t<N N>(* t th hi is s)>>= n n; } / / make shifted set

/ / ...
};

The subscript operator throwso ou ut t_ _o of f_ _r ra an ng ge e if the subscript is out of range. There is no unchecked
subscript operation.

Theb bi it ts se et t& returned by these operations is* t th hi is s. An operator returning ab bi it ts se et t (rather than a
b bi it ts se et t&) makes a copy of* t th hi is s, applies its operation to that copy, and returns the result. In particu-
lar, >> and<< really are shift operations rather than I/O operations. The output operator for ab bi it t- -
s se et t is a<< that takes ano os st tr re ea am m and ab bi it ts se et t (§17.5.3.3).

When bits are shifted, a logical (rather than cyclic) shift is used. That implies that some bits
‘‘fall off the end’’ and that some positions get the default value 0. Note that becauses si iz ze e_ _t t is an
unsigned type, it is not possible to shift by a negative number. It does, however, imply thatb b<<- 1 1
shifts by a very large positive value, thus leaving every bit of theb bi it ts se et t b b with the value0 0. Your
compiler should warn against this.

17.5.3.3 Other Operations [cont.bitset.etc]

A b bi it ts se et t also supports common operations such ass si iz ze e() , ==, I/O , etc.:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.5.3.3 Other Operations 495

t te em mp pl la at te e<s si iz ze e_ _t t N N> c cl la as ss s b bi it ts se et t {
p pu ub bl li ic c:

/ / ...

u un ns si ig gn ne ed d l lo on ng g t to o_ _u ul lo on ng g() c co on ns st t;

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A> b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A> t to o_ _s st tr ri in ng g() c co on ns st t;

s si iz ze e_ _t t c co ou un nt t() c co on ns st t; / / number of bits with value 1
s si iz ze e_ _t t s si iz ze e() c co on ns st t { r re et tu ur rn n N N; } / / number of bits

b bo oo ol l o op pe er ra at to or r==(c co on ns st t b bi it ts se et t& s s) c co on ns st t;
b bo oo ol l o op pe er ra at to or r!=(c co on ns st t b bi it ts se et t& s s) c co on ns st t;

b bo oo ol l t te es st t(s si iz ze e_ _t t p po os s) c co on ns st t; / / true if b[pos] is 1
b bo oo ol l a an ny y() c co on ns st t; / / true if any bit is 1
b bo oo ol l n no on ne e() c co on ns st t; / / true if no bit is 1

};

The operationst to o_ _u ul lo on ng g() andt to o_ _s st tr ri in ng g() provide the inverse operations to the constructors. To
avoid nonobvious conversions, named operations were preferred over conversion operations. If the
value of theb bi it ts se et t has so many significant bits that it cannot be represented as anu un ns si ig gn ne ed d l lo on ng g,
t to o_ _u ul lo on ng g() throwso ov ve er rf fl lo ow w_ _e er rr ro or r.

The t to o_ _s st tr ri in ng g() operation produces a string of the desired type holding a sequence of´ 0 0´ and
´ 1 1´ characters;b ba as si ic c_ _s st tr ri in ng g is the template used to implement strings (Chapter 20). We could use
t to o_ _s st tr ri in ng g to write out the binary representation of ani in nt t:

v vo oi id d b bi in na ar ry y(i in nt t i i)
{

b bi it ts se et t<8 8* s si iz ze eo of f(i in nt t)> b b = i i; / / assume 8-bit byte (see also §22.2)
c co ou ut t << b b. t te em mp pl la at te e t to o_ _s st tr ri in ng g<c ch ha ar r>() << ´ \ \n n´;

}

Unfortunately, invoking an explicitly qualified member template requires a rather elaborate and
rare syntax (§C.13.6).

In addition to the member functions,b bi it ts se et t provides binary& (and),| (or), ^ (exclusive or), and
the usual I/O operators:

t te em mp pl la at te e<s si iz ze e_ _t t N N> b bi it ts se et t<N N>& s st td d: : o op pe er ra at to or r&(c co on ns st t b bi it ts se et t<N N>&, c co on ns st t b bi it ts se et t<N N>&) ;
t te em mp pl la at te e<s si iz ze e_ _t t N N> b bi it ts se et t<N N>& s st td d: : o op pe er ra at to or r|(c co on ns st t b bi it ts se et t<N N>&, c co on ns st t b bi it ts se et t<N N>&) ;
t te em mp pl la at te e<s si iz ze e_ _t t N N> b bi it ts se et t<N N>& s st td d: : o op pe er ra at to or r^(c co on ns st t b bi it ts se et t<N N>&, c co on ns st t b bi it ts se et t<N N>&) ;

t te em mp pl la at te e <c cl la as ss s c ch ha ar rT T, c cl la as ss s T Tr r, s si iz ze e_ _t t N N>
b ba as si ic c_ _i is st tr re ea am m<c ch ha ar rT T, T Tr r>& s st td d: : o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<c ch ha ar rT T, T Tr r>&, b bi it ts se et t<N N>&) ;
t te em mp pl la at te e <c cl la as ss s c ch ha ar rT T, c cl la as ss s T Tr r, s si iz ze e_ _t t N N>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar rT T, T Tr r>& s st td d: : o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar rT T, T Tr r>&, c co on ns st t b bi it ts se et t<N N>&) ;

We can therefore write out a bitset without first converting it to a string. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

496 Standard Containers Chapter 17

v vo oi id d b bi in na ar ry y(i in nt t i i)
{

b bi it ts se et t<8 8* s si iz ze eo of f(i in nt t)> b b = i i; / / assume 8-bit byte (see also §22.2)
c co ou ut t << b b << ´ \ \n n´;

}

This prints the bits represented as1 1s and0 0s left-to-right, with the most significant bit leftmost.

17.5.4 Built-In Arrays [cont.array]

A built-in array supplies subscripting and random-access iterators in the form of ordinary pointers
(§2.7.2). However, an array doesn’t know its own size, so users must keep track of that size. In
general, an array doesn’t provide the standard member operations and types.

It is possible, and sometimes useful, to provide an ordinary array in a guise that provides the
notational convenience of a standard container without changing its low-level nature:

t te em mp pl la at te e<c cl la as ss s T T, i in nt t m ma ax x> s st tr ru uc ct t c c_ _a ar rr ra ay y {
t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;

t ty yp pe ed de ef f T T* i it te er ra at to or r;
t ty yp pe ed de ef f c co on ns st t T T* c co on ns st t_ _i it te er ra at to or r;

t ty yp pe ed de ef f T T& r re ef fe er re en nc ce e;
t ty yp pe ed de ef f c co on ns st t T T& c co on ns st t_ _r re ef fe er re en nc ce e;

T T v v[m ma ax x] ;
o op pe er ra at to or r T T*() { r re et tu ur rn n v v; }

r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n v v[i i] ; }
c co on ns st t_ _r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t t i i) c co on ns st t { r re et tu ur rn n v v[i i] ; }

i it te er ra at to or r b be eg gi in n() { r re et tu ur rn n v v; }
c co on ns st t_ _i it te er ra at to or r b be eg gi in n() c co on ns st t { r re et tu ur rn n v v; }

i it te er ra at to or r e en nd d() { r re et tu ur rn n v v+m ma ax x; }
c co on ns st t_ _i it te er ra at to or r e en nd d() c co on ns st t { r re et tu ur rn n v v+m ma ax x; }

p pt tr rd di if ff f_ _t t s si iz ze e() c co on ns st t { r re et tu ur rn n m ma ax x; }
};

Thec c_ _a ar rr ra ay y template is not part of the standard library. It is presented here as a simple example of
how to fit a ‘‘foreign’’ container into the standard container framework. It can be used with stan-
dard algorithms (Chapter 18) usingb be eg gi in n() , e en nd d() , etc. It can be allocated on the stack without
any indirect use of dynamic memory. Also, it can be passed to a C-style function that expects a
pointer. For example:

v vo oi id d f f(i in nt t* p p, i in nt t s sz z) ; / / C-style

v vo oi id d g g()
{

c c_ _a ar rr ra ay y<i in nt t, 1 10 0> a a;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.5.4 Built-In Arrays 497

f f(a a, a a. s si iz ze e()) ; / / C-style use
c c_ _a ar rr ra ay y<i in nt t, 1 10 0>: : i it te er ra at to or r p p = f fi in nd d(a a. b be eg gi in n() , a a. e en nd d() , 7 77 77 7) ; / / C++/STL style use
/ / ...

}

17.6 Defining a New Container[cont.hash]

The standard containers provide a framework to which a user can add. Here, I show how to provide
a container in such a way that it can be used interchangeably with the standard containers wherever
reasonable. The implementation is meant to be realistic, but it is not optimal. The interface is cho-
sen to be very close to that of existing, widely-available, and high-quality implementations of the
notion of ah ha as sh h_ _m ma ap p. Use theh ha as sh h_ _m ma ap p provided here to study the general issues. Then, use a
supportedh ha as sh h_ _m ma ap p for production use.

17.6.1 Hash_map [cont.hash.map]

A m ma ap p is an associative container that accepts almost any type as its element type. It does that by
relying only on a less-than operation for comparing elements (§17.4.1.5). However, if we know
more about a key type we can often reduce the time needed to find an element by providing a hash
function and implementing a container as a hash table.

A hash function is a function that quickly maps a value to an index in such a way that two dis-
tinct values rarely end up with the same index. Basically, a hash table is implemented by placing a
value at its index, unless another value is already placed there, and ‘‘nearby’’ if one is. Finding an
element placed at its index is fast, and finding one ‘‘nearby’’ is not slow, provided equality testing
is reasonably fast. Consequently, it is not uncommon for ah ha as sh h_ _m ma ap p to provide five to ten times
faster lookup than am ma ap p for larger containers, where the speed of lookup matters most. On the
other hand, ah ha as sh h_ _m ma ap p with an ill-chosen hash function can be much slower than am ma ap p.

There are many ways of implementing a hash table. The interface ofh ha as sh h_ _m ma ap p is designed to
differ from that of the standard associative containers only where necessary to gain performance
through hashing. The most fundamental difference between am ma ap p and ah ha as sh h_ _m ma ap p is that am ma ap p
requires a< for its element type, while ah ha as sh h_ _m ma ap p requires an== and a hash function. Thus, a
h ha as sh h_ _m ma ap p must differ from am ma ap p in the non-default ways of creating one. For example:

m ma ap p<s st tr ri in ng g, i in nt t> m m1 1; / / compare strings using<
m ma ap p<s st tr ri in ng g, i in nt t, N No oc ca as se e> m m2 2; / / compare strings using Nocase() (§17.1.4.1)

h ha as sh h_ _m ma ap p<s st tr ri in ng g, i in nt t> h hm m1 1; / / hash using Hash<string>() (§17.6.2.3), compare using ==
h ha as sh h_ _m ma ap p<s st tr ri in ng g, i in nt t, h hf fc ct t> h hm m2 2; / / hash using hfct(), compare using ==
h ha as sh h_ _m ma ap p<s st tr ri in ng g, i in nt t, h hf fc ct t, e eq ql l> h hm m3 3; / / hash using hfct(), compare using eql

A container using hashed lookup is implemented using one or more tables. In addition to holding
its elements, the container needs to keep track of which values have been associated with each
hashed value (‘‘index’’ in the prior explanation); this is done using a ‘‘hash table.’’ Most hash
table implementations seriously degrade in performance if that table gets ‘‘too full,’’ say 75% full.
Consequently, theh ha as sh h_ _m ma ap p defined next is automatically resized when it gets too full. However,
resizing can be expensive, so it is useful to be able to specify an initial size.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

498 Standard Containers Chapter 17

Thus, a first approximation of ah ha as sh h_ _m ma ap p looks like this:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

c cl la as ss s h ha as sh h_ _m ma ap p {
/ / like map, except:

t ty yp pe ed de ef f H H H Ha as sh he er r;
t ty yp pe ed de ef f E EQ Q k ke ey y_ _e eq qu ua al l;

h ha as sh h_ _m ma ap p(c co on ns st t T T& d dv v =T T() , s si iz ze e_ _t ty yp pe e n n =1 10 01 1, c co on ns st t H H& h hf f =H H() , c co on ns st t E EQ Q& =E EQ Q()) ;
t te em mp pl la at te e<c cl la as ss s I In n> h ha as sh h_ _m ma ap p(I In n f fi ir rs st t, I In n l la as st t,

c co on ns st t T T& d dv v =T T() , s si iz ze e_ _t ty yp pe e n n =1 10 01 1, c co on ns st t H H& h hf f =H H() , c co on ns st t E EQ Q& =E EQ Q()) ;
};

Basically, this is them ma ap p interface (§17.4.1.4), with< replaced by== and a hash function.
The uses of am ma ap p in this book so far (§3.7.4, §6.1, §17.4.1) can be converted to use a

h ha as sh h_ _m ma ap p simply by changing the namem ma ap p to h ha as sh h_ _m ma ap p. Often, a change between am ma ap p and a
h ha as sh h_ _m ma ap p can be eased by usingt ty yp pe ed de ef f. For example:

t ty yp pe ed de ef f h ha as sh h_ _m ma ap p<s st tr ri in ng g, r re ec co or rd d> M Ma ap p;
M Ma ap p d di ic ct ti io on na ar ry y;

Thet ty yp pe ed de ef f is also useful to further hide the actual type of the dictionary from its users.
Though not strictly correct, I think of the tradeoff between am ma ap p and ah ha as sh h_ _m ma ap p as simply a

space/time tradeoff. If efficiency isn’t an issue, it isn’t worth wasting time choosing between them:
either will do well. For large and heavily used tables,h ha as sh h_ _m ma ap p has a definite speed advantage
and should be used unless space is a premium. Even then, I might consider other ways of saving
space before choosing a ‘‘plain’’m ma ap p. Actual measurement is essential to avoid optimizing the
wrong code.

The key to efficient hashing is the quality of the hash function. If a good hash function isn’t
available, am ma ap p can easily outperform ah ha as sh h_ _m ma ap p. Hashing based on a C-style string, as st tr ri in ng g, or
an integer is usually very effective. However, it is worth remembering that the effectiveness of a
hash function critically depends on the actual values being hashed (§17.8[35]). Ah ha as sh h_ _m ma ap p must
be used where< is not defined or is unsuitable for the intended key. Conversely, a hash function
does not define an ordering the way< does, so am ma ap p must be used when it is important to keep the
elements sorted.

Like m ma ap p, h ha as sh h_ _m ma ap p providesf fi in nd d() to allow a programmer to determine whether a key has
been inserted.

17.6.2 Representation and Construction [cont.hash.rep]

Many different implementations of ah ha as sh h_ _m ma ap p are possible. Here, I use one that is reasonably fast
and whose most important operations are fairly simple. The key operations are the constructors, the
lookup (operator[]), the resize operation, and the operation removing an element (e er ra as se e()).

The simple implementation chosen here relies on a hash table that is av ve ec ct to or r of pointers to
entries. EachE En nt tr ry y holds ak ke ey y, a v va al lu ue e, a pointer to the nextE En nt tr ry y (if any) with the same hash
value, and ane er ra as se ed d bit :

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.6.2 Representation and Construction 499

key val e next

...

key val e next

Expressed as declarations, it looks like this:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

c cl la as ss s h ha as sh h_ _m ma ap p {
/ / ...

p pr ri iv va at te e: / / representation
s st tr ru uc ct t E En nt tr ry y {

k ke ey y_ _t ty yp pe e k ke ey y;
m ma ap pp pe ed d_ _t ty yp pe e v va al l;
E En nt tr ry y* n ne ex xt t; / / hash overflow link
b bo oo ol l e er ra as se ed d;
E En nt tr ry y(k ke ey y_ _t ty yp pe e k k, m ma ap pp pe ed d_ _t ty yp pe e v v, E En nt tr ry y* n n)

: k ke ey y(k k) , v va al l(v v) , n ne ex xt t(n n) , e er ra as se ed d(f fa al ls se e) { }
};

v ve ec ct to or r<E En nt tr ry y> v v; / / the actual entries
v ve ec ct to or r<E En nt tr ry y*> b b; / / the hash table: pointers into v

/ / ...
};

Note thee er ra as se ed d bit. The way several values with the same hash value are handled here makes it
hard to remove an element. So instead of actually removing an element whene er ra as se e() is called, I
simply mark the elemente er ra as se ed d and ignore it until the table is resized.

In addition to the main data structure, ah ha as sh h_ _m ma ap p needs a few pieces of administrative data.
Naturally, each constructor needs to set up all of this. For example:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

c cl la as ss s h ha as sh h_ _m ma ap p {
/ / ...

h ha as sh h_ _m ma ap p(c co on ns st t T T& d dv v =T T() , s si iz ze e_ _t ty yp pe e n n =1 10 01 1, c co on ns st t H H& h h =H H() , c co on ns st t E EQ Q& e e =E EQ Q())
: d de ef fa au ul lt t_ _v va al lu ue e(d dv v) , b b(n n) , n no o_ _o of f_ _e er ra as se ed d(0 0) , h ha as sh h(h h) , e eq q(e e)

{
s se et t_ _l lo oa ad d() ; / / defaults
v v. r re es se er rv ve e(m ma ax x_ _l lo oa ad d* b b. s si iz ze e()) ; / / reserve space for growth

}

v vo oi id d s se et t_ _l lo oa ad d(f fl lo oa at t m m = 0 0. 7 7, f fl lo oa at t g g = 1 1. 6 6) { m ma ax x_ _l lo oa ad d = m m; g gr ro ow w = g g; }

/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

500 Standard Containers Chapter 17

p pr ri iv va at te e:
f fl lo oa at t m ma ax x_ _l lo oa ad d; / / keep v.size()<=b.size()*max_load
f fl lo oa at t g gr ro ow w; / / when necessary, resize(bucket_count()*grow)

s si iz ze e_ _t ty yp pe e n no o_ _o of f_ _e er ra as se ed d; / / number of entries in v occupied by erased elements

H Ha as sh he er r h ha as sh h; / / hash function
k ke ey y_ _e eq qu ua al l e eq q; / / equality

c co on ns st t T T d de ef fa au ul lt t_ _v va al lu ue e; / / default value used by []
};

The standard associative containers require that a mapped type have a default value (§17.4.1.7).
This restriction is not logically necessary and can be inconvenient. Making the default value an
argument allows us to write:

h ha as sh h_ _m ma ap p<s st tr ri in ng g, N Nu um mb be er r> p ph ho on ne e_ _b bo oo ok k1 1; / / default: Number()
h ha as sh h_ _m ma ap p<s st tr ri in ng g, N Nu um mb be er r> p ph ho on ne e_ _b bo oo ok k2 2(N Nu um mb be er r(4 41 11 1)) ; / / default: Number(411)

17.6.2.1 Lookup [cont.hash.lookup]

Finally, we can provide the crucial lookup operations:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

c cl la as ss s h ha as sh h_ _m ma ap p {
/ / ...
m ma ap pp pe ed d_ _t ty yp pe e& o op pe er ra at to or r[](c co on ns st t k ke ey y_ _t ty yp pe e& k k) ;

i it te er ra at to or r f fi in nd d(c co on ns st t k ke ey y_ _t ty yp pe e&) ;
c co on ns st t_ _i it te er ra at to or r f fi in nd d(c co on ns st t k ke ey y_ _t ty yp pe e&) c co on ns st t;
/ / ...

};

To find av va al lu ue e, o op pe er ra at to or r[]() uses a hash function to find an index in the hash table for thek ke ey y.
It then searches through the entries until it finds a matchingk ke ey y. The v va al lu ue e in that E En nt tr ry y is the
one we are seeking. If it is not found, a default value is entered:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

m ma ap pp pe ed d_ _t ty yp pe e& h ha as sh h_ _m ma ap p: : o op pe er ra at to or r[](c co on ns st t k ke ey y_ _t ty yp pe e& k k)
{

s si iz ze e_ _t ty yp pe e i i = h ha as sh h(k k)%b b. s si iz ze e() ; / / hash

f fo or r(E En nt tr ry y* p p = b b[i i] ; p p; p p = p p-> n ne ex xt t) / / search among entries hashed to i
i if f (e eq q(k k, p p-> k ke ey y)) { / / found

i if f (p p-> e er ra as se ed d) { / / re-insert
p p-> e er ra as se ed d = f fa al ls se e;
n no o_ _o of f_ _e er ra as se ed d--;
r re et tu ur rn n p p-> v va al l = d de ef fa au ul lt t_ _v va al lu ue e;

}
r re et tu ur rn n p p-> v va al l;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.6.2.1 Lookup 501

/ / not found:

i if f (b b. s si iz ze e()* m ma ax x_ _l lo oa ad d < v v. s si iz ze e()) { / / if ‘‘too full’’
r re es si iz ze e(b b. s si iz ze e()* g gr ro ow w) ; / / grow
r re et tu ur rn n o op pe er ra at to or r[](k k) ; / / rehash

}

v v. p pu us sh h_ _b ba ac ck k(E En nt tr ry y(k k, d de ef fa au ul lt t_ _v va al lu ue e, b b[i i])) ; / / add Entry
b b[i i] = &v v. b ba ac ck k() ; / / point to new element

r re et tu ur rn n b b[i i]-> v va al l;
}

Unlike m ma ap p, h ha as sh h_ _m ma ap p doesn’t rely on an equality test synthesized from a less-than operation
(§17.1.4.1). This is because of the call ofe eq q() in the loop that looks through elements with the
same hash value. This loop is crucial to the performance of the lookup, and for common and obvi-
ous key types such ass st tr ri in ng g and C-style strings, the overhead of an extra comparison could be sig-
nificant.

I could have used as se et t<E En nt tr ry y> to represent the set of values that have the same hash value.
However, if we have a good hash function (h ha as sh h()) and an appropriately-sized hash table (b b), most
such sets will have exactly one element. Consequently, I linked the elements of that set together
using then ne ex xt t field of E En nt tr ry y (§17.8[27]).

Note thatb b keeps pointers to elements ofv v and that elements are added tov v. In general,
p pu us sh h_ _b ba ac ck k() can cause reallocation and thus invalidate pointers to elements (§16.3.5). However,
in this case constructors (§17.6.2) andr re es si iz ze e() carefullyr re es se er rv ve e() enough space so that no unex-
pected reallocation happens.

17.6.2.2 Erase and Rehash [cont.hash.erase]

Hashed lookup becomes inefficient when the table gets too full. To lower the chance of that hap-
pening, the table is automaticallyr re es si iz ze e() d by the subscript operator. Thes se et t_ _l lo oa ad d() (§17.6.2)
provides a way of controlling when and how resizing happens. Other functions are provided to
allow a programmer to observe the state of ah ha as sh h_ _m ma ap p:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

c cl la as ss s h ha as sh h_ _m ma ap p {
/ / ...

v vo oi id d r re es si iz ze e(s si iz ze e_ _t ty yp pe e n n) ; / / make the size of the hash table n

v vo oi id d e er ra as se e(i it te er ra at to or r p po os si it ti io on n) ; / / erase the element pointed to

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n v v. s si iz ze e()- n no o_ _o of f_ _e er ra as se ed d; } / / number of elements

s si iz ze e_ _t ty yp pe e b bu uc ck ke et t_ _c co ou un nt t() c co on ns st t { r re et tu ur rn n b b. s si iz ze e() ; } / / size of hash table

H Ha as sh he er r h ha as sh h_ _f fu un n() c co on ns st t { r re et tu ur rn n h ha as sh h; } / / hash function used
k ke ey y_ _e eq qu ua al l k ke ey y_ _e eq q() c co on ns st t { r re et tu ur rn n e eq q; } / / equality used

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

502 Standard Containers Chapter 17

/ / ...
};

Ther re es si iz ze e() operation is essential, reasonably simple, and potentially expensive:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

v vo oi id d h ha as sh h_ _m ma ap p: : r re es si iz ze e(s si iz ze e_ _t ty yp pe e s s)
{

i if f (s s <= b b. s si iz ze e()) r re et tu ur rn n;
b b. r re es si iz ze e(s s) ; / / add s-b.size() pointers
b b. c cl le ea ar r() ;
v v. r re es se er rv ve e(s s* m ma ax x_ _l lo oa ad d) ; / / if v needs to reallocate, let it happen now

i if f (n no o_ _o of f_ _e er ra as se ed d) { / / really remove erased elements
f fo or r (s si iz ze e_ _t ty yp pe e i i = v v. s si iz ze e()- 1 1; 0 0<=i i; i i--)

i if f (v v[i i]. e er ra as se ed d) {
v v. e er ra as se e(& v v[i i]) ;
i if f (-- n no o_ _o of f_ _e er ra as se ed d == 0 0) b br re ea ak k;

}
}

f fo or r (s si iz ze e_ _t ty yp pe e i i = 0 0; i i<v v. s si iz ze e() ; i i++) { / / rehash:
s si iz ze e_ _t ty yp pe e i ii i = h ha as sh h(v v[i i]. k ke ey y)%b b. s si iz ze e() ; / / hash
v v[i i]. n ne ex xt t = b b[i ii i] ; / / link
b b[i ii i] = &v v[i i] ;

}
}

If necessary, a user can ‘‘manually’’ callr re es si iz ze e() to ensure that the cost is incurred at a predictable
time. I have found ar re es si iz ze e() operation important in some applications, but it is not fundamental
to the notion of hash tables. Some implementation strategies don’t need it.

All of the real work is done elsewhere (and only if ah ha as sh h_ _m ma ap p is resized) , soe er ra as se e() is triv-
ial:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s H H = H Ha as sh h<K Ke ey y>,
c cl la as ss s E EQ Q = e eq qu ua al l_ _t to o<K Ke ey y>, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >

v vo oi id d h ha as sh h_ _m ma ap p: : e er ra as se e(i it te er ra at to or r p p) / / erase the element pointed to
{

i if f (p p-> e er ra as se ed d == f fa al ls se e) n no o_ _o of f_ _e er ra as se ed d++;
p p-> e er ra as se ed d = t tr ru ue e;

}

17.6.2.3 Hashing [cont.hasher]

To completeh ha as sh h_ _m ma ap p: : o op pe er ra at to or r[]() , we need to defineh ha as sh h() ande eq q() . For reasons that
will become clear in §18.4, a hash function is best defined aso op pe er ra at to or r()() for a function object:

t te em mp pl la at te e <c cl la as ss s T T> s st tr ru uc ct t H Ha as sh h : u un na ar ry y_ _f fu un nc ct ti io on n<T T, s si iz ze e_ _t t> {
s si iz ze e_ _t t o op pe er ra at to or r()(c co on ns st t T T& k ke ey y) c co on ns st t;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.6.2.3 Hashing 503

A good hash function takes a key and returns an integer so that different keys yield different inte-
gers with high probability. Choosing a good hash function is an art. However, exclusive-or’ing the
bits of the key’s representation into an integer is often acceptable:

t te em mp pl la at te e <c cl la as ss s T T> s si iz ze e_ _t t H Ha as sh h<T T>: : o op pe er ra at to or r()(c co on ns st t T T& k ke ey y) c co on ns st t
{

s si iz ze e_ _t t r re es s = 0 0;

s si iz ze e_ _t t l le en n = s si iz ze eo of f(T T) ;
c co on ns st t c ch ha ar r* p p = r re ei in nt te er rp pr re et t_ _c ca as st t<c co on ns st t c ch ha ar r*>(& k ke ey y) ;

w wh hi il le e (l le en n--) r re es s = (r re es s<<1 1)^* p p++; / / use bytes of key’s representation
r re et tu ur rn n r re es s;

}

The use ofr re ei in nt te er rp pr re et t_ _c ca as st t (§6.2.7) is a good indication that something unsavory is going on and
that we can do better in cases when we know more about the object being hashed. In particular, if
an object contains a pointer, if the object is large, or if the alignment requirements on members
have left unused space (‘‘holes’’) in the representation, we can usually do better (see §17.8[29]).

A C-style string is a pointer (to the characters), and as st tr ri in ng g contains a pointer. Consequently,
specializations are in order:

s si iz ze e_ _t t H Ha as sh h<c ch ha ar r*>: : o op pe er ra at to or r()(c co on ns st t c ch ha ar r* k ke ey y) c co on ns st t
{

s si iz ze e_ _t t r re es s = 0 0;

w wh hi il le e (* k ke ey y) r re es s = (r re es s<<1 1)^* k ke ey y++; / / use int value of characters
r re et tu ur rn n r re es s;

}

t te em mp pl la at te e <c cl la as ss s C C>
s si iz ze e_ _t t H Ha as sh h< b ba as si ic c_ _s st tr ri in ng g<C C> >: : o op pe er ra at to or r()(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C C>& k ke ey y) c co on ns st t
{

s si iz ze e_ _t t r re es s = 0 0;

t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C C>: : c co on ns st t_ _i it te er ra at to or r C CI I;
C CI I p p = k ke ey y. b be eg gi in n() ;
C CI I e en nd d = k ke ey y. e en nd d() ;

w wh hi il le e (p p!= e en nd d) r re es s = (r re es s<<1 1)^* p p++; / / use int value of characters
r re et tu ur rn n r re es s;

}

An implementation ofh ha as sh h_ _m ma ap p will include hash functions for at least integer and string keys.
For more adventurous key types, the user may have to help out with suitable specializations.
Experimentation supported by good measurement is essential when choosing a hash function. Intu-
ition tends to work poorly in this area.

To complete theh ha as sh h_ _m ma ap p, we need to define the iterators and a minor host of trivial functions;
this is left as an exercise (§17.8[34]).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

504 Standard Containers Chapter 17

17.6.3 Other Hashed Associative Containers [cont.hash.other]

For consistency and completeness, theh ha as sh h_ _m ma ap p should have matchingh ha as sh h_ _s se et t,
h ha as sh h_ _m mu ul lt ti im ma ap p, andh ha as sh h_ _m mu ul lt ti is se et t. Their definitions are obvious from those ofh ha as sh h_ _m ma ap p, m ma ap p,
m mu ul lt ti im ma ap p, s se et t, andm mu ul lt ti is se et t, so I leave these as an exercise (§17.8[34]). Good public domain and
commercial implementations of these hashed associative containers are available. For real pro-
grams, these should be preferred to locally concocted versions, such as mine.

17.7 Advice[cont.advice]

[1] By default, usev ve ec ct to or r when you need a container; §17.1.
[2] Know the cost (complexity, big-O measure) of every operation you use frequently; §17.1.2.
[3] The interface, implementation, and representation of a container are distinct concepts. Don’t

confuse them; §17.1.3.
[4] You can sort and search according to a variety of criteria; §17.1.4.1.
[5] Do not use a C-style string as a key unless you supply a suitable comparison criterion;

§17.1.4.1.
[6] You can define a comparison criteria so that equivalent, yet different, key values map to the

same key; §17.1.4.1.
[7] Prefer operations on the end of a sequence (b ba ac ck k-operations) when inserting and deleting ele-

ments; §17.1.4.1.
[8] Use l li is st t when you need to do many insertions and deletions from the front or the middle of a

container; §17.2.2.
[9] Usem ma ap p or m mu ul lt ti im ma ap p when you primarily access elements by key; §17.4.1.
[10] Use the minimal set of operations to gain maximum flexibility; §17.1.1
[11] Prefer am ma ap p to ah ha as sh h_ _m ma ap p if the elements need to be kept in order; §17.6.1.
[12] Prefer ah ha as sh h_ _m ma ap p to am ma ap p when speed of lookup is essential; §17.6.1.
[13] Prefer ah ha as sh h_ _m ma ap p to am ma ap p if no less-than operation can be defined for the elements; §17.6.1.
[14] Usef fi in nd d() when you need to check if a key is in an associative container; §17.4.1.6.
[15] U Us se e e eq qu ua al l_ _r ra an ng ge e() to find all elements of a given key in an associative container; §17.4.1.6.
[16] Usem mu ul lt ti im ma ap p when several values need to be kept for a single key; §17.4.2.
[17] Uses se et t or m mu ul lt ti is se et t when the key itself is the only value you need to keep; §17.4.3.

17.8 Exercises[cont.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems. Then, look at your
implementation’s version of the containers and their operations.
1. (∗2.5) Understand theO O() notation (§17.1.2). Do some measurements of operations on stan-

dard containers to determine the constant factors involved.
2. (∗2) Many phone numbers don’t fit into al lo on ng g. Write ap ph ho on ne e_ _n nu um mb be er r type and a class that

provides a set of useful operations on a container ofp ph ho on ne e_ _n nu um mb be er rs s.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.8 Exercises 505

3. (∗2) Write a program that lists the distinct words in a file in alphabetical order. Make two ver-
sions: one in which a word is simply a whitespace-separated sequence of characters and one in
which a word is a sequence of letters separated by any sequence of non-letters.

4. (∗2.5) Implement a simple solitaire card game.
5. (∗1.5) Implement a simple test of whether a word is a palindrome (that is, if its representation is

symmetric; examples area ad da a, o ot tt to o, andt tu ut t). Implement a simple test of whether an integer is a
palindrome. Implement a simple test of a whether sentence is a palindrome. Generalize.

6. (∗1.5) Define a queue using (only) twos st ta ac ck ks.
7. (∗1.5) Define a stack similar tos st ta ac ck k (§17.3.1), except that it doesn’t copy its underlying con-

tainer and that it allows iteration over its elements.
8. (∗3) Your computer will have support for concurrent activities through the concept of a thread,

task, or process. Figure out how that is done. The concurrency mechanism will have a concept
of locking to prevent two tasks accessing the same memory simultaneously. Use the machine’s
locking mechanism to implement a lock class.

9. (∗2.5) Read a sequence of dates such asD De ec c8 85 5, D De ec c5 50 0, J Ja an n7 76 6, etc., from input and then output
them so that later dates come first. The format of a date is a three-letter month followed by a
two-digit year. Assume that all the years are from the same century.

10. (∗2.5) Generalize the input format for dates to allow dates such asD De ec c1 19 98 85 5, 1 12 2/ 3 3/ 1 19 99 90 0,
(D De ec c, 3 30 0, 1 19 95 50 0) , 3 3/ 6 6/ 2 20 00 01 1, etc. Modify exercise §17.8[9] to cope with the new formats.

11. (∗1.5) Use ab bi it ts se et t to print the binary values of some numbers, including0 0, 1 1, - 1 1, 1 18 8, - 1 18 8, and
the largest positivei in nt t.

12. (∗1.5) Useb bi it ts se et t to represent which students in a class were present on a given day. Read the
b bi it ts se et ts for a series of 12 days and determine who was present every day. Determine which stu-
dents were present at least 8 days.

13. (∗1.5) Write aL Li is st t of pointers thatd de el le et te es the objects pointed to when it itself is destroyed or if
the element is removed from theL Li is st t.

14. (∗1.5) Given as st ta ac ck k object, print its elements in order (without changing the value of the stack).
15. (∗2.5) Completeh ha as sh h_ _m ma ap p (§17.6.1). This involves implementingf fi in nd d() ande eq qu ua al l_ _r ra an ng ge e()

and devising a way of testing the completed template. Testh ha as sh h_ _m ma ap p with at least one key
type for which the default hash function would be unsuitable.

16. (∗2.5) Implement and test a list in the style of the standardl li is st t.
17. (∗2) Sometimes, the space overhead of al li is st t can be a problem. Write and test a singly-linked

list in the style of a standard container.
18. (∗2.5) Implement a list that is like a standardl li is st t, except that it supports subscripting. Compare

the cost of subscripting for a variety of lists to the cost of subscripting av ve ec ct to or r of the same
length.

19. (∗2) Implement a template function that merges two containers.
20. (∗1.5) Given a C-style string, determine whether it is a palindrome. Determine whether an ini-

tial sequence of at least three words in the string is a palindrome.
21. (∗2) Read a sequence of(n na am me e, v va al lu ue e) pairs and produce a sorted list of

(n na am me e, t to ot ta al l, m me ea an n, m me ed di ia an n) 4-tuples. Print that list.
22. (∗2.5) Determine the space overhead of each of the standard containers on your implementation.
23. (∗3.5) Consider what would be a reasonable implementation strategy for ah ha as sh h_ _m ma ap p that

needed to use minimal space. Consider what would be a reasonable implementation strategy for

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

506 Standard Containers Chapter 17

a h ha as sh h_ _m ma ap p that needed to use minimal lookup time. In each case, consider what operations
you might omit so as to get closer to the ideal (no space overhead and no lookup overhead,
respectively). Hint: There is an enormous literature on hash tables.

24. (∗2) Devise a strategy for dealing with overflow inh ha as sh h_ _m ma ap p (different values hashing to the
same hash value) that makese eq qu ua al l_ _r ra an ng ge e() trivial to implement.

25. (∗2.5) Estimate the space overhead of ah ha as sh h_ _m ma ap p and then measure it. Compare the estimate
to the measurements. Compare the space overhead of yourh ha as sh h_ _m ma ap p and your
implementation’sm ma ap p.

26. (∗2.5) Profile your h ha as sh h_ _m ma ap p to see where the time is spent. Do the same for your
implementation’sm ma ap p and a widely-distributedh ha as sh h_ _m ma ap p.

27. (∗2.5) Implement ah ha as sh h_ _m ma ap p based on av ve ec ct to or r<m ma ap p<K K, V V>*> so that eachm ma ap p holds all
keys that have the same hash value.

28. (∗3) Implement ah ha as sh h_ _m ma ap p using Splay trees (see D. Sleator and R. E. Tarjan:Self-Adjusting
Binary Search Trees, JACM, Vol. 32. 1985).

29. (∗2) Given a data structure describing a string-like entity:

s st tr ru uc ct t S St t {
i in nt t s si iz ze e;
c ch ha ar r t ty yp pe e_ _i in nd di ic ca at to or r;
c ch ha ar r* b bu uf f; / / point to size characters
s st t(c co on ns st t c ch ha ar r* p p) ; / / allocate and fill buf

};

Create 1000S St ts and use them as keys for ah ha as sh h_ _m ma ap p. Devise a program to measure the per-
formance of theh ha as sh h_ _m ma ap p. Write a hash function (aH Ha as sh h; §17.6.2.3) specifically forS St t keys.

30. (∗2) Give at least four different ways of removing thee er ra as se ed d elements from ah ha as sh h_ _m ma ap p. You
should use a standard library algorithm (§3.8, Chapter 18) to avoid an explicit loop.

31. (∗3) Implement ah ha as sh h_ _m ma ap p that erases elements immediately.
32. (∗2) The hash function presented in §17.6.2.3 doesn’t always consider all of the representation

of a key. When will part of a representation be ignored? Write a hash function that always con-
siders all of the representations of a key. Give an example of when it might be wise to ignore
part of a key and write a hash function that computes its value based only on the part of a key
considered relevant.

33. (∗2.5) The code of hash functions tends to be similar: a loop gets more data and then hashes it.
Define aH Ha as sh h (§17.6.2.3) that gets its data by repeatedly calling a function that a user can
define on a per-type basis. For example:

s si iz ze e_ _t t r re es s = 0 0;
w wh hi il le e (s si iz ze e_ _t t v v = h ha as sh h(k ke ey y)) r re es s = (r re es s<<3 3)^ v v;

Here, a user can defineh ha as sh h(K K) for each typeK K that needs to be hashed.
34. (∗3) Given some implementation ofh ha as sh h_ _m ma ap p, implementh ha as sh h_ _m mu ul lt ti im ma ap p, h ha as sh h_ _s se et t, and

h ha as sh h_ _m mu ul lt ti is se et t.
35. (∗2.5) Write a hash function intended to map uniformly distributedi in nt t values into hash values

intended for a table size of about 1024. Given that function, devise a set of 1024 key values, all
of which map to the same value.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

18
_ __ _______________________________________

Algorithms and Function Objects

Form is liberating.
– engineers´ proverb

Introduction— overview of standard algorithms— sequences— function objects—
predicates— arithmetic objects— binders— member function objects— f fo or r_ _e ea ac ch h —
finding elements— c co ou un nt t — comparing sequences— searching— copying— t tr ra an ns s- -
f fo or rm m — replacing and removing elements— filling a sequence— reordering— s sw wa ap p
— sorted sequences— b bi in na ar ry y_ _s se ea ar rc ch h — m me er rg ge e — set operations— m mi in n andm ma ax x—
heaps— permutations— C-style algorithms— advice— exercises.

18.1 Introduction [algo.intro]

A container by itself is really not that interesting. To be genuinely useful, a container must be sup-
ported by basic operations such as finding its size, iterating, copying, sorting, and searching for ele-
ments. Fortunately, the standard library provides algorithms to serve the most common and basic
needs that users have of containers.

This chapter summarizes the standard algorithms and gives a few examples of their uses, a pre-
sentation of the key principles and techniques used to express the algorithms in C++, and a more
detailed explanation of a few key algorithms.

Function objects provide a mechanism through which a user can customize the behavior of the
standard algorithms. Function objects supply key information that an algorithm needs in order to
operate on a user’s data. Consequently, emphasis is placed on how function objects can be defined
and used.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

508 Algorithms and Function Objects Chapter 18

18.2 Overview of Standard Library Algorithms [algo.summary]

At first glimpse, the standard library algorithms can appear overwhelming. However, there are just
60 of them. I have seen classes with more member functions. Furthermore, many algorithms share
a common basic behavior and a common interface style that eases understanding. As with lan-
guage features, a programmer should use the algorithms actually needed and understood– and only
those. There are no awards for using the highest number of standard algorithms in a program. Nor
are there awards for using standard algorithms in the most clever and obscure way. Remember, a
primary aim of writing code is to make its meaning clear to the next person reading it– and that
person just might be yourself a few years hence. On the other hand, when doing something with
elements of a container, consider whether that action could be expressed as an algorithm in the style
of the standard library. That algorithm might already exist. If you don’t consider work in terms of
general algorithms, you will reinvent the wheel.

Each algorithm is expressed as a template function (§13.3) or a set of template functions. In
that way, an algorithm can operate on many kinds of sequences containing elements of a variety of
types. Algorithms that return an iterator (§19.1) as a result generally use the end of an input
sequence to indicate failure. For example:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& l ls s)
{

l li is st t<s st tr ri in ng g>: : c co on ns st t_ _i it te er ra at to or r p p = f fi in nd d(l ls s. b be eg gi in n() , l ls s. e en nd d() ," F Fr re ed d") ;

i if f (p p == l ls s. e en nd d()) {
/ / didn’t find "Fred"

}
e el ls se e {

/ / here, p points to "Fred"
}

}

The algorithms do not perform range checking on their input or output. Range errors must be pre-
vented by other means (§18.3.1, §19.3). When an algorithm returns an iterator, that iterator is of
the same type as one of its inputs. In particular, an algorithm’s arguments control whether it
returns ac co on ns st t_ _i it te er ra at to or r or a non-c co on ns st t i it te er ra at to or r. For example:

v vo oi id d f f(l li is st t<i in nt t>& l li i, c co on ns st t l li is st t<s st tr ri in ng g>& l ls s)
{

l li is st t<i in nt t>: : i it te er ra at to or r p p = f fi in nd d(l li i. b be eg gi in n() , l li i. e en nd d() , 4 42 2) ;
l li is st t<s st tr ri in ng g>: : c co on ns st t_ _i it te er ra at to or r q q = f fi in nd d(l ls s. b be eg gi in n() , l ls s. e en nd d() ," R Ri in ng g") ;

}

The algorithms in the standard library cover the most common general operations on containers
such as traversals, sorting, searching, and inserting and removing elements. The standard algo-
rithms are all in thes st td d namespace and their declarations are found in<a al lg go or ri it th hm m>. Interestingly,
most of the really common algorithms are so simple that the template functions are typically inline.
This implies that the loops expressed by the algorithms benefit from aggressive per-function opti-
mization.

The standard function objects are also in namespaces st td d, but their declarations are found in
<f fu un nc ct ti io on na al l>. The function objects are designed to be easy to inline.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.2 Overview of Standard Library Algorithms 509

Nonmodifying sequence operations are used to extract information from a sequence or to find
the positions of elements in a sequence:

_ __
Nonmodifying Sequence Operations (§18.5)<algorithm>_ ___ __

f fo or r_ _e ea ac ch h(()) Do operation for each element in a sequence.
f fi in nd d(()) Find first occurrence of a value in a sequence.
f fi in nd d_ _i if f(()) Find first match of a predicate in a sequence.
f fi in nd d_ _f fi ir rs st t_ _o of f(()) Find a value from one sequence in another.
a ad dj ja ac ce en nt t_ _f fi in nd d(()) Find an adjacent pair of values.
c co ou un nt t(()) Count occurrences of a value in a sequence.
c co ou un nt t_ _i if f(()) Count matches of a predicate in a sequence.
m mi is sm ma at tc ch h(()) Find the first elements for which two sequences differ.
e eq qu ua al l(()) True if the elements of two sequences are pairwise equal.
s se ea ar rc ch h(()) Find the first occurrence of a sequence as a subsequence.
f fi in nd d_ _e en nd d(()) Find the last occurrence of a sequence as a subsequence.
s se ea ar rc ch h_ _n n(()) Find then nth occurrence of a value in a sequence._ __ 


































Most algorithms allow a user to specify the actual action performed for each element or pair of ele-
ments. This makes the algorithms much more general and useful than they appear at first glance.
In particular, a user can supply the criteria used for equality and difference (§18.4.2). Where rea-
sonable, the most common and useful action is provided as a default.

Modifying sequence operations have little in common beyond the obvious fact that they might
change the values of elements of a sequence:

_ __
Modifying Sequence Operations (§18.6)<algorithm>_ ___ __

t tr ra an ns sf fo or rm m(()) Apply an operation to every element in a sequence.
c co op py y(()) Copy a sequence starting with its first element.
c co op py y_ _b ba ac ck kw wa ar rd d(()) Copy a sequence starting with its last element.
s sw wa ap p(()) Swap two elements.
i it te er r_ _s sw wa ap p(()) Swap two elements pointed to by iterators.
s sw wa ap p_ _r ra an ng ge es s(()) Swap elements of two sequences.
r re ep pl la ac ce e(()) Replace elements with a given value.
r re ep pl la ac ce e_ _i if f(()) Replace elements matching a predicate.
r re ep pl la ac ce e_ _c co op py y(()) Copy sequence replacing elements with a given value.
r re ep pl la ac ce e_ _c co op py y_ _i if f(()) Copy sequence replacing elements matching a predicate.
f fi il ll l(()) Replace every element with a given value.
f fi il ll l_ _n n(()) Replace firstn n elements with a given value.
g ge en ne er ra at te e(()) Replace every element with the result of an operation.
g ge en ne er ra at te e_ _n n(()) Replace firstn n elements with the result of an operation.
r re em mo ov ve e(()) Remove elements with a given value.
r re em mo ov ve e_ _i if f(()) Remove elements matching a predicate._ __ 












































The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

510 Algorithms and Function Objects Chapter 18

_ ___
Modifying Sequence Operations (continued) (§18.6)<algorithm>_ __ ___

r re em mo ov ve e_ _c co op py y(()) Copy a sequence removing elements with a given value.
r re em mo ov ve e_ _c co op py y_ _i if f(()) Copy a sequence removing elements matching a predicate.
u un ni iq qu ue e(()) Remove equal adjacent elements.
u un ni iq qu ue e_ _c co op py y(()) Copy a sequence removing equal adjacent elements.
r re ev ve er rs se e(()) Reverse the order of elements.
r re ev ve er rs se e_ _c co op py y(()) Copy a sequence into reverse order.
r ro ot ta at te e(()) Rotate elements.
r ro ot ta at te e_ _c co op py y(()) Copy a sequence into a rotated sequence.
r ra an nd do om m_ _s sh hu uf ff fl le e(()) Move elements into a uniform distribution._ ___ 


























Every good design shows traces of the personal traits and interests of its designer. The containers
and algorithms in the standard library clearly reflect a strong concern for classical data structures
and the design of algorithms. The standard library provides not only the bare minimum of contain-
ers and algorithms needed by essentially every programmer. It also includes many of the tools used
to provide those algorithms and needed to extend the library beyond that minimum.

The emphasis here is not on the design of algorithms or even on the use of any but the simplest
and most obvious algorithms. For information on the design and analysis of algorithms, you
should look elsewhere (for example, [Knuth,1968] and [Tarjan,1983]). Instead, this chapter lists
the algorithms offered by the standard library and explains how they are expressed in C++. This
focus allows someone who understands algorithms to use the library well and to extend it in the
spirit in which it was built.

The standard library provides a variety of operations for sorting, searching, and manipulating
sequences based on an ordering:

_ ___
Sorted Sequences (§18.7)<algorithm>_ __ ___

s so or rt t(()) Sort with good average efficiency.
s st ta ab bl le e_ _s so or rt t(()) Sort maintaining order of equal elements.
p pa ar rt ti ia al l_ _s so or rt t(()) Get the first part of sequence into order.
p pa ar rt ti ia al l_ _s so or rt t_ _c co op py y(()) Copy getting the first part of output into order.
n nt th h_ _e el le em me en nt t(()) Put the nth element in its proper place.
l lo ow we er r_ _b bo ou un nd d(()) Find the first occurrence of a value.
u up pp pe er r_ _b bo ou un nd d(()) Find the first element larger than a value.
e eq qu ua al l_ _r ra an ng ge e(()) Find a subsequence with a given value.
b bi in na ar ry y_ _s se ea ar rc ch h(()) Is a given value in a sorted sequence?
m me er rg ge e(()) Merge two sorted sequences.
i in np pl la ac ce e_ _m me er rg ge e(()) Merge two consecutive sorted subsequences.
p pa ar rt ti it ti io on n(()) Place elements matching a predicate first.
s st ta ab bl le e_ _p pa ar rt ti it ti io on n(()) Place elements matching a predicate first,

preserving relative order._ ___ 





































The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.2 Overview of Standard Library Algorithms 511

_ __
Set Algorithms (§18.7.5)<algorithm>_ ___ __

i in nc cl lu ud de es s(()) True if a sequence is a subsequence of another.
s se et t_ _u un ni io on n(()) Construct a sorted union.
s se et t_ _i in nt te er rs se ec ct ti io on n(()) Construct a sorted intersection.
s se et t_ _d di if ff fe er re en nc ce e(()) Construct a sorted sequence of elements

in the first but not the second sequence.
s se et t_ _s sy ym mm me et tr ri ic c_ _d di if ff fe er re en nc ce e(()) Construct a sorted sequence of elements

in one but not both sequences._ __ 





















Heap operations keep a sequence in a state that makes it easy to sort when necessary:

Heap Operations (§18.8)<algorithm>__
m ma ak ke e_ _h he ea ap p(()) Make sequence ready to be used as a heap.
p pu us sh h_ _h he ea ap p(()) Add element to heap.
p po op p_ _h he ea ap p(()) Remove element from heap.
s so or rt t_ _h he ea ap p(()) Sort the heap.___ 














The library provides a few algorithms for selecting elements based on a comparison:
_ ___

Minimum and Maximum (§18.9) <algorithm>_ __ ___
m mi in n(()) Smaller of two values.
m ma ax x(()) Larger of two values.
m mi in n_ _e el le em me en nt t(()) Smallest value in sequence.
m ma ax x_ _e el le em me en nt t(()) Largest value in sequence.
l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(()) Lexicographically first of two sequences._ ___ 
















Finally, the library provides ways of permuting a sequence:
_ ___

Permutations (§18.10)<algorithm>_ __ ___
n ne ex xt t_ _p pe er rm mu ut ta at ti io on n(()) Next permutation in lexicographical order.
p pr re ev v_ _p pe er rm mu ut ta at ti io on n(()) Previous permutation in lexicographical order._ ___ 










In addition, a few generalized numerical algorithms are provided in<n nu um me er ri ic c> (§22.6).
In the description of algorithms, the template parameter names are significant.I In n, O Ou ut t, F Fo or r, B Bi i,

and R Ra an n mean input iterator, output iterator, forward iterator, bidirectional iterator, and random-
access iterator, respectively (§19.2.1).P Pr re ed d means unary predicate,B Bi in nP Pr re ed d means binary predi-
cate (§18.4.2),C Cm mp p means a comparison function (§17.1.4.1, §18.7.1),O Op p means unary operation,
andB Bi in nO Op p means binary operation (§18.4). Conventionally, much longer names have been used
for template parameters. However, I find that after only a brief acquaintance with the standard
library, those long names decrease readability rather than enhancing it.

A random-access iterator can be used as a bidirectional iterator, a bidirectional iterator as a for-
ward iterator, and a forward iterator as an input or an output iterator (§19.2.1). Passing a type that
doesn’t provide the required operations will cause template-instantiation-time errors (§C.13.7).
Providing a type that has the right operations with the wrong semantics will cause unpredictable
run-time behavior (§17.1.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

512 Algorithms and Function Objects Chapter 18

18.3 Sequences and Containers[algo.seq]

It is a good general principle that the most common use of something should also be the shortest,
the easiest to express, and the safest. The standard library violates this principle in the name of
generality. For a standard library, generality is essential. For example, we can find the first two
occurrences of4 42 2 in a list like this:

v vo oi id d f f(l li is st t<i in nt t>& l li i)
{

l li is st t<i in nt t>: : i it te er ra at to or r p p = f fi in nd d(l li i. b be eg gi in n() , l li i. e en nd d() , 4 42 2) ; / / first occurrence
i if f (p p != l li i. e en nd d()) {

l li is st t<i in nt t>: : i it te er ra at to or r q q = f fi in nd d(++ p p, l li i. e en nd d() , 4 42 2) ; / / second occurrence
/ / ...

}
/ / ...

}

Had f fi in nd d() been expressed as an operation on a container, we would have needed some additional
mechanism for finding the second occurrence. Importantly, generalizing such an ‘‘additional
mechanism’’ for every container and every algorithm is hard. Instead, standard library algorithms
work on sequences of elements. That is, the input of an algorithm is expressed as a pair of iterators
that delineate a sequence. The first iterator refers to the first element of the sequence, and the sec-
ond refers to a point one-beyond-the-last element (§3.8, §19.2). Such a sequence is called ‘‘half
open’’ because it includes the first value mentioned and not the second. A half-open sequence
allows many algorithms to be expressed without making the empty sequence a special case.

A sequence– especially a sequence in which random access is possible– is often called a
range. Traditional mathematical notations for a half-open range are[f fi ir rs st t, l la as st t) and[f fi ir rs st t, l la as st t[.
Importantly, a sequence can be the elements of a container or a subsequence of a container. Fur-
ther, some sequences, such as I/O streams, are not containers. However, algorithms expressed in
terms of sequences work just fine.

18.3.1 Input Sequences [algo.range]

Writing x x. b be eg gi in n() , x x. e en nd d() to express ‘‘all the elements ofx x’’ is common, tedious, and can even
be error-prone. For example, when several iterators are used, it is too easy to provide an algorithm
with a pair of arguments that does not constitute a sequence:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& f fr ru ui it t, l li is st t<s st tr ri in ng g>& c ci it tr ru us s)
{

t ty yp pe ed de ef f l li is st t<s st tr ri in ng g>: : c co on ns st t_ _i it te er ra at to or r L LI I;

L LI I p p1 1 = f fi in nd d(f fr ru ui it t. b be eg gi in n() , c ci it tr ru us s. e en nd d() ," a ap pp pl le e") ; / / wrong! (different sequences)
L LI I p p2 2 = f fi in nd d(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() ," a ap pp pl le e") ; / / ok
L LI I p p3 3 = f fi in nd d(c ci it tr ru us s. b be eg gi in n() , c ci it tr ru us s. e en nd d() ," p pe ea ar r") ; / / ok
L LI I p p4 4 = f fi in nd d(p p2 2, p p3 3," p pe ea ac ch h") ; / / wrong! (different sequences)
/ / ...

}

In this example there are two errors. The first is obvious (once you suspect an error), but it isn’t

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.3.1 Input Sequences 513

easily detected by a compiler. The second is hard to spot in real code even for an experienced pro-
grammer. Cutting down on the number of explicit iterators used alleviates this problem. Here, I
outline an approach to dealing with this problem by making the notion of an input sequence
explicit. However, to keep the discussion of standard algorithms strictly within the bounds of the
standard library, I do not use explicit input sequences when presenting algorithms in this chapter.

The key idea is to be explicit about taking a sequence as input. For example:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T> I In n f fi in nd d(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t T T& v v) / / standard
{

w wh hi il le e (f fi ir rs st t!= l la as st t && * f fi ir rs st t!= v v) ++f fi ir rs st t;
r re et tu ur rn n f fi ir rs st t;

}

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T> I In n f fi in nd d(I Is se eq q<I In n> r r, c co on ns st t T T& v v) / / extension
{

r re et tu ur rn n f fi in nd d(r r. f fi ir rs st t, r r. s se ec co on nd d, v v) ;
}

In general, overloading (§13.3.2) allows the input-sequence version of an algorithm to be preferred
when anI Is se eq q argument is used.

Naturally, an input sequence is implemented as a pair (§17.4.1.2) of iterators:

t te em mp pl la at te e<c cl la as ss s I In n> s st tr ru uc ct t I Is se eq q : p pu ub bl li ic c p pa ai ir r<I In n, I In n> {
I Is se eq q(I In n i i1 1, I In n i i2 2) : p pa ai ir r<I In n, I In n>(i i1 1, i i2 2) { }

};

We can explicitly make theI Is se eq q needed to invoke the second version off fi in nd d() :

L LI I p p = f fi in nd d(I Is se eq q<L LI I>(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d()) ," a ap pp pl le e") ;

However, that is even more tedious than calling the originalf fi in nd d() directly. Simple helper func-
tions relieve the tedium. In particular, theI Is se eq q of a container is the sequence of elements from its
b be eg gi in n() to itse en nd d() :

t te em mp pl la at te e<c cl la as ss s C C> I Is se eq q<C C: : i it te er ra at to or r_ _t ty yp pe e> i is se eq q(C C& c c) / / for container
{

r re et tu ur rn n I Is se eq q<C C: : i it te er ra at to or r_ _t ty yp pe e>(c c. b be eg gi in n() , c c. e en nd d()) ;
}

This allows us to express algorithms on containers compactly and without repetition. For example:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& l ls s)
{

l li is st t<s st tr ri in ng g>: : i it te er ra at to or r p p = f fi in nd d(l ls s. b be eg gi in n() , l ls s. e en nd d() ," s st ta an nd da ar rd d") ;
l li is st t<s st tr ri in ng g>: : i it te er ra at to or r q q = f fi in nd d (i is se eq q(l ls s) ," e ex xt te en ns si io on n") ;
/ / ..

}

It is easy to define versions ofi is se eq q() that produceI Is se eq qs for arrays, input streams, etc. (§18.13[6]).
The key benefit ofI Is se eq q is that it makes the notion of an input sequence explicit. The immediate

practical effect is that use ofi is se eq q() eliminates much of the tedious and error-prone repetition
needed to express every input sequence as a pair of iterators.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

514 Algorithms and Function Objects Chapter 18

The notion of an output sequence is also useful. However, it is less simple and less immedi-
ately useful than the notion of an input sequence (§18.13[7]; see also §19.2.4).

18.4 Function Objects[algo.fct]

Many algorithms operate on sequences using iterators and values only. For example, we can
f fi in nd d() the first element with the value7 7 in a sequence like this:

v vo oi id d f f(l li is st t<i in nt t>& c c)
{

l li is st t<i in nt t>: : i it te er ra at to or r p p = f fi in nd d(c c. b be eg gi in n() , c c. e en nd d() , 7 7) ;
/ / ...

}

To do more interesting things we want the algorithms to execute code that we supply (§3.8.4). For
example, we can find the first element in a sequence with a value of less than7 7 like this:

b bo oo ol l l le es ss s_ _t th ha an n_ _7 7(i in nt t v v)
{

r re et tu ur rn n v v<7 7;
}

v vo oi id d f f(l li is st t<i in nt t>& c c)
{

l li is st t<i in nt t>: : i it te er ra at to or r p p = f fi in nd d_ _i if f(c c. b be eg gi in n() , c c. e en nd d() , l le es ss s_ _t th ha an n_ _7 7) ;
/ / ...

}

There are many obvious uses for functions passed as arguments: logical predicates, arithmetic oper-
ations, operations for extracting information from elements, etc. It is neither convenient nor effi-
cient to write a separate function for each use. Nor is a function logically sufficient to express all
that we would like to express. Often, the function called for each element needs to keep data
between invocations and to return the result of many applications. A member function of a class
serves such needs better than a free-standing function does because its object can hold data. In
addition, the class can provide operations for initializing and extracting such data.

Consider how to write a function– or rather a function-like class– to calculate a sum:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Su um m {
T T r re es s;

p pu ub bl li ic c:
S Su um m(T T i i = 0 0) : r re es s(i i) { } / / initialize
v vo oi id d o op pe er ra at to or r()(T T x x) { r re es s += x x; } / / accumulate
T T r re es su ul lt t() c co on ns st t { r re et tu ur rn n r re es s; } / / return sum

};

Clearly,S Su um m is designed for arithmetic types for which initialization by0 0 and+= are defined. For
example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4 Function Objects 515

v vo oi id d f f(l li is st t<d do ou ub bl le e>& l ld d)
{

S Su um m<d do ou ub bl le e> s s;
s s = f fo or r_ _e ea ac ch h(l ld d. b be eg gi in n() , l ld d. e en nd d() , s s) ; / / invoke s() for each element of ld
c co ou ut t << " t th he e s su um m i is s" << s s. r re es su ul lt t() << ´ \ \n n´;

}

Here,f fo or r_ _e ea ac ch h() (§18.5.1) invokesS Su um m<d do ou ub bl le e>: : o op pe er ra at to or r()(d do ou ub bl le e) for each element ofl ld d
and returns the object passed as its third argument.

The key reason this works is thatf fo or r_ _e ea ac ch h() doesn’t actually assume its third argument to be a
function. It simply assumes that its third argument is something that can be called with an appro-
priate argument. A suitably-defined object serves as well as– and often better than– a function.
For example, it is easier to inline the application operator of a class than to inline a function passed
as a pointer to function. Consequently, function objects often execute faster than do ordinary func-
tions. An object of a class with an application operator (§11.9) is called afunction-like object, a
functor, or simply afunction object.

18.4.1 Function Object Bases [algo.bases]

The standard library provides many useful function objects. To aid the writing of function objects,
the library provides a couple of base classes:

t te em mp pl la at te e <c cl la as ss s A Ar rg g, c cl la as ss s R Re es s> s st tr ru uc ct t u un na ar ry y_ _f fu un nc ct ti io on n {
t ty yp pe ed de ef f A Ar rg g a ar rg gu um me en nt t_ _t ty yp pe e;
t ty yp pe ed de ef f R Re es s r re es su ul lt t_ _t ty yp pe e;

};

t te em mp pl la at te e <c cl la as ss s A Ar rg g, c cl la as ss s A Ar rg g2 2, c cl la as ss s R Re es s> s st tr ru uc ct t b bi in na ar ry y_ _f fu un nc ct ti io on n {
t ty yp pe ed de ef f A Ar rg g f fi ir rs st t_ _a ar rg gu um me en nt t_ _t ty yp pe e;
t ty yp pe ed de ef f A Ar rg g2 2 s se ec co on nd d_ _a ar rg gu um me en nt t_ _t ty yp pe e;
t ty yp pe ed de ef f R Re es s r re es su ul lt t_ _t ty yp pe e;

};

The purpose of these classes is to provide standard names for the argument and return types for use
by users of classes derived fromu un na ar ry y_ _f fu un nc ct ti io on n andb bi in na ar ry y_ _f fu un nc ct ti io on n. Using these bases consis-
tently the way the standard library does will save the programmer from discovering the hard way
why they are useful (§18.4.4.1).

18.4.2 Predicates [algo.pred]

A predicate is a function object (or a function) that returns ab bo oo ol l. For example,<f fu un nc ct ti io on na al l>
defines:

t te em mp pl la at te e <c cl la as ss s T T> s st tr ru uc ct t l lo og gi ic ca al l_ _n no ot t : p pu ub bl li ic c u un na ar ry y_ _f fu un nc ct ti io on n<T T, b bo oo ol l> {
b bo oo ol l o op pe er ra at to or r()(c co on ns st t T T& x x) c co on ns st t { r re et tu ur rn n ! x x; }

};

t te em mp pl la at te e <c cl la as ss s T T> s st tr ru uc ct t l le es ss s : p pu ub bl li ic c b bi in na ar ry y_ _f fu un nc ct ti io on n<T T, T T, b bo oo ol l> {
b bo oo ol l o op pe er ra at to or r()(c co on ns st t T T& x x, c co on ns st t T T& y y) c co on ns st t { r re et tu ur rn n x x<y y; }

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

516 Algorithms and Function Objects Chapter 18

Unary and binary predicates are often useful in combination with algorithms. For example, we can
compare two sequences, looking for the first element of one that is not less than its corresponding
element in the other:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v vi i, l li is st t<i in nt t>& l li i)
{

t ty yp pe ed de ef f l li is st t<i in nt t>: : i it te er ra at to or r L LI I;
t ty yp pe ed de ef f v ve ec ct to or r<i in nt t>: : i it te er ra at to or r V VI I;
p pa ai ir r<V VI I, L LI I> p p1 1 = m mi is sm ma at tc ch h(v vi i. b be eg gi in n() , v vi i. e en nd d() , l li i. b be eg gi in n() , l le es ss s<i in nt t>()) ;
/ / ...

}

The m mi is sm ma at tc ch h() algorithm applies its binary predicate repeatedly to pairs of corresponding ele-
ments until it fails (§18.5.4). It then returns the iterators for the elements that failed the compari-
son. Because an object is needed rather than a type,l le es ss s<i in nt t>() (with the parentheses) is used
rather than the temptingl le es ss s<i in nt t>.

Instead of finding the first elementn no ot t l le es ss s than its corresponding element in the other
sequence, we might like to find the first elementl le es ss s than its corresponding element. We can do
this by presenting the sequences tom mi is sm ma at tc ch h() in the opposite order:

p pa ai ir r<L LI I, V VI I> p p2 2 = m mi is sm ma at tc ch h(l li i. b be eg gi in n() , l li i. e en nd d() , v vi i. b be eg gi in n() , l le es ss s<i in nt t>()) ;

or we can use the complementary predicateg gr re ea at te er r_ _e eq qu ua al l:

p p1 1 = m mi is sm ma at tc ch h(v vi i. b be eg gi in n() , v vi i. e en nd d() , l li i. b be eg gi in n() , g gr re ea at te er r_ _e eq qu ua al l<i in nt t>()) ;

In §18.4.4.4, I show how to express the predicate ‘‘not less.’’

18.4.2.1 Overview of Predicates [algo.pred.std]

In <f fu un nc ct ti io on na al l>, the standard library supplies a few common predicates:
_ ______________________________________

Predicates<functional>_ _______________________________________ ______________________________________
e eq qu ua al l_ _t to o Binary arg1==arg2
n no ot t_ _e eq qu ua al l_ _t to o Binary arg1!=arg2
g gr re ea at te er r Binary arg1>arg2
l le es ss s Binary arg1<arg2
g gr re ea at te er r_ _e eq qu ua al l Binary arg1>=arg2
l le es ss s_ _e eq qu ua al l Binary arg1<=arg2
l lo og gi ic ca al l_ _a an nd d Binary arg1&&arg2
l lo og gi ic ca al l_ _o or r Binary arg1arg2
l lo og gi ic ca al l_ _n no ot t Unary !arg_ ______________________________________ 


























The definitions ofl le es ss s andl lo og gi ic ca al l_ _n no ot t are presented in §18.4.2.
In addition to the library-provided predicates, users can write their own. Such user-supplied

predicates are essential for simple and elegant use of the standard libraries and algorithms. The
ability to define predicates is particularly important when we want to use algorithms for classes
designed without thought of the standard library and its algorithms. For example, consider a vari-
ant of theC Cl lu ub b class from §10.4.6:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.2.1 Overview of Predicates 517

c cl la as ss s P Pe er rs so on n { /* ... */ };

s st tr ru uc ct t C Cl lu ub b {
s st tr ri in ng g n na am me e;
l li is st t<P Pe er rs so on n*> m me em mb be er rs s;
l li is st t<P Pe er rs so on n*> o of ff fi ic ce er rs s;
/ / ...
C Cl lu ub b(c co on ns st t n na am me e& n n) ;

};

Looking for aC Cl lu ub b with a given name in al li is st t<C Cl lu ub b> is clearly a reasonable thing to do. How-
ever, the standard library algorithmf fi in nd d_ _i if f() doesn’t know aboutC Cl lu ub bs. The library algorithms
know how to test for equality, but we don’t want to find aC Cl lu ub b based on its complete value.
Rather, we want to useC Cl lu ub b: : n na am me eas the key. So we write a predicate to reflect that:

c cl la as ss s C Cl lu ub b_ _e eq q : p pu ub bl li ic c u un na ar ry y_ _f fu un nc ct ti io on n<C Cl lu ub b, b bo oo ol l> {
s st tr ri in ng g s s;

p pu ub bl li ic c:
e ex xp pl li ic ci it t C Cl lu ub b_ _e eq q(c co on ns st t s st tr ri in ng g& s ss s) : s s(s ss s) { }
b bo oo ol l o op pe er ra at to or r()(c co on ns st t C Cl lu ub b& c c) c co on ns st t { r re et tu ur rn n c c. n na am me e==s s; }

};

Defining useful predicates is simple. Once suitable predicates have been defined for user-defined
types, their use with the standard algorithms is as simple and efficient as examples involving con-
tainers of simple types. For example:

v vo oi id d f f(l li is st t<C Cl lu ub b>& l lc c)
{

t ty yp pe ed de ef f l li is st t<C Cl lu ub b>: : i it te er ra at to or r L LC CI I;
L LC CI I p p = f fi in nd d_ _i if f(l lc c. b be eg gi in n() , l lc c. e en nd d() , C Cl lu ub b_ _e eq q(" D Di in ni in ng g P Ph hi il lo os so op ph he er rs s")) ;
/ / ...

}

18.4.3 Arithmetic Function Objects [algo.arithmetic]

When dealing with numeric classes, it is sometimes useful to have the standard arithmetic functions
available as function objects. Consequently, in<f fu un nc ct ti io on na al l> the standard library provides:

_ _________________________________
Arithmetic Operations <functional>_ __________________________________ _________________________________
p pl lu us s Binary arg1+arg2
m mi in nu us s Binary arg1– arg2
m mu ul lt ti ip pl li ie es s Binary arg1*arg2
d di iv vi id de es s Binary arg1/arg2
m mo od du ul lu us s Binary arg1%arg2
n ne eg ga at te e Unary – arg_ _________________________________ 




















We might usem mu ul lt ti ip pl li ie es s to multiply elements in two vectors, thereby producing a third:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

518 Algorithms and Function Objects Chapter 18

v vo oi id d d di is sc co ou un nt t(v ve ec ct to or r<d do ou ub bl le e>& a a, v ve ec ct to or r<d do ou ub bl le e>& b b, v ve ec ct to or r<d do ou ub bl le e>& r re es s)
{

t tr ra an ns sf fo or rm m(a a. b be eg gi in n() , a a. e en nd d() , b b. b be eg gi in n() , b ba ac ck k_ _i in ns se er rt te er r(r re es s) , m mu ul lt ti ip pl li ie es s<d do ou ub bl le e>()) ;
}

Theb ba ac ck k_ _i in ns se er rt te er r() is described in §19.2.4. A few numerical algorithms can be found in §22.6.

18.4.4 Binders, Adapters, and Negaters [algo.adapter]

We can use predicates and arithmetic function objects we have written ourselves and rely on the
ones provided by the standard library. However, when we need a new predicate we often find that
the new predicate is a minor variation of an existing one. The standard library supports the compo-
sition of function objects:

§18.4.4.1 Abinder allows a two-argument function object to be used as a single-argument
function by binding one argument to a value.

§18.4.4.2 Amember function adapterallows a member function to be used as an argument to
algorithms.

§18.4.4.3 Apointer to function adapterallows a pointer to function to be used as an argument
to algorithms.

§18.4.4.4 Anegaterallows us to express the opposite of a predicate.
Collectively, these function objects are referred to asa ad da ap pt te er rs s. These adapters all have a common
structure relying on the function object basesu un na ar ry y_ _f fu un nc ct ti io on n andb bi in na ar ry y_ _f fu un nc ct ti io on n (§18.4.1). For
each of these adapters, a helper function is provided to take a function object as an argument and
return a suitable function object. When invoked by itso op pe er ra at to or r()() , that function object will
perform the desired action. That is, an adapter is a simple form of a higher-order function: it takes
a function argument and produces a new function from it:
_ ___

Binders, Adapters, and Negaters<functional>_ __ ___
bind2nd(y) binder2nd Call binary function withy y as 2nd argument.

b bi in nd d1 1s st t((x x)) b bi in nd de er r1 1s st t Call binary function withx x as 1st argument.
m me em m_ _f fu un n(()) m me em m_ _f fu un n_ _t t Call 0-arg member through pointer.

m me em m_ _f fu un n1 1_ _t t Call unary member through pointer.
c co on ns st t_ _m me em m_ _f fu un n_ _t t Call 0-arg const member through pointer.
c co on ns st t_ _m me em m_ _f fu un n1 1_ _t t Call unary const member through pointer.

m me em m_ _f fu un n_ _r re ef f(()) m me em m_ _f fu un n_ _r re ef f_ _t t Call 0-arg member through reference.
m me em m_ _f fu un n1 1_ _r re ef f_ _t t Call unary member through reference.
c co on ns st t_ _m me em m_ _f fu un n_ _r re ef f_ _t t Call 0-arg const member through reference.
c co on ns st t_ _m me em m_ _f fu un n1 1_ _r re ef f_ _t t Call unary const member through reference.

p pt tr r_ _f fu un n(()) p po oi in nt te er r_ _t to o_ _u un na ar ry y_ _f fu un nc ct ti io on n Call unary pointer to function.
p pt tr r_ _f fu un n(()) p po oi in nt te er r_ _t to o_ _b bi in na ar ry y_ _f fu un nc ct ti io on n Call binary pointer to function.
n no ot t1 1(()) u un na ar ry y_ _n ne eg ga at te e Negate unary predicate.
n no ot t2 2(()) b bi in na ar ry y_ _n ne eg ga at te e Negate binary predicate._ ___ 






































The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.4.1 Binders 519

18.4.4.1 Binders [algo.binder]

Binary predicates such asl le es ss s (§18.4.2) are useful and flexible. However, we soon discover that
the most useful kind of predicate is one that compares a fixed argument repeatedly against a con-
tainer element. Thel le es ss s_ _t th ha an n_ _7 7() function (§18.4) is a typical example. Thel le es ss s operation
needs two arguments explicitly provided in each call, so it is not immediately useful. Instead, we
might define:

t te em mp pl la at te e <c cl la as ss s T T> c cl la as ss s l le es ss s_ _t th ha an n : p pu ub bl li ic c u un na ar ry y_ _f fu un nc ct ti io on n<T T, b bo oo ol l> {
T T a ar rg g2 2;

p pu ub bl li ic c:
e ex xp pl li ic ci it t l le es ss s_ _t th ha an n(c co on ns st t T T& x x) : a ar rg g2 2(x x) { }
b bo oo ol l o op pe er ra at to or r()(c co on ns st t T T& x x) c co on ns st t { r re et tu ur rn n x x<a ar rg g2 2; }

};

We can now write:

v vo oi id d f f(l li is st t<i in nt t>& c c)
{

l li is st t<i in nt t>: : c co on ns st t_ _i it te er ra at to or r p p = f fi in nd d_ _i if f(c c. b be eg gi in n() , c c. e en nd d() , l le es ss s_ _t th ha an n<i in nt t>(7 7)) ;
/ / ...

}

We must writel le es ss s_ _t th ha an n<i in nt t>(7 7) rather thanl le es ss s_ _t th ha an n(7 7) because the template argument<i in nt t>
cannot be deduced from the type of the constructor argument(7 7) (§13.3.1).

The l le es ss s_ _t th ha an n predicate is generally useful. Importantly, we defined it by fixing or binding the
second argument ofl le es ss s. Such composition by binding an argument is so common, useful, and
occasionally tedious that the standard library provides a standard class for doing it:

t te em mp pl la at te e <c cl la as ss s B Bi in nO Op p>
c cl la as ss s b bi in nd de er r2 2n nd d : p pu ub bl li ic c u un na ar ry y_ _f fu un nc ct ti io on n<B Bi in nO Op p: : f fi ir rs st t_ _a ar rg gu um me en nt t_ _t ty yp pe e, B Bi in nO Op p: : r re es su ul lt t_ _t ty yp pe e> {
p pr ro ot te ec ct te ed d:

B Bi in nO Op p o op p;
t ty yp pe en na am me e B Bi in nO Op p: : s se ec co on nd d_ _a ar rg gu um me en nt t_ _t ty yp pe e a ar rg g2 2;

p pu ub bl li ic c:
b bi in nd de er r2 2n nd d(c co on ns st t B Bi in nO Op p& x x, c co on ns st t t ty yp pe en na am me e B Bi in nO Op p: : s se ec co on nd d_ _a ar rg gu um me en nt t_ _t ty yp pe e& v v)

: o op p(x x) , a ar rg g2 2(v v) { }
r re es su ul lt t_ _t ty yp pe e o op pe er ra at to or r()(c co on ns st t a ar rg gu um me en nt t_ _t ty yp pe e& x x) c co on ns st t { r re et tu ur rn n o op p(x x, a ar rg g2 2) ; }

};

t te em mp pl la at te e <c cl la as ss s B Bi in nO Op p, c cl la as ss s T T> b bi in nd de er r2 2n nd d<B Bi in nO Op p> b bi in nd d2 2n nd d(c co on ns st t B Bi in nO Op p& o op p, c co on ns st t T T& v v)
{

r re et tu ur rn n b bi in nd de er r2 2n nd d<B Bi in nO Op p>(o op p, v v) ;
}

For example, we can useb bi in nd d2 2n nd d() to create the unary predicate ‘‘less than7 7’’ from the binary
predicate ‘‘less’’ and the value7 7:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

520 Algorithms and Function Objects Chapter 18

v vo oi id d f f(l li is st t<i in nt t>& c c)
{

l li is st t<i in nt t>: : c co on ns st t_ _i it te er ra at to or r p p = f fi in nd d_ _i if f(c c. b be eg gi in n() , c c. e en nd d() , b bi in nd d2 2n nd d(l le es ss s<i in nt t>() , 7 7)) ;
/ / ...

}

Is this readable? Is this efficient? Given an average C++ implementation, this version is actually
more efficient in time and space than is the original version using the functionl le es ss s_ _t th ha an n_ _7 7() from
§18.4! The comparison is easily inlined.

The notation is logical, but it does take some getting used to. Often, the definition of a named
operation with a bound argument is worthwhile after all:

t te em mp pl la at te e <c cl la as ss s T T> s st tr ru uc ct t l le es ss s_ _t th ha an n : p pu ub bl li ic c b bi in nd de er r2 2n nd d<l le es ss s<T T>, T T> {
e ex xp pl li ic ci it t l le es ss s_ _t th ha an n(c co on ns st t T T& x x) : b bi in nd de er r2 2n nd d(l le es ss s<T T>() , x x) { }

};

v vo oi id d f f(l li is st t<i in nt t>& c c)
{

l li is st t<i in nt t>: : c co on ns st t_ _i it te er ra at to or r p p = f fi in nd d_ _i if f(c c. b be eg gi in n() , c c. e en nd d() , l le es ss s_ _t th ha an n<i in nt t>(7 7)) ;
/ / ...

}

It is important to definel le es ss s_ _t th ha an n in terms of l le es ss s rather than using< directly. That way,
l le es ss s_ _t th ha an n benefits from any specializations thatl le es ss s might have (§13.5, §19.2.2).

In parallel tob bi in nd d2 2n nd d() andb bi in nd de er r2 2n nd d, <f fu un nc ct ti io on na al l> providesb bi in nd d1 1s st t() andb bi in nd de er r1 1s st t for
binding the first argument of a binary function.

By binding an argument,b bi in nd d1 1s st t() andb bi in nd d2 2n nd d() perform a service very similar to what is
commonly referred to asCurrying.

18.4.4.2 Member Function Adapters [algo.memfct]

Most algorithms invoke a standard or user-defined operation. Naturally, users often want to invoke
a member function. For example (§3.8.5):

v vo oi id d d dr ra aw w_ _a al ll l(l li is st t<S Sh ha ap pe e*>& l ls sp p)
{

f fo or r_ _e ea ac ch h(c c. b be eg gi in n() , c c. e en nd d() ,& S Sh ha ap pe e: : d dr ra aw w) ; / / oops! error
}

The problem is that a member functionm mf f() needs to be invoked for an object:p p-> m mf f() . How-
ever, algorithms such asf fo or r_ _e ea ac ch h() invoke their function operands by simple application:f f() .
Consequently, we need a convenient and efficient way of creating something that allows an algo-
rithm to invoke a member function. The alternative would be to duplicate the set of algorithms:
one version for member functions plus one for ordinary functions. Worse, we’d need additional
versions of algorithms for containers of objects (rather than pointers to objects). As for the binders
(§18.4.4.1), this problem is solved by a class plus a function. First, consider the common case in
which we want to call a member function taking no arguments for the elements of a container of
pointers:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.4.2 Member Function Adapters 521

t te em mp pl la at te e<c cl la as ss s R R, c cl la as ss s T T> c cl la as ss s m me em m_ _f fu un n_ _t t : p pu ub bl li ic c u un na ar ry y_ _f fu un nc ct ti io on n<T T*, R R> {
R R (T T: :* p pm mf f)() ;

p pu ub bl li ic c:
e ex xp pl li ic ci it t m me em m_ _f fu un n_ _t t(R R (T T: :* p p)()) : p pm mf f(p p) {}
R R o op pe er ra at to or r()(T T* p p) c co on ns st t { r re et tu ur rn n (p p->* p pm mf f)() ; } / / call through pointer

};

t te em mp pl la at te e<c cl la as ss s R R, c cl la as ss s T T> m me em m_ _f fu un n_ _t t<R R, T T> m me em m_ _f fu un n(R R (T T: :* f f)())
{

r re et tu ur rn n m me em m_ _f fu un n_ _t t<R R, T T>(f f) ;
}

This handles theS Sh ha ap pe e: : d dr ra aw w() example:

v vo oi id d d dr ra aw w_ _a al ll l(l li is st t<S Sh ha ap pe e*>& l ls sp p) / / call 0-argument member through pointer to object
{

f fo or r_ _e ea ac ch h(l ls sp p. b be eg gi in n() , l ls sp p. e en nd d() , m me em m_ _f fu un n(& S Sh ha ap pe e: : d dr ra aw w)) ; / / draw all shapes
}

In addition, we need a class and am me em m_ _f fu un n() function for handling a member function taking an
argument. We also need versions to be called directly for an object rather than through a pointer;
these are namedm me em m_ _f fu un n_ _r re ef f() . Finally, we need versions forc co on ns st t member functions:

t te em mp pl la at te e<c cl la as ss s R R, c cl la as ss s T T> m me em m_ _f fu un n_ _t t<R R, T T> m me em m_ _f fu un n(R R (T T: :* f f)()) ;
/ / and versions for unary member, for const member, and const unary member (see table in §18.4.4)

t te em mp pl la at te e<c cl la as ss s R R, c cl la as ss s T T> m me em m_ _f fu un n_ _r re ef f_ _t t<R R, T T> m me em m_ _f fu un n_ _r re ef f(R R (T T: :* f f)()) ;
/ / and versions for unary member, for const member, and const unary member (see table in §18.4.4)

Given these member function adapters from<f fu un nc ct ti io on na al l>, we can write:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& l ls s) / / use member function that takes no argument for object
{

t ty yp pe ed de ef f l li is st t<s st tr ri in ng g>: : i it te er ra at to or r L LS SI I;
L LS SI I p p = f fi in nd d_ _i if f(l ls s. b be eg gi in n() , l ls s. e en nd d() , m me em m_ _f fu un n_ _r re ef f(& s st tr ri in ng g: : e em mp pt ty y)) ;/ / find ""

}

v vo oi id d r ro ot ta at te e_ _a al ll l(l li is st t<S Sh ha ap pe e*>& l ls s, i in nt t a an ng gl le e)
/ / use member function that takes one argument through pointer to object

{
f fo or r_ _e ea ac ch h(l ls s. b be eg gi in n() , l ls s. e en nd d() , b bi in nd d2 2n nd d(m me em m_ _f fu un n(& S Sh ha ap pe e: : r ro ot ta at te e) , a an ng gl le e)) ;

}

The standard library need not deal with member functions taking more than one argument because
no standard library algorithm takes a function with more than two arguments as operands.

18.4.4.3 Pointer to Function Adapters [algo.ptof]

An algorithm doesn’t care whether a ‘‘function argument’’ is a function, a pointer to function, or a
function object. However, a binder (§18.4.4.1) does care because it needs to store a copy for later
use. Consequently, the standard library supplies two adapters to allow pointers to functions to be
used together with the standard algorithms in<f fu un nc ct ti io on na al l>. The definition and implementation

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

522 Algorithms and Function Objects Chapter 18

closely follows that of the member function adapters (§18.4.4.2). Again, a pair of functions and a
pair of classes are used:

t te em mp pl la at te e <c cl la as ss s A A, c cl la as ss s R R> p po oi in nt te er r_ _t to o_ _u un na ar ry y_ _f fu un nc ct ti io on n<A A, R R> p pt tr r_ _f fu un n(R R (* f f)(A A)) ;

t te em mp pl la at te e <c cl la as ss s A A, c cl la as ss s A A2 2, c cl la as ss s R R>
p po oi in nt te er r_ _t to o_ _b bi in na ar ry y_ _f fu un nc ct ti io on n<A A, A A2 2, R R> p pt tr r_ _f fu un n(R R (* f f)(A A, A A2 2)) ;

Given these pointer to function adapters, we can use ordinary functions together with binders:

c cl la as ss s R Re ec co or rd d { /* ... */ };

b bo oo ol l n na am me e_ _k ke ey y_ _e eq q(c co on ns st t R Re ec co or rd d&, c co on ns st t R Re ec co or rd d&) ; / / compare based on names
b bo oo ol l s ss sn n_ _k ke ey y_ _e eq q(c co on ns st t R Re ec co or rd d&, c co on ns st t R Re ec co or rd d&) ; / / compare based on number

v vo oi id d f f(l li is st t<R Re ec co or rd d>& l lr r) / / use pointer to function
{

t ty yp pe ed de ef f t ty yp pe en na am me e l li is st t<R Re ec co or rd d>: : i it te er ra at to or r L LI I;
L LI I p p = f fi in nd d_ _i if f(l lr r. b be eg gi in n() , l lr r. e en nd d() , b bi in nd d2 2n nd d(p pt tr r_ _f fu un n(n na am me e_ _k ke ey y_ _e eq q) ," J Jo oh hn n B Br ro ow wn n")) ;
L LI I q q = f fi in nd d_ _i if f(l lr r. b be eg gi in n() , l lr r. e en nd d() , b bi in nd d2 2n nd d(p pt tr r_ _f fu un n(s ss sn n_ _k ke ey y_ _e eq q) , 1 12 23 34 45 56 67 78 89 90 0)) ;
/ / ...

}

This looks for elements of the listl lr r that match the keysJ Jo oh hn n B Br ro ow wn n and1 12 23 34 45 56 67 78 89 90 0.

18.4.4.4 Negaters [algo.negate]

The predicate negaters are related to the binders in that they take an operation and produce a related
operation from it. The definition and implementation of negaters follow the pattern of the member
function adapters (§18.4.4.2). Their definitions are trivial, but their simplicity is obscured by the
use of long standard names:

t te em mp pl la at te e <c cl la as ss s P Pr re ed d>
c cl la as ss s u un na ar ry y_ _n ne eg ga at te e : p pu ub bl li ic c u un na ar ry y_ _f fu un nc ct ti io on n<t ty yp pe en na am me e P Pr re ed d: : a ar rg gu um me en nt t_ _t ty yp pe e, b bo oo ol l> {

u un na ar ry y_ _f fu un nc ct ti io on n<a ar rg gu um me en nt t_ _t ty yp pe e, b bo oo ol l> o op p;
p pu ub bl li ic c:

e ex xp pl li ic ci it t u un na ar ry y_ _n ne eg ga at te e(c co on ns st t P Pr re ed d& p p) : o op p(p p) { }
b bo oo ol l o op pe er ra at to or r()(c co on ns st t a ar rg gu um me en nt t_ _t ty yp pe e& x x) c co on ns st t { r re et tu ur rn n ! o op p(x x) ; }

};

t te em mp pl la at te e <c cl la as ss s P Pr re ed d>
c cl la as ss s b bi in na ar ry y_ _n ne eg ga at te e : p pu ub bl li ic c b bi in na ar ry y_ _f fu un nc ct ti io on n<t ty yp pe en na am me e P Pr re ed d: : f fi ir rs st t_ _a ar rg gu um me en nt t_ _t ty yp pe e,

t ty yp pe en na am me e P Pr re ed d: : s se ec co on nd d_ _a ar rg gu um me en nt t_ _t ty yp pe e, b bo oo ol l> {

t ty yp pe ed de ef f f fi ir rs st t_ _a ar rg gu um me en nt t_ _t ty yp pe e A Ar rg g;
t ty yp pe ed de ef f s se ec co on nd d_ _a ar rg gu um me en nt t_ _t ty yp pe e A Ar rg g2 2;

b bi in na ar ry y_ _f fu un nc ct ti io on n<A Ar rg g, A Ar rg g2 2, b bo oo ol l> o op p;
p pu ub bl li ic c:

e ex xp pl li ic ci it t b bi in na ar ry y_ _n ne eg ga at te e(c co on ns st t P Pr re ed d& p p) : o op p(p p) { }
b bo oo ol l o op pe er ra at to or r()(c co on ns st t A Ar rg g& x x, c co on ns st t A Ar rg g2 2& y y) c co on ns st t { r re et tu ur rn n ! o op p(x x, y y) ; }

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.4.4 Negaters 523

t te em mp pl la at te e<c cl la as ss s P Pr re ed d> u un na ar ry y_ _n ne eg ga at te e<P Pr re ed d> n no ot t1 1(c co on ns st t P Pr re ed d& p p) ; / / negate unary
t te em mp pl la at te e<c cl la as ss s P Pr re ed d> b bi in na ar ry y_ _n ne eg ga at te e<P Pr re ed d> n no ot t2 2(c co on ns st t P Pr re ed d& p p) ; / / negate binary

These classes and functions are declared in<f fu un nc ct ti io on na al l>. The namesf fi ir rs st t_ _a ar rg gu um me en nt t_ _t ty yp pe e,
s se ec co on nd d_ _a ar rg gu um me en nt t_ _t ty yp pe e, etc., come from the standard base classesu un na ar ry y_ _f fu un nc ct ti io on n and
b bi in na ar ry y_ _f fu un nc ct ti io on n.

Like the binders, the negaters are most conveniently used indirectly through their helper func-
tions. For example, we can express the binary predicate ‘‘not less than’’ and use it to find the first
corresponding pair of elements whose first element is greater than or equal to its second:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v vi i, l li is st t<i in nt t>& l li i) / / revised example from §18.4.2
{

/ / ...
p p1 1 = m mi is sm ma at tc ch h(v vi i. b be eg gi in n() , v vi i. e en nd d() , l li i. b be eg gi in n() , n no ot t2 2(l le es ss s<i in nt t>())) ;
/ / ...

}

That is,p p1 1 identifies the first pair of elements for which the predicaten no ot t l le es ss s t th ha an n failed.
Predicates deal with Boolean conditions, so there are no equivalents to the bitwise operators| ,

&, ^ , and~.
Naturally, binders, adapters, and negaters are useful in combination. For example:

e ex xt te er rn n " C C" i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r*, c co on ns st t c ch ha ar r*) ; / / from <cstdlib>

v vo oi id d f f(l li is st t<c ch ha ar r*>& l ls s) / / use pointer to function
{

t ty yp pe ed de ef f t ty yp pe en na am me e l li is st t<c ch ha ar r*>: : c co on ns st t_ _i it te er ra at to or r L LI I;
L LI I p p = f fi in nd d_ _i if f(l ls s. b be eg gi in n() , l ls s. e en nd d() , n no ot t1 1(b bi in nd d2 2n nd d(p pt tr r_ _f fu un n(s st tr rc cm mp p) ," f fu un nn ny y"))) ;

}

This finds an element of the listl ls s that contains the C-style string" f fu un nn ny y" . The negater is needed
becauses st tr rc cm mp p() returns0 0 when strings compare equal.

18.5 Nonmodifying Sequence Algorithms[algo.nonmodifying]

Nonmodifying sequence algorithms are the basic means for finding something in a sequence with-
out writing a loop. In addition, they allow us to find out things about elements. These algorithms
can take const-iterators (§19.2.1) and– with the excetion off fo or r_ _e ea ac ch h() – should not be used to
invoke operations that modify the elements of the sequence.

18.5.1 For_each [algo.foreach]

We use a library to benefit from the work of others. Using a library function, class, algorithm, etc.,
saves the work of inventing, designing, writing, debugging, and documenting something. Using
the standard library also makes the resulting code easier to read for others who are familiar with
that library, but who would have to spend time and effort understanding home-brewed code.

A key benefit of the standard library algorithms is that they save the programmer from writing
explicit loops. Loops can be tedious and error-prone. Thef fo or r_ _e ea ac ch h() algorithm is the simplest

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

524 Algorithms and Function Objects Chapter 18

algorithm in the sense that it does nothing but eliminate an explicit loop. It simply calls its operator
argument for a sequence:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Op p> O Op p f fo or r_ _e ea ac ch h(I In n f fi ir rs st t, I In n l la as st t, O Op p f f)
{

w wh hi il le e (f fi ir rs st t != l la as st t) f f(* f fi ir rs st t++) ;
r re et tu ur rn n f f;

}

What functions would people want to call this way? If you want to accumulate information from
the elements, considera ac cc cu um mu ul la at te e() (§22.6). If you want to find something in a sequence, con-
sider f fi in nd d() and f fi in nd d_ _i if f() (§18.5.2). If you change or remove elements, considerr re ep pl la ac ce e()
(§18.6.4) orr re em mo ov ve e() (§18.6.5). In general, before usingf fo or r_ _e ea ac ch h() , consider if there is a more
specialized algorithm that would do more for you.

The result off fo or r_ _e ea ac ch h() is the function or function object passed as its third argument. As
shown in theS Su um m example (§18.4), this allows information to be passed back to a caller.

One common use off fo or r_ _e ea ac ch h() is to extract information from elements of a sequence. For
example, consider collecting the names of any of a number ofC Cl lu ub bs:

v vo oi id d e ex xt tr ra ac ct t(c co on ns st t l li is st t<C Cl lu ub b>& l lc c, l li is st t<P Pe er rs so on n*>& o of ff f) / / place the officers from ‘lc’ on ‘off’
{

f fo or r_ _e ea ac ch h(l lc c. b be eg gi in n() , l lc c. e en nd d() , E Ex xt tr ra ac ct t_ _o of ff fi ic ce er rs s(o of ff f)) ;
}

In parallel to the examples from §18.4 and §18.4.2, we define a function class that extracts the
desired information. In this case, the names to be extracted are found inl li is st t<P Pe er rs so on n*> s in our
l li is st t<C Cl lu ub b>. Consequently,E Ex xt tr ra ac ct t_ _o of ff fi ic ce er rs s needs to copy the officers from aC Cl lu ub b’s o of ff fi ic ce er rs s list
to our list:

c cl la as ss s E Ex xt tr ra ac ct t_ _o of ff fi ic ce er rs s {
l li is st t<P Pe er rs so on n*>& l ls st t;

p pu ub bl li ic c:
e ex xp pl li ic ci it t E Ex xt tr ra ac ct t_ _o of ff fi ic ce er rs s(l li is st t<P Pe er rs so on n*>& x x) : l ls st t(x x) { }

v vo oi id d o op pe er ra at to or r()(c co on ns st t C Cl lu ub b& c c)
{ c co op py y(c c. o of ff fi ic ce er rs s. b be eg gi in n() , c c. o of ff fi ic ce er rs s. e en nd d() , b ba ac ck k_ _i in ns se er rt te er r(l ls st t)) ; }

};

We can now print out the names, again usingf fo or r_ _e ea ac ch h() :

v vo oi id d e ex xt tr ra ac ct t_ _a an nd d_ _p pr ri in nt t(c co on ns st t l li is st t<C Cl lu ub b>& l lc c)
{

l li is st t<P Pe er rs so on n*> o of ff f;
e ex xt tr ra ac ct t(l lc c, o of ff f) ;
f fo or r_ _e ea ac ch h(o of ff f. b be eg gi in n() , o of ff f. e en nd d() , P Pr ri in nt t_ _n na am me e(c co ou ut t)) ;

}

Writing P Pr ri in nt t_ _n na am me e is left as an exercise (§18.13[4]).
The f fo or r_ _e ea ac ch h() algorithm is classified as nonmodifying because it doesn’t explicitly modify a

sequence. However, if applied to a non-c co on ns st t sequencef fo or r_ _e ea ac ch h() ’s operation (its third argu-
ment) may change the elements of the sequence. For an example, seed de el le et te e_ _p pt tr r() in §18.6.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.5.2 The Find Family 525

18.5.2 The Find Family [algo.find]

Thef fi in nd d() algorithms look through a sequence or a pair of sequences to find a value or a match on
a predicate. The simple versions off fi in nd d() look for a value or for a match with a predicate:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T> I In n f fi in nd d(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s P Pr re ed d> I In n f fi in nd d_ _i if f(I In n f fi ir rs st t, I In n l la as st t, P Pr re ed d p p) ;

The algorithmsf fi in nd d() andf fi in nd d_ _i if f() return an iterator to the first element that matches a value and
a predicate, respectively. In fact,f fi in nd d() can be understood as the version off fi in nd d_ _i if f() with the
predicate==. Why aren’t they both calledf fi in nd d() ? The reason is that function overloading cannot
always distinguish calls of two template functions with the same number of arguments. Consider:

b bo oo ol l p pr re ed d(i in nt t) ;

v vo oi id d f f(v ve ec ct to or r<b bo oo ol l(* f f)(i in nt t)>& v v1 1, v ve ec ct to or r<i in nt t>& v v2 2)
{

f fi in nd d(v v1 1. b be eg gi in n() , v v1 1. e en nd d() , p pr re ed d) ; / / find ‘pred’
f fi in nd d_ _i if f(v v2 2. b be eg gi in n() , v v2 2. e en nd d() , p pr re ed d) ; / / find int for which pred() returns true

}

If f fi in nd d() and f fi in nd d_ _i if f() had had the same name, surprising ambiguities would have resulted. In
general, the_ _i if f suffix is used to indicate that an algorithm takes a predicate.

Thef fi in nd d_ _f fi ir rs st t_ _o of f() algorithm finds the first element of a sequence that has a match in a second
sequence:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2>
F Fo or r f fi in nd d_ _f fi ir rs st t_ _o of f(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2, F Fo or r2 2 l la as st t2 2) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2, c cl la as ss s B Bi in nP Pr re ed d>
F Fo or r f fi in nd d_ _f fi ir rs st t_ _o of f(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2, F Fo or r2 2 l la as st t2 2, B Bi in nP Pr re ed d p p) ;

For example:

i in nt t x x[] = { 1 1, 3 3, 4 4 };
i in nt t y y[] = { 0 0, 2 2, 3 3, 4 4, 5 5};

v vo oi id d f f()
{

i in nt t* p p = f fi in nd d_ _f fi ir rs st t_ _o of f(x x, x x+3 3, y y, y y+5 5) ; / / p = &x[1]
i in nt t* q q = f fi in nd d_ _f fi ir rs st t_ _o of f(p p+1 1, x x+3 3, y y, y y+5 5) ; / / q = &x[2]

}

The pointerp p will point to x x[1 1] because3 3 is the first element ofx x with a match iny y. Similarly, q q
will point to x x[2 2] .

Thea ad dj ja ac ce en nt t_ _f fi in nd d() algorithm finds a pair of adjacent matching values:

t te em mp pl la at te e<c cl la as ss s F Fo or r> F Fo or r a ad dj ja ac ce en nt t_ _f fi in nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s B Bi in nP Pr re ed d> F Fo or r a ad dj ja ac ce en nt t_ _f fi in nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, B Bi in nP Pr re ed d p p) ;

The return value is an iterator to the first matching element. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

526 Algorithms and Function Objects Chapter 18

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& t te ex xt t)
{

v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p = a ad dj ja ac ce en nt t_ _f fi in nd d(t te ex xt t. b be eg gi in n() , t te ex xt t. e en nd d() ," t th he e") ;
i if f (p p != t te ex xt t. e en nd d()) {

/ / I duplicated "the" again!
}

}

18.5.3 Count [algo.count]

Thec co ou un nt t() andc co ou un nt t_ _i if f() algorithms count occurrences of a value in a sequence:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T>
i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e c co ou un nt t(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s P Pr re ed d>
i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e c co ou un nt t_ _i if f(I In n f fi ir rs st t, I In n l la as st t, P Pr re ed d p p) ;

The return type ofc co ou un nt t() is interesting. Consider an obvious and somewhat simple-minded ver-
sion ofc co ou un nt t() :

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T> i in nt t c co ou un nt t(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t T T& v va al l)
{

i in nt t r re es s = 0 0;
w wh hi il le e (f fi ir rs st t != l la as st t) i if f (* f fi ir rs st t++ == v va al l) ++r re es s;
r re et tu ur rn n r re es s;

}

The problem is that ani in nt t might not be the right type for the result. On a machine with smalli in nt ts,
there might be too many elements in the sequence forc co ou un nt t() to fit in an i in nt t. Conversely, a high-
performance implementation on a specialized machine might prefer to keep the count in as sh ho or rt t.

Clearly, the number of elements in the sequence cannot be larger than the maximum difference
between its iterators (§19.2.1). Consequently, the first idea for a solution to this problem is to
define the return type as

t ty yp pe en na am me e I In n: : d di if ff fe er re en nc ce e_ _t ty yp pe e

However, a standard algorithm should be applicable to built-in arrays as well as to standard con-
tainers. For example:

v vo oi id d f f(c co on ns st t c ch ha ar r* p p, i in nt t s si iz ze e)
{

i in nt t n n = c co ou un nt t(p p, p p+s si iz ze e,´ e é) ; / / count the number of occurrences of the letter ’e’
}

Unfortunately,i in nt t*: : d di if ff fe er re en nc ce e_ _t ty yp pe e is not valid C++. This problem is solved by partial special-
ization of ani it te er ra at to or r_ _t tr ra ai it ts s (§19.2.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.5.4 Equal and Mismatch 527

18.5.4 Equal and Mismatch [algo.equal]

Thee eq qu ua al l() andm mi is sm ma at tc ch h() algorithms compare two sequences:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2> b bo oo ol l e eq qu ua al l(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s B Bi in nP Pr re ed d>
b bo oo ol l e eq qu ua al l(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, B Bi in nP Pr re ed d p p) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2> p pa ai ir r<I In n, I In n2 2> m mi is sm ma at tc ch h(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s B Bi in nP Pr re ed d>
p pa ai ir r<I In n, I In n2 2> m mi is sm ma at tc ch h(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, B Bi in nP Pr re ed d p p) ;

Thee eq qu ua al l() algorithm simply tells whether all corresponding pairs of elements of two sequences
compare equal;m mi is sm ma at tc ch h() looks for the first pair of elements that compares unequal and returns
iterators to those elements. No end is specified for the second sequence; that is, there is nol la as st t2 2.
Instead, it is assumed that there are at least as many elements in the second sequence as in the first
and f fi ir rs st t2 2+(l la as st t- f fi ir rs st t) is used asl la as st t2 2. This technique is used throughout the standard library,
where pairs of sequences are used for operations on pairs of elements.

As shown in §18.5.1, these algorithms are even more useful than they appear at first glance
because the user can supply predicates defining what it means to be equal and to match.

Note that the sequences need not be of the same type. For example:

v vo oi id d f f(l li is st t<i in nt t>& l li i, v ve ec ct to or r<d do ou ub bl le e>& v vd d)
{

b bo oo ol l b b = e eq qu ua al l(l li i. b be eg gi in n() , l li i. e en nd d() , v vd d. b be eg gi in n()) ;
}

All that is required is that the elements be acceptable as operands of the predicate.
The two versions ofm mi is sm ma at tc ch h() differ only in their use of predicates. In fact, we could imple-

ment them as one function with a default template argument:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s B Bi in nP Pr re ed d>
p pa ai ir r<I In n, I In n2 2> m mi is sm ma at tc ch h(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2,

B Bi in nP Pr re ed d p p = e eq qu ua al l_ _t to o<I In n: : v va al lu ue e_ _t ty yp pe e, I In n2 2: : v va al lu ue e_ _t ty yp pe e>())/ / §18.4.2.1
{

w wh hi il le e (f fi ir rs st t != l la as st t && p p(* f fi ir rs st t,* f fi ir rs st t2 2)) {
++f fi ir rs st t;
++f fi ir rs st t2 2;

}
r re et tu ur rn n p pa ai ir r<I In n, I In n2 2>(f fi ir rs st t, f fi ir rs st t2 2) ;

}

The difference between having two functions and having one with a default argument can be
observed by someone taking pointers to functions. However, thinking of many of the variants of
the standard algorithms as simply ‘‘the version with the default predicate’’ roughly halves the num-
ber of template functions that need to be remembered.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

528 Algorithms and Function Objects Chapter 18

18.5.5 Search [algo.search]

The s se ea ar rc ch h() , s se ea ar rc ch h_ _n n() , and f fi in nd d_ _e en nd d() algorithms find one sequence as a subsequence in
another:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2>
F Fo or r s se ea ar rc ch h(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2, F Fo or r2 2 l la as st t2 2) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2, c cl la as ss s B Bi in nP Pr re ed d>
F Fo or r s se ea ar rc ch h(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2, F Fo or r2 2 l la as st t2 2, B Bi in nP Pr re ed d p p) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2>
F Fo or r f fi in nd d_ _e en nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2, F Fo or r2 2 l la as st t2 2) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2, c cl la as ss s B Bi in nP Pr re ed d>
F Fo or r f fi in nd d_ _e en nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2, F Fo or r2 2 l la as st t2 2, B Bi in nP Pr re ed d p p) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s S Si iz ze e, c cl la as ss s T T>
F Fo or r s se ea ar rc ch h_ _n n(F Fo or r f fi ir rs st t, F Fo or r l la as st t, S Si iz ze e n n, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s S Si iz ze e, c cl la as ss s T T, c cl la as ss s B Bi in nP Pr re ed d>
F Fo or r s se ea ar rc ch h_ _n n(F Fo or r f fi ir rs st t, F Fo or r l la as st t, S Si iz ze e n n, c co on ns st t T T& v va al l, B Bi in nP Pr re ed d p p) ;

Thes se ea ar rc ch h() algorithm looks for its second sequence as a subsequence of its first. If that second
sequence is found, an iterator for the first matching element in the first sequence is returned. The
end of sequence (l la as st t) is returned to represent ‘‘not found.’’ Thus, the return value is always in the
[f fi ir rs st t, l la as st t] sequence. For example:

s st tr ri in ng g q qu uo ot te e(" W Wh hy y w wa as st te e t ti im me e l le ea ar rn ni in ng g, w wh he en n i ig gn no or ra an nc ce e i is s i in ns st ta an nt ta an ne eo ou us s?") ;

b bo oo ol l i in n_ _q qu uo ot te e(c co on ns st t s st tr ri in ng g& s s)
{

c ch ha ar r* p p = s se ea ar rc ch h(q qu uo ot te e. b be eg gi in n() , q qu uo ot te e. e en nd d() , s s. b be eg gi in n() , s s. e en nd d()) ; / / find s in quote
r re et tu ur rn n p p!= q qu uo ot te e. e en nd d() ;

}

v vo oi id d g g()
{

b bo oo ol l b b1 1 = i in n_ _q qu uo ot te e(" l le ea ar rn ni in ng g") ; / / b1 = true
b bo oo ol l b b2 2 = i in n_ _q qu uo ot te e(" l le em mm mi in ng g") ; / / b2 = false

}

Thus,s se ea ar rc ch h() is an operation for finding a substring generalized to all sequences. This implies
thats se ea ar rc ch h() is a very useful algorithm.

The f fi in nd d_ _e en nd d() algorithm looks for its second input sequence as a subsequence of its first
input sequence. If that second sequence is found,f fi in nd d_ _e en nd d() returns an iterator pointing to the
last match in its first input. In other words,f fi in nd d_ _e en nd d() is s se ea ar rc ch h() ‘‘backwards.’’ It finds the
last occurrence of its second input sequence in its first input sequence, rather than the first occur-
rence of its second sequence.

Thes se ea ar rc ch h_ _n n() algorithm finds a sequence of at leastn n matches for itsv va al lu ue e argument in the
sequence. It returns an iterator to the first element of the sequence ofn n matches.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6 Modifying Sequence Algorithms 529

18.6 Modifying Sequence Algorithms[algo.modifying]

If you want to change a sequence, you can explicitly iterate through it. You can then modify val-
ues. Wherever possible, however, we prefer to avoid this kind of programming in favor of simpler
and more systematic styles of programming. The alternative is algorithms that traverse sequences
performing specific tasks. The nonmodifying algorithms (§18.5) serve this need when we just read
from the sequence. The modifying sequence algorithms are provided to do the most common
forms of updates. Some update a sequence, while others produce a new sequence based on infor-
mation found during a traversal.

Standard algorithms work on data structures through iterators. This implies that inserting a new
element into a container or deleting one is not easy. For example, given only an iterator, how can
we find the container from which to remove the element pointed to? Unless special iterators are
used (e.g., inserters, §3.8, §19.2.4), operations through iterators do not change the size of a con-
tainer. Instead of inserting and deleting elements, the algorithms change the values of elements,
swap elements, and copy elements. Evenr re em mo ov ve e() operates by overwriting the elements to be
removed (§18.6.5). In general, the fundamental modifying operations produce outputs that are
modified copies of their inputs. The algorithms that appear to modify a sequence are variants that
copy within a sequence.

18.6.1 Copy [algo.copy]

Copying is the simplest way to produce one sequence from another. The definitions of the basic
copy operations are trivial:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t> O Ou ut t c co op py y(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s)
{

w wh hi il le e (f fi ir rs st t != l la as st t) * r re es s++ = * f fi ir rs st t++;
r re et tu ur rn n r re es s;

}

t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s B Bi i2 2> B Bi i2 2 c co op py y_ _b ba ac ck kw wa ar rd d(B Bi i f fi ir rs st t, B Bi i l la as st t, B Bi i2 2 r re es s)
{

w wh hi il le e (f fi ir rs st t != l la as st t) *-- r re es s = *-- l la as st t;
r re et tu ur rn n r re es s;

}

The target of a copy algorithm need not be a container. Anything that can be described by an out-
put iterator (§19.2.6) will do. For example:

v vo oi id d f f(l li is st t<C Cl lu ub b>& l lc c, o os st tr re ea am m& o os s)
{

c co op py y(l lc c. b be eg gi in n() , l lc c. e en nd d() , o os st tr re ea am m_ _i it te er ra at to or r<C Cl lu ub b>(o os s)) ;
}

To read a sequence, we need a sequence describing where to begin and where to end. To write, we
need only an iterator describing where to write to. However, we must take care not to write beyond
the end of the target. One way to ensure that we don’t do this is to use an inserter (§19.2.4) to grow
the target as needed. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

530 Algorithms and Function Objects Chapter 18

v vo oi id d f f(v ve ec ct to or r<c ch ha ar r>& v vs s)
{

v ve ec ct to or r<c ch ha ar r> v v;

c co op py y(v vs s. b be eg gi in n() , v vs s. e en nd d() , v v. b be eg gi in n()) ; / / might overwrite end of v
c co op py y(v vs s. b be eg gi in n() , v vs s. e en nd d() , b ba ac ck k_ _i in ns se er rt te er r(v v)) ; / / add elements from vs to end of v

}

The input sequence and the output sequence may overlap. We usec co op py y() when the sequences do
not overlap or if the end of the output sequence is in the input sequence. We use
c co op py y_ _b ba ac ck kw wa ar rd d() when the beginning of the output sequence is in the input sequence. In that
way, no element is overwritten until after it has been copied. See also §18.13[13].

Naturally, to copy something backwards we need a bidirectional iterator (§19.2.1) for both the
input and the output sequences. For example:

v vo oi id d f f(v ve ec ct to or r<c ch ha ar r>& v vc c)
{

v ve ec ct to or r<c ch ha ar r> v v(v vc c. s si iz ze e()) ;

c co op py y_ _b ba ac ck kw wa ar rd d(v vc c. b be eg gi in n() , v vc c. e en nd d() , o ou ut tp pu ut t_ _i it te er ra at to or r<c ch ha ar r>(c co ou ut t)) ; / / error

c co op py y_ _b ba ac ck kw wa ar rd d(v vc c. b be eg gi in n() , v vc c. e en nd d() , v v. e en nd d()) ; / / ok
c co op py y(v v. b be eg gi in n() , v v. e en nd d() , o os st tr re ea am m_ _i it te er ra at to or r<c ch ha ar r>(o os s)) ;

}

Often, we want to copy only elements that fulfill some criterion. Unfortunately,c co op py y_ _i if f() was
somehow dropped from the set of algorithms provided by the standard library (mea culpa). On the
other hand, it is trivial to define:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s P Pr re ed d> O Ou ut t c co op py y_ _i if f(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, P Pr re ed d p p)
{

w wh hi il le e (f fi ir rs st t != l la as st t) {
i if f (p p(* f fi ir rs st t)) * r re es s++ = * f fi ir rs st t;
++f fi ir rs st t;

}
r re et tu ur rn n r re es s;

}

Now if we want to print elements with a value larger thann n, we can do it like this:

v vo oi id d f f(l li is st t<i in nt t>&l ld d, i in nt t n n, o os st tr re ea am m& o os s)
{

c co op py y_ _i if f(l ld d. b be eg gi in n() , l ld d. e en nd d() , o os st tr re ea am m_ _i it te er ra at to or r<i in nt t>(o os s) , b bi in nd d2 2n nd d(g gr re ea at te er r<i in nt t>() , n n)) ;
}

See alsor re em mo ov ve e_ _c co op py y_ _i if f() (§18.6.5).

18.6.2 Transform [algo.transform]

Somewhat confusingly,t tr ra an ns sf fo or rm m() doesn’t necessarily change its input. Instead, it produces an
output that is a transformation of its input based on a user-supplied operation:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.2 Transform 531

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s O Op p>
O Ou ut t t tr ra an ns sf fo or rm m(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, O Op p o op p)
{

w wh hi il le e (f fi ir rs st t != l la as st t) * r re es s++ = o op p(* f fi ir rs st t++) ;
r re et tu ur rn n r re es s;

}

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t, c cl la as ss s B Bi in nO Op p>
O Ou ut t t tr ra an ns sf fo or rm m(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, O Ou ut t r re es s, B Bi in nO Op p o op p)
{

w wh hi il le e (f fi ir rs st t != l la as st t) * r re es s++ = o op p(* f fi ir rs st t++,* f fi ir rs st t2 2++) ;
r re et tu ur rn n r re es s;

}

The t tr ra an ns sf fo or rm m() that reads a single sequence to produce its output is rather similar toc co op py y() .
Instead of writing its element, it writes the result of its operation on that element. Thus, we could
have definedc co op py y() ast tr ra an ns sf fo or rm m() with an operation that returns its argument:

t te em mp pl la at te e<c cl la as ss s T T> T T i id de en nt ti it ty y(c co on ns st t T T& x x) { r re et tu ur rn n x x; }

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t> O Ou ut t c co op py y(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s)
{

r re et tu ur rn n t tr ra an ns sf fo or rm m(f fi ir rs st t, l la as st t, r re es s, i id de en nt ti it ty y) ;
}

Another way to viewt tr ra an ns sf fo or rm m() is as a variant off fo or r_ _e ea ac ch h that explicitly produces output. For
example, we can produce a list of names st tr ri in ng gs from a list ofC Cl lu ub bs usingt tr ra an ns sf fo or rm m() :

s st tr ri in ng g n na am me eo of f(c co on ns st t C Cl lu ub b& c c) / / extract name string
{

r re et tu ur rn n c c. n na am me e;
}

v vo oi id d f f(l li is st t<C Cl lu ub b>& l lc c)
{

t tr ra an ns sf fo or rm m(l lc c. b be eg gi in n() , l lc c. e en nd d() , o os st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g>(c co ou ut t) , n na am me eo of f) ;
}

One reasont tr ra an ns sf fo or rm m() is called ‘‘transform’’ is that the result of the operation is often written
back to where the argument came from. As an example, consider deleting the objects pointed to by
a set of pointers:

t te em mp pl la at te e<c cl la as ss s T T> T T* d de el le et te e_ _p pt tr r(T T* p p) { d de el le et te e p p; r re et tu ur rn n 0 0; }

v vo oi id d p pu ur rg ge e(d de eq qu ue e<S Sh ha ap pe e*>& s s)
{

t tr ra an ns sf fo or rm m(s s. b be eg gi in n() , s s. e en nd d() , s s. b be eg gi in n() , d de el le et te e_ _p pt tr r) ;
/ / ...

}

The t tr ra an ns sf fo or rm m() algorithm always produces an output sequence. Here, I directed the result back
to the input sequence so thatd de el le et te e_ _p pt tr r(p p) has the effectp p=d de el le et te e_ _p pt tr r(p p) . This was why I chose
to return0 0 from d de el le et te e_ _p pt tr r() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

532 Algorithms and Function Objects Chapter 18

The t tr ra an ns sf fo or rm m() algorithm that takes two sequences allows people to combine information
from two sources. For example, an animation may have a routine that updates the position of a list
of shapes by applying a translation:

S Sh ha ap pe e* m mo ov ve e_ _s sh ha ap pe e(S Sh ha ap pe e* s s, P Po oi in nt t p p) / / *s += p
{

s s-> m mo ov ve e_ _t to o(s s-> c ce en nt te er r()+ p p) ;
r re et tu ur rn n s s;

}

v vo oi id d u up pd da at te e_ _p po os si it ti io on ns s(l li is st t<S Sh ha ap pe e*>& l ls s, v ve ec ct to or r<P Po oi in nt t>& o op pe er r)
{

/ / invoke operation on corresponding object:
t tr ra an ns sf fo or rm m(l ls s. b be eg gi in n() , l ls s. e en nd d() , o op pe er r. b be eg gi in n() , l ls s. b be eg gi in n() , m mo ov ve e_ _s sh ha ap pe e) ;

}

I didn’t really want to produce a return value fromm mo ov ve e_ _s sh ha ap pe e() . However,t tr ra an ns sf fo or rm m() insists
on assigning the result of its operation, so I letm mo ov ve e_ _s sh ha ap pe e() return its first operand so that I
could write it back to where it came from.

Sometimes, we do not have the freedom to do that. For example, an operation that I didn’t write
and don’t want to modify might not return a value. Sometimes, the input sequence isc co on ns st t. In
such cases, we might define a two-sequencef fo or r_ _e ea ac ch h() to match the two-sequencet tr ra an ns sf fo or rm m() :

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s B Bi in nO Op p>
B Bi in nO Op p f fo or r_ _e ea ac ch h(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, B Bi in nO Op p o op p)
{

w wh hi il le e (f fi ir rs st t != l la as st t) o op p(* f fi ir rs st t++,* f fi ir rs st t2 2++) ;
r re et tu ur rn n o op p;

}

v vo oi id d u up pd da at te e_ _p po os si it ti io on ns s(l li is st t<S Sh ha ap pe e*>& l ls s, v ve ec ct to or r<P Po oi in nt t>& o op pe er r)
{

f fo or r_ _e ea ac ch h(l ls s. b be eg gi in n() , l ls s. e en nd d() , o op pe er r. b be eg gi in n() , m mo ov ve e_ _s sh ha ap pe e) ;
}

At other times, it can be useful to have an output iterator that doesn’t actually write anything
(§19.6[2]).

There are no standard library algorithms that read three or more sequences. Such algorithms are
easily written, though. Alternatively, you can uset tr ra an ns sf fo or rm m() repeatedly.

18.6.3 Unique [algo.unique]

Whenever information is collected, duplication can occur. Theu un ni iq qu ue e() and u un ni iq qu ue e_ _c co op py y()
algorithms eliminate adjacent duplicate values:

t te em mp pl la at te e<c cl la as ss s F Fo or r> F Fo or r u un ni iq qu ue e(F Fo or r f fi ir rs st t, F Fo or r l la as st t) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s B Bi in nP Pr re ed d> F Fo or r u un ni iq qu ue e(F Fo or r f fi ir rs st t, F Fo or r l la as st t, B Bi in nP Pr re ed d p p) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t> O Ou ut t u un ni iq qu ue e_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s) ;
t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s B Bi in nP Pr re ed d>

O Ou ut t u un ni iq qu ue e_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, B Bi in nP Pr re ed d p p) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.3 Unique 533

Theu un ni iq qu ue e() algorithm eliminates adjacent duplicates from a sequence,u un ni iq qu ue e_ _c co op py y() makes a
copy without duplicates. For example:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& l ls s, v ve ec ct to or r<s st tr ri in ng g>& v vs s)
{

l ls s. s so or rt t() ; / / list sort (§17.2.2.1)
u un ni iq qu ue e_ _c co op py y(l ls s. b be eg gi in n() , l ls s. e en nd d() , b ba ac ck k_ _i in ns se er rt te er r(v vs s)) ;

}

This copiesl ls s to v vs s, eliminating duplicates in the process. Thes so or rt t() is needed to get equal
strings adjacent.

Like other standard algorithms,u un ni iq qu ue e() operates on iterators. It has no way of knowing the
type of container these iterators point into, so it cannot modify that container. It can only modify
the values of the elements. This implies thatu un ni iq qu ue e() does not eliminate duplicates from its input
sequence in the way we naively might expect. Rather, it moves unique elements towards the front
(head) of a sequence and returns an iterator to the end of the subsequence of unique elements:

t te em mp pl la at te e <c cl la as ss s F Fo or r> F Fo or r u un ni iq qu ue e(F Fo or r f fi ir rs st t, F Fo or r l la as st t)
{

f fi ir rs st t = a ad dj ja ac ce en nt t_ _f fi in nd d(f fi ir rs st t, l la as st t) ; / / §18.5.2
r re et tu ur rn n u un ni iq qu ue e_ _c co op py y(f fi ir rs st t, l la as st t, f fi ir rs st t) ;

}

The elements after the unique subsequence are left unchanged. Therefore, this does not eliminate
duplicates in a vector:

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& v vs s) / / warning: bad code!
{

s so or rt t(v vs s. b be eg gi in n() , v vs s. e en nd d()) ; / / sort vector
u un ni iq qu ue e(v vs s. b be eg gi in n() , v vs s. e en nd d()) ; / / eliminate duplicates (no it doesn’t!)

}

In fact, by moving the last elements of a sequence forward to eliminate duplicates,u un ni iq qu ue e() can
introduce new duplicates. For example:

i in nt t m ma ai in n()
{

c ch ha ar r v v[] = " a ab bb bc cc cc cd de e";

c ch ha ar r* p p = u un ni iq qu ue e(v v, v v+s st tr rl le en n(v v)) ;
c co ou ut t << v v << ´ ´ << p p- v v << ´ \ \n n´;

}

produced

a ab bc cd de ec cd de e 5 5

That is,p p points to the secondc c.
Algorithms that might have removed elements (but can’t) generally come in two forms: the

‘‘plain’’ version that reorders elements in a way similar tou un ni iq qu ue e() and a version that produces a
new sequence in a way similar tou un ni iq qu ue e_ _c co op py y() . The_ _c co op py y suffix is used to distinguish these
two kinds of algorithms.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

534 Algorithms and Function Objects Chapter 18

To eliminate duplicates from a container, we must explicitly shrink it:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d e el li im mi in na at te e_ _d du up pl li ic ca at te es s(C C& c c)
{

s so or rt t(c c. b be eg gi in n() , c c. e en nd d()) ; / / sort
t ty yp pe en na am me e C C: : i it te er ra at to or r p p = u un ni iq qu ue e(c c. b be eg gi in n() , c c. e en nd d()) ; / / compact
c c. e er ra as se e(p p, c c. e en nd d()) ; / / shrink

}

Note thate el li im mi in na at te e_ _d du up pl li ic ca at te es s() would make no sense for a built-in array, yetu un ni iq qu ue e() can still
be applied to arrays.

An example ofu un ni iq qu ue e_ _c co op py y() can be found in §3.8.3.

18.6.3.1 Sorting Criteria [algo.criteria]

To eliminate all duplicates, the input sequences must be sorted (§18.7.1). Bothu un ni iq qu ue e() and
u un ni iq qu ue e_ _c co op py y() use== as the default criterion for comparison and allow the user to supply alterna-
tive criteria. For instance, we might modify the example from §18.5.1 to eliminate duplicate
names. After extracting the names of theC Cl lu ub b officers, we were left with al li is st t<P Pe er rs so on n*> called
o of ff f (§18.5.1). We could eliminate duplicates like this:

e el li im mi in na at te e_ _d du up pl li ic ca at te es s(o of ff f) ;

However, this relies on sorting pointers and assumes that each pointer uniquely identifies a person.
In general, we would have to examine theP Pe er rs so on n records to determine whether we would consider
them equal. We might write:

b bo oo ol l o op pe er ra at to or r==(c co on ns st t P Pe er rs so on n& x x, c co on ns st t P Pe er rs so on n& y y) / / equality for object
{

/ / compare x and y for equality
}

b bo oo ol l o op pe er ra at to or r<(c co on ns st t P Pe er rs so on n& x x, c co on ns st t P Pe er rs so on n& y y) / / less than for object
{

/ / compare x and y for order
}

b bo oo ol l P Pe er rs so on n_ _e eq q(c co on ns st t P Pe er rs so on n* x x, c co on ns st t P Pe er rs so on n* y y) / / equality through pointer
{

r re et tu ur rn n * x x == * y y;
}

b bo oo ol l P Pe er rs so on n_ _l lt t(c co on ns st t P Pe er rs so on n* x x, c co on ns st t P Pe er rs so on n* y y) / / less than through pointer
{

r re et tu ur rn n * x x < * y y;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.3.1 Sorting Criteria 535

v vo oi id d e ex xt tr ra ac ct t_ _a an nd d_ _p pr ri in nt t(c co on ns st t l li is st t<C Cl lu ub b>& l lc c)
{

l li is st t<P Pe er rs so on n*> o of ff f;
e ex xt tr ra ac ct t(l lc c, o of ff f) ;
s so or rt t(o of ff f. b be eg gi in n() , o of ff f. e en nd d() , P Pe er rs so on n_ _l lt t) ;
l li is st t<C Cl lu ub b>: : i it te er ra at to or r p p = u un ni iq qu ue e(o of ff f. b be eg gi in n() , o of ff f. e en nd d() , P Pe er rs so on n_ _e eq q) ;
f fo or r_ _e ea ac ch h(o of ff f. b be eg gi in n() , p p, P Pr ri in nt t_ _n na am me e(c co ou ut t)) ;

}

It is wise to make sure that the criterion used to sort matches the one used to eliminate duplicates.
The default meanings of< and == for pointers are rarely useful as comparison criteria for the
objects pointed to.

18.6.4 Replace [algo.replace]

Ther re ep pl la ac ce e() algorithms traverse a sequence, replacing values by other values as specified. They
follow the patterns outlined byf fi in nd d/ f fi in nd d_ _i if f andu un ni iq qu ue e/ u un ni iq qu ue e_ _c co op py y, thus yielding four variants
in all. Again, the code is simple enough to be illustrative:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T>
v vo oi id d r re ep pl la ac ce e(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l, c co on ns st t T T& n ne ew w_ _v va al l)
{

w wh hi il le e (f fi ir rs st t != l la as st t) {
i if f (* f fi ir rs st t == v va al l) * f fi ir rs st t = n ne ew w_ _v va al l;
++f fi ir rs st t;

}
}

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s P Pr re ed d, c cl la as ss s T T>
v vo oi id d r re ep pl la ac ce e_ _i if f(F Fo or r f fi ir rs st t, F Fo or r l la as st t, P Pr re ed d p p, c co on ns st t T T& n ne ew w_ _v va al l)
{

w wh hi il le e (f fi ir rs st t != l la as st t) {
i if f (p p(* f fi ir rs st t)) * f fi ir rs st t = n ne ew w_ _v va al l;
++f fi ir rs st t;

}
}

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s T T>
O Ou ut t r re ep pl la ac ce e_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, c co on ns st t T T& v va al l, c co on ns st t T T& n ne ew w_ _v va al l)
{

w wh hi il le e (f fi ir rs st t != l la as st t) {
* r re es s++ = (* f fi ir rs st t == v va al l) ? n ne ew w_ _v va al l : * f fi ir rs st t;
++f fi ir rs st t;

}
r re et tu ur rn n r re es s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

536 Algorithms and Function Objects Chapter 18

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s P Pr re ed d, c cl la as ss s T T>
O Ou ut t r re ep pl la ac ce e_ _c co op py y_ _i if f(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, P Pr re ed d p p, c co on ns st t T T& n ne ew w_ _v va al l)
{

w wh hi il le e (f fi ir rs st t != l la as st t) {
* r re es s++ = p p(* f fi ir rs st t) ? n ne ew w_ _v va al l : * f fi ir rs st t;
++f fi ir rs st t;

}
r re et tu ur rn n r re es s;

}

We might want to go through a list ofs st tr ri in ng gs, replacing the usual English transliteration of the
name of my home town Aarhus with its proper name Å rhus:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& t to ow wn ns s)
{

r re ep pl la ac ce e(t to ow wn ns s. b be eg gi in n() , t to ow wn ns s. e en nd d() ," A Aa ar rh hu us s"," ÅÅr rh hu us s") ;
}

This relies on an extended character set (§C.3.3).

18.6.5 Remove [algo.remove]

Ther re em mo ov ve e() algorithms remove elements from a sequence based on a value or a predicate:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T> F Fo or r r re em mo ov ve e(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s P Pr re ed d> F Fo or r r re em mo ov ve e_ _i if f(F Fo or r f fi ir rs st t, F Fo or r l la as st t, P Pr re ed d p p) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s T T>
O Ou ut t r re em mo ov ve e_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s P Pr re ed d>
O Ou ut t r re em mo ov ve e_ _c co op py y_ _i if f(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, P Pr re ed d p p) ;

Assuming that aC Cl lu ub b has an address, we could produce a list ofC Cl lu ub bs located in Copenhagen:

c cl la as ss s l lo oc ca at te ed d_ _i in n {
s st tr ri in ng g t to ow wn n;

p pu ub bl li ic c:
l lo oc ca at te ed d_ _i in n(c co on ns st t s st tr ri in ng g& s ss s) : t to ow wn n(s ss s) { }
b bo oo ol l o op pe er ra at to or r()(c co on ns st t C Cl lu ub b& c c) c co on ns st t { r re et tu ur rn n c c. t to ow wn n == t to ow wn n; }

};

v vo oi id d f f(l li is st t<C Cl lu ub b>& l lc c)
{

r re em mo ov ve e_ _c co op py y_ _i if f(l lc c. b be eg gi in n() , l lc c. e en nd d() ,
o ou ut tp pu ut t_ _i it te er ra at to or r<C Cl lu ub b>(c co ou ut t) , n no ot t1 1(l lo oc ca at te ed d_ _i in n(" K Køø b be en nh ha av vn n"))) ;

}

Thus,r re em mo ov ve e_ _c co op py y_ _i if f() is c co op py y_ _i if f() (§18.6.1) with the inverse condition. That is, an element is
placed on the output byr re em mo ov ve e_ _c co op py y_ _i if f() if the element does not match the predicate.

The ‘‘plain’’ r re em mo ov ve e() compacts non-matching elements at the beginning of the sequence and
returns an iterator for the end of the compacted sequence (see also §18.6.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.6 Fill and Generate 537

18.6.6 Fill and Generate [algo.fill]

Thef fi il ll l() andg ge en ne er ra at te e() algorithms exist to systematically assign values to sequences:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T> v vo oi id d f fi il ll l(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l) ;
t te em mp pl la at te e<c cl la as ss s O Ou ut t, c cl la as ss s S Si iz ze e, c cl la as ss s T T> v vo oi id d f fi il ll l_ _n n(O Ou ut t r re es s, S Si iz ze e n n, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s G Ge en n> v vo oi id d g ge en ne er ra at te e(F Fo or r f fi ir rs st t, F Fo or r l la as st t, G Ge en n g g) ;
t te em mp pl la at te e<c cl la as ss s O Ou ut t, c cl la as ss s S Si iz ze e, c cl la as ss s G Ge en n> v vo oi id d g ge en ne er ra at te e_ _n n(O Ou ut t r re es s, S Si iz ze e n n, G Ge en n g g) ;

The f fi il ll l() algorithm assigns a specified value; theg ge en ne er ra at te e() algorithm assigns values obtained
by calling its function argument repeatedly. Thus,f fi il ll l() is simply the special case ofg ge en ne er ra at te e()
in which the generator function returns the same value repeatedly. The_ _n n versions assign to the
first n n elements of the sequence.

For example, using the random-number generatorsR Ra an nd di in nt t andU Ur ra an nd d from §22.7:

i in nt t v v1 1[9 90 00 0] ;
i in nt t v v2 2[9 90 00 0] ;
v ve ec ct to or r v v3 3;

v vo oi id d f f()
{

f fi il ll l(v v1 1,& v v1 1[9 90 00 0] , 9 99 9) ; / / set all elements of v1 to 99
g ge en ne er ra at te e(v v2 2,& v v2 2[9 90 00 0] , R Ra an nd di in nt t) ; / / set to random values (§22.7)

/ / output 200 random integers in the interval [0..99]:
g ge en ne er ra at te e_ _n n(o os st tr re ea am m_ _i it te er ra at to or r<i in nt t>(c co ou ut t) , 2 20 00 0, U Ur ra an nd d(1 10 00 0)) ;

f fi il ll l_ _n n(b ba ac ck k_ _i in ns se er rt te er r(v v3 3) , 2 20 0, 9 99 9) ; / / add 20 elements with the value 99 to v3
}

The g ge en ne er ra at te e() and f fi il ll l() functions assign rather than initialize. If you need to manipulate raw
storage, say to turn a region of memory into objects of well-defined type and state, you must use an
algorithm likeu un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() from <m me em mo or ry y> (§19.4.4) rather than algorithms from<a al lg go o- -
r ri it th hm m>.

18.6.7 Reverse and Rotate [algo.reverse]

Occasionally, we need to reorder the elements of a sequence:

t te em mp pl la at te e<c cl la as ss s B Bi i> v vo oi id d r re ev ve er rs se e(B Bi i f fi ir rs st t, B Bi i l la as st t) ;
t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s O Ou ut t> O Ou ut t r re ev ve er rs se e_ _c co op py y(B Bi i f fi ir rs st t, B Bi i l la as st t, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r> v vo oi id d r ro ot ta at te e(F Fo or r f fi ir rs st t, F Fo or r m mi id dd dl le e, F Fo or r l la as st t) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s O Ou ut t> O Ou ut t r ro ot ta at te e_ _c co op py y(F Fo or r f fi ir rs st t, F Fo or r m mi id dd dl le e, F Fo or r l la as st t, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d r ra an nd do om m_ _s sh hu uf ff fl le e(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s G Ge en n> v vo oi id d r ra an nd do om m_ _s sh hu uf ff fl le e(R Ra an n f fi ir rs st t, R Ra an n l la as st t, G Ge en n& g g) ;

The r re ev ve er rs se e() algorithm reverses the order of the elements so that the first element becomes the
last, etc. Ther re ev ve er rs se e_ _c co op py y() algorithm produces a copy of its input in reverse order.

The r ro ot ta at te e() algorithm considers its[f fi ir rs st t, l la as st t[sequence a circle and rotates its elements
until its formerm mi id dd dl le e element is placed where itsf fi ir rs st t element used to be. That is, the element in

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

538 Algorithms and Function Objects Chapter 18

position f fi ir rs st t+i i moves to positionf fi ir rs st t+(i i+(l la as st t- m mi id dd dl le e))%(l la as st t- f fi ir rs st t) . The % (modulo) is
what makes the rotation cyclic rather than simply a shift to the left. For example:

v vo oi id d f f()
{

s st tr ri in ng g v v[] = { " F Fr ro og g", " a an nd d"," P Pe ea ac ch h" };

r re ev ve er rs se e(v v, v v+3 3) ; / / Peach and Frog
r ro ot ta at te e(v v, v v+1 1, v v+3 3) ; / / and Frog Peach

}

Ther ro ot ta at te e_ _c co op py y() algorithm produces a copy of its input in rotated order.
By default, r ra an nd do om m_ _s sh hu uf ff fl le e() shuffles its sequence using a uniform distribution random-

number generator. That is, it chooses a permutation of the elements of the sequence in such a way
that each permutation has the same chance of being chosen. If you want a different distribution or
simply a better random-number generator, you can supply one. For example, using theU Ur ra an nd d gen-
erator from §22.7 we might shuffle a deck of cards like this:

v vo oi id d f f(d de eq qu ue e<C Ca ar rd d>& d dc c)
{

r ra an nd do om m_ _s sh hu uf ff fl le e(d dc c. b be eg gi in n() , d dc c. e en nd d() , U Ur ra an nd d(5 52 2)) ;
/ / ...

}

The movement of elements done byr ro ot ta at te e() , etc., is done usings sw wa ap p() (§18.6.8).

18.6.8 Swap [algo.swap]

To do anything at all interesting with elements in a container, we need to move them around. Such
movement is best expressed– that is, expressed most simply and most efficiently– ass sw wa ap p() s:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(T T& a a, T T& b b)
{

T T t tm mp p = a a;
a a = b b;
b b = t tm mp p;

}

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2> v vo oi id d i it te er r_ _s sw wa ap p(F Fo or r x x, F Fo or r2 2 y y) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s F Fo or r2 2> F Fo or r2 2 s sw wa ap p_ _r ra an ng ge es s(F Fo or r f fi ir rs st t, F Fo or r l la as st t, F Fo or r2 2 f fi ir rs st t2 2)
{

w wh hi il le e (f fi ir rs st t != l la as st t) i it te er r_ _s sw wa ap p(f fi ir rs st t++, f fi ir rs st t2 2++) ;
r re et tu ur rn n f fi ir rs st t2 2;

}

To swap elements, you need a temporary. There are clever tricks to eliminate that need in special-
ized cases, but they are best avoided in favor of the simple and obvious. Thes sw wa ap p() algorithm is
specialized for important types for which it matters (§16.3.9, §13.5.2).

The i it te er r_ _s sw wa ap p() algorithm swaps the elements pointed to by its iterator arguments.
Thes sw wa ap p_ _r ra an ng ge es s algorithm swaps elements in its two input ranges.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.7 Sorted Sequences 539

18.7 Sorted Sequences[algo.sorted]

Once we have collected some data, we often want to sort it. Once the sequence is sorted, our
options for manipulating the data in a convenient manner increase significantly.

To sort a sequence, we need a way of comparing elements. This is done using a binary predi-
cate (§18.4.2). The default comparison isl le es ss s (§18.4.2), which in turn uses< by default.

18.7.1 Sorting [algo.sort]

The s so or rt t() algorithms require random-access iterators (§19.2.1). That is, they work best for
v ve ec ct to or rs (§16.3) and similar containers:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s st ta ab bl le e_ _s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d s st ta ab bl le e_ _s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

The standardl li is st t (§17.2.2) does not provide random-access iterators, sol li is st ts should be sorted using
the specificl li is st t operations (§17.2.2.1).

The basics so or rt t() is efficient– on averageN N* l lo og g(N N) – but its worst-case performance is poor
– O O(N N* N N). Fortunately, the worst case is rare. If guaranteed worst-case behavior is important or
a stable sort is required,s st ta ab bl le e_ _s so or rt t() should be used; that is, anN N* l lo og g(N N)* l lo og g(N N) algorithm
that improves towardsN N* l lo og g(N N) when the system has sufficient extra memory. The relative order
of elements that compare equal is preserved bys st ta ab bl le e_ _s so or rt t() but not bys so or rt t() .

Sometimes, only the first elements of a sorted sequence are needed. In that case, it makes sense
to sort the sequence only as far as is needed to get the first part in order. That is a partial sort:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d p pa ar rt ti ia al l_ _s so or rt t(R Ra an n f fi ir rs st t, R Ra an n m mi id dd dl le e, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p>

v vo oi id d p pa ar rt ti ia al l_ _s so or rt t(R Ra an n f fi ir rs st t, R Ra an n m mi id dd dl le e, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s R Ra an n>
R Ra an n p pa ar rt ti ia al l_ _s so or rt t_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, R Ra an n f fi ir rs st t2 2, R Ra an n l la as st t2 2) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p>
R Ra an n p pa ar rt ti ia al l_ _s so or rt t_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, R Ra an n f fi ir rs st t2 2, R Ra an n l la as st t2 2, C Cm mp p c cm mp p) ;

The plainp pa ar rt ti ia al l_ _s so or rt t() algorithms put the elements in the rangef fi ir rs st t to m mi id dd dl le e in order. The
p pa ar rt ti ia al l_ _s so or rt t_ _c co op py y() algorithms produceN N elements, whereN N is the lower of the number of ele-
ments in the output sequence and the number of elements in the input sequence. We need to spec-
ify both the start and the end of the result sequence because that’s what determines how many ele-
ments we need to sort. For example:

c cl la as ss s C Co om mp pa ar re e_ _c co op pi ie es s_ _s so ol ld d {
p pu ub bl li ic c:

i in nt t o op pe er ra at to or r()(c co on ns st t B Bo oo ok k& b b1 1, c co on ns st t B Bo oo ok k& b b2 2) c co on ns st t
{ r re et tu ur rn n b b1 1. c co op pi ie es s_ _s so ol ld d()< b b2 2. c co op pi ie es s_ _s so ol ld d() ; }

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

540 Algorithms and Function Objects Chapter 18

v vo oi id d f f(c co on ns st t v ve ec ct to or r<B Bo oo ok k>& s sa al le es s) / / find the top ten books
{

v ve ec ct to or r<B Bo oo ok k> b be es st ts se el ll le er rs s(1 10 0) ;
p pa ar rt ti ia al l_ _s so or rt t_ _c co op py y(s sa al le es s. b be eg gi in n() , s sa al le es s. e en nd d() ,

b be es st ts se el ll le er rs s. b be eg gi in n() , b be es st ts se el ll le er rs s. e en nd d() , C Co om mp pa ar re e_ _c co op pi ie es s_ _s so ol ld d()) ;
c co op py y(b be es st ts se el ll le er rs s. b be eg gi in n() , b be es st ts se el ll le er rs s. e en nd d() , o os st tr re ea am m_ _i it te er ra at to or r<B Bo oo ok k>(c co ou ut t)) ;

}

Because the target ofp pa ar rt ti ia al l_ _s so or rt t_ _c co op py y() must be a random-access iterator, we cannot sort
directly toc co ou ut t.

Finally, algorithms are provided to sort only as far as is necessary to get theN Nth element to its
proper place with no element comparing less than theN Nt th h element placed after it in the sequence:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d n nt th h_ _e el le em me en nt t(R Ra an n f fi ir rs st t, R Ra an n n nt th h, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d n nt th h_ _e el le em me en nt t(R Ra an n f fi ir rs st t, R Ra an n n nt th h, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

This algorithm is particularly useful for people– such as economists, sociologists, and teachers–
who need to look for medians, percentiles, etc.

18.7.2 Binary Search [algo.bsearch]

A sequential search such asf fi in nd d() (§18.5.2) is terribly inefficient for large sequences, but it is
about the best we can do without sorting or hashing (§17.6). Once a sequence is sorted, however,
we can use a binary search to determine whether a value is in a sequence:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T> b bo oo ol l b bi in na ar ry y_ _s se ea ar rc ch h(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T, c cl la as ss s C Cm mp p>
b bo oo ol l b bi in na ar ry y_ _s se ea ar rc ch h(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al lu ue e, C Cm mp p c cm mp p) ;

For example:

v vo oi id d f f(l li is st t<i in nt t>& c c)
{

i if f (b bi in na ar ry y_ _s se ea ar rc ch h(c c. b be eg gi in n() , c c. e en nd d() , 7 7)) { / / is 7 in c?
/ / ...

}
/ / ...

}

A b bi in na ar ry y_ _s se ea ar rc ch h() returns ab bo oo ol l indicating whether a value was present. As withf fi in nd d() , we
often also want to know where the elements with that value are in that sequence. However, there
can be many elements with a given value in a sequence, and we often need to find either the first or
all such elements. Consequently, algorithms are provided for finding a range of equal elements,
e eq qu ua al l_ _r ra an ng ge e() , and algorithms for finding thel lo ow we er r_ _b bo ou un nd d() andu up pp pe er r_ _b bo ou un nd d() of that range:

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T> F Fo or r l lo ow we er r_ _b bo ou un nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T, c cl la as ss s C Cm mp p>

F Fo or r l lo ow we er r_ _b bo ou un nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l, C Cm mp p c cm mp p) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.7.2 Binary Search 541

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T> F Fo or r u up pp pe er r_ _b bo ou un nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T, c cl la as ss s C Cm mp p>

F Fo or r u up pp pe er r_ _b bo ou un nd d(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T> p pa ai ir r<F Fo or r, F Fo or r> e eq qu ua al l_ _r ra an ng ge e(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T, c cl la as ss s C Cm mp p>

p pa ai ir r<F Fo or r, F Fo or r> e eq qu ua al l_ _r ra an ng ge e(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l, C Cm mp p c cm mp p) ;

These algorithms correspond to the operations onm mu ul lt ti im ma ap ps (§17.4.2). We can think of
l lo ow we er r_ _b bo ou un nd d() as a fastf fi in nd d() andf fi in nd d_ _i if f() for sorted sequences. For example:

v vo oi id d g g(v ve ec ct to or r<i in nt t>& c c)
{

t ty yp pe ed de ef f v ve ec ct to or r<i in nt t>: : i it te er ra at to or r V VI I;

V VI I p p = f fi in nd d(c c. b be eg gi in n() , c c. e en nd d() , 7 7) ; / / probably slow: O(N); c needn’t be sorted
V VI I q q = l lo ow we er r_ _b bo ou un nd d(c c. b be eg gi in n() , c c. e en nd d() , 7 7) ; / / probably fast: O(log(N)); c must be sorted
/ / ...

}

If l lo ow we er r_ _b bo ou un nd d(f fi ir rs st t, l la as st t, k k) doesn’t findk k, it returns an iterator to the first element with a key
greater thank k, or l la as st t if no such greater element exists. This way of reporting failure is also used
by u up pp pe er r_ _b bo ou un nd d() ande eq qu ua al l_ _r ra an ng ge e() . This means that we can use these algorithms to deter-
mine where to insert a new element into a sorted sequence so that the sequence remains sorted.

18.7.3 Merge [algo.merge]

Given two sorted sequences, we can merge them into a new sorted sequence usingm me er rg ge e() or
merge two parts of a sequence usingi in np pl la ac ce e_ _m me er rg ge e() :

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t>
O Ou ut t m me er rg ge e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t, c cl la as ss s C Cm mp p>
O Ou ut t m me er rg ge e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s B Bi i> v vo oi id d i in np pl la ac ce e_ _m me er rg ge e(B Bi i f fi ir rs st t, B Bi i m mi id dd dl le e, B Bi i l la as st t) ;
t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s C Cm mp p> v vo oi id d i in np pl la ac ce e_ _m me er rg ge e(B Bi i f fi ir rs st t, B Bi i m mi id dd dl le e, B Bi i l la as st t, C Cm mp p c cm mp p) ;

Note that these merge algorithms differ froml li is st t’s merge (§17.2.2.1) byn no ot t removing elements
from their input sequences. Instead, elements are copied.

For elements that compare equal, elements from the first range will always precede elements
from the second.

The i in np pl la ac ce e_ _m me er rg ge e() algorithm is primarily useful when you have a sequence that can be
sorted by more than one criterion. For example, you might have av ve ec ct to or r of fish sorted by species
(for example, cod, haddock, and herring). If the elements of each species are sorted by weight, you
can get the whole vector sorted by weight by applyingi in np pl la ac ce e_ _m me er rg ge e() to merge the information
for the different species (§18.13[20]).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

542 Algorithms and Function Objects Chapter 18

18.7.4 Partitions [algo.partition]

To partition a sequence is to place every element that satisfies a predicate before every element that
doesn’t. The standard library provides as st ta ab bl le e_ _p pa ar rt ti it ti io on n() , which maintains relative order
among the elements that do and do not satisfy the predicate. In addition, the library offersp pa ar rt ti i- -
t ti io on n() which doesn’t maintain relative order, but which runs a bit faster when memory is limited:

t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s P Pr re ed d> B Bi i p pa ar rt ti it ti io on n(B Bi i f fi ir rs st t, B Bi i l la as st t, P Pr re ed d p p) ;
t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s P Pr re ed d> B Bi i s st ta ab bl le e_ _p pa ar rt ti it ti io on n(B Bi i f fi ir rs st t, B Bi i l la as st t, P Pr re ed d p p) ;

You can think of a partition as a kind of sort with a very simple sorting criterion. For example:

v vo oi id d f f(l li is st t<C Cl lu ub b>& l lc c)
{

l li is st t<C Cl lu ub b>: : i it te er ra at to or r p p = p pa ar rt ti it ti io on n(l lc c. b be eg gi in n() , l lc c. e en nd d() , l lo oc ca at te ed d_ _i in n(" K Køø b be en nh ha av vn n")) ;
/ / ...

}

This ‘‘sorts’’ the l li is st t so thatC Cl lu ub bs in Copenhagen comes first. The return value (herep p) points
either to the first element that doesn’t satisfy the predicate or to the end.

18.7.5 Set Operations on Sequences [algo.set]

A sequence can be considered a set. Looked upon that way, it makes sense to provide set opera-
tions such as union and intersection for sequences. However, such operations are horribly ineffi-
cient unless the sequences are sorted, so the standard library provides set operations for sorted
sequences only. In particular, the set operations work well fors se et ts (§17.4.3) andm mu ul lt ti is se et ts
(§17.4.4), both of which are sorted anyway.

If these set algorithms are applied to sequences that are not sorted, the resulting sequences will
not conform to the usual set-theoretical rules. These algorithms do not change their input
sequences, and their output sequences are ordered.

The i in nc cl lu ud de es s() algorithm tests whether every member of the first sequence is also a member of
the second:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2>
b bo oo ol l i in nc cl lu ud de es s(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s C Cm mp p>
b bo oo ol l i in nc cl lu ud de es s(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, C Cm mp p c cm mp p) ;

Thes se et t_ _u un ni io on n() ands se et t_ _i in nt te er rs se ec ct ti io on n() produce their obvious outputs as sorted sequences:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t>
O Ou ut t s se et t_ _u un ni io on n(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t, c cl la as ss s C Cm mp p>
O Ou ut t s se et t_ _u un ni io on n(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t>
O Ou ut t s se et t_ _i in nt te er rs se ec ct ti io on n(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t, c cl la as ss s C Cm mp p>
O Ou ut t s se et t_ _i in nt te er rs se ec ct ti io on n(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s, C Cm mp p c cm mp p) ;

Thes se et t_ _d di if ff fe er re en nc ce e() algorithm produces a sequence of elements that are members of its first, but

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.7.5 Set Operations on Sequences 543

not its second, input sequence. Thes se et t_ _s sy ym mm me et tr ri ic c_ _d di if ff fe er re en nc ce e() algorithm produces a sequence
of elements that are members of either, but not of both, of its input sequences:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t>
O Ou ut t s se et t_ _d di if ff fe er re en nc ce e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t, c cl la as ss s C Cm mp p>
O Ou ut t s se et t_ _d di if ff fe er re en nc ce e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t>
O Ou ut t s se et t_ _s sy ym mm me et tr ri ic c_ _d di if ff fe er re en nc ce e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s O Ou ut t, c cl la as ss s C Cm mp p>
O Ou ut t s se et t_ _s sy ym mm me et tr ri ic c_ _d di if ff fe er re en nc ce e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, O Ou ut t r re es s, C Cm mp p c cm mp p) ;

For example:

c ch ha ar r v v1 1[] = " a ab bc cd d";
c ch ha ar r v v2 2[] = " c cd de ef f";

v vo oi id d f f(c ch ha ar r v v3 3[])
{

s se et t_ _d di if ff fe er re en nc ce e(v v1 1, v v1 1+4 4, v v2 2, v v2 2+4 4, v v3 3) ; / / v3 = "ab"
s se et t_ _s sy ym mm me et tr ri ic c_ _d di if ff fe er re en nc ce e(v v1 1, v v1 1+4 4, v v2 2, v v2 2+4 4, v v3 3) ; / / v3 = "abef"

}

18.8 Heaps[algo.heap]

The wordheapmeans different things in different contexts. When discussing algorithms, ‘‘heap’’
often refers to a way of organizing a sequence such that it has a first element that is the element
with the highest value. Addition of an element (usingp pu us sh h_ _h he ea ap p()) and removal of an element
(usingp po op p_ _h he ea ap p()) are reasonably fast, with a worst-case performance ofO O(l lo og g(N N)) , whereN N
is the number of elements in the sequence. Sorting (usings so or rt t_ _h he ea ap p()) has a worst-case perfor-
mance ofO O(N N* l lo og g(N N)) . A heap is implemented by this set of functions:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d p pu us sh h_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d p pu us sh h_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d p po op p_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ;
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d p po op p_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d m ma ak ke e_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ; / / turn sequence into heap
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d m ma ak ke e_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t) ; / / turn heap into sequence
t te em mp pl la at te e<c cl la as ss s R Ra an n, c cl la as ss s C Cm mp p> v vo oi id d s so or rt t_ _h he ea ap p(R Ra an n f fi ir rs st t, R Ra an n l la as st t, C Cm mp p c cm mp p) ;

The style of the heap algorithms is odd. A more natural way of presenting their functionality would
be to provide an adapter class with four operations. Doing that would yield something like a
p pr ri io or ri it ty y_ _q qu ue eu ue e (§17.3.3). In fact, ap pr ri io or ri it ty y_ _q qu ue eu ue e is almost certainly implemented using a heap.

The value pushed byp pu us sh h_ _h he ea ap p(f fi ir rs st t, l la as st t) is *(l la as st t- 1 1) . The assumption is that
[f fi ir rs st t, l la as st t- 1 1[is already a heap, sop pu us sh h_ _h he ea ap p() extends the sequence to[f fi ir rs st t, l la as st t[by includ-
ing the next element. Thus, you can build a heap from an existing sequence by a series of

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

544 Algorithms and Function Objects Chapter 18

p pu us sh h_ _h he ea ap p() operations. Conversely,p po op p_ _h he ea ap p(f fi ir rs st t, l la as st t) removes the first element of the
heap by swapping it with the last element (*(l la as st t- 1 1)) and making[f fi ir rs st t, l la as st t- 1 1[into a heap.

18.9 Min and Max[algo.min]

The algorithms described here select a value based on a comparison. It is obviously useful to be
able to find the maximum and minimum of two values:

t te em mp pl la at te e<c cl la as ss s T T> c co on ns st t T T& m ma ax x(c co on ns st t T T& a a, c co on ns st t T T& b b)
{

r re et tu ur rn n (a a<b b) ? b b : a a;
}

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C Cm mp p> c co on ns st t T T& m ma ax x(c co on ns st t T T& a a, c co on ns st t T T& b b, C Cm mp p c cm mp p)
{

r re et tu ur rn n (c cm mp p(a a, b b)) ? b b : a a;
}

t te em mp pl la at te e<c cl la as ss s T T> c co on ns st t T T& m mi in n(c co on ns st t T T& a a, c co on ns st t T T& b b) ;

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C Cm mp p> c co on ns st t T T& m mi in n(c co on ns st t T T& a a, c co on ns st t T T& b b, C Cm mp p c cm mp p) ;

Them ma ax x() andm mi in n() operations can be generalized to apply to sequences in the obvious manner:

t te em mp pl la at te e<c cl la as ss s F Fo or r> F Fo or r m ma ax x_ _e el le em me en nt t(F Fo or r f fi ir rs st t, F Fo or r l la as st t) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s C Cm mp p> F Fo or r m ma ax x_ _e el le em me en nt t(F Fo or r f fi ir rs st t, F Fo or r l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s F Fo or r> F Fo or r m mi in n_ _e el le em me en nt t(F Fo or r f fi ir rs st t, F Fo or r l la as st t) ;
t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s C Cm mp p> F Fo or r m mi in n_ _e el le em me en nt t(F Fo or r f fi ir rs st t, F Fo or r l la as st t, C Cm mp p c cm mp p) ;

Finally, lexicographical ordering is easily generalized from strings of characters to sequences of
values of a type with comparison:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2>
b bo oo ol l l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s C Cm mp p>
b bo oo ol l l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, I In n2 2 l la as st t2 2, C Cm mp p c cm mp p)
{

w wh hi il le e (f fi ir rs st t != l la as st t && f fi ir rs st t2 2 != l la as st t2 2) {
i if f (c cm mp p(* f fi ir rs st t,* f fi ir rs st t2 2)) r re et tu ur rn n t tr ru ue e;
i if f (c cm mp p(* f fi ir rs st t2 2++,* f fi ir rs st t++)) r re et tu ur rn n f fa al ls se e;

}
r re et tu ur rn n f fi ir rs st t == l la as st t && f fi ir rs st t2 2 != l la as st t2 2;

}

This is very similar to the function presented for general strings in (§13.4.1). However,
l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e() compares sequences in general and not just strings. It also returns a
b bo oo ol l rather than the more usefuli in nt t. The result ist tr ru ue e (only) if the first sequence compares< the
second. In particular, the result isf fa al ls se ewhen the sequences compare equal.

C-style strings ands st tr ri in ng gs are sequences, sol le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e() can be used as a
string compare function. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.9 Min and Max 545

c ch ha ar r v v1 1[] = " y ye es s";
c ch ha ar r v v2 2[] = " n no o";
s st tr ri in ng g s s1 1 = " Y Ye es s";
s st tr ri in ng g s s2 2 = " N No o";

v vo oi id d f f()
{

b bo oo ol l b b1 1 = l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(v v1 1, v v1 1+s st tr rl le en n(v v1 1) , v v2 2, v v2 2+s st tr rl le en n(v v2 2)) ;
b bo oo ol l b b2 2 = l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(s s1 1. b be eg gi in n() , s s1 1. e en nd d() , s s2 2. b be eg gi in n() , s s2 2. e en nd d()) ;

b bo oo ol l b b3 3 = l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(v v1 1, v v1 1+s st tr rl le en n(v v1 1) , s s1 1. b be eg gi in n() , s s1 1. e en nd d()) ;
b bo oo ol l b b4 4 = l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(s s1 1. b be eg gi in n() , s s1 1. e en nd d() , v v1 1, v v1 1+s st tr rl le en n(v v1 1) , N No oc ca as se e) ;

}

The sequences need not be of the same type– all we need is to compare their elements– and the
comparison criterion can be supplied. This makesl le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e() more general and
potentially a bit slower thans st tr ri in ng g’s compare. See also §20.3.8.

18.10 Permutations[algo.perm]

Given a sequence of four elements, we can order them in 4*3*2 ways. Each of these orderings is
called apermutation. For example, from the four charactersa ab bc cd d we can produce 24 permutations:

a ab bc cd d a ab bd dc c a ac cb bd d a ac cd db b a ad db bc c a ad dc cb b b ba ac cd d b ba ad dc c
b bc ca ad d b bc cd da a b bd da ac c b bd dc ca a c ca ab bd d c ca ad db b c cb ba ad d c cb bd da a
c cd da ab b c cd db ba a d da ab bc c d da ac cb b d db ba ac c d db bc ca a d dc ca ab b d dc cb ba a

The n ne ex xt t_ _p pe er rm mu ut ta at ti io on n() and p pr re ev v_ _p pe er rm mu ut ta at ti io on n() functions deliver such permutations of a
sequence:

t te em mp pl la at te e<c cl la as ss s B Bi i> b bo oo ol l n ne ex xt t_ _p pe er rm mu ut ta at ti io on n(B Bi i f fi ir rs st t, B Bi i l la as st t) ;
t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s C Cm mp p> b bo oo ol l n ne ex xt t_ _p pe er rm mu ut ta at ti io on n(B Bi i f fi ir rs st t, B Bi i l la as st t, C Cm mp p c cm mp p) ;

t te em mp pl la at te e<c cl la as ss s B Bi i> b bo oo ol l p pr re ev v_ _p pe er rm mu ut ta at ti io on n(B Bi i f fi ir rs st t, B Bi i l la as st t) ;
t te em mp pl la at te e<c cl la as ss s B Bi i, c cl la as ss s C Cm mp p> b bo oo ol l p pr re ev v_ _p pe er rm mu ut ta at ti io on n(B Bi i f fi ir rs st t, B Bi i l la as st t, C Cm mp p c cm mp p) ;

The permutations ofa ab bc cd d were produced like this:

i in nt t m ma ai in n()
{

c ch ha ar r v v[] = " a ab bc cd d";
c co ou ut t << v v << ´ \ \t t´;
w wh hi il le e(n ne ex xt t_ _p pe er rm mu ut ta at ti io on n(v v, v v+4 4)) c co ou ut t << v v << ´ \ \t t´;

}

The permutations are produced in lexicographical order (§18.9). The return value of
n ne ex xt t_ _p pe er rm mu ut ta at ti io on n() indicates whether a next permutation actually exists. If not,f fa al ls se e is returned
and the sequence is the permutation in which the elements are in lexicographical order.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

546 Algorithms and Function Objects Chapter 18

18.11 C-Style Algorithms[algo.c]

From the C standard library, the C++ standard library inherited a few algorithms dealing with C-
style strings (§20.4.1), plus a quicksort and a binary search, both limited to arrays.

Theq qs so or rt t() andb bs se ea ar rc ch h() functions are presented in<c cs st td dl li ib b> and<s st td dl li ib b. h h>. They each
operate on an array ofn n elements of sizee el le em m_ _s si iz ze eusing a less-than comparison function passed as
a pointer to function. The elements must be of a type without a user-defined copy constructor, copy
assignment, or destructor:

t ty yp pe ed de ef f i in nt t(* _ __ _c cm mp p)(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / typedef for presentation only

v vo oi id d q qs so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t e el le em m_ _s si iz ze e, _ __ _c cm mp p) ; / / sort p
v vo oi id d* b bs se ea ar rc ch h(c co on ns st t v vo oi id d* k ke ey y, v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t e el le em m_ _s si iz ze e, _ __ _c cm mp p) ;/ / find key in p

The use ofq qs so or rt t() is described in §7.7.
These algorithms are provided solely for C compatibility;s so or rt t() (§18.7.1) ands se ea ar rc ch h()

(§18.5.5) are more general and should also be more efficient.

18.12 Advice[algo.advice]

[1] Prefer algorithms to loops; §18.5.1.
[2] When writing a loop, consider whether it could be expressed as a general algorithm; §18.2.
[3] Regularly review the set of algorithms to see if a new application has become obvious; §18.2.
[4] Be sure that a pair of iterator arguments really do specify a sequence; §18.3.1.
[5] Design so that the most frequently-used operations are simple and safe; §18.3, §18.3.1.
[6] Express tests in a form that allows them to be used as predicates; §18.4.2.
[7] Remember that predicates are functions and objects, not types; §18.4.2.
[8] You can use binders to make unary predicates out of binary predicates; §18.4.4.1.
[9] Usem me em m_ _f fu un n() andm me em m_ _f fu un n_ _r re ef f() to apply algorithms on containers; §18.4.4.2.
[10] Usep pt tr r_ _f fu un n() when you need to bind an argument of a function; §18.4.4.3.
[11] Remember thats st tr rc cm mp p() differs from== by returning0 0 to indicate ‘‘equal;’’ §18.4.4.4.
[12] Usef fo or r_ _e ea ac ch h() and t tr ra an ns sf fo or rm m() only when there is no more-specific algorithm for a task;

§18.5.1.
[13] Use predicates to apply algorithms using a variety of comparison and equality criteria;

§18.4.2.1, §18.6.3.1.
[14] Use predicates and other function objects so as to use standard algorithms with a wider range

of meanings; §18.4.2.
[15] The default== and< on pointers are rarely adequate for standard algorithms; §18.6.3.1.
[16] Algorithms do not directly add or subtract elements from their argument sequences; §18.6.
[17] Be sure that the less-than and equality predicates used on a sequence match; §18.6.3.1.
[18] Sometimes, sorted sequences can be used to increase efficiency and elegance; §18.7.
[19] Useq qs so or rt t() andb bs se ea ar rc ch h() for compatibility only; §18.11.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.13 Exercises 547

18.13 Exercises[algo.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (∗2) LearnO O() notation. Give a realistic example in which anO O(N N* N N) algorithm is faster

than anO O(N N) algorithm for someN N>1 10 0.
2. (∗2) Implement and test the fourm me em m_ _f fu un n() andm me em m_ _f fu un n_ _r re ef f() functions (§18.4.4.2).
3. (∗1) Write an algorithmm ma at tc ch h() that is likem mi is sm ma at tc ch h() , except that it returns iterators to the

first corresponding pair that matches the predicate.
4. (∗1.5) Implement and testP Pr ri in nt t_ _n na am me e from §18.5.1.
5. (∗1) Sort al li is st t using only standard library algorithms.
6. (∗2.5) Define versions ofi is se eq q() (§18.3.1) for built-in arrays,i is st tr re ea am m, and iterator pairs.

Define a suitable set of overloads for the nonmodifying standard algorithms (§18.5) forI Is se eq qs.
Discuss how best to avoid ambiguities and an explosion in the number of template functions.

7. (∗2) Define ano os se eq q() to complementi is se eq q() . The output sequence given as the argument to
o os se eq q() should be replaced by the output produced by an algorithm using it. Define a suitable
set of overloads for at least three standard algorithms of your choice.

8. (∗1.5) Produce av ve ec ct to or r of squares of numbers 1 through 100. Print a table of squares. Take
the square root of the elements of thatv ve ec ct to or r and print the resulting vector.

9. (∗2) Write a set of functional objects that do bitwise logical operations on their operands. Test
these objects on vectors ofc ch ha ar r, i in nt t, andb bi it ts se et t<6 67 7>.

10. (∗1) Write ab bi in nd de er r3 3() that binds the second and third arguments of a three-argument function
to produce a unary predicate. Give an example whereb bi in nd de er r3 3() is a useful function.

11. (∗1.5) Write a small program that that removes adjacent repeated words from from a file file.
Hint: The program should remove at th ha at t, af fr ro om m, and af fi il le e from the previous statement.

12. (∗2.5) Define a format for records of references to papers and books kept in a file. Write a pro-
gram that can write out records from the file identified by year of publication, name of author,
keyword in title, or name of publisher. The user should be able to request that the output be
sorted according to similar criteria.

13. (∗2) Implement am mo ov ve e() algorithm in the style ofc co op py y() in such a way that the input and
output sequences can overlap. Be reasonably efficient when given random-access iterators as
arguments.

14. (∗1.5) Produce all anagrams of the wordf fo oo od d. That is, all four-letter combinations of the letters
f f, o o, o o, andd d. Generalize this program to take a word as input and produce anagrams of that
word.

15. (∗1.5) Write a program that produces anagrams of sentences; that is, a program that produces all
permutations of the words in the sentences (rather than permutations of the letters in the words).

16. (∗1.5) Implementf fi in nd d_ _i if f() (§18.5.2) and then implementf fi in nd d() usingf fi in nd d_ _i if f() . Find a way
of doing this so that the two functions do not need different names.

17. (∗2) Implements se ea ar rc ch h() (§18.5.5). Provide an optimized version for random-access iterators.
18. (∗2) Take a sort algorithm (such ass so or rt t() from your standard library or the Shell sort from

§13.5.2) and insert code so that it prints out the sequence being sorted after each swap of ele-
ments.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

548 Algorithms and Function Objects Chapter 18

19. (∗2) There is nos so or rt t() for bidirectional iterators. The conjecture is that copying to a vector
and then sorting is faster than sorting a sequence using bidirectional iterators. Implement a gen-
eral sort for bidirectional iterators and test the conjecture.

20. (∗2.5) Imagine that you keep records for a group of sports fishermen. For each catch, keep a
record of species, length, weight, date of catch, name of fisherman, etc. Sort and print the
records according to a variety of criteria. Hint:i in np pl la ac ce e_ _m me er rg ge e() .

21. (∗2) Create lists of students taking Math, English, French, and Biology. Pick about 20 names
for each class out of a set of 40 names. List students who take both Math and English. List stu-
dents who take French but not Biology or Math. List students who do not take a science course.
List students who take French and Math but neither English nor Biology.

22. (∗1.5) Write ar re em mo ov ve e() function that actually removes elements from a container.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

19
_ __ _______________________________________

Iterators and Allocators

The reason that data structures and algorithms
can work together seamlessly is ... that they

do not know anything about each other.
– Alex Stepanov

Iterators and sequences— operations on iterators— iterator traits— iterator categories
— inserters— reverse iterators— stream iterators— checked iterators— exceptions
and algorithms— allocators— the standarda al ll lo oc ca at to or r — user-defined allocators—
low-level memory functions— advice— exercises.

19.1 Introduction [iter.intro]

Iterators are the glue that holds containers and algorithms together. They provide an abstract view
of data so that the writer of an algorithm need not be concerned with concrete details of a myriad of
data structures. Conversely, the standard model of data access provided by iterators relieves con-
tainers from having to provide a more extensive set of access operations. Similarly, allocators are
used to insulate container implementations from details of access to memory.

Iterators support an abstract model of data as sequences of objects (§19.2). Allocators provide a
mapping from a lower-level model of data as arrays of bytes into the higher-level object model
(§19.4). The most common lower-level memory model is itself supported by a few standard func-
tions (§19.4.4).

Iterators are a concept with which every programmer should be familiar. In contrast, allocators
are a support mechanism that a programmer rarely needs to worry about and few programmers will
ever need to write a new allocator.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

550 Iterators and Allocators Chapter 19

19.2 Iterators and Sequences[iter.iter]

An iterator is a pure abstraction. That is, anything that behaves like an iterator is an iterator
(§3.8.2). An iterator is an abstraction of the notion of a pointer to an element of a sequence. Its key
concepts are

– ‘‘the element currently pointed to’’ (dereferencing, represented by operators* and->),
– ‘‘point to next element’’ (increment, represented by operator++), and
– equality (represented by operator==).

For example, the built-in typei in nt t* is an iterator for ani in nt t[] and the classl li is st t<i in nt t>: : i it te er ra at to or r is an
iterator for al li is st t class.

A sequence is an abstraction of the notion ‘‘something where we can get from the beginning to
the end by using a next-element operation:’’

elem[0] elem[1] elem[2] ... elem[n-1]
.

..

.

begin() end()

Examples of such sequences are arrays (§5.2), vectors (§16.3), singly-linked lists (§17.8[17]),
doubly-linked lists (§17.2.2), trees (§17.4.1), input (§21.3.1), and output (§21.2.1). Each has its
own appropriate kind of iterator.

The iterator classes and functions are declared in namespaces st td d and found in<i it te er ra at to or r>.
An iterator isnot a general pointer. Rather, it is an abstraction of the notion of a pointer into an

array. There is no concept of a ‘‘null iterator.’’ The test to determine whether an iterator points to
an element or not is conventionally done by comparing it against theend of its sequence (rather
than comparing it against an nu ul ll l element). This notion simplifies many algorithms by removing the
need for a special end case and generalizes nicely to sequences of arbitrary types.

An iterator that points to an element is said to bevalid and can be dereferenced (using* , [] , or
-> appropriately). An iterator can be invalid either because it hasn’t been initialized, because it
pointed into a container that was explicitly or implicitly resized (§16.3.6, §16.3.8), because the con-
tainer into which it pointed was destroyed, or because it denotes the end of a sequence (§18.2). The
end of a sequence can be thought of as an iterator pointing to a hypothetical element position one-
past-the-last element of a sequence.

19.2.1 Iterator Operations [iter.oper]

Not every kind of iterator supports exactly the same set of operations. For example, reading
requires different operations from writing, and av ve ec ct to or r allows convenient and efficient random
access in a way that would be prohibitively expensive to provide for al li is st t or an i is st tr re ea am m. Conse-
quently, we classify iterators into five categories according to the operations they are capable of
providing efficiently (that is, in constant time; §17.1):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.2.1 Iterator Operations 551

_ ___
Iterator Operations and Categories_ __ ___

Category: output input forward bidirectional random-access
Abbreviation: O Ou ut t I In n F Fo or r B Bi i R Ra an n_ ___
Read: =*p =*p =*p =*p
Access: -> -> -> -> []
Write: *p= *p= *p= *p=
Iteration: ++ ++ ++ ++ -- ++ -- + - += -=
Comparison: == != == != == != == != < > >= <=_ ___ 
































Both read and write are through the iterator dereferenced by* :

* p p = x x; / / write x through p
x x = * p p; / / read through p into x

To be an iterator type, a type must provide an appropriate set of operations. These operations must
have their conventional meanings. That is, each operation must have the same effect it has on an
ordinary pointer.

Independently of its category, an iterator can allowc co on ns st t or non-c co on ns st t access to the object it
points to. You cannot write to an element using an iterator toc co on ns st t – whatever its category. An
iterator provides a set of operators, but the type of the element pointed to is the final arbiter of what
can be done to that element.

Reads and writes copy objects, so element types must have the conventional copy semantics
(§17.1.4).

Only random-access iterators can have an integer added or subtracted for relative addressing.
However, except for output iterators, the distance between two iterators can always be found by
iterating through the elements, so ad di is st ta an nc ce e() function is provided:

t te em mp pl la at te e<c cl la as ss s I In n> t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di is st ta an nc ce e(I In n f fi ir rs st t, I In n l la as st t)
{

t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e d d = 0 0;
w wh hi il le e (f fi ir rs st t++!= l la as st t) d d++;
r re et tu ur rn n d d;

}

An i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e is defined for every iteratorI In n to hold distances between
elements (§19.2.2).

This function is calledd di is st ta an nc ce e() rather thano op pe er ra at to or r-() because it can be expensive and
the operators provided for an iterator all operate in constant time (§17.1). Counting elements one
by one is not the kind of operation I would like to invoke unwittingly for a large sequence. The
library also provides a far more efficient implementation ofd di is st ta an nc ce e() for a random-access itera-
tor.

Similarly, a ad dv va an nc ce e() is provided as a potentially slow+=:

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s D Di is st t> v vo oi id d a ad dv va an nc ce e(I In n i i, D Di is st t n n) ; / / i+=n

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

552 Iterators and Allocators Chapter 19

19.2.2 Iterator Traits [iter.traits]

We use iterators to gain information about the objects they point to and the sequences they point
into. For example, we can dereference an iterator and manipulate the resulting object and we can
find the number of elements in a sequence, given the iterators that describe it. To express such
operations, we must be able to refer to types related to an iterator such as ‘‘the type of the object
referred to by an iterator’’ and ‘‘the type of the distance between two iterators.’’ The related types
of an iterator are described by a small set of declarations in ani it te er ra at to or r_ _t tr ra ai it ts s template class:

t te em mp pl la at te e<c cl la as ss s I It te er r> s st tr ru uc ct t i it te er ra at to or r_ _t tr ra ai it ts s {
t ty yp pe ed de ef f t ty yp pe en na am me e I It te er r: : i it te er ra at to or r_ _c ca at te eg go or ry y i it te er ra at to or r_ _c ca at te eg go or ry y; / / §19.2.3
t ty yp pe ed de ef f t ty yp pe en na am me e I It te er r: : v va al lu ue e_ _t ty yp pe e v va al lu ue e_ _t ty yp pe e; / / type of element
t ty yp pe ed de ef f t ty yp pe en na am me e I It te er r: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di if ff fe er re en nc ce e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e I It te er r: : p po oi in nt te er r p po oi in nt te er r; / / return type of operator– >()
t ty yp pe ed de ef f t ty yp pe en na am me e I It te er r: : r re ef fe er re en nc ce e r re ef fe er re en nc ce e; / / return type of operator*()

};

The d di if ff fe er re en nc ce e_ _t ty yp pe e is the type used to represent the difference between two iterators, and the
i it te er ra at to or r_ _c ca at te eg go or ry y is a type indicating what operations the iterator supports. For ordinary pointers,
specializations (§13.5) for<T T*> and<c co on ns st t T T*> are provided. In particular:

t te em mp pl la at te e<c cl la as ss s T T> s st tr ru uc ct t i it te er ra at to or r_ _t tr ra ai it ts s<T T*> { / / specialization for pointers
t ty yp pe ed de ef f r ra an nd do om m_ _a ac cc ce es ss s_ _i it te er ra at to or r_ _t ta ag g i it te er ra at to or r_ _c ca at te eg go or ry y;
t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f p pt tr rd di if ff f_ _t t d di if ff fe er re en nc ce e_ _t ty yp pe e;
t ty yp pe ed de ef f T T* p po oi in nt te er r;
t ty yp pe ed de ef f T T& r re ef fe er re en nc ce e;

};

That is, the difference between two pointers is represented by the standard library typep pt tr rd di if ff f_ _t t
from <c cs st td dd de ef f> (§6.2.1) and a pointer provides random access (§19.2.3). Giveni it te er ra at to or r_ _t tr ra ai it ts s,
we can write code that depends on properties of an iterator parameter. Thec co ou un nt t() algorithm is
the classical example:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T>
t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e c co ou un nt t(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t T T& v va al l)
{

t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e r re es s = 0 0;
w wh hi il le e (f fi ir rs st t != l la as st t) i if f (* f fi ir rs st t++ == v va al l) ++r re es s;
r re et tu ur rn n r re es s;

}

Here, the type of the result is expressed in terms of thei it te er ra at to or r_ _t tr ra ai it ts s of the input. This technique
is necessary because there is no language primitive for expressing an arbitrary type in terms of
another.

Instead of usingi it te er ra at to or r_ _t tr ra ai it ts s, we might have specializedc co ou un nt t() for pointers:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T>
t ty yp pe en na am me e I In n: : d di if ff fe er re en nc ce e_ _t ty yp pe e c co ou un nt t(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t T T& v va al l) ;

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s T T> p pt tr rd di if ff f_ _t t c co ou un nt t<T T*, T T>(T T* f fi ir rs st t, T T* l la as st t, c co on ns st t T T& v va al l) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.2.2 Iterator Traits 553

However, this would have solved the problem forc co ou un nt t() only. Had we used this technique for a
dozen algorithms, the information about distance types would have been replicated a dozen times.
In general, it is better to represent a design decision in one place (§23.4.2). In that way, the deci-
sion can– if necessary– be changed in one place.

Becausei it te er ra at to or r_ _t tr ra ai it ts s<I It te er ra at to or r> is defined for every iterator, we implicitly define an
i it te er ra at to or r_ _t tr ra ai it ts s whenever we design a new iterator type. If the default traits generated from the
generali it te er ra at to or r_ _t tr ra ai it ts s template are not right for our new iterator type, we provide a specialization
in a way similar to what the standard library does for pointer types. Thei it te er ra at to or r_ _t tr ra ai it ts s that are
implicitly generated assume that the iterator is a class with the member typesd di if ff fe er re en nc ce e_ _t ty yp pe e,
v va al lu ue e_ _t ty yp pe e, etc. In<i it te er ra at to or r>, the library provides a base type that can be used to define those
member types:

t te em mp pl la at te e<c cl la as ss s C Ca at t, c cl la as ss s T T, c cl la as ss s D Di is st t = p pt tr rd di if ff f_ _t t, c cl la as ss s P Pt tr r = T T*, c cl la as ss s R Re ef f = T T&>
s st tr ru uc ct t i it te er ra at to or r {

t ty yp pe ed de ef f C Ca at t i it te er ra at to or r_ _c ca at te eg go or ry y; / / §19.2.3
t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e; / / type of element
t ty yp pe ed de ef f D Di is st t d di if ff fe er re en nc ce e_ _t ty yp pe e; / / type of iterator difference
t ty yp pe ed de ef f P Pt tr r p po oi in nt te er r; / / return type for– >
t ty yp pe ed de ef f R Re ef f r re ef fe er re en nc ce e; / / return type for *

};

Note thatr re ef fe er re en nc ce e andp po oi in nt te er r are not iterators. They are intended to be the return types ofo op pe er r- -
a at to or r*() ando op pe er ra at to or r->() , respectively, for some iterator.

The i it te er ra at to or r_ _t tr ra ai it ts s are the key to the simplicity of many interfaces that rely on iterators and to
the efficient implementation of many algorithms.

19.2.3 Iterator Categories [iter.cat]

The different kinds of iterators– usually referred to as iterator categories– fit into a hierarchical
ordering:

Input

Output

Forward Bidirectional Random access

This is not a class inheritance diagram. An iterator category is a classification of a type based on
the operations it provides. Many otherwise unrelated types can belong to the same iterator cate-
gory. For example, both ordinary pointers (§19.2.2) andC Ch he ec ck ke ed d_ _i it te er rs (§19.3) are random-access
iterators.

As noted in Chapter 18, different algorithms require different kinds of iterators as arguments.
Also, the same algorithm can sometimes be implemented with different efficiencies for different
kinds of iterators. To support overload resolution based on iterator categories, the standard library
provides five classes representing the five iterator categories:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

554 Iterators and Allocators Chapter 19

s st tr ru uc ct t i in np pu ut t_ _i it te er ra at to or r_ _t ta ag g {};
s st tr ru uc ct t o ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g {};
s st tr ru uc ct t f fo or rw wa ar rd d_ _i it te er ra at to or r_ _t ta ag g : p pu ub bl li ic c i in np pu ut t_ _i it te er ra at to or r_ _t ta ag g {};
s st tr ru uc ct t b bi id di ir re ec ct ti io on na al l_ _i it te er ra at to or r_ _t ta ag g: p pu ub bl li ic c f fo or rw wa ar rd d_ _i it te er ra at to or r_ _t ta ag g {};
s st tr ru uc ct t r ra an nd do om m_ _a ac cc ce es ss s_ _i it te er ra at to or r_ _t ta ag g: p pu ub bl li ic c b bi id di ir re ec ct ti io on na al l_ _i it te er ra at to or r_ _t ta ag g {};

Looking at the operations supported by input and forward iterators (§19.2.1), we would expect
f fo or rw wa ar rd d_ _i it te er ra at to or r_ _t ta ag g to be derived fromo ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g as well as fromi in np pu ut t_ _i it te er ra at to or r_ _t ta ag g.
The reasons that it is not are obscure and probably invalid. However, I have yet to see an example
in which that derivation would have simplified real code.

The inheritance of tags is useful (only) to save us from defining separate versions of a function
where several– but not all– kinds of iterators can use the same algorithms. Consider how to
implementd di is st ta an nc ce e:

t te em mp pl la at te e<c cl la as ss s I In n>
t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di is st ta an nc ce e(I In n f fi ir rs st t, I In n l la as st t) ;

There are two obvious alternatives:
[1] If I In n is a random-access iterator, we can subtractf fi ir rs st t from l la as st t.
[2] Otherwise, we must increment an iterator fromf fi ir rs st t to l la as st t and count the distance.

We can express these two alternatives as a pair of helper functions:

t te em mp pl la at te e<c cl la as ss s I In n>
t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e
d di is st t_ _h he el lp pe er r(I In n f fi ir rs st t, I In n l la as st t, i in np pu ut t_ _i it te er ra at to or r_ _t ta ag g)
{

t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e d d = 0 0;
w wh hi il le e (f fi ir rs st t++!= l la as st t) d d++; / / use increment only
r re et tu ur rn n d d;

}

t te em mp pl la at te e<c cl la as ss s R Ra an n>
t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<R Ra an n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e
d di is st t_ _h he el lp pe er r(R Ra an n f fi ir rs st t, R Ra an n l la as st t, r ra an nd do om m_ _a ac cc ce es ss s_ _i it te er ra at to or r_ _t ta ag g)
{

r re et tu ur rn n l la as st t- f fi ir rs st t; / / rely on random access
}

The iterator category tag arguments make it explicit what kind of iterator is expected. The iterator
tag is used exclusively for overload resolution; the tag takes no part in the actual computation. It is
a purely compile-time selection mechanism. In addition to automatic selection of a helper function,
this technique provides immediate type checking (§13.2.5).

It is now trivial to defined di is st ta an nc ce e() by calling the appropriate helper function:

t te em mp pl la at te e<c cl la as ss s I In n>
t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di is st ta an nc ce e(I In n f fi ir rs st t, I In n l la as st t)
{

r re et tu ur rn n d di is st t_ _h he el lp pe er r(f fi ir rs st t, l la as st t, i it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : i it te er ra at to or r_ _c ca at te eg go or ry y()) ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.2.3 Iterator Categories 555

For a d di is st t_ _h he el lp pe er r() to be called, thei it te er ra at to or r_ _t tr ra ai it ts s<I In n>: : i it te er ra at to or r_ _c ca at te eg go or ry y used must be a
i in np pu ut t_ _i it te er ra at to or r_ _t ta ag g or ar ra an nd do om m_ _a ac cc ce es ss s_ _i it te er ra at to or r_ _t ta ag g. However, there is no need for separate ver-
sions ofd di is st t_ _h he el lp pe er r() for forward or bidirectional iterators. Thanks to tag inheritance, those cases
are handled by thed di is st t_ _h he el lp pe er r() which takes ani in np pu ut t_ _i it te er ra at to or r_ _t ta ag g. The absence of a version for
o ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g reflects the fact thatd di is st ta an nc ce e() is not meaningful for output iterators:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v vi i,
l li is st t<d do ou ub bl le e>& l ld d,
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g>& i is s1 1, i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g>& i is s2 2,
o os st tr re ea am m_ _i it te er ra at to or r<c ch ha ar r>& o os s1 1, o os st tr re ea am m_ _i it te er ra at to or r<c ch ha ar r>& o os s2 2)

{
d di is st ta an nc ce e(v vi i. b be eg gi in n() , v vi i. e en nd d()) ; / / use subtraction algorithm
d di is st ta an nc ce e(l ld d. b be eg gi in n() , l ld d. e en nd d()) ; / / use increment algorithm
d di is st ta an nc ce e(i is s1 1, i is s2 2) ; / / use increment algorithm
d di is st ta an nc ce e(o os s1 1, o os s2 2) ; / / error: wrong iterator category, dist_helper() argument type mismatch

}

Calling d di is st ta an nc ce e() for an i is st tr re ea am m_ _i it te er ra at to or r probably doesn’t make much sense in a real program,
though. The effect would be to read the input, throw it away, and return the number of values
thrown away.

Using i it te er ra at to or r_ _t tr ra ai it ts s<T T>: : i it te er ra at to or r_ _c ca at te eg go or ry y allows a programmer to provide alternative
implementations so that a user who cares nothing about the implementation of algorithms automati-
cally gets the most appropriate implementation for each data structure used. In other words, it
allows us to hide an implementation detail behind a convenient interface. Inlining can be used to
ensure that this elegance is not bought at the cost of run-time efficiency.

19.2.4 Inserters [iter.insert]

Producing output through an iterator into a container implies that elements following the one
pointed to by the iterator can be overwritten. This implies the possibility of overflow and conse-
quent memory corruption. For example:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v vi i)
{

f fi il ll l_ _n n(v vi i. b be eg gi in n() , 2 20 00 0, 7 7) ; / / assign 7 to vi[0]..[199]
}

If v vi i has fewer than2 20 00 0 elements, we are in trouble.
In <i it te er ra at to or r>, the standard library provides three iterator template classes to deal with this

problem, plus three functions to make it convenient to use those iterators:

t te em mp pl la at te e <c cl la as ss s C Co on nt t> b ba ac ck k_ _i in ns se er rt t_ _i it te er ra at to or r<C Co on nt t> b ba ac ck k_ _i in ns se er rt te er r(C Co on nt t& c c) ;
t te em mp pl la at te e <c cl la as ss s C Co on nt t> f fr ro on nt t_ _i in ns se er rt t_ _i it te er ra at to or r<C Co on nt t> f fr ro on nt t_ _i in ns se er rt te er r(C Co on nt t& c c) ;
t te em mp pl la at te e <c cl la as ss s C Co on nt t, c cl la as ss s O Ou ut t> i in ns se er rt t_ _i it te er ra at to or r<C Co on nt t> i in ns se er rt te er r(C Co on nt t& c c, O Ou ut t p p) ;

The b ba ac ck k_ _i in ns se er rt te er r() causes elements to be added to the end of the container,f fr ro on nt t_ _i in ns se er rt te er r()
causes elements to be added to the front, and ‘‘plain’’i in ns se er rt te er r() causes elements to be added
before its iterator argument. Fori in ns se er rt te er r(c c, p p) , p p must be a valid iterator forc c. Naturally, a con-
tainer grows each time a value is written to it through an insert iterator.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

556 Iterators and Allocators Chapter 19

When written to, an inserter inserts a new element into a sequence usingp pu us sh h_ _b ba ac ck k() ,
p pu us sh h_ _f fr ro on nt t() , or i in ns se er rt t() (§16.3.6) rather than overwriting an existing element. For example:

v vo oi id d g g(v ve ec ct to or r<i in nt t>& v vi i)
{

f fi il ll l_ _n n(b ba ac ck k_ _i in ns se er rt te er r(v vi i) , 2 20 00 0, 7 7) ; / / add 200 7s to the end of vi
}

Inserters are as simple and efficient as they are useful. For example:

t te em mp pl la at te e <c cl la as ss s C Co on nt t>
c cl la as ss s i in ns se er rt t_ _i it te er ra at to or r : p pu ub bl li ic c i it te er ra at to or r<o ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g, v vo oi id d, v vo oi id d, v vo oi id d, v vo oi id d> {
p pr ro ot te ec ct te ed d:

C Co on nt t& c co on nt ta ai in ne er r; / / container to insert into
t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r i it te er r; / / points into the container

p pu ub bl li ic c:
e ex xp pl li ic ci it t i in ns se er rt t_ _i it te er ra at to or r(C Co on nt t& x x, t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r i i)

: c co on nt ta ai in ne er r(x x) , i it te er r(i i) {}

i in ns se er rt t_ _i it te er ra at to or r& o op pe er ra at to or r=(c co on ns st t t ty yp pe en na am me e C Co on nt t: : v va al lu ue e_ _t ty yp pe e& v va al l)
{

i it te er r = c co on nt ta ai in ne er r. i in ns se er rt t(i it te er r, v va al l) ;
++i it te er r;
r re et tu ur rn n * t th hi is s;

}

i in ns se er rt t_ _i it te er ra at to or r& o op pe er ra at to or r*() { r re et tu ur rn n * t th hi is s; }
i in ns se er rt t_ _i it te er ra at to or r& o op pe er ra at to or r++() { r re et tu ur rn n * t th hi is s; } / / prefix ++
i in ns se er rt t_ _i it te er ra at to or r o op pe er ra at to or r++(i in nt t) { r re et tu ur rn n * t th hi is s; } / / postfix ++

};

Clearly, inserters are output iterators.
An i in ns se er rt t_ _i it te er ra at to or r is a special case of an output sequence. In parallel to thei is se eq q from §18.3.1,

we might define:

t te em mp pl la at te e<c cl la as ss s C Co on nt t>
i in ns se er rt t_ _i it te er ra at to or r<C Co on nt t>
o os se eq q(C Co on nt t& c c, t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r f fi ir rs st t, t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r l la as st t)
{

r re et tu ur rn n i in ns se er rt t_ _i it te er ra at to or r<C Co on nt t>(c c, c c. e er ra as se e(f fi ir rs st t, l la as st t)) ; / / erase is explained in §16.3.6
}

In other words, an output sequence removes its old elements and replaces them with the output.
For example:

v vo oi id d f f(l li is st t<i in nt t>& l li i, v ve ec ct to or r<i in nt t>& v vi i) / / replace second half of vi by a copy of li
{

c co op py y(l li i. b be eg gi in n() , l li i. e en nd d() , o os se eq q(v vi i, v vi i+v vi i. s si iz ze e()/ 2 2, v vi i. e en nd d())) ;
}

The container needs to be an argument to ano os se eq q because it is not possible to decrease the size of a
container, given only iterators into it (§18.6, §18.6.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.2.5 Reverse Iterators 557

19.2.5 Reverse Iterators [iter.reverse]

The standard containers provider rb be eg gi in n() and r re en nd d() for iterating through elements in reverse
order (§16.3.2). These member functions returnr re ev ve er rs se e_ _i it te er ra at to or rs:

t te em mp pl la at te e <c cl la as ss s I It te er r>
c cl la as ss s r re ev ve er rs se e_ _i it te er ra at to or r : p pu ub bl li ic c i it te er ra at to or r<i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r>: : i it te er ra at to or r_ _c ca at te eg go or ry y,

i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r>: : v va al lu ue e_ _t ty yp pe e,
i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r>: : d di if ff fe er re en nc ce e_ _t ty yp pe e,
i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r>: : p po oi in nt te er r,
i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r>: : r re ef fe er re en nc ce e> {

p pr ro ot te ec ct te ed d:
I It te er r c cu ur rr re en nt t; / / current points to the element after the one *this refers to.

p pu ub bl li ic c:
t ty yp pe ed de ef f I It te er r i it te er ra at to or r_ _t ty yp pe e;

r re ev ve er rs se e_ _i it te er ra at to or r() : c cu ur rr re en nt t() { }
e ex xp pl li ic ci it t r re ev ve er rs se e_ _i it te er ra at to or r(I It te er r x x) : c cu ur rr re en nt t(x x) { }
t te em mp pl la at te e<c cl la as ss s U U> r re ev ve er rs se e_ _i it te er ra at to or r(c co on ns st t r re ev ve er rs se e_ _i it te er ra at to or r<U U>& x x) : c cu ur rr re en nt t(x x. b ba as se e()) { }

I It te er r b ba as se e() c co on ns st t { r re et tu ur rn n c cu ur rr re en nt t; } / / current iterator value

r re ef fe er re en nc ce e o op pe er ra at to or r*() c co on ns st t { I It te er r t tm mp p = c cu ur rr re en nt t; r re et tu ur rn n *-- t tm mp p; }
p po oi in nt te er r o op pe er ra at to or r->() c co on ns st t;
r re ef fe er re en nc ce e o op pe er ra at to or r[](d di if ff fe er re en nc ce e_ _t ty yp pe e n n) c co on ns st t;

r re ev ve er rs se e_ _i it te er ra at to or r& o op pe er ra at to or r++() { -- c cu ur rr re en nt t; r re et tu ur rn n * t th hi is s; } / / note: not ++
r re ev ve er rs se e_ _i it te er ra at to or r o op pe er ra at to or r++(i in nt t) { r re ev ve er rs se e_ _i it te er ra at to or r t t = c cu ur rr re en nt t; -- c cu ur rr re en nt t; r re et tu ur rn n t t; }
r re ev ve er rs se e_ _i it te er ra at to or r& o op pe er ra at to or r--() { ++c cu ur rr re en nt t; r re et tu ur rn n * t th hi is s; } / / note: not– –
r re ev ve er rs se e_ _i it te er ra at to or r o op pe er ra at to or r--(i in nt t) { r re ev ve er rs se e_ _i it te er ra at to or r t t = c cu ur rr re en nt t; ++c cu ur rr re en nt t; r re et tu ur rn n t t; }

r re ev ve er rs se e_ _i it te er ra at to or r o op pe er ra at to or r+(d di if ff fe er re en nc ce e_ _t ty yp pe e n n) c co on ns st t;
r re ev ve er rs se e_ _i it te er ra at to or r& o op pe er ra at to or r+=(d di if ff fe er re en nc ce e_ _t ty yp pe e n n) ;
r re ev ve er rs se e_ _i it te er ra at to or r o op pe er ra at to or r-(d di if ff fe er re en nc ce e_ _t ty yp pe e n n) c co on ns st t;
r re ev ve er rs se e_ _i it te er ra at to or r& o op pe er ra at to or r-=(d di if ff fe er re en nc ce e_ _t ty yp pe e n n) ;

};

A r re ev ve er rs se e_ _i it te er ra at to or r is implemented using ani it te er ra at to or r calledc cu ur rr re en nt t. Thati it te er ra at to or r can (only) point
to the elements of its sequence plus its one-past-the-end element. However, ther re ev ve er rs se e_ _i it te er ra at to or r’s
one-past-the-end element is the original sequence’s (inaccessible) one-before-the-beginning ele-
ment. Thus, to avoid access violations,c cu ur rr re en nt t points to the element after the one the
r re ev ve er rs se e_ _i it te er ra at to or r refers to. This implies that* returns the value*(c cu ur rr re en nt t- 1 1) and that++ is
implemented using-- onc cu ur rr re en nt t.
A r re ev ve er rs se e_ _i it te er ra at to or r supports the operations that its initializer supports (only). For example:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v, l li is st t<c ch ha ar r>& l ls st t)
{

r re ev ve er rs se e_ _i it te er ra at to or r(v v. e en nd d())[3 3] = 7 7; / / ok: random-access iterator
r re ev ve er rs se e_ _i it te er ra at to or r(l ls st t. e en nd d())[3 3] = ´ 4 4´; / / error: bidirectional iterator doesn’t support []
*(++++++ r re ev ve er rs se e_ _i it te er ra at to or r(l ls st t. e en nd d())) = ´ 4 4´; / / ok!

}

In addition, the library provides==, != , <, <=, >, >=, + and- for r re ev ve er rs se e_ _i it te er ra at to or rs.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

558 Iterators and Allocators Chapter 19

19.2.6 Stream Iterators [iter.stream]

Ordinarily, I/O is done using the streams library (Chapter 21), a graphical user-interface system
(not covered by the C++ standard), or the C I/O functions (§21.8). These I/O interfaces are primar-
ily aimed at reading and writing individual values of a variety of types. The standard library pro-
vides four iterator types to fit stream I/O into the general framework of containers and algorithms:

– o os st tr re ea am m_ _i it te er ra at to or r: for writing to ano os st tr re ea am m (§3.4, §21.2.1).
– i is st tr re ea am m_ _i it te er ra at to or r: for reading from ani is st tr re ea am m (§3.6, §21.3.1).
– o os st tr re ea am mb bu uf f_ _i it te er ra at to or r: for writing to a stream buffer (§21.6.1).
– i is st tr re ea am mb bu uf f_ _i it te er ra at to or r: for reading from a stream buffer (§21.6.2).

The idea is simply to present input and output of collections as sequences:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s C Ch h = c ch ha ar r, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s o os st tr re ea am m_ _i it te er ra at to or r : p pu ub bl li ic c i it te er ra at to or r<o ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g, v vo oi id d, v vo oi id d, v vo oi id d, v vo oi id d> {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f T Tr r t tr ra ai it ts s_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r> o os st tr re ea am m_ _t ty yp pe e;

o os st tr re ea am m_ _i it te er ra at to or r(o os st tr re ea am m_ _t ty yp pe e& s s) ;
o os st tr re ea am m_ _i it te er ra at to or r(o os st tr re ea am m_ _t ty yp pe e& s s, c co on ns st t C Ch h* d de el li im m) ; / / write delim after each output value
o os st tr re ea am m_ _i it te er ra at to or r(c co on ns st t o os st tr re ea am m_ _i it te er ra at to or r&) ;
~o os st tr re ea am m_ _i it te er ra at to or r() ;

o os st tr re ea am m_ _i it te er ra at to or r& o op pe er ra at to or r=(c co on ns st t T T& v va al l) ; / / write val to output

o os st tr re ea am m_ _i it te er ra at to or r& o op pe er ra at to or r*() ;
o os st tr re ea am m_ _i it te er ra at to or r& o op pe er ra at to or r++() ;
o os st tr re ea am m_ _i it te er ra at to or r& o op pe er ra at to or r++(i in nt t) ;

};

This iterator accepts the usual write and increment operations of an output iterator and converts
them into output operations on ano os st tr re ea am m. For example:

v vo oi id d f f()
{

o os st tr re ea am m_ _i it te er ra at to or r<i in nt t> o os s(c co ou ut t) ; / / write ints to cout through os
* o os s = 7 7; / / output 7
++o os s; / / get ready for next output
* o os s = 7 79 9; / / output 79

}

The ++ operation might trigger an actual output operation, or it might have no effect. Different
implementations will use different implementation strategies. Consequently, for code to be port-
able a++ must occur between every two assignments to ano os st tr re ea am m_ _i it te er ra at to or r. Naturally, every
standard algorithm is written that way– or it would not work for av ve ec ct to or r. This is why
o os st tr re ea am m_ _i it te er ra at to or r is defined this way.

An implementation ofo os st tr re ea am m_ _i it te er ra at to or r is trivial and is left as an exercise (§19.6[4]). The stan-
dard I/O supports different character types;c ch ha ar r_ _t tr ra ai it ts s (§20.2) describes the aspects of a character
type that can be important for I/O ands st tr ri in ng gs.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.2.6 Stream Iterators 559

An input iterator fori is st tr re ea am ms is defined analogously:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s C Ch h = c ch ha ar r, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s D Di is st t = p pt tr rd di if ff f_ _t t>
c cl la as ss s i is st tr re ea am m_ _i it te er ra at to or r : p pu ub bl li ic c i it te er ra at to or r<i in np pu ut t_ _i it te er ra at to or r_ _t ta ag g, T T, D Di is st t, c co on ns st t T T*, c co on ns st t T T&> {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f T Tr r t tr ra ai it ts s_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r> i is st tr re ea am m_ _t ty yp pe e;

i is st tr re ea am m_ _i it te er ra at to or r() ; / / end of input
i is st tr re ea am m_ _i it te er ra at to or r(i is st tr re ea am m_ _t ty yp pe e& s s) ;
i is st tr re ea am m_ _i it te er ra at to or r(c co on ns st t i is st tr re ea am m_ _i it te er ra at to or r&) ;
~i is st tr re ea am m_ _i it te er ra at to or r() ;

c co on ns st t T T& o op pe er ra at to or r*() c co on ns st t;
c co on ns st t T T* o op pe er ra at to or r->() c co on ns st t;
i is st tr re ea am m_ _i it te er ra at to or r& o op pe er ra at to or r++() ;
i is st tr re ea am m_ _i it te er ra at to or r o op pe er ra at to or r++(i in nt t) ;

};

This iterator is specified so that what would be conventional use for a container triggers input from
an i is st tr re ea am m. For example:

v vo oi id d f f()
{

i is st tr re ea am m_ _i it te er ra at to or r<i in nt t> i is s(c ci in n) ; / / read ints from cin through is
i in nt t i i1 1 = * i is s; / / read an int
++i is s; / / get ready for next input
i in nt t i i2 2 = * i is s; / / read an int

}

The defaulti is st tr re ea am m_ _i it te er ra at to or r represents the end of input so that we can specify an input sequence:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v)
{

c co op py y(i is st tr re ea am m_ _i it te er ra at to or r<i in nt t>(c ci in n) , i is st tr re ea am m_ _i it te er ra at to or r<i in nt t>() , b ba ac ck k_ _i in ns se er rt te er r(v v)) ;
}

To make this work, the standard library supplies== and!= for i is st tr re ea am m_ _i it te er ra at to or rs.
An implementation ofi is st tr re ea am m_ _i it te er ra at to or r is less trivial than ano os st tr re ea am m_ _i it te er ra at to or r implementa-

tion, but it is still simple. Implementing ani is st tr re ea am m_ _i it te er ra at to or r is also left as an exercise (§19.6[5]).

19.2.6.1 Stream Buffers [iter.streambuf]

As described in §21.6, stream I/O is based on the idea ofo os st tr re ea am ms andi is st tr re ea am ms filling and empty-
ing buffers from and to which the low-level physical I/O is done. It is possible to bypass the stan-
dard iostreams formatting and operate directly on the stream buffers (§21.6.4). That ability is also
provided to algorithms through the notion ofi is st tr re ea am mb bu uf f_ _i it te er ra at to or rs ando os st tr re ea am mb bu uf f_ _i it te er ra at to or rs:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

560 Iterators and Allocators Chapter 19

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s i is st tr re ea am mb bu uf f_ _i it te er ra at to or r

: p pu ub bl li ic c i it te er ra at to or r<i in np pu ut t_ _i it te er ra at to or r_ _t ta ag g, C Ch h, t ty yp pe en na am me e T Tr r: : o of ff f_ _t ty yp pe e, C Ch h*, C Ch h&> {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f T Tr r t tr ra ai it ts s_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e T Tr r: : i in nt t_ _t ty yp pe e i in nt t_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r> s st tr re ea am mb bu uf f_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r> i is st tr re ea am m_ _t ty yp pe e;

c cl la as ss s p pr ro ox xy y; / / helper type

i is st tr re ea am mb bu uf f_ _i it te er ra at to or r() t th hr ro ow w() ; / / end of buffer
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r(i is st tr re ea am m_ _t ty yp pe e& i is s) t th hr ro ow w() ; / / read from is’s streambuf
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r(s st tr re ea am mb bu uf f_ _t ty yp pe e*) t th hr ro ow w() ;
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r(c co on ns st t p pr ro ox xy y& p p) t th hr ro ow w() ; / / read from p’s streambuf

C Ch h o op pe er ra at to or r*() c co on ns st t;
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r& o op pe er ra at to or r++() ; / / prefix
p pr ro ox xy y o op pe er ra at to or r++(i in nt t) ; / / postfix

b bo oo ol l e eq qu ua al l(i is st tr re ea am mb bu uf f_ _i it te er ra at to or r&) ; / / both or neither streambuf at eof
};

In addition,== and!= are supplied.
Reading from as st tr re ea am mb bu uf f is a lower-level operation than reading from ani is st tr re ea am m. Conse-

quently, thei is st tr re ea am mb bu uf f_ _i it te er ra at to or r interface is messier than thei is st tr re ea am m_ _i it te er ra at to or r interface. How-
ever, once thei is st tr re ea am mb bu uf f_ _i it te er ra at to or r is properly initialized,* , ++, and= have their usual meanings
when used in the usual way.

Thep pr ro ox xy y type is an implementation-defined helper type that allows the postfix++ to be imple-
mented without imposing constraints on thes st tr re ea am mb bu uf f implementation. Ap pr ro ox xy y holds the result
value while the iterator is incremented:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h, T Tr r>: : p pr ro ox xy y {

C Ch h v va al l;
b ba as si ic c_ _i is st tr re ea am mb bu uf f<C Ch h, T Tr r>* b bu uf f;

p pr ro ox xy y(C Ch h v v, b ba as si ic c_ _i is st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) : v va al l(v v) , b bu uf f(b b) { }
p pu ub bl li ic c:

C Ch h o op pe er ra at to or r*() { r re et tu ur rn n v va al l; }
};

An o os st tr re ea am mb bu uf f_ _i it te er ra at to or r is defined similarly:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s o os st tr re ea am mb bu uf f_ _i it te er ra at to or r : p pu ub bl li ic c i it te er ra at to or r<o ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g, v vo oi id d, v vo oi id d, v vo oi id d, v vo oi id d>{
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f T Tr r t tr ra ai it ts s_ _t ty yp pe e;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.2.6.1 Stream Buffers 561

t ty yp pe ed de ef f b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r> s st tr re ea am mb bu uf f_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r> o os st tr re ea am m_ _t ty yp pe e;

o os st tr re ea am mb bu uf f_ _i it te er ra at to or r(o os st tr re ea am m_ _t ty yp pe e& o os s) t th hr ro ow w() ; / / write to os’s streambuf
o os st tr re ea am mb bu uf f_ _i it te er ra at to or r(s st tr re ea am mb bu uf f_ _t ty yp pe e*) t th hr ro ow w() ;
o os st tr re ea am mb bu uf f_ _i it te er ra at to or r& o op pe er ra at to or r=(C Ch h) ;

o os st tr re ea am mb bu uf f_ _i it te er ra at to or r& o op pe er ra at to or r*() ;
o os st tr re ea am mb bu uf f_ _i it te er ra at to or r& o op pe er ra at to or r++() ;
o os st tr re ea am mb bu uf f_ _i it te er ra at to or r& o op pe er ra at to or r++(i in nt t) ;

b bo oo ol l f fa ai il le ed d() c co on ns st t t th hr ro ow w() ; / / true if Tr::eof() seen
};

19.3 Checked Iterators[iter.checked]

A programmer can provide iterators in addition to those provided by the standard library. This is
often necessary when providing a new kind of container, and sometimes a new kind of iterator is a
good way to support a different way of using existing containers. As an example, I here describe
an iterator that range checks access to its container.

Using standard containers reduces the amount of explicit memory management. Using standard
algorithms reduces the amount of explicit addressing of elements in containers. Using the standard
library together with language facilities that maintain type safety dramatically reduces run-time
errors compared to traditional C coding styles. However, the standard library still relies on the pro-
grammer to avoid access beyond the limits of a container. If by accident elementx x[x x. s si iz ze e()+ 7 7]
of some containerx x is accessed, then unpredictable– and usually bad– things happen. Using a
range-checkedv ve ec ct to or r, such asV Ve ec c (§3.7.1), helps in some cases. More cases can be handled by
checking every access through an iterator.

To achieve this degree of checking without placing a serious notational burden on the program-
mer, we need checked iterators and a convenient way of attaching them to containers. To make a
C Ch he ec ck ke ed d_ _i it te er r, we need a container and an iterator into that container. As for binders (§18.4.4.1),
inserters (§19.2.4), etc., I provide functions for making aC Ch he ec ck ke ed d_ _i it te er r:

t te em mp pl la at te e<c cl la as ss s C Co on nt t, c cl la as ss s I It te er r> C Ch he ec ck ke ed d_ _i it te er r<C Co on nt t, I It te er r> m ma ak ke e_ _c ch he ec ck ke ed d(C Co on nt t& c c, I It te er r i i)
{

r re et tu ur rn n C Ch he ec ck ke ed d_ _i it te er r<C Co on nt t, I It te er r>(c c, i i) ;
}

t te em mp pl la at te e<c cl la as ss s C Co on nt t> C Ch he ec ck ke ed d_ _i it te er r<C Co on nt t, t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r> m ma ak ke e_ _c ch he ec ck ke ed d(C Co on nt t& c c)
{

r re et tu ur rn n C Ch he ec ck ke ed d_ _i it te er r<C Co on nt t, t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r>(c c, c c. b be eg gi in n()) ;
}

These functions offer the notational convenience of deducing the types from arguments rather than
stating those types explicitly. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

562 Iterators and Allocators Chapter 19

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v, c co on ns st t v ve ec ct to or r<i in nt t>& v vc c)
{

t ty yp pe ed de ef f C Ch he ec ck ke ed d_ _i it te er r<v ve ec ct to or r<i in nt t>, v ve ec ct to or r<i in nt t>: : i it te er ra at to or r> C CI I;
C CI I p p1 1 = m ma ak ke e_ _c ch he ec ck ke ed d(v v, v v. b be eg gi in n()+ 3 3) ;
C CI I p p2 2 = m ma ak ke e_ _c ch he ec ck ke ed d(v v) ; / / by default: point to first element

t ty yp pe ed de ef f C Ch he ec ck ke ed d_ _i it te er r<c co on ns st t v ve ec ct to or r<i in nt t>, v ve ec ct to or r<i in nt t>: : c co on ns st t_ _i it te er ra at to or r> C CI IC C;
C CI IC C p p3 3 = m ma ak ke e_ _c ch he ec ck ke ed d(v vc c, v vc c. b be eg gi in n()+ 3 3) ;
C CI IC C p p4 4 = m ma ak ke e_ _c ch he ec ck ke ed d(v vc c) ;

c co on ns st t v ve ec ct to or r<i in nt t>& v vv v = v v;
C CI IC C p p5 5 = m ma ak ke e_ _c ch he ec ck ke ed d(v v, v vv v. b be eg gi in n()) ;

}

By default,c co on ns st t containers havec co on ns st t iterators, so theirC Ch he ec ck ke ed d_ _i it te er rs must also be constant iter-
ators. The iteratorp p5 5 shows one way of getting ac co on ns st t iterator for a non-c co on ns st t iterator.

This demonstrates whyC Ch he ec ck ke ed d_ _i it te er r needs two template parameters: one for the container type
and one to express thec co on ns st t/non-c co on ns st t distinction.

The names of theseC Ch he ec ck ke ed d_ _i it te er r types become fairly long and unwieldy, but that doesn’t mat-
ter when iterators are used as arguments to a generic algorithm. For example:

t te em mp pl la at te e<c cl la as ss s I It te er r> v vo oi id d m my ys so or rt t(I It te er r f fi ir rs st t, I It te er r l la as st t) ;

v vo oi id d f f(v ve ec ct to or r<i in nt t>& c c)
{

t tr ry y {
m my ys so or rt t(m ma ak ke e_ _c ch he ec ck ke ed d(c c) , m ma ak ke e_ _c ch he ec ck ke ed d(c c, c c. e en nd d()) ;

}
c ca at tc ch h (o ou ut t_ _o of f_ _b bo ou un nd ds s) {

c ce er rr r<<" o oo op ps s: b bu ug g i in n m my ys so or rt t() \ \n n";
a ab bo or rt t() ;

}
}

An early version of such an algorithm is exactly where I would most suspect a range error so that
using checked iterators would make sense.

The representation of aC Ch he ec ck ke ed d_ _i it te er r is a pointer to a container plus an iterator pointing into
that container:

t te em mp pl la at te e<c cl la as ss s C Co on nt t, c cl la as ss s I It te er r = t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r>
c cl la as ss s C Ch he ec ck ke ed d_ _i it te er r : p pu ub bl li ic c i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r> {

I It te er r c cu ur rr r; / / iterator for current position
C Co on nt t* c c; / / pointer to current container

/ / ...
};

Deriving from i it te er ra at to or r_ _t tr ra ai it ts s is one technique for defining the desiredt ty yp pe ed de ef fs. The obvious
alternative – deriving from i it te er ra at to or r – would be verbose in this case (as it was for
r re ev ve er rs se e_ _i it te er ra at to or r; §19.2.5). Just as there is no requirement that an iterator should be a class, there
is no requirement that iterators that are classes should be derived fromi it te er ra at to or r.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.3 Checked Iterators 563

TheC Ch he ec ck ke ed d_ _i it te er r operations are all fairly trivial:

t te em mp pl la at te e<c cl la as ss s C Co on nt t, c cl la as ss s I It te er r = t ty yp pe en na am me e C Co on nt t: : i it te er ra at to or r>
c cl la as ss s C Ch he ec ck ke ed d_ _i it te er r : p pu ub bl li ic c i it te er ra at to or r_ _t tr ra ai it ts s<I It te er r> {

/ / ...
p pu ub bl li ic c:

v vo oi id d v va al li id d(I It te er r p p)
{

i if f (c c-> e en nd d() == p p) r re et tu ur rn n;
f fo or r (I It te er r p pp p = c c-> b be eg gi in n() ; p pp p!= c c-> e en nd d() ; ++p pp p) i if f (p pp p == p p) r re et tu ur rn n;
t th hr ro ow w o ou ut t_ _o of f_ _b bo ou un nd ds s()

}

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t C Ch he ec ck ke ed d_ _i it te er r& i i, c co on ns st t C Ch he ec ck ke ed d_ _i it te er r& j j)
{

r re et tu ur rn n i i. c c==j j. c c && i i. c cu ur rr r==j j. c cu ur rr r;
}

/ / no default initializer.

/ / use default copy constructor and copy assignment.

C Ch he ec ck ke ed d_ _i it te er r(C Co on nt t& x x, I It te er r p p) : c c(& x x) , c cu ur rr r(p p) { v va al li id d(p p) ; }

r re ef fe er re en nc ce e_ _t ty yp pe e o op pe er ra at to or r*()
{

i if f (c cu ur rr r==c c-> e en nd d()) t th hr ro ow w o ou ut t_ _o of f_ _b bo ou un nd ds s() ;
r re et tu ur rn n * c cu ur rr r;

}

p po oi in nt te er r_ _t ty yp pe e o op pe er ra at to or r->()
{

r re et tu ur rn n &* c cu ur rr r; / / checked by *
}

C Ch he ec ck ke ed d_ _i it te er r o op pe er ra at to or r+(D Di is st t d d) / / for random-access iterators only
{

i if f (c c-> e en nd d()- c cu ur rr r<=d d) t th hr ro ow w o ou ut t_ _o of f_ _b bo ou un nd ds s() ;
r re et tu ur rn n C Ch he ec ck ke ed d_ _i it te er r(c c, c cu ur rr r+d d) ;

}

r re ef fe er re en nc ce e_ _t ty yp pe e o op pe er ra at to or r[](D Di is st t d d) / / for random-access iterators only
{

i if f (c c-> e en nd d()- c cu ur rr r<=d d) t th hr ro ow w o ou ut t_ _o of f_ _b bo ou un nd ds s() ;
r re et tu ur rn n c c[d d] ;

}

C Ch he ec ck ke ed d_ _i it te er r& o op pe er ra at to or r++() / / prefix ++
{

i if f (c cu ur rr r == c c-> e en nd d()) t th hr ro ow w o ou ut t_ _o of f_ _b bo ou un nd ds s() ;
++c cu ur rr r;
r re et tu ur rn n * t th hi is s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

564 Iterators and Allocators Chapter 19

C Ch he ec ck ke ed d_ _i it te er r o op pe er ra at to or r++(i in nt t) / / postfix ++
{

C Ch he ec ck ke ed d_ _i it te er r t tm mp p = * t th hi is s;
++* t th hi is s; / / checked by prefix ++
r re et tu ur rn n t tm mp p;

}

C Ch he ec ck ke ed d_ _i it te er r& o op pe er ra at to or r--() / / prefix --
{

i if f (c cu ur rr r == c c-> b be eg gi in n()) t th hr ro ow w o ou ut t_ _o of f_ _b bo ou un nd ds s() ;
-- c cu ur rr r;
r re et tu ur rn n * t th hi is s;

}

C Ch he ec ck ke ed d_ _i it te er r o op pe er ra at to or r--(i in nt t) / / postfix --
{

C Ch he ec ck ke ed d_ _i it te er r t tm mp p = * t th hi is s;
--* t th hi is s; / / checked by prefix --
r re et tu ur rn n t tm mp p;

}

d di if ff fe er re en nc ce e_ _t ty yp pe e i in nd de ex x() { r re et tu ur rn n c cu ur rr r- c c. b be eg gi in n() ; } / / random-access only

I It te er r u un nc ch he ec ck ke ed d() { r re et tu ur rn n c cu ur rr r; }

/ / +, -, < , etc. (§19.6[6])
};

A C Ch he ec ck ke ed d_ _i it te er r can be initialized only for a particular iterator pointing into a particular container.
In a full-blown implementation, a more efficient version ofv va al li id d() should be provided for
random-access iterators (§19.6[6]). Once aC Ch he ec ck ke ed d_ _i it te er r is initialized, every operation that
changes its position is checked to make sure the iterator still points into the container. An attempt
to make the iterator point outside the container causes ano ou ut t_ _o of f_ _b bo ou un nd ds s exception to be thrown.
For example:

v vo oi id d f f(l li is st t<s st tr ri in ng g>& l ls s)
{

i in nt t c co ou un nt t = 0 0;
t tr ry y {

C Ch he ec ck ke ed d_ _i it te er r< l li is st t<s st tr ri in ng g> > p p(l ls s, l ls s. b be eg gi in n()) ;
w wh hi il le e (t tr ru ue e) {

++p p; / / sooner or later this will reach the end
++c co ou un nt t;

}
}
c ca at tc ch h(o ou ut t_ _o of f_ _b bo ou un nd ds s) {

c co ou ut t << " o ov ve er rr ru un n a af ft te er r " << c co ou un nt t << " t tr ri ie es s\ \n n";
}

}

A C Ch he ec ck ke ed d_ _i it te er r knows which container it is pointing into. This allows it to catch some, but not all,
cases in which iterators into a container have been invalidated by an operation on it (§16.3.8). To

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.3 Checked Iterators 565

protect against all such cases, a different and more expensive iterator design would be needed (see
§19.6[7]).

Note that postincrement (postfix++) involves a temporary and preincrement does not. For this
reason, it is best to prefer++p p overp p++ for iterators.

Because aC Ch he ec ck ke ed d_ _i it te er r keeps a pointer to a container, it cannot be used for a built-in array
directly. When necessary, ac c_ _a ar rr ra ay y (§17.5.4) can be used.

To complete the notion of checked iterators, we must make them trivial to use. There are two
basic approaches:

[1] Define a checked container type that behaves like other containers, except that it provides
only a limited set of constructors and itsb be eg gi in n() , e en nd d() , etc., supplyC Ch he ec ck ke ed d_ _i it te er rs rather
than ordinary iterators.

[2] Define a handle that can be initialized by an arbitrary container and that provides checked
access functions to its container (§19.6[8]).

The following template attaches checked iterators to a container:

t te em mp pl la at te e<c cl la as ss s C C> c cl la as ss s C Ch he ec ck ke ed d : p pu ub bl li ic c C C {
p pu ub bl li ic c:

e ex xp pl li ic ci it t C Ch he ec ck ke ed d(s si iz ze e_ _t t n n) : C C(n n) { }
C Ch he ec ck ke ed d() : C C() { }

t ty yp pe ed de ef f C Ch he ec ck ke ed d_ _i it te er r<C C> i it te er ra at to or r;
t ty yp pe ed de ef f C Ch he ec ck ke ed d_ _i it te er r<C C, C C: : c co on ns st t_ _i it te er ra at to or r> c co on ns st t_ _i it te er ra at to or r;

t ty yp pe en na am me e C C: : i it te er ra at to or r b be eg gi in n() { r re et tu ur rn n i it te er ra at to or r(* t th hi is s, C C: : b be eg gi in n()) ; }
t ty yp pe en na am me e C C: : i it te er ra at to or r e en nd d() { r re et tu ur rn n i it te er ra at to or r(* t th hi is s, C C: : e en nd d()) ; }

t ty yp pe en na am me e C C: : c co on ns st t_ _i it te er ra at to or r b be eg gi in n() c co on ns st t { r re et tu ur rn n c co on ns st t_ _i it te er ra at to or r(* t th hi is s, C C: : b be eg gi in n()) ; }
t ty yp pe en na am me e C C: : c co on ns st t_ _i it te er ra at to or r e en nd d() c co on ns st t { r re et tu ur rn n c co on ns st t_ _i it te er ra at to or r(* t th hi is s, C C: : e en nd d()) ; }

t ty yp pe en na am me e C C: : r re ef fe er re en nc ce e_ _t ty yp pe e o op pe er ra at to or r[](s si iz ze e_ _t t n n) { r re et tu ur rn n C Ch he ec ck ke ed d_ _i it te er r<C C>(* t th hi is s)[n n] ; }

C C& b ba as se e() { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<C C&>(* t th hi is s) ; } / / get hold of the base container
};

This allows us to write:

C Ch he ec ck ke ed d< v ve ec ct to or r<i in nt t> > v ve ec c(1 10 0) ;
C Ch he ec ck ke ed d< l li is st t<d do ou ub bl le e> > l ls st t;

v vo oi id d f f()
{

i in nt t v v1 1 = v ve ec c[5 5] ; / / ok
i in nt t v v2 2 = v ve ec c[1 15 5] ; / / throws out_of_bounds
/ / ...
l ls st t. p pu us sh h_ _b ba ac ck k(v v2 2) ;
m my ys so or rt t(v ve ec c. b be eg gi in n() , v ve ec c. e en nd d()) ;
c co op py y(v ve ec c. b be eg gi in n() , v ve ec c. e en nd d() , l ls st t. b be eg gi in n() , l ls st t. e en nd d()) ;

}

If a container is resized, iterators– includingC Ch he ec ck ke ed d_ _i it te er rs – into it may become invalid. In that
case, theC Ch he ec ck ke ed d_ _i it te er r can be re-initialized:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

566 Iterators and Allocators Chapter 19

v vo oi id d g g()
{

C Ch he ec ck ke ed d_ _i it te er r<i in nt t> p p(v vi i) ;
/ / ..
i in nt t i i = p p. i in nd de ex x() ; / / get current position
v vi i. r re es si iz ze e(1 10 00 0) ; / / p becomes invalid
p p = C Ch he ec ck ke ed d_ _i it te er r<i in nt t>(v vi i, v vi i. b be eg gi in n()+ i i) ; / / restore current position

}

The old– and invalid– current position is lost. I providedi in nd de ex x() as a means of storing and
restoring aC Ch he ec ck ke ed d_ _i it te er r. If necessary, a reference to the container used as the base of theC Ch he ec ck ke ed d
container can be extracted usingb ba as se e() .

19.3.1 Exceptions, Containers, and Algorithms [iter.except]

You could argue that using both standard algorithms and checked iterators is like wearing both belt
and suspenders: either should keep you safe. However, experience shows that for many people and
for many applications a dose of paranoia is reasonable– especially during times when a program
goes through frequent changes that involve several people.

One way of using run-time checks is to keep them in the code only while debugging. The
checks are then removed before the program is shipped. This practice has been compared to wear-
ing a life jacket while paddling around close to the shore and then removing it before setting out
onto the open sea. However, some uses of run-time checks do impose significant time and space
overheads, so insisting on such checks at all times is not realistic. In any case, it is unwise to opti-
mize without measurements, so before removing checks, do an experiment to see if worthwhile
improvements actually emerge from doing so. To do such an experiment, we must be able to
remove run-time checks easily (see §24.3.7.1). Once measurements have been done, we could
remove the run-time testing from the most run-time critical– and hopefully most thoroughly tested
– code and leave the rest of the code checked as a relatively cheap form of insurance.

Using aC Ch he ec ck ke ed d_ _i it te er r allows us to detect many mistakes. It does not, however, make it easy to
recover from these errors. People rarely write code that is 100% robust against every++, -- , * ,
[] , -> , and= potentially throwing an exception. This leaves us with two obvious strategies:

[1] Catch exceptions close to the point from which they are thrown so that the writer of the
exception handler has a decent chance of knowing what went wrong and can take appropri-
ate action.

[2] Catch the exception at a high level of a program, abandon a significant portion of a compu-
tation, and consider all data structures written to during the failed computation suspect
(maybe there are no such data structures or maybe they can be sanity checked).

It is irresponsible to catch an exception from some unknown part of a program and proceed under
the assumption that no data structure is left in an undesirable state, unless there is a further level of
error handling that will catch subsequent errors. A simple example of this is when a final check (by
computer or human) is done before the results are accepted. In such cases, it can be simpler and
cheaper to proceed blithely rather than to try to catch every error at a low level. This would be an
example of a simplification made possible by a multilevel error recovery scheme (§14.9).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.4 Allocators 567

19.4 Allocators[iter.alloc]

An a al ll lo oc ca at to or r is used to insulate implementers of algorithms and containers that must allocate mem-
ory from the details of physical memory. An allocator provides standard ways of allocating and
deallocating memory and standard names of types used as pointers and references. Like an iterator,
an allocator is a pure abstraction. Any type that behaves like an allocator is an allocator.

The standard library provides a standard allocator intended to serve most users of a given imple-
mentation well. In addition, users can provide allocators that represent alternative views of mem-
ory. For example, we can write allocators that use shared memory, garbage-collected memory,
memory from preallocated pools of objects (§19.4.2), etc.

The standard containers and algorithms obtain and access memory through the facilities pro-
vided by an allocator. Thus, by providing a new allocator we provide the standard containers with
a way of using a new and different kind of memory.

19.4.1 The Standard Allocator [iter.alloc.std]

The standarda al ll lo oc ca at to or r template from<m me em mo or ry y> allocates memory usingo op pe er ra at to or r n ne ew w()
(§6.2.6) and is by default used by all standard containers:

t te em mp pl la at te e <c cl la as ss s T T> c cl la as ss s a al ll lo oc ca at to or r {
p pu ub bl li ic c:

t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f s si iz ze e_ _t t s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f p pt tr rd di if ff f_ _t t d di if ff fe er re en nc ce e_ _t ty yp pe e;

t ty yp pe ed de ef f T T* p po oi in nt te er r;
t ty yp pe ed de ef f c co on ns st t T T* c co on ns st t_ _p po oi in nt te er r;

t ty yp pe ed de ef f T T& r re ef fe er re en nc ce e;
t ty yp pe ed de ef f c co on ns st t T T& c co on ns st t_ _r re ef fe er re en nc ce e;

p po oi in nt te er r a ad dd dr re es ss s(r re ef fe er re en nc ce e r r) c co on ns st t { r re et tu ur rn n &r r; }
c co on ns st t_ _p po oi in nt te er r a ad dd dr re es ss s(c co on ns st t_ _r re ef fe er re en nc ce e r r) c co on ns st t { r re et tu ur rn n &r r; }

a al ll lo oc ca at to or r() t th hr ro ow w() ;
t te em mp pl la at te e <c cl la as ss s U U> a al ll lo oc ca at to or r(c co on ns st t a al ll lo oc ca at to or r<U U>&) t th hr ro ow w() ;
~a al ll lo oc ca at to or r() t th hr ro ow w() ;

p po oi in nt te er r a al ll lo oc ca at te e(s si iz ze e_ _t ty yp pe e n n, a al ll lo oc ca at to or r<v vo oi id d>: : c co on ns st t_ _p po oi in nt te er r h hi in nt t = 0 0) ;/ / space for n Ts
v vo oi id d d de ea al ll lo oc ca at te e(p po oi in nt te er r p p, s si iz ze e_ _t ty yp pe e n n) ; / / deallocate n Ts, don’t destroy

v vo oi id d c co on ns st tr ru uc ct t(p po oi in nt te er r p p, c co on ns st t T T& v va al l) { n ne ew w(p p) T T(v va al l) ; } / / initialize *p by val
v vo oi id d d de es st tr ro oy y(p po oi in nt te er r p p) { p p->~ T T() ; } / / destroy *p but don’t deallocate

s si iz ze e_ _t ty yp pe e m ma ax x_ _s si iz ze e() c co on ns st t t th hr ro ow w() ;

t te em mp pl la at te e <c cl la as ss s U U>
s st tr ru uc ct t r re eb bi in nd d { t ty yp pe ed de ef f a al ll lo oc ca at to or r<U U> o ot th he er r; }; / / in effect: typedef allocator<U> other

};

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l o op pe er ra at to or r==(c co on ns st t a al ll lo oc ca at to or r<T T>&, c co on ns st t a al ll lo oc ca at to or r<T T>&) t th hr ro ow w() ;
t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l o op pe er ra at to or r!=(c co on ns st t a al ll lo oc ca at to or r<T T>&, c co on ns st t a al ll lo oc ca at to or r<T T>&) t th hr ro ow w() ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

568 Iterators and Allocators Chapter 19

An a al ll lo oc ca at te e(n n) operation allocates space forn n objects that can be deallocated by a corresponding
call of d de ea al ll lo oc ca at te e(p p, n n). Note thatd de ea al ll lo oc ca at te e() also takes a number-of-elements argumentn n.
This allows for close-to-optimal allocators that maintain only minimal information about allocated
memory. On the other hand, such allocators require that the user always provide the rightn n when
theyd de ea al ll lo oc ca at te e() .

The default a al ll lo oc ca at to or r uses o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t) to obtain memory ando op pe er ra at to or r
d de el le et te e(v vo oi id d*) to free it. This implies that then ne ew w_ _h ha an nd dl le er r() might be called and
o ou ut t_ _o of f_ _m me em mo or ry y might be thrown in case of memory exhaustion (§6.2.6.2).

Note thata al ll lo oc ca at te e() is not obliged to call a lower-level allocator each time. Often, a better
strategy is for the allocator to maintain a free list of space ready to hand out with minimal time
overhead (§19.4.2).

The optionalh hi in nt t argument toa al ll lo oc ca at te e() is completely implementation-dependent. However,
it is intended as a help to allocators for systems where locality is important. For example, an allo-
cator might try to allocate space for related objects on the same page in a paging system. The type
of theh hi in nt t argument is thep po oi in nt te er r from the ultra-simplified specialization:

t te em mp pl la at te e <> c cl la as ss s a al ll lo oc ca at to or r<v vo oi id d> {
p pu ub bl li ic c:

t ty yp pe ed de ef f v vo oi id d* p po oi in nt te er r;
t ty yp pe ed de ef f c co on ns st t v vo oi id d* c co on ns st t_ _p po oi in nt te er r;
/ / note: no reference
t ty yp pe ed de ef f v vo oi id d v va al lu ue e_ _t ty yp pe e;
t te em mp pl la at te e <c cl la as ss s U U>
s st tr ru uc ct t r re eb bi in nd d { t ty yp pe ed de ef f a al ll lo oc ca at to or r<U U> o ot th he er r; }; / / in effect: typedef allocator<U> other

};

Thea al ll lo oc ca at to or r<v vo oi id d>: : p po oi in nt te er r type acts as a universal pointer type and isc co on ns st t v vo oi id d* for all stan-
dard allocators.

Unless the documentation for an allocator says otherwise, the user has two reasonable choices
when callinga al ll lo oc ca at te e() :

[1] Don’t give a hint.
[2] Use a pointer to an object that is frequently used together with the new object as the hint; for

example, the previous element in a sequence.
Allocators are intended to save implementers of containers from having to deal with raw memory
directly. As an example, consider how av ve ec ct to or r implementation might use memory:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : p po oi in nt te er r i it te er ra at to or r;
/ / ...

p pr ri iv va at te e:
A A a al ll lo oc c; / / allocator object
i it te er ra at to or r v v; / / pointer to elements
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.4.1 The Standard Allocator 569

p pu ub bl li ic c:
e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& a a = A A())

: a al ll lo oc c(a a)
{

v v = a al ll lo oc c. a al ll lo oc ca at te e(n n) ;
f fo or r(i it te er ra at to or r p p = v v; p p<v v+n n; ++p p) a al ll lo oc c. c co on ns st tr ru uc ct t(p p, v va al l) ;
/ / ...

}

v vo oi id d r re es se er rv ve e(s si iz ze e_ _t ty yp pe e n n)
{

i if f (n n<=c ca ap pa ac ci it ty y()) r re et tu ur rn n;

i it te er ra at to or r p p = a al ll lo oc c. a al ll lo oc ca at te e(n n) ;
i it te er ra at to or r q q = v v;

w wh hi il le e (q q<v v+s si iz ze e()) { / / copy existing elements
a al ll lo oc c. c co on ns st tr ru uc ct t(p p++,* q q) ;
a al ll lo oc c. d de es st tr ro oy y(q q++) ;

}
a al ll lo oc c. d de ea al ll lo oc ca at te e(v v, c ca ap pa ac ci it ty y()) ; / / free old space
v v = p p;
/ / ...

}

/ / ...
};

Thea al ll lo oc ca at to or r operations are expressed in terms ofp po oi in nt te er r andr re ef fe er re en nc ce e t ty yp pe ed de ef fs to give the user
a chance to supply alternative types for accessing memory. This is very hard to do in general. For
example, it is not possible to define a perfect reference type within the C++ language. However,
language and library implementers can use theset ty yp pe ed de ef fs to support types that couldn’t be pro-
vided by an ordinary user. An example would be an allocator that provided access to a persistent
store. Another example would be a ‘‘long’’ pointer type for accessing main memory beyond what
a default pointer (usually 32 bits) could address.

The ordinary user can supply an unusual pointer type to an allocator for specific uses. The
equivalent cannot be done for references, but that may be an acceptable constraint for an experi-
ment or a specialized system.

An allocator is designed to make it easy to handle objects of the type specified by its template
parameter. However, most container implementations require objects of additional types. For
example, the implementer of al li is st t will need to allocateL Li in nk k objects. Usually, suchL Li in nk ks must be
allocated using theirl li is st t’s allocator.

The curiousr re eb bi in nd d type is provided to allow an allocator to allocate objects of arbitrary type.
Consider:

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : r re eb bi in nd d<L Li in nk k>: : o ot th he er r L Li in nk k_ _a al ll lo oc c;

If A A is ana al ll lo oc ca at to or r, thenr re eb bi in nd d<L Li in nk k>: : o ot th he er r is t ty yp pe ed de ef f’d to meana al ll lo oc ca at to or r<L Li in nk k>, so the pre-
vious t ty yp pe ed de ef f is an indirect way of saying:

t ty yp pe ed de ef f a al ll lo oc ca at to or r<L Li in nk k> L Li in nk k_ _a al ll lo oc c;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

570 Iterators and Allocators Chapter 19

The indirection frees us from having to mentiona al ll lo oc ca at to or r directly. It expresses theL Li in nk k_ _a al ll lo oc c
type in terms of a template parameterA A. For example:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s l li is st t {
p pr ri iv va at te e:

c cl la as ss s L Li in nk k { /* ... */ };

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : r re eb bi in nd d<L Li in nk k>: : o ot th he er r L Li in nk k_ _a al ll lo oc c; / / allocator<Link>

L Li in nk k_ _a al ll lo oc c a a; / / link allocator
A A a al ll lo oc c; / / list allocator
/ / ...

p pu ub bl li ic c:
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : p po oi in nt te er r i it te er ra at to or r;
/ / ...

i it te er ra at to or r i in ns se er rt t(i it te er ra at to or r p po os s, c co on ns st t T T& x x)
{

L Li in nk k_ _a al ll lo oc c: : p po oi in nt te er r p p = a a. a al ll lo oc ca at te e(1 1) ; / / get a Link
/ / ...

}
/ / ...

};

BecauseL Li in nk k is a member ofl li is st t, it is parameterized by an allocator. Consequently,L Li in nk ks from
l li is st ts with different allocators are of different types, just like thel li is st ts themselves (§17.3.3).

19.4.2 A User-Defined Allocator [iter.alloc.user]

Implementers of containers oftena al ll lo oc ca at te e() andd de ea al ll lo oc ca at te e() objects one at a time. For a naive
implementation ofa al ll lo oc ca at te e() , this implies lots of calls of operatorn ne ew w, and not all implementa-
tions of operatorn ne ew w are efficient when used like that. As an example of a user-defined allocator, I
present a scheme for using pools of fixed-sized pieces of memory from which the allocator can
a al ll lo oc ca at te e() more efficiently than can a conventional and more generalo op pe er ra at to or r n ne ew w() .

I happen to have a pool allocator that does approximately the right thing, but it has the wrong
interface (because it was designed years before allocators were invented). ThisP Po oo ol l class imple-
ments the notion of a pool of fixed-sized elements from which a user can do fast allocations and
deallocations. It is a low-level type that deals with memory directly and worries about alignment:

c cl la as ss s P Po oo ol l {
s st tr ru uc ct t L Li in nk k { L Li in nk k* n ne ex xt t; };

s st tr ru uc ct t C Ch hu un nk k {
e en nu um m { s si iz ze e = 8 8* 1 10 02 24 4- 1 16 6 };
C Ch hu un nk k* n ne ex xt t;
c ch ha ar r m me em m[s si iz ze e] ;

};
C Ch hu un nk k* c ch hu un nk ks s;

c co on ns st t u un ns si ig gn ne ed d i in nt t e es si iz ze e;
L Li in nk k* h he ea ad d;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.4.2 A User-Defined Allocator 571

P Po oo ol l(P Po oo ol l&) ; / / copy protection
v vo oi id d o op pe er ra at to or r=(P Po oo ol l&) ; / / copy protection
v vo oi id d g gr ro ow w() ; / / make pool larger

p pu ub bl li ic c:
P Po oo ol l(u un ns si ig gn ne ed d i in nt t n n) ; / / n is the size of elements
~P Po oo ol l() ;

v vo oi id d* a al ll lo oc c() ; / / allocate one element
v vo oi id d f fr re ee e(v vo oi id d* b b) ; / / put an element back into the pool

};

i in nl li in ne e v vo oi id d* P Po oo ol l: : a al ll lo oc c()
{

i if f (h he ea ad d==0 0) g gr ro ow w() ;
L Li in nk k* p p = h he ea ad d; / / return first element
h he ea ad d = p p-> n ne ex xt t;
r re et tu ur rn n p p;

}

i in nl li in ne e v vo oi id d P Po oo ol l: : f fr re ee e(v vo oi id d* b b)
{

L Li in nk k* p p = s st ta at ti ic c_ _c ca as st t<L Li in nk k*>(b b) ;
p p-> n ne ex xt t = h he ea ad d; / / put b back as first element
h he ea ad d = p p;

}

P Po oo ol l: : P Po oo ol l(u un ns si ig gn ne ed d i in nt t s sz z)
: e es si iz ze e(s sz z<s si iz ze eo of f(L Li in nk k*)? s si iz ze eo of f(L Li in nk k*): s sz z)

{
h he ea ad d = 0 0;
c ch hu un nk ks s = 0 0;

}

P Po oo ol l: :~ P Po oo ol l() / / free all chunks
{

C Ch hu un nk k* n n = c ch hu un nk ks s;
w wh hi il le e (n n) {

C Ch hu un nk k* p p = n n;
n n = n n-> n ne ex xt t;
d de el le et te e p p;

}
}

v vo oi id d P Po oo ol l: : g gr ro ow w() / / allocate new ‘chunk,’ organize it as a linked list of elements of size ’esize’
{

C Ch hu un nk k* n n = n ne ew w C Ch hu un nk k;
n n-> n ne ex xt t = c ch hu un nk ks s;
c ch hu un nk ks s = n n;

c co on ns st t i in nt t n ne el le em m = C Ch hu un nk k: : s si iz ze e/ e es si iz ze e;
c ch ha ar r* s st ta ar rt t = n n-> m me em m;
c ch ha ar r* l la as st t = &s st ta ar rt t[(n ne el le em m- 1 1)* e es si iz ze e] ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

572 Iterators and Allocators Chapter 19

f fo or r (c ch ha ar r* p p = s st ta ar rt t; p p<l la as st t; p p+=e es si iz ze e) / / assume sizeof(Link)<=esize
r re ei in nt te er rp pr re et t_ _c ca as st t<L Li in nk k*>(p p)-> n ne ex xt t = r re ei in nt te er rp pr re et t_ _c ca as st t<L Li in nk k*>(p p+e es si iz ze e) ;

r re ei in nt te er rp pr re et t_ _c ca as st t<L Li in nk k*>(l la as st t)-> n ne ex xt t = 0 0;
h he ea ad d = r re ei in nt te er rp pr re et t_ _c ca as st t<L Li in nk k*>(s st ta ar rt t) ;

}

To add a touch of realism, I’ll useP Po oo ol l unchanged as part of the implementation of my allocator,
rather than rewrite it to give it the right interface. The pool allocator is intended for fast allocation
and deallocation of single elements and that is what myP Po oo ol l class supports. Extending this imple-
mentation to handle allocations of arbitrary numbers of objects and to objects of arbitrary size (as
required byr re eb bi in nd d()) is left as an exercise (§19.6[9]).

GivenP Po oo ol l, the definition ofP Po oo ol l_ _a al ll lo oc c is trivial;

t te em mp pl la at te e <c cl la as ss s T T> c cl la as ss s P Po oo ol l_ _a al ll lo oc c {
p pr ri iv va at te e:

s st ta at ti ic c P Po oo ol l m me em m; / / pool of elements of sizeof(T)
p pu ub bl li ic c:

/ / like the standard allocator (§19.4.1)
};

t te em mp pl la at te e <c cl la as ss s T T> P Po oo ol l P Po oo ol l_ _a al ll lo oc c<T T>: : m me em m(s si iz ze eo of f(T T)) ;

t te em mp pl la at te e <c cl la as ss s T T> P Po oo ol l_ _a al ll lo oc c<T T>: : P Po oo ol l_ _a al ll lo oc c() { }

t te em mp pl la at te e <c cl la as ss s T T>
T T* P Po oo ol l_ _a al ll lo oc c<T T>: : a al ll lo oc ca at te e(s si iz ze e_ _t ty yp pe e n n, v vo oi id d* = 0 0)
{

i if f (n n == 1 1) r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*>(m me em m. a al ll lo oc c()) ;
/ / ...

}

t te em mp pl la at te e <c cl la as ss s T T>
v vo oi id d P Po oo ol l_ _a al ll lo oc c<T T>: : d de ea al ll lo oc ca at te e(p po oi in nt te er r p p, s si iz ze e_ _t ty yp pe e n n)
{

i if f (n n == 1 1) {
m me em m. f fr re ee e(p p) ;
r re et tu ur rn n;

}
/ / ...

}

This allocator can now be used in the obvious way:

v ve ec ct to or r<i in nt t, P Po oo ol l_ _a al ll lo oc c> v v;
m ma ap p<s st tr ri in ng g, n nu um mb be er r, P Po oo ol l_ _a al ll lo oc c> m m;

/ / use exactly as usual

v ve ec ct to or r<i in nt t> v v2 2 = v v; / / error: different allocator parameters

I chose to make theP Po oo ol l for a P Po oo ol l_ _a al ll lo oc c static because of a restriction that the standard library
imposes on allocators used by the standard containers: the implementation of a standard container
is allowed to treat every object of its allocator type as equivalent. This can lead to significant

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.4.2 A User-Defined Allocator 573

performance advantages. For example, because of this restriction, memory need not be set aside for
allocators inL Li in nk k objects (which are typically parameterized by the allocator of the container for
which they areL Li in nk ks; §19.4.1), and operations that may access elements of two sequences (such as
s sw wa ap p()) need not check whether the objects manipulated all have the same allocator. However,
the restriction does imply that such allocators cannot use per-object data.

Before applying this kind of optimization, make sure that it is necessary. I expect that many
defaulta al ll lo oc ca at to or rs will implement exactly this kind of classic C++ optimization– thus saving you
the bother.

19.4.3 Generalized Allocators [iter.general]

An a al ll lo oc ca at to or r is a simplified and optimized variant of the idea of passing information to a container
through a template parameter (§13.4.1, §16.2.3). For example, it makes sense to require that every
element in a container is allocated by the container’s allocator. However, if twol li is st ts of the same
type were allowed to have different allocators, thens sp pl li ic ce e() (§17.2.2.1) couldn’t be implemented
through relinking. Instead,s sp pl li ic ce e() would have to be defined in terms of copying of elements to
protect against the rare cases in which we want to splice elements from al li is st t with one allocator into
another with a different allocator of the same allocator type. Similarly, if allocators were allowed
to be perfectly general, ther re eb bi in nd d mechanism that allows an allocator to allocate elements of arbi-
trary types would have to be more elaborate. Consequently, a standard allocator is assumed to hold
no per-object data and an implementation of a standard may take advantage of that.

Surprisingly, the apparently Draconian restriction against per-object information in allocators is
not particularly serious. Most allocators do not need per-object data and can be made to run faster
without such data. Allocators can still hold data on a per-allocator-type basis. If separate data is
needed, separate allocator types can be used. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s D D> c cl la as ss s M My y_ _a al ll lo oc c { / / allocator for T implemented using D
D D d d; / / data needed for My_alloc<T,D>
/ / ...

};

t ty yp pe ed de ef f M My y_ _a al ll lo oc c<i in nt t, P Pe er rs si is st te en nt t_ _i in nf fo o> P Pe er rs si is st te en nt t;
t ty yp pe ed de ef f M My y_ _a al ll lo oc c<i in nt t, S Sh ha ar re ed d_ _i in nf fo o> S Sh ha ar re ed d;
t ty yp pe ed de ef f M My y_ _a al ll lo oc c<i in nt t, D De ef fa au ul lt t_ _i in nf fo o> D De ef fa au ul lt t;

l li is st t<i in nt t, P Pe er rs si is st te en nt t> l ls st t1 1;
l li is st t<i in nt t, S Sh ha ar re ed d> l ls st t2 2;
l li is st t<i in nt t, D De ef fa au ul lt t> l ls st t3 3;

The lists l ls st t1 1, l ls st t2 2, and l ls st t3 3 are of different types. Therefore, we must use general algorithms
(Chapter 18) when operating on two of these lists rather than specialized list operations (§17.2.2.1).
This implies that copying rather than relinking is done, so having different allocators poses no
problems.

The restriction against per-object data in allocators is imposed because of the stringent demands
on the run-time and space efficiency of the standard library. For example, the space overhead of
allocator data for a list probably wouldn’t be significant. However, it could be serious if each link
of a list suffered overhead.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

574 Iterators and Allocators Chapter 19

Consider how the allocator technique could be used when the efficiency constraints of the stan-
dard library don’t apply. This would be the case for a nonstandard library that wasn’t meant to
deliver high performance for essentially every data structure and every type in a program and for
some special-purpose implementations of the standard library. In such cases, an allocator can be
used to carry the kind of information that often inhabits universal base classes (§16.2.2). For exam-
ple, an allocator could be designed to answer requests about where its objects are allocated, present
data representing object layout, and answer questions such as ‘‘is this element in this container?’’
It could also provide controls for a container that acts as a cache for memory in permanent storage,
provide association between the container and other objects, etc.

In this way, arbitrary services can be provided transparently to the ordinary container opera-
tions. However, it is best to distinguish between issues relating to storage of data and issues of the
use of data. The latter do not belong in a generalized allocator, but they could be provided through
a separate template argument.

19.4.4 Uninitialized Memory [iter.memory]

In addition to the standarda al ll lo oc ca at to or r, the<m me em mo or ry y> header provides a few functions for dealing
with uninitialized memory. They share the dangerous and occasionally essential property of using
a type nameT T to refer to space sufficient to hold an object of typeT T rather than to a properly con-
structed object of typeT T.

The library provides three ways to copy values into uninitialized space:

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s F Fo or r>
F Fo or r u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(I In n f fi ir rs st t, I In n l la as st t, F Fo or r r re es s) / / copy into res
{

t ty yp pe ed de ef f t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<F Fo or r>: : v va al lu ue e_ _t ty yp pe e V V;

w wh hi il le e (f fi ir rs st t != l la as st t)
n ne ew w (s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&* r re es s++)) V V(* f fi ir rs st t++) ; / / construct in res (§10.4.11)

r re et tu ur rn n r re es s;
}

t te em mp pl la at te e <c cl la as ss s F Fo or r, c cl la as ss s T T>
v vo oi id d u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(F Fo or r f fi ir rs st t, F Fo or r l la as st t, c co on ns st t T T& v va al l)
{

t ty yp pe ed de ef f t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<F Fo or r>: : v va al lu ue e_ _t ty yp pe e V V;

w wh hi il le e (f fi ir rs st t != l la as st t) n ne ew w (s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&* f fi ir rs st t++)) V V(v va al l) ; / / construct in first
}

t te em mp pl la at te e <c cl la as ss s F Fo or r, c cl la as ss s S Si iz ze e, c cl la as ss s T T>
v vo oi id d u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(F Fo or r f fi ir rs st t, S Si iz ze e n n, c co on ns st t T T& v va al l)
{

t ty yp pe ed de ef f t ty yp pe en na am me e i it te er ra at to or r_ _t tr ra ai it ts s<F Fo or r>: : v va al lu ue e_ _t ty yp pe e V V;

w wh hi il le e (n n--) n ne ew w (s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&* f fi ir rs st t++)) V V(v va al l) ; / / construct in first
}

These functions are intended primarily for implementers of containers and algorithms. For exam-
ple, r re es se er rv ve e() and r re es si iz ze e() (§16.3.8) are most easily implemented using these functions

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.4.4 Uninitialized Memory 575

(§19.6[10]). It would clearly be most unfortunate if an uninitialized object escaped from the inter-
nals of a container into the hands of general users.

Algorithms often require temporary space to perform acceptably. Often, such temporary space
is best allocated in one operation but not initialized until a particular location is actually needed.
Consequently, the library provides a pair of functions for allocating and deallocating uninitialized
space:

t te em mp pl la at te e <c cl la as ss s T T> p pa ai ir r<T T*, p pt tr rd di if ff f_ _t t> g ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r(p pt tr rd di if ff f_ _t t) ;/ / allocate, don’t initialize
t te em mp pl la at te e <c cl la as ss s T T> v vo oi id d r re et tu ur rn n_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r(T T*) ; / / deallocate, don’t destroy

A g ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r<X X>(n n) operation tries to allocate space forn n or more objects of typeX X.
If it succeeds in allocating some memory, it returns a pointer to the first uninitialized space and the
number of objects of typeX X that will fit into that space; otherwise, thes se ec co on nd d value of the pair is
zero. The idea is that a system may keep a number of fixed-sized buffers ready for fast allocation
so that requesting space forn n objects may yield space for more thann n. It may also yield less, how-
ever, so one way of usingg ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() is to optimistically ask for a lot and then use
what happens to be available.

A buffer obtained byg ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() must be freed for other use by a call of
r re et tu ur rn n_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() . Just asg ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() allocates without constructing,
r re et tu ur rn n_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() frees without destroying. Becauseg ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() is low-
level and likely to be optimized for managing temporary buffers, it should not be used as an alter-
native ton ne ew w or a al ll lo oc ca at to or r: : a al ll lo oc ca at te e() for obtaining longer-term storage.

The standard algorithms that write into a sequence assume that the elements of that sequence
have been previously initialized. That is, the algorithms use assignment rather than copy construc-
tion for writing. Consequently, we cannot use uninitialized memory as the immediate target of an
algorithm. This can be unfortunate because assignment can be significantly more expensive than
initialization. Besides, we are not interested in the values we are about to overwrite anyway (or we
wouldn’t be overwriting them). The solution is to use ar ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r from <m me em mo or ry y>
that initializes instead of assigns:

t te em mp pl la at te e <c cl la as ss s O Ou ut t, c cl la as ss s T T>
c cl la as ss s r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r : p pu ub bl li ic c i it te er ra at to or r<o ou ut tp pu ut t_ _i it te er ra at to or r_ _t ta ag g, v vo oi id d, v vo oi id d, v vo oi id d, v vo oi id d> {

O Ou ut t p p;
p pu ub bl li ic c:

e ex xp pl li ic ci it t r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r(O Ou ut t p pp p) : p p(p pp p) { }

r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r& o op pe er ra at to or r*() { r re et tu ur rn n * p p; }
r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r& o op pe er ra at to or r=(c co on ns st t T T& v va al l)
{

T T* p pp p = &* p p;
n ne ew w(p pp p) T T(v va al l) ; / / place val in pp (§10.4.11)
r re et tu ur rn n p p;

}
r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r& o op pe er ra at to or r++() { r re et tu ur rn n ++p p; }
r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r o op pe er ra at to or r++(i in nt t) { r re et tu ur rn n p p++; }

};

For example, we might write a template that copies the contents of av ve ec ct to or r into a buffer:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

576 Iterators and Allocators Chapter 19

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> T T* t te em mp po or ra ar ry y_ _d du up p(v ve ec ct to or r<T T, A A>& v v)
{

T T* p p = g ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r<T T>(v v. s si iz ze e()). f fi ir rs st t;
i if f (p p == 0 0) r re et tu ur rn n 0 0;
c co op py y(v v. b be eg gi in n() , v v. e en nd d() , r ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r<T T*, T T>(p p)) ;
r re et tu ur rn n p p;

}

Had n ne ew w been used instead ofg ge et t_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() , initialization would have been done.
Once initialization is avoided, ther ra aw w_ _s st to or ra ag ge e_ _i it te er ra at to or r becomes necessary for dealing with the
uninitialized space. In this example, the caller oft te em mp po or ra ar ry y_ _d du up p() is responsible for calling
d de es st tr ro oy y_ _t te em mp po or ra ar ry y_ _b bu uf ff fe er r() for the pointer it received.

19.4.5 Dynamic Memory [iter.dynamic]

The functions used to implement then ne ew w andd de el le et te e operators are declared in<n ne ew w> together with
a few related facilities:

c cl la as ss s b ba ad d_ _a al ll lo oc c : p pu ub bl li ic c e ex xc ce ep pt ti io on n { /* ... */ };

s st tr ru uc ct t n no ot th hr ro ow w_ _t t {};
e ex xt te er rn n c co on ns st t n no ot th hr ro ow w_ _t t n no ot th hr ro ow w; / / indicator for allocation that doesn’t throw exceptions

t ty yp pe ed de ef f v vo oi id d (* n ne ew w_ _h ha an nd dl le er r)() ;
n ne ew w_ _h ha an nd dl le er r s se et t_ _n ne ew w_ _h ha an nd dl le er r(n ne ew w_ _h ha an nd dl le er r n ne ew w_ _p p) t th hr ro ow w() ;

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t) t th hr ro ow w(b ba ad d_ _a al ll lo oc c) ;
v vo oi id d o op pe er ra at to or r d de el le et te e(v vo oi id d*) t th hr ro ow w() ;

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t, c co on ns st t n no ot th hr ro ow w_ _t t&) t th hr ro ow w() ;
v vo oi id d o op pe er ra at to or r d de el le et te e(v vo oi id d*, c co on ns st t n no ot th hr ro ow w_ _t t&) t th hr ro ow w() ;

v vo oi id d* o op pe er ra at to or r n ne ew w[](s si iz ze e_ _t t) t th hr ro ow w(b ba ad d_ _a al ll lo oc c) ;
v vo oi id d o op pe er ra at to or r d de el le et te e[](v vo oi id d*) t th hr ro ow w() ;

v vo oi id d* o op pe er ra at to or r n ne ew w[](s si iz ze e_ _t t, c co on ns st t n no ot th hr ro ow w_ _t t&) t th hr ro ow w() ;
v vo oi id d o op pe er ra at to or r d de el le et te e[](v vo oi id d*, c co on ns st t n no ot th hr ro ow w_ _t t&) t th hr ro ow w() ;

v vo oi id d* o op pe er ra at to or r n ne ew w (s si iz ze e_ _t t, v vo oi id d* p p) t th hr ro ow w() { r re et tu ur rn n p p; } / / placement (§10.4.11)
v vo oi id d o op pe er ra at to or r d de el le et te e (v vo oi id d* p p, v vo oi id d*) t th hr ro ow w() { }

v vo oi id d* o op pe er ra at to or r n ne ew w[](s si iz ze e_ _t t, v vo oi id d* p p) t th hr ro ow w() { r re et tu ur rn n p p; }
v vo oi id d o op pe er ra at to or r d de el le et te e[](v vo oi id d* p p, v vo oi id d*) t th hr ro ow w() { }

The n no ot th hr ro ow w versions ofo op pe er ra at to or r n ne ew w() allocate as usual, but if allocation fails, they return0 0
rather than throwingb ba ad d_ _a al ll lo oc c. For example:

v vo oi id d f f()
{

i in nt t* p p = n ne ew w i in nt t[1 10 00 00 00 00 0] ; / / may throw bad_alloc

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 19.4.5 Dynamic Memory 577

i if f (i in nt t* q q = n ne ew w(n no ot th hr ro ow w) i in nt t[1 10 00 00 00 00 0]) { / / will not throw exception
/ / allocation succeeded

}
e el ls se e {

/ / allocation failed
}

}

This allows us to use pre-exception error-handling strategies for allocation.

19.4.6 C-Style Allocation [iter.c]

From C, C++ inherited a functional interface to dynamic memory. It can be found in<c cs st td dl li ib b>:

v vo oi id d* m ma al ll lo oc c(s si iz ze e_ _t t s s) ; / / allocate s bytes
v vo oi id d* c ca al ll lo oc c(s si iz ze e_ _t t n n, s si iz ze e_ _t t s s) ; / / allocate n times s bytes initialized to 0
v vo oi id d f fr re ee e(v vo oi id d* p p) ; / / free space allocated by malloc() or calloc()
v vo oi id d* r re ea al ll lo oc c(v vo oi id d* p p, s si iz ze e_ _t t s s) ; / / change the size of the array pointed to by p to s;

/ / if that cannot be done, allocate s bytes, copy
/ / the array pointed to by p to it, and free p

These functions should be avoided in favor ofn ne ew w, d de el le et te e, and standard containers. These func-
tions deal with uninitialized memory. In particular,f fr re ee e() does not invoke destructors for the
memory it frees. An implementation ofn ne ew w andd de el le et te e may use these functions, but there is no
guarantee that it does. For example, allocating an object usingn ne ew w and deleting it usingf fr re ee e() is
asking for trouble. If you feel the need to user re ea al ll lo oc c() , consider relying on a standard container
instead; doing that is usually simpler and just as efficient (§16.3.5).

The library also provides a set of functions intended for efficient manipulation of bytes.
Because C originally accessed untyped bytes throughc ch ha ar r* pointers, these functions are found in
<c cs st tr ri in ng g>. Thev vo oi id d* pointers are treated as if they werec ch ha ar r* pointers within these functions:

v vo oi id d* m me em mc cp py y(v vo oi id d* p p, c co on ns st t v vo oi id d* q q, s si iz ze e_ _t t n n) ; / / copy non-overlapping areas
v vo oi id d* m me em mm mo ov ve e(v vo oi id d* p p, c co on ns st t v vo oi id d* q q, s si iz ze e_ _t t n n) ; / / copy potentially overlapping areas

Like s st tr rc cp py y() (§20.4.1), these functions copyn n bytes fromq q to p p and returnp p. The ranges copied
by m me em mm mo ov ve e() may overlap. However,m me em mc cp py y() assumes that the ranges do not overlap and is
usually optimized to take advantage of that assumption. Similarly:

v vo oi id d* m me em mc ch hr r(c co on ns st t v vo oi id d* p p, i in nt t b b, s si iz ze e_ _t t n n) ; / / like strchr() (§20.4.1): find b in p[0]..p[n-1]
i in nt t m me em mc cm mp p(c co on ns st t v vo oi id d* p p, c co on ns st t v vo oi id d* q q, s si iz ze e_ _t t n n) ; / / like strcmp(): compare byte sequences
v vo oi id d* m me em ms se et t(v vo oi id d* p p, i in nt t b b, s si iz ze e_ _t t n n) ; / / set n bytes to b, return p

Many implementations provide highly optimized versions of these functions.

19.5 Advice[iter.advice]

[1] When writing an algorithm, decide which kind of iterator is needed to provide acceptable effi-
ciency and express the algorithm using the operators supported by that kind of iterator (only);
§19.2.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

578 Iterators and Allocators Chapter 19

[2] Use overloading to provide more-efficient implementations of an algorithm when given as
arguments iterators that offer more than minimal support for the algorithm; §19.2.3.

[3] Usei it te er ra at to or r_ _t tr ra ai it ts s to express suitable algorithms for different iterator categories; §19.2.2.
[4] Remember to use++ between accesses ofi is st tr re ea am m_ _i it te er ra at to or rs ando os st tr re ea am m_ _i it te er ra at to or rs; §19.2.6.
[5] Use inserters to avoid container overflow; §19.2.4.
[6] Use extra checking during debugging and remove checking later only where necessary;

§19.3.1.
[7] Prefer++p p to p p++; §19.3.
[8] Use uninitialized memory to improve the performance of algorithms that expand data struc-

tures; §19.4.4.
[9] Use temporary buffers to improve the performance of algorithms that require temporary data

structures; §19.4.4.
[10] Think twice before writing your own allocator; §19.4.
[11] Avoid m ma al ll lo oc c() , f fr re ee e() , r re ea al ll lo oc c() , etc.; §19.4.6.
[12] You can simulate at ty yp pe ed de ef f of a template by the technique used forr re eb bi in nd d; §19.4.1.

19.6 Exercises[iter.exercises]

1. (∗1.5) Implementr re ev ve er rs se e() from §18.6.7. Hint: See §19.2.3.
2. (∗1.5) Write an output iterator,S Si in nk k, that doesn’t actually write anywhere. When canS Si in nk k be

useful?
3. (∗2) Implementr re ev ve er rs se e_ _i it te er ra at to or r (§19.2.5).
4. (∗1.5) Implemento os st tr re ea am m_ _i it te er ra at to or r (§19.2.6).
5. (∗2) Implementi is st tr re ea am m_ _i it te er ra at to or r (§19.2.6).
6. (∗2.5) CompleteC Ch he ec ck ke ed d_ _i it te er r (§19.3).
7. (∗2.5) RedesignC Ch he ec ck ke ed d_ _i it te er r to check for invalidated iterators.
8. (∗2) Design and implement a handle class that can act as a proxy for a container by providing a

complete container interface to its users. Its implementation should consist of a pointer to a
container plus implementations of container operations that do range checking.

9. (∗2.5) Complete or reimplementP Po oo ol l_ _a al ll lo oc c (§19.4.2) so that it provides all of the facilities of
the standard librarya al ll lo oc ca at to or r (§19.4.1). Compare the performance ofa al ll lo oc ca at to or r and
P Po oo ol l_ _a al ll lo oc c to see if there is any reason to use aP Po oo ol l_ _a al ll lo oc c on your system.

10. (∗2.5) Implementv ve ec ct to or r using allocators rather thann ne ew w andd de el le et te e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

20
_ __ _______________________________________

Strings

Prefer the standard to the offbeat.
– Strunk & White

Strings— characters— c ch ha ar r_ _t tr ra ai it ts s — b ba as si ic c_ _s st tr ri in ng g — iterators— element access—
constructors— error handling— assignment— conversions— comparisons— inser-
tion — concatenation— find and replace— size and capacity— string I/O— C-style
strings— character classification— C library functions— advice— exercises.

20.1 Introduction [string.intro]

A string is a sequence of characters. The standard librarys st tr ri in ng g provides string manipulation oper-
ations such as subscripting (§20.3.3), assignment (§20.3.6), comparison (§20.3.8), appending
(§20.3.9), concatenation (§20.3.10), and searching for substrings (§20.3.11). No general substring
facility is provided by the standard, so one is provided here as an example of standard string use
(§20.3.11). A standard string can be a string of essentially any kind of character (§20.2).

Experience shows that it is impossible to design the perfects st tr ri in ng g. People’s taste, expectations,
and needs differ too much for that. So, the standard librarys st tr ri in ng g isn’t ideal. I would have made
some design decisions differently, and so would you. However, it serves many needs well, auxil-
iary functions to serve further needs are easily provided, ands st td d: : s st tr ri in ng g is generally known and
available. In most cases, these factors are more important than any minor improvement we could
provide. Writing string classes has great educational value (§11.12, §13.2), but for code meant to
be widely used, the standard librarys st tr ri in ng g is the one to use.

From C, C++ inherited the notion of strings as zero-terminated arrays ofc ch ha ar r and a set of func-
tions for manipulating such C-style strings (§20.4.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

580 Strings Chapter 20

20.2 Characters[string.char]

‘‘Character’’ is itself an interesting concept. Consider the characterC C. The C C that you see as a
curved line on the page (or screen), I typed into my computer many months ago. There, it lives as
the numeric value6 67 7 in an 8-bit byte. It is the third letter in the Latin alphabet, the usual abbrevia-
tion for the sixth atom (Carbon), and, incidentally, the name of a programming language (§1.6).
What matters in the context of programming with strings is that there is a correspondence between
squiggles with conventional meaning, called characters, and numeric values. To complicate mat-
ters, the same character can have different numeric values in different character sets, not every
character set has values for every character, and many different character sets are in common use.
A character set is a mapping between a character (some conventional symbol) and an integer value.

C++ programmers usually assume that the standard American character set (ASCII) is available,
but C++ makes allowances for the possibility that some characters may be missing in a
programmer’s environment. For example, in the absence of characters such as[and{ , keywords
and digraphs can be used (§C.3.1).

Character sets with characters not in ASCII offer a greater challenge. Languages such as Chi-
nese, Danish, French, Icelandic, and Japanese cannot be written properly using ASCII only.
Worse, the character sets used for these languages can be mutually incompatible. For example, the
characters used for European languages using Latin alphabetsalmostfit into a 256-character char-
acter set. Unfortunately, different sets are still used for different languages and some different
characters have ended up with the same integer value. For example, French (using Latin1) doesn’t
coexist well with Icelandic (which therefore requires Latin2). Ambitious attempts to present every
character known to man in a single character set have helped a lot, but even 16-bit character sets–
such as Unicode– are not enough to satisfy everyone. The 32-bit character sets that could– as far
as I know– hold every character are not widely used.

Basically, the C++ approach is to allow a programmer to use any character set as the character
type in strings. An extended character set or a portable numeric encoding can be used (§C.3.3).

20.2.1 Character Traits [string.traits]

As shown in §13.2, a string can, in principle, use any type with proper copy operations as its char-
acter type. However, efficiency can be improved and implementations can be simplified for types
that don’t have user-defined copy operations. Consequently, the standards st tr ri in ng g requires that a
type used as its character type does not have user-defined copy operations. This also helps to make
I/O of strings simple and efficient.

The properties of a character type are defined by itsc ch ha ar r_ _t tr ra ai it ts s. A c ch ha ar r_ _t tr ra ai it ts s is a specializa-
tion of the template:

t te em mp pl la at te e<c cl la as ss s C Ch h> s st tr ru uc ct t c ch ha ar r_ _t tr ra ai it ts s { };

All c ch ha ar r_ _t tr ra ai it ts s are defined ins st td d, and the standard ones are presented in<s st tr ri in ng g>. The general
c ch ha ar r_ _t tr ra ai it ts s itself has no properties; onlyc ch ha ar r_ _t tr ra ai it ts s specializations for a particular character type
have. Considerc ch ha ar r_ _t tr ra ai it ts s<c ch ha ar r>:

t te em mp pl la at te e<> s st tr ru uc ct t c ch ha ar r_ _t tr ra ai it ts s<c ch ha ar r> {
t ty yp pe ed de ef f c ch ha ar r c ch ha ar r_ _t ty yp pe e; / / type of character

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.2.1 Character Traits 581

s st ta at ti ic c v vo oi id d a as ss si ig gn n(c ch ha ar r_ _t ty yp pe e&, c co on ns st t c ch ha ar r_ _t ty yp pe e&) ; / / = for char_type

/ / integer representation of characters:

t ty yp pe ed de ef f i in nt t i in nt t_ _t ty yp pe e; / / type of integer value of character

s st ta at ti ic c c ch ha ar r_ _t ty yp pe e t to o_ _c ch ha ar r_ _t ty yp pe e(c co on ns st t i in nt t_ _t ty yp pe e&) ; / / int to char conversion
s st ta at ti ic c i in nt t_ _t ty yp pe e t to o_ _i in nt t_ _t ty yp pe e(c co on ns st t c ch ha ar r_ _t ty yp pe e&) ; / / char to int conversion
s st ta at ti ic c b bo oo ol l e eq q_ _i in nt t_ _t ty yp pe e(c co on ns st t i in nt t_ _t ty yp pe e&, c co on ns st t i in nt t_ _t ty yp pe e&) ; / / ==

/ / char_type comparisons:

s st ta at ti ic c b bo oo ol l e eq q(c co on ns st t c ch ha ar r_ _t ty yp pe e&, c co on ns st t c ch ha ar r_ _t ty yp pe e&) ; / / ==
s st ta at ti ic c b bo oo ol l l lt t(c co on ns st t c ch ha ar r_ _t ty yp pe e&, c co on ns st t c ch ha ar r_ _t ty yp pe e&) ; / / <

/ / operations on s[n] arrays:

s st ta at ti ic c c ch ha ar r_ _t ty yp pe e* m mo ov ve e(c ch ha ar r_ _t ty yp pe e* s s, c co on ns st t c ch ha ar r_ _t ty yp pe e* s s2 2, s si iz ze e_ _t t n n) ;
s st ta at ti ic c c ch ha ar r_ _t ty yp pe e* c co op py y(c ch ha ar r_ _t ty yp pe e* s s, c co on ns st t c ch ha ar r_ _t ty yp pe e* s s2 2, s si iz ze e_ _t t n n) ;
s st ta at ti ic c c ch ha ar r_ _t ty yp pe e* a as ss si ig gn n(c ch ha ar r_ _t ty yp pe e* s s, s si iz ze e_ _t t n n, c ch ha ar r_ _t ty yp pe e a a) ;

s st ta at ti ic c i in nt t c co om mp pa ar re e(c co on ns st t c ch ha ar r_ _t ty yp pe e* s s, c co on ns st t c ch ha ar r_ _t ty yp pe e* s s2 2, s si iz ze e_ _t t n n) ;
s st ta at ti ic c s si iz ze e_ _t t l le en ng gt th h(c co on ns st t c ch ha ar r_ _t ty yp pe e*) ;
s st ta at ti ic c c co on ns st t c ch ha ar r_ _t ty yp pe e* f fi in nd d(c co on ns st t c ch ha ar r_ _t ty yp pe e* s s, i in nt t n n, c co on ns st t c ch ha ar r_ _t ty yp pe e&) ;

/ / I/O related:

t ty yp pe ed de ef f s st tr re ea am mo of ff f o of ff f_ _t ty yp pe e; / / offset in stream
t ty yp pe ed de ef f s st tr re ea am mp po os s p po os s_ _t ty yp pe e; / / position in stream
t ty yp pe ed de ef f m mb bs st ta at te e_ _t t s st ta at te e_ _t ty yp pe e; / / multi-byte stream state

s st ta at ti ic c i in nt t_ _t ty yp pe e e eo of f() ; / / end-of-file
s st ta at ti ic c i in nt t_ _t ty yp pe e n no ot t_ _e eo of f(c co on ns st t i in nt t_ _t ty yp pe e& i i) ; / / i unless i equals eof(); if not any value!=eof()
s st ta at ti ic c s st ta at te e_ _t ty yp pe e g ge et t_ _s st ta at te e(p po os s_ _t ty yp pe e p p) ; / / multibyte conversion state of character in p

};

The implementation of the standard string template,b ba as si ic c_ _s st tr ri in ng g (§20.3), relies on these types and
functions. A type used as a character type forb ba as si ic c_ _s st tr ri in ng g must provide ac ch ha ar r_ _t tr ra ai it ts s specializa-
tion that supplies them all.

For a type to be ac ch ha ar r_ _t ty yp pe e, it must be possible to obtain an integer value corresponding to
each character. The type of that integer isi in nt t_ _t ty yp pe e, and the conversion between it and the
c ch ha ar r_ _t ty yp pe e is done byt to o_ _c ch ha ar r_ _t ty yp pe e() andt to o_ _i in nt t_ _t ty yp pe e() . For ac ch ha ar r, this conversion is trivial.

Both m mo ov ve e(s s, s s2 2, n n) and c co op py y(s s, s s2 2, n n) copy n n characters from s s2 2 to s s using
a as ss si ig gn n(s s[i i] , s s2 2[i i]) . The difference is thatm mo ov ve e() works correctly even ifs s2 2 is in the[s s, s s+n n[
range. Thus,c co op py y() can be faster. This mirrors the standard C library functionsm me em mc cp py y() and
m me em mm mo ov ve e() (§19.4.6). A calla as ss si ig gn n(s s, n n, x x) assignsn n copies ofx x into s s usinga as ss si ig gn n(s s[i i] , x x) .

Thec co om mp pa ar re e() function usesl lt t() ande eq q() to compare characters. It returns ani in nt t, where0 0
represents an exact match, a negative number means that its first argument comes lexicographically
before the second, and a positive number means that its first argument comes after its second. This
mirrors the standard C library functions st tr rc cm mp p() (§20.4.1).

The I/O-related functions are used by the implementation of low-level I/O (§21.6.4).
A wide character– that is, an object of typew wc ch ha ar r_ _t t (§4.3)– is like ac ch ha ar r, except that it takes

up two or more bytes. The properties of aw wc ch ha ar r_ _t t are described byc ch ha ar r_ _t tr ra ai it ts s<w wc ch ha ar r_ _t t>:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

582 Strings Chapter 20

t te em mp pl la at te e<> s st tr ru uc ct t c ch ha ar r_ _t tr ra ai it ts s<w wc ch ha ar r_ _t t> {
t ty yp pe ed de ef f w wc ch ha ar r_ _t t c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f w wi in nt t_ _t t i in nt t_ _t ty yp pe e;
t ty yp pe ed de ef f w ws st tr re ea am mo of ff f o of ff f_ _t ty yp pe e;
t ty yp pe ed de ef f w ws st tr re ea am mp po os s p po os s_ _t ty yp pe e;

/ / like char_traits<char>
};

A w wc ch ha ar r_ _t t is typically used to hold characters of a 16-bit character set such as Unicode.

20.3 Basic_string [string.string]

The standard library string facilities are based on the templateb ba as si ic c_ _s st tr ri in ng g that provides member
types and operations similar to those provided by standard containers (§16.3):

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s s st td d: : b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
};

This template and its associated facilities are defined in namespaces st td d and presented by<s st tr ri in ng g>.
Two t ty yp pe ed de ef fs provide conventional names for common string types:

t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r> s st tr ri in ng g;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<w wc ch ha ar r_ _t t> w ws st tr ri in ng g;

Theb ba as si ic c_ _s st tr ri in ng g is similar tov ve ec ct to or r (§16.3), except thatb ba as si ic c_ _s st tr ri in ng g provides some typical string
operations, such as searching for substrings, instead of the complete set of operations offered by
v ve ec ct to or r. A s st tr ri in ng g is unlikely to be implemented by a simple array orv ve ec ct to or r. Many common uses of
strings are better served by implementations that minimize copying, use no free store for short
strings, allow for simple modification of longer strings, etc. (see §20.6[12]). The number ofs st tr ri in ng g
functions reflects the importance of string manipulation and also the fact that some machines pro-
vide specialized hardware instructions for string manipulation. Such functions are most easily uti-
lized by a library implementer if there is a standard library function with similar semantics.

Like other standard library types, ab ba as si ic c_ _s st tr ri in ng g<T T> is a concrete type (§2.5.3, §10.3) without
virtual functions. It can be used as a member when designing more sophisticated text manipulation
classes, but it is not intended to be a base for derived classes (§25.2.1; see also §20.6[10]).

20.3.1 Types [string.types]

Like v ve ec ct to or r, b ba as si ic c_ _s st tr ri in ng g makes its related types available through a set of member type names:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / types (much like vector, list, etc.: §16.3.1):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.1 Types 583

t ty yp pe ed de ef f T Tr r t tr ra ai it ts s_ _t ty yp pe e; / / specific to basic_string

t ty yp pe ed de ef f t ty yp pe en na am me e T Tr r: : c ch ha ar r_ _t ty yp pe e v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f A A a al ll lo oc ca at to or r_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di if ff fe er re en nc ce e_ _t ty yp pe e;

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : r re ef fe er re en nc ce e r re ef fe er re en nc ce e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _r re ef fe er re en nc ce e c co on ns st t_ _r re ef fe er re en nc ce e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : p po oi in nt te er r p po oi in nt te er r;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _p po oi in nt te er r c co on ns st t_ _p po oi in nt te er r;

t ty yp pe ed de ef f implementation_defined i it te er ra at to or r;
t ty yp pe ed de ef f implementation_defined c co on ns st t_ _i it te er ra at to or r;

t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<i it te er ra at to or r> r re ev ve er rs se e_ _i it te er ra at to or r;
t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<c co on ns st t_ _i it te er ra at to or r> c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r;

/ / ...
};

The b ba as si ic c_ _s st tr ri in ng g notion supports strings of many kinds of characters in addition to the simple
b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r> known ass st tr ri in ng g. For example:

t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r> U Us st tr ri in ng g;

s st tr ru uc ct t J Jc ch ha ar r { /* ... */ }; / / Japanese character type
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<J Jc ch ha ar r> J Js st tr ri in ng g;

Strings of such characters can be used just like strings ofc ch ha ar r as far as the semantics of the charac-
ters allows. For example:

U Us st tr ri in ng g f fi ir rs st t_ _w wo or rd d(c co on ns st t U Us st tr ri in ng g& u us s)
{

U Us st tr ri in ng g: : s si iz ze e_ _t ty yp pe e p po os s = u us s. f fi in nd d(´ ´) ; / / see §20.3.11
r re et tu ur rn n U Us st tr ri in ng g(u us s, 0 0, p po os s) ; / / see §20.3.4

}

J Js st tr ri in ng g f fi ir rs st t_ _w wo or rd d(c co on ns st t J Js st tr ri in ng g& j js s)
{

J Js st tr ri in ng g: : s si iz ze e_ _t ty yp pe e p po os s = j js s. f fi in nd d(´ ´) ; / / see §20.3.11
r re et tu ur rn n J Js st tr ri in ng g(j js s, 0 0, p po os s) ; / / see §20.3.4

}

Naturally, templates that take string arguments can also be used:

t te em mp pl la at te e<c cl la as ss s S S> S S f fi ir rs st t_ _w wo or rd d(c co on ns st t S S& s s)
{

t ty yp pe en na am me e S S: : s si iz ze e_ _t ty yp pe e p po os s = s s. f fi in nd d(´ ´) ; / / see §20.3.11
r re et tu ur rn n S S(s s, 0 0, p po os s) ; / / see §20.3.4

}

A b ba as si ic c_ _s st tr ri in ng g<C Ch h> can contain any character of the setC Ch h. In particular,s st tr ri in ng g can contain a0 0
(zero).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

584 Strings Chapter 20

20.3.2 Iterators [string.begin]

Like other containers, as st tr ri in ng g provides iterators for ordinary and reverse iteration:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / iterators (like vector, list, etc.: §16.3.2):

i it te er ra at to or r b be eg gi in n() ;
c co on ns st t_ _i it te er ra at to or r b be eg gi in n() c co on ns st t;
i it te er ra at to or r e en nd d() ;
c co on ns st t_ _i it te er ra at to or r e en nd d() c co on ns st t;

r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() ;
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() c co on ns st t;
r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() ;
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() c co on ns st t;

/ / ...
};

Becauses st tr ri in ng g has the required member types and the functions for obtaining iterators,s st tr ri in ng gs can
be used together with the standard algorithms (Chapter 18). For example:

v vo oi id d f f(s st tr ri in ng g& s s)
{

s st tr ri in ng g: : i it te er ra at to or r p p = f fi in nd d(s s. b be eg gi in n() , s s. e en nd d() ,´ a a´) ;
/ / ...

}

The most common operations ons st tr ri in ng gs are supplied directly bys st tr ri in ng g. Hopefully, these versions
will be optimized fors st tr ri in ng gs beyond what would be easy to do for general algorithms.

The standard algorithms (Chapter 18) are not as useful for strings as one might think. General
algorithms tend to assume that the elements of a container are meaningful in isolation. This is typi-
cally not the case for a string. The meaning of a string is encoded in its exact sequence of charac-
ters. Thus, sorting a string (that is, sorting the characters in a string) destroys its meaning, whereas
sorting a general container typically makes it more useful.

Thes st tr ri in ng g iterators are not range checked.

20.3.3 Element Access [string.elem]

Individual characters of as st tr ri in ng g can be accessed through subscripting:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / element access (like vector: §16.3.3):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.3 Element Access 585

c co on ns st t_ _r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e n n) c co on ns st t; / / unchecked access
r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e n n) ;

c co on ns st t_ _r re ef fe er re en nc ce e a at t(s si iz ze e_ _t ty yp pe e n n) c co on ns st t; / / checked access
r re ef fe er re en nc ce e a at t(s si iz ze e_ _t ty yp pe e n n) ;

/ / ...
};

Out-of-range access causesa at t() to throw ano ou ut t_ _o of f_ _r ra an ng ge e.
Compared tov ve ec ct to or r, s st tr ri in ng g lacksf fr ro on nt t() andb ba ac ck k() . To refer to the first and the last charac-

ter of as st tr ri in ng g, we must says s[0 0] ands s[s s. l le en ng gt th h()- 1 1] , respectively. The pointer/array equiva-
lence (§5.3) doesn’t hold fors st tr ri in ng gs s. If s s is as st tr ri in ng g, &s s[0 0] is not the same ass s.

20.3.4 Constructors [string.ctor]

The set of initialization and copy operations for as st tr ri in ng g differs from what is provided for other
containers (§16.3.4) in many details:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / constructors, etc. (a bit like vector and list: §16.3.4):

e ex xp pl li ic ci it t b ba as si ic c_ _s st tr ri in ng g(c co on ns st t A A& a a = A A()) ;
b ba as si ic c_ _s st tr ri in ng g(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s,

s si iz ze e_ _t ty yp pe e p po os s = 0 0, s si iz ze e_ _t ty yp pe e n n = n np po os s, c co on ns st t A A& a a = A A()) ;
b ba as si ic c_ _s st tr ri in ng g(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n, c co on ns st t A A& a a = A A()) ;
b ba as si ic c_ _s st tr ri in ng g(c co on ns st t C Ch h* p p, c co on ns st t A A& a a = A A()) ;
b ba as si ic c_ _s st tr ri in ng g(s si iz ze e_ _t ty yp pe e n n, C Ch h c c, c co on ns st t A A& a a = A A()) ;
t te em mp pl la at te e<c cl la as ss s I In n> b ba as si ic c_ _s st tr ri in ng g(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t A A& a a = A A()) ;

~b ba as si ic c_ _s st tr ri in ng g() ;

s st ta at ti ic c c co on ns st t s si iz ze e_ _t ty yp pe e n np po os s; / / ‘‘all characters’’ marker

/ / ...
};

A s st tr ri in ng g can be initialized by a C-style string, by anothers st tr ri in ng g, by part of a C-style string, by part
of a s st tr ri in ng g, or from a sequence of characters. However, as st tr ri in ng g cannot be initialized by a charac-
ter or an integer:

v vo oi id d f f(c ch ha ar r* p p, v ve ec ct to or r<c ch ha ar r>&v v)
{

s st tr ri in ng g s s0 0; / / the empty string
s st tr ri in ng g s s0 00 0 = ""; / / also the empty string

s st tr ri in ng g s s1 1 = ´ a a´; / / error: no conversion from char to string
s st tr ri in ng g s s2 2 = 7 7; / / error: no conversion from int to string
s st tr ri in ng g s s3 3(7 7) ; / / error: no constructor taking one int argument

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

586 Strings Chapter 20

s st tr ri in ng g s s4 4(7 7,´ a a´) ; / / 7 copies of ’a’; that is "aaaaaaa"

s st tr ri in ng g s s5 5 = " F Fr ro od do o"; / / copy of "Frodo"
s st tr ri in ng g s s6 6 = s s5 5; / / copy of s5

s st tr ri in ng g s s7 7(s s5 5, 3 3, 2 2) ; / / s5[3] and s5[4]; that is "do"
s st tr ri in ng g s s8 8(p p+7 7, 3 3) ; / / p[7], p[8], and p[9]
s st tr ri in ng g s s9 9(p p, 7 7, 3 3) ; / / string(string(p),7,3), possibly expensive

s st tr ri in ng g s s1 10 0(v v. b be eg gi in n() , v v. e en nd d()) ; / / copy all characters from v
}

Characters are numbered starting at position0 0 so that a string is a sequence of characters numbered
0 0 to l le en ng gt th h()- 1 1.

The l le en ng gt th h() of a string is simply a synonym for itss si iz ze e() ; both functions return the number
of characters in the string. Note that they do not count a C-string-style, zero-terminator character
(§20.4.1). An implementation ofb ba as si ic c_ _s st tr ri in ng g stores its length rather than relying on a terminator.

Substrings are expressed as a character position plus a number of characters. The default value
n np po os s is initialized to the largest possible value and used to mean ‘‘all of the elements.’’

There is no constructor for creating a string ofn n unspecified characters. The closest we come to
that is the constructor that makes a string ofn n copies of a given character. The length of a string is
determined by the number of characters it holds at any give time. This allows the compiler to save
the programmer from silly mistakes such as the definitions ofs s2 2 ands s3 3 in the previous example.

The copy constructor is the constructor taking four arguments. Three of those arguments have
defaults. For efficiency, that constructor could be implemented as two separate constructors. The
user wouldn’t be able to tell without actually looking at the generated code.

The constructor that is a template member is the most general. It allows a string to be initial-
ized with values from an arbitrary sequence. In particular, it allows a string to be initialized with
elements of a different character type as long as a conversion exists. For example:

v vo oi id d f f(s st tr ri in ng g s s)
{

w ws st tr ri in ng g w ws s(s s. b be eg gi in n() , s s. e en nd d()) ; / / copy all characters from s
/ / ...

}

Eachw wc ch ha ar r_ _t t in w ws s is initialized by its correspondingc ch ha ar r from s s.

20.3.5 Errors [string.error]

Often, strings are simply read, written, printed, stored, compared, copied, etc. This causes no prob-
lems, or, at worst, performance problems. However, once we start manipulating individual sub-
strings and characters to compose new string values from existing ones, we sooner or later make
mistakes that could cause us to write beyond the end of a string.

For explicit access to individual characters,a at t() checks and throwso ou ut t_ _o of f_ _r ra an ng ge e() if we try
to access beyond the end of the string;[] does not.

Most string operations take a character position plus a number of characters. A position larger
than the size of the string throws ano ou ut t_ _o of f_ _r ra an ng ge e exception. A ‘‘too large’’ character count is
simply taken to be equivalent to ‘‘the rest’’ of the characters. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.5 Errors 587

v vo oi id d f f()
{

s st tr ri in ng g s s = " S Sn no ob bo ol l4 4";
s st tr ri in ng g s s2 2(s s, 1 10 00 0, 2 2) ; / / character position beyond end of string: throw out_of_range()
s st tr ri in ng g s s3 3(s s, 2 2, 1 10 00 0) ; / / character count too large: equivalent to s3(s,2,s.size()– 2)
s st tr ri in ng g s s4 4(s s, 2 2, s st tr ri in ng g: : n np po os s) ; / / the characters starting from s[2]

}

Thus, ‘‘too large’’ positions are to be avoided, but ‘‘too large’’ character counts are useful. In fact,
n np po os s is really just the largest possible value fors si iz ze e_ _t ty yp pe e.

We could try to give a negative position or character count:

v vo oi id d g g(s st tr ri in ng g& s s)
{

s st tr ri in ng g s s5 5(s s,- 2 2, 3 3) ; / / large position!: throw out_of_range()
s st tr ri in ng g s s6 6(s s, 3 3,- 2 2) ; / / large character count!: ok

}

However, thes si iz ze e_ _t ty yp pe e used to represent positions and counts is anu un ns si ig gn ne ed d type, so a negative
number is simply a confusing way of specifying a large positive number (§16.3.4).

Note that the functions used to find substrings of as st tr ri in ng g (§20.3.11) returnn np po os s if they don’t
find anything. Thus, they don’t throw exceptions. However, later usingn np po os s as a character posi-
tion does.

A pair of iterators is another way of specifying a substring. The first iterator identifies a posi-
tion, and the difference between two iterators is a character count. As usual, iterators are not range
checked.

Where a C-style string is used, range checking is harder. When given a C-style string (a pointer
to c ch ha ar r) as an argument,b ba as si ic c_ _s st tr ri in ng g functions assume the pointer is not0 0. When given character
positions for C-style strings, they assume that the C-style string is long enough for the position to
be valid. Be careful! In this case, being careful means being paranoid, except when using character
literals.

All strings havel le en ng gt th h()< n np po os s. In a few cases, such as inserting one string into another
(§20.3.9), it is possible (although not likely) to construct a string that is too long to be represented.
In that case, al le en ng gt th h_ _e er rr ro or r is thrown. For example:

s st tr ri in ng g s s(s st tr ri in ng g: : n np po os s,´ a a´) ; / / throw length_error()

20.3.6 Assignment [string.assign]

Naturally, assignment is provided for strings:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / assignment (a bit like vector and list: §16.3.4):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

588 Strings Chapter 20

b ba as si ic c_ _s st tr ri in ng g& o op pe er ra at to or r=(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) ;
b ba as si ic c_ _s st tr ri in ng g& o op pe er ra at to or r=(c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& o op pe er ra at to or r=(C Ch h c c) ;

b ba as si ic c_ _s st tr ri in ng g& a as ss si ig gn n(c co on ns st t b ba as si ic c_ _s st tr ri in ng g&) ;
b ba as si ic c_ _s st tr ri in ng g& a as ss si ig gn n(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e p po os s, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& a as ss si ig gn n(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& a as ss si ig gn n(c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& a as ss si ig gn n(s si iz ze e_ _t ty yp pe e n n, C Ch h c c) ;
t te em mp pl la at te e<c cl la as ss s I In n> b ba as si ic c_ _s st tr ri in ng g& a as ss si ig gn n(I In n f fi ir rs st t, I In n l la as st t) ;

/ / ...
};

Like other standard containers,s st tr ri in ng gs have value semantics. That is, when one string is assigned
to another, the assigned string is copied and two separate strings with the same value exist after the
assignment. For example:

v vo oi id d g g()
{

s st tr ri in ng g s s1 1 = " K Kn no ol ld d";
s st tr ri in ng g s s2 2 = " T To ot t";

s s1 1 = s s2 2; / / two copies of "Tot"
s s2 2[1 1] = ´ u u´; / / s2 is "Tut", s1 is still "Tot"

}

Assignment with a single character to a string is supported even though initialization by a single
character isn’t:

v vo oi id d f f()
{

s st tr ri in ng g s s = ´ a a´; / / error: initialization by char
s s = ´ a a´; / / ok: assignment
s s = " a a";
s s = s s;

}

Being able to assign ac ch ha ar r to as st tr ri in ng g isn’t much use and could even be considered error-prone.
However, appending ac ch ha ar r using+= is at times essential (§20.3.9), and it would be odd to be able
to says s+=´ c c´ but nots s=s s+´ c c´ .

The namea as ss si ig gn n() is used for the assignments, which are the counterparts to multiple argu-
ment constructors (§16.3.4, §20.3.4).

As mentioned in §11.12, it is possible to optimize as st tr ri in ng g so that copying doesn’t actually take
place until two copies of as st tr ri in ng g are needed. The design of the standards st tr ri in ng g encourages imple-
mentations that minimize actual copying. This makes read-only uses of strings and passing of
strings as function arguments much cheaper than one could naively have assumed. However, it
would be equally naive for programmers not to check their implementations before writing code
that relied ons st tr ri in ng g copy being optimized (§20.6[13]).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.7 Conversion to C-Style Strings 589

20.3.7 Conversion to C-Style Strings [string.conv]

As shown in §20.3.4, as st tr ri in ng g can be initialized by a C-style string and C-style strings can be
assigned tos st tr ri in ng gs. Conversely, it is possible to place a copy of the characters of as st tr ri in ng g into an
array:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / conversion to C-style string:

c co on ns st t C Ch h* c c_ _s st tr r() c co on ns st t;
c co on ns st t C Ch h* d da at ta a() c co on ns st t;
s si iz ze e_ _t ty yp pe e c co op py y(C Ch h* p p, s si iz ze e_ _t ty yp pe e n n, s si iz ze e_ _t ty yp pe e p po os s = 0 0) c co on ns st t;

/ / ...
};

The d da at ta a() function writes the characters of the string into an array and returns a pointer to that
array. The array is owned by thes st tr ri in ng g, and the user should not try to delete it. The user also can-
not rely on its value after a subsequent call on a non-c co on ns st t function on the string. Thec c_ _s st tr r()
function is liked da at ta a() , except that it adds a 0 (zero) at the end as a C-string-style terminator. For
example:

v vo oi id d f f()
{

s st tr ri in ng g s s = " e eq qu ui in no ox x"; / / s.length()==7
c co on ns st t c ch ha ar r* p p1 1 = s s. d da at ta a() ; / / p1 points to seven characters
p pr ri in nt tf f(" p p1 1 = %s s\ \n n", p p1 1) ; / / bad: missing terminator
p p1 1[2 2] = ´ a a´; / / error: p1 points to a const array
s s[2 2] = ´ a a´;
c ch ha ar r c c = p p1 1[1 1] ; / / bad: access of s.data() after modification of s

c co on ns st t c ch ha ar r* p p2 2 = s s. c c_ _s st tr r() ; / / p2 points to eight characters
p pr ri in nt tf f(" p p2 2 = %s s\ \n n", p p2 2) ; / / ok: c_str() adds terminator

}

In other words,d da at ta a() produces an array of characters, whereasc c_ _s st tr r() produces a C-style string.
These functions are primarily intended to allow simple use of functions that take C-style strings.
Consequently,c c_ _s st tr r() tends to be more useful thand da at ta a() . For example:

v vo oi id d f f(s st tr ri in ng g s s)
{

i in nt t i i = a at to oi i(s s. c c_ _s st tr r()) ; / / get int value of digits in string (§20.4.1)
/ / ...

}

Typically, it is best to leave characters in as st tr ri in ng g until you need them. However, if you can’t use
the characters immediately, you can copy them into an array rather than leave them in the buffer
allocated byc c_ _s st tr r() or d da at ta a() . Thec co op py y() function is provided for that. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

590 Strings Chapter 20

c ch ha ar r* c c_ _s st tr ri in ng g(c co on ns st t s st tr ri in ng g& s s)
{

c ch ha ar r* p p = n ne ew w c ch ha ar r[s s. l le en ng gt th h()+ 1 1] ; / / note: +1
s s. c co op py y(p p, s st tr ri in ng g: : n np po os s) ;
p p[s s. l le en ng gt th h()] = 0 0; / / note: add terminator
r re et tu ur rn n p p;

}

A call s s. c co op py y(p p, n n, m m) copies at mostn n characters top p starting withs s[m m] . If there are fewer
thann n characters ins s to copy,c co op py y() simply copies all the characters there are.

Note that as st tr ri in ng g can contain the0 0 character. Functions manipulating C-style strings will
interprete such as0 0 as a terminator. Be careful to put0 0s into a string only if you don’t apply C-
style functions to it or if you put the0 0 there exactly to be a terminator.

Conversion to a C-style string could have been provided by ano op pe er ra at to or r c co on ns st t c ch ha ar r*() rather
thanc c_ _s st tr r() . This would have provided the convenience of an implicit conversion at the cost of
surprises in cases in which such a conversion was unexpected.

If you find c c_ _s st tr r() appearing in your program with great frequency, it is probably because you
rely heavily on C-style interfaces. Often, an interface that relies ons st tr ri in ng gs rather than C-style
strings is available and can be used to eliminate the conversions. Alternatively, you can avoid most
of the explicit calls ofc c_ _s st tr r() by providing additional definitions of the functions that caused you
to write thec c_ _s st tr r() calls:

e ex xt te er rn n " C C" i in nt t a at to oi i(c co on ns st t c ch ha ar r*) ;

i in nt t a at to oi i(c co on ns st t s st tr ri in ng g& s s)
{

r re et tu ur rn n a at to oi i(s s. c c_ _s st tr r()) ;
}

20.3.8 Comparisons [string.compare]

Strings can be compared to strings of their own type and to arrays of characters with the same char-
acter type:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...

i in nt t c co om mp pa ar re e(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) c co on ns st t; / / combined> and ==
i in nt t c co om mp pa ar re e(c co on ns st t C Ch h* p p) c co on ns st t;

i in nt t c co om mp pa ar re e(s si iz ze e_ _t ty yp pe e p po os s, s si iz ze e_ _t ty yp pe e n n, c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) c co on ns st t;
i in nt t c co om mp pa ar re e(s si iz ze e_ _t ty yp pe e p po os s, s si iz ze e_ _t ty yp pe e n n,

c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e p po os s2 2, s si iz ze e_ _t ty yp pe e n n2 2) c co on ns st t;
i in nt t c co om mp pa ar re e(s si iz ze e_ _t ty yp pe e p po os s, s si iz ze e_ _t ty yp pe e n n, c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n2 2 = n np po os s) c co on ns st t;

/ / ...
};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.8 Comparisons 591

When an argumentn n is supplied, only then n first characters will be compared. The comparison cri-
terion used isc ch ha ar r_ _t tr ra ai it ts s<C Ch h>’s c co om mp pa ar re e() (§20.2.1). Thus,s s. c co om mp pa ar re e(s s2 2) returns0 0 if the
strings have the same value, a negative number ifs s is lexicographically befores s2 2, and a positive
number otherwise.

A user cannot supply a comparison criterion the way it was done in §13.4. When that degree of
flexibility is needed, we can usel le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e() (§18.9), define a function like the
one in §13.4, or write an explicit loop. For example, thet to ou up pp pe er r() function (§20.4.2) allows us to
write case-insensitive comparisons:

i in nt t c cm mp p_ _n no oc ca as se e(c co on ns st t s st tr ri in ng g& s s, c co on ns st t s st tr ri in ng g& s s2 2)
{

s st tr ri in ng g: : c co on ns st t_ _i it te er ra at to or r p p = s s. b be eg gi in n() ;
s st tr ri in ng g: : c co on ns st t_ _i it te er ra at to or r p p2 2 = s s2 2. b be eg gi in n() ;

w wh hi il le e (p p!= s s. e en nd d() && p p2 2!= s s2 2. e en nd d()) {
i if f (t to ou up pp pe er r(* p p)!= t to ou up pp pe er r(* p p2 2)) r re et tu ur rn n (t to ou up pp pe er r(* p p)< t to ou up pp pe er r(* p p2 2)) ? - 1 1 : 1 1;
++p p;
++p p2 2;

}

r re et tu ur rn n (s s2 2. s si iz ze e()== s s. s si iz ze e()) ? 0 0 : (s s. s si iz ze e()< s s2 2. s si iz ze e()) ? - 1 1 : 1 1; / / size is unsigned
}

v vo oi id d f f(c co on ns st t s st tr ri in ng g& s s, c co on ns st t s st tr ri in ng g& s s2 2)
{

i if f (s s == s s2 2) { / / case sensitive compare of s and s2
/ / ...

}

i if f (c cm mp p_ _n no oc ca as se e(s s, s s2 2)== 0 0) { / / case insensitive compare of s and s2
/ / ...

}

/ / ...
}

The usual comparison operators==, != , >, <, >=, and<= are provided forb ba as si ic c_ _s st tr ri in ng gs:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b bo oo ol l o op pe er ra at to or r==(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b bo oo ol l o op pe er ra at to or r==(c co on ns st t C Ch h*, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b bo oo ol l o op pe er ra at to or r==(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, c co on ns st t C Ch h*) ;

/ / similar declarations for !=,>, <, >=, and<=

Comparison operators are nonmember functions so that conversions can be applied in the same way
to both operands (§11.2.3). The versions taking C-style strings are provided to optimize compar-
isons against string literals. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

592 Strings Chapter 20

v vo oi id d f f(c co on ns st t s st tr ri in ng g& n na am me e)
{

i if f (n na am me e ==" O Ob be el li ix x" || " A As st te er ri ix x"== n na am me e) { / / use optimized ==
/ / ...

}
}

20.3.9 Insert [string.insert]

Once created, a string can be manipulated in many ways. Of the operations that modify the value
of a string, is one of the most common is appending to it– that is, adding characters to the end.
Insertion at other points of a string is rarer:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / add characters after (*this)[length()– 1]:

b ba as si ic c_ _s st tr ri in ng g& o op pe er ra at to or r+=(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) ;
b ba as si ic c_ _s st tr ri in ng g& o op pe er ra at to or r+=(c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& o op pe er ra at to or r+=(C Ch h c c) ;
v vo oi id d p pu us sh h_ _b ba ac ck k(C Ch h c c) ;

b ba as si ic c_ _s st tr ri in ng g& a ap pp pe en nd d(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) ;
b ba as si ic c_ _s st tr ri in ng g& a ap pp pe en nd d(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e p po os s, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& a ap pp pe en nd d(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& a ap pp pe en nd d(c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& a ap pp pe en nd d(s si iz ze e_ _t ty yp pe e n n, C Ch h c c) ;
t te em mp pl la at te e<c cl la as ss s I In n> b ba as si ic c_ _s st tr ri in ng g& a ap pp pe en nd d(I In n f fi ir rs st t, I In n l la as st t) ;

/ / insert characters before (*this)[pos]:

b ba as si ic c_ _s st tr ri in ng g& i in ns se er rt t(s si iz ze e_ _t ty yp pe e p po os s, c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) ;
b ba as si ic c_ _s st tr ri in ng g& i in ns se er rt t(s si iz ze e_ _t ty yp pe e p po os s, c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e p po os s2 2, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& i in ns se er rt t(s si iz ze e_ _t ty yp pe e p po os s, c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& i in ns se er rt t(s si iz ze e_ _t ty yp pe e p po os s, c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& i in ns se er rt t(s si iz ze e_ _t ty yp pe e p po os s, s si iz ze e_ _t ty yp pe e n n, C Ch h c c) ;

/ / insert characters before p:

i it te er ra at to or r i in ns se er rt t(i it te er ra at to or r p p, C Ch h c c) ;
v vo oi id d i in ns se er rt t(i it te er ra at to or r p p, s si iz ze e_ _t ty yp pe e n n, C Ch h c c) ;
t te em mp pl la at te e<c cl la as ss s I In n> v vo oi id d i in ns se er rt t(i it te er ra at to or r p p, I In n f fi ir rs st t, I In n l la as st t) ;

/ / ...
};

Basically, the variety of operations provided for initializing a string and assigning to a string is also
available for appending and for inserting characters before some character position.

The += operator is provided as the conventional notation for the most common forms of
append. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.9 Insert 593

s st tr ri in ng g c co om mp pl le et te e_ _n na am me e(c co on ns st t s st tr ri in ng g& f fi ir rs st t_ _n na am me e, c co on ns st t s st tr ri in ng g& f fa am mi il ly y_ _n na am me e)
{

s st tr ri in ng g s s = f fi ir rs st t_ _n na am me e;
s s += ´ ´;
s s += f fa am mi il ly y_ _n na am me e;
r re et tu ur rn n s s;

}

Appending to the end can be noticeably more efficient than inserting into other positions. For
example:

s st tr ri in ng g c co om mp pl le et te e_ _n na am me e2 2(c co on ns st t s st tr ri in ng g& f fi ir rs st t_ _n na am me e, c co on ns st t s st tr ri in ng g& f fa am mi il ly y_ _n na am me e)/ / poor algorithm
{

s st tr ri in ng g s s = f fa am mi il ly y_ _n na am me e;
s s. i in ns se er rt t(s s. b be eg gi in n() ,´ ´) ;
r re et tu ur rn n s s. i in ns se er rt t(0 0, f fi ir rs st t_ _n na am me e) ;

}

Insertion usually forces thes st tr ri in ng g implementation to do extra memory management and to move
characters around.

Becauses st tr ri in ng g has ap pu us sh h_ _b ba ac ck k() operation (§16.3.5), ab ba ac ck k_ _i in ns se er rt te er r can be used for a
s st tr ri in ng g exactly as for general containers.

20.3.10 Concatenation [string.cat]

Appending is a special form of concatenation.Concatenation– constructing a string out of two
strings by placing one after the other– is provided by the+ operator:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>
o op pe er ra at to or r+(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A> o op pe er ra at to or r+(c co on ns st t C Ch h*, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A> o op pe er ra at to or r+(C Ch h, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A> o op pe er ra at to or r+(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, c co on ns st t C Ch h*) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A> o op pe er ra at to or r+(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, C Ch h) ;

As usual,+ is defined as a nonmember function. For templates with several template parameters,
this implies a notational disadvantage, since the template parameters are mentioned repeatedly.

On the other hand, use of concatenation is obvious and convenient. For example:

s st tr ri in ng g c co om mp pl le et te e_ _n na am me e3 3(c co on ns st t s st tr ri in ng g& f fi ir rs st t_ _n na am me e, c co on ns st t s st tr ri in ng g& f fa am mi il ly y_ _n na am me e)
{

r re et tu ur rn n f fi ir rs st t_ _n na am me e + ´ ´ + f fa am mi il ly y_ _n na am me e;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

594 Strings Chapter 20

This notational convenience may be bought at the cost of some run-time overhead compared to
c co om mp pl le et te e_ _n na am me e() . One extra temporary (§11.3.2) is needed inc co om mp pl le et te e_ _n na am me e3 3() . In my expe-
rience, this is rarely important, but it is worth remembering when writing an inner loop of a pro-
gram where performance matters. In that case, we might even consider avoiding a function call by
makingc co om mp pl le et te e_ _n na am me e() inline and composing the result string in place using lower-level opera-
tions (§20.6[14]).

20.3.11 Find [string.find]

There is a bewildering variety of functions for finding substrings:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / find subsequence (like search() §18.5.5):

s si iz ze e_ _t ty yp pe e f fi in nd d(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d(C Ch h c c, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;

/ / find subsequence searching backwards from the end (like find_end(), §18.5.5):

s si iz ze e_ _t ty yp pe e r rf fi in nd d(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
s si iz ze e_ _t ty yp pe e r rf fi in nd d(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) c co on ns st t;
s si iz ze e_ _t ty yp pe e r rf fi in nd d(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
s si iz ze e_ _t ty yp pe e r rf fi in nd d(C Ch h c c, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;

/ / find character (like find_first_of() in §18.5.2):

s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _o of f(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _o of f(C Ch h c c, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;

/ / find character from argument searching backwards from the end:

s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _o of f(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _o of f(C Ch h c c, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;

/ / find character not in argument:

s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _n no ot t_ _o of f(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _n no ot t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _n no ot t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _f fi ir rs st t_ _n no ot t_ _o of f(C Ch h c c, s si iz ze e_ _t ty yp pe e i i = 0 0) c co on ns st t;

/ / find character not in argument searching backwards from the end:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.11 Find 595

s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _n no ot t_ _o of f(c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _n no ot t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _n no ot t_ _o of f(c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
s si iz ze e_ _t ty yp pe e f fi in nd d_ _l la as st t_ _n no ot t_ _o of f(C Ch h c c, s si iz ze e_ _t ty yp pe e i i = n np po os s) c co on ns st t;
/ / ...

};

These are allc co on ns st t members. That is, they exist to locate a substring for some use, but they do not
change the value of the string to which they are applied.

The meaning of theb ba as si ic c_ _s st tr ri in ng g: : f fi in nd d functions can be understood from their general algo-
rithm equivalents. Consider an example:

v vo oi id d f f()
{

s st tr ri in ng g s s = " a ac cc cd dc cd de e";
s st tr ri in ng g: : s si iz ze e_ _t ty yp pe e i i1 1 = s s. f fi in nd d(" c cd d") ; / / i1 = 2 s[2]==’c’ && s[3]==’d’
s st tr ri in ng g: : s si iz ze e_ _t ty yp pe e i i2 2 = s s. r rf fi in nd d(" c cd d") ; / / i2 = 4 s[4]==’c’ && s[5]==’d’
s st tr ri in ng g: : s si iz ze e_ _t ty yp pe e i i3 3 = s s. f fi in nd d_ _f fi ir rs st t_ _o of f(" c cd d") ; / / i3 = 1 s[1] == ’c’
s st tr ri in ng g: : s si iz ze e_ _t ty yp pe e i i4 4 = s s. f fi in nd d_ _l la as st t_ _o of f(" c cd d") ; / / i4 = 5 s[5] == ’d’
s st tr ri in ng g: : s si iz ze e_ _t ty yp pe e i i5 5 = s s. f fi in nd d_ _f fi ir rs st t_ _n no ot t_ _o of f(" c cd d") ; / / i5 = 0 s[0]!=’c’ && s[0]!=’d’
s st tr ri in ng g: : s si iz ze e_ _t ty yp pe e i i6 6 = s s. f fi in nd d_ _l la as st t_ _n no ot t_ _o of f(" c cd d") ; / / i6 = 6 s[6]!=’c’ && s[6]!=’d’

}

If a f fi in nd d() function fails to find anything, it returnsn np po os s, which represents an illegal character
position. Ifn np po os s is used as a character position,r ra an ng ge e_ _e er rr ro or r will be thrown (§20.3.5).

Note that result of af fi in nd d() is anu un ns si ig gn ne ed d value.

20.3.12 Replace [string.replace]

Once a position in a string is identified, the value of individual character positions can be changed
using subscripting or whole substrings can be replaced with new characters usingr re ep pl la ac ce e() :

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / replace [(*this)[i], (*this)[i+n] [with other characters:

b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n, c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n,

c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s, s si iz ze e_ _t ty yp pe e i i2 2, s si iz ze e_ _t ty yp pe e n n2 2) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n, c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n2 2) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n, c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n, s si iz ze e_ _t ty yp pe e n n2 2, C Ch h c c) ;

b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(i it te er ra at to or r i i, i it te er ra at to or r i i2 2, c co on ns st t b ba as si ic c_ _s st tr ri in ng g& s s) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(i it te er ra at to or r i i, i it te er ra at to or r i i2 2, c co on ns st t C Ch h* p p, s si iz ze e_ _t ty yp pe e n n) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(i it te er ra at to or r i i, i it te er ra at to or r i i2 2, c co on ns st t C Ch h* p p) ;
b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(i it te er ra at to or r i i, i it te er ra at to or r i i2 2, s si iz ze e_ _t ty yp pe e n n, C Ch h c c) ;
t te em mp pl la at te e<c cl la as ss s I In n> b ba as si ic c_ _s st tr ri in ng g& r re ep pl la ac ce e(i it te er ra at to or r i i, i it te er ra at to or r i i2 2, I In n j j, I In n j j2 2) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

596 Strings Chapter 20

/ / remove characters from string (‘‘replace with nothing’’):

b ba as si ic c_ _s st tr ri in ng g& e er ra as se e(s si iz ze e_ _t ty yp pe e i i = 0 0, s si iz ze e_ _t ty yp pe e n n = n np po os s) ;
i it te er ra at to or r e er ra as se e(i it te er ra at to or r i i) ;
i it te er ra at to or r e er ra as se e(i it te er ra at to or r f fi ir rs st t, i it te er ra at to or r l la as st t) ;

/ / ...
};

Note that the number of new characters need not be the same as the number of characters previ-
ously in the string. The size of the string is changed to accommodate the new substring. In particu-
lar, e er ra as se e() simply removes a substring and adjusts its size accordingly. For example:

v vo oi id d f f()
{

s st tr ri in ng g s s = " b bu ut t I I h ha av ve e h he ea ar rd d i it t w wo or rk ks s e ev ve en n i if f y yo ou u d do on n´ t t b be el li ie ev ve e i in n i it t";
s s. e er ra as se e(0 0, 4 4) ; / / erase initial "but "
s s. r re ep pl la ac ce e(s s. f fi in nd d(" e ev ve en n") , 4 4," o on nl ly y") ;
s s. r re ep pl la ac ce e(s s. f fi in nd d(" d do on n´ t t") , 5 5,"") ; / / erase by replacing with ""

}

The simple calle er ra as se e() , with no argument, makes the string into an empty string. This is the
operation that is calledc cl le ea ar r() for general containers (§16.3.6).

The variety ofr re ep pl la ac ce e() functions matches that of assignment. After all,r re ep pl la ac ce e() is an
assignment to a substring.

20.3.13 Substrings [string.sub]

Thes su ub bs st tr r() function lets you specify a substring as a position plus a length:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / address substring:

b ba as si ic c_ _s st tr ri in ng g s su ub bs st tr r(s si iz ze e_ _t ty yp pe e i i = 0 0, s si iz ze e_ _t ty yp pe e n n = n np po os s) c co on ns st t;
/ / ...

};

Thes su ub bs st tr r() function is simply a way of reading a part of a string. On the other hand,r re ep pl la ac ce e()
lets you write to a substring. Both rely on the low-level position plus number of characters nota-
tion. However,f fi in nd d() lets us find substrings by value. Together, they allow us to define a sub-
string that can be used for both reading and writing:

t te em mp pl la at te e<c cl la as ss s C Ch h> c cl la as ss s B Ba as si ic c_ _s su ub bs st tr ri in ng g {
p pu ub bl li ic c:

t ty yp pe ed de ef f t ty yp pe en na am me e b ba as si ic c_ _s st tr ri in ng g<C Ch h>: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;

B Ba as si ic c_ _s su ub bs st tr ri in ng g(b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s, s si iz ze e_ _t ty yp pe e i i, s si iz ze e_ _t ty yp pe e n n) ; / / s[i]..s[i+n – 1]
B Ba as si ic c_ _s su ub bs st tr ri in ng g(b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s2 2) ; / / s2 in s
B Ba as si ic c_ _s su ub bs st tr ri in ng g(b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s, c co on ns st t C Ch h* p p) ; / / *p in s

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.13 Substrings 597

B Ba as si ic c_ _s su ub bs st tr ri in ng g& o op pe er ra at to or r=(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h>&) ; / / write through to *ps
B Ba as si ic c_ _s su ub bs st tr ri in ng g& o op pe er ra at to or r=(c co on ns st t B Ba as si ic c_ _s su ub bs st tr ri in ng g<C Ch h>&) ;
B Ba as si ic c_ _s su ub bs st tr ri in ng g& o op pe er ra at to or r=(c co on ns st t C Ch h*) ;
B Ba as si ic c_ _s su ub bs st tr ri in ng g& o op pe er ra at to or r=(C Ch h) ;

o op pe er ra at to or r b ba as si ic c_ _s st tr ri in ng g<C Ch h>() c co on ns st t; / / read from *ps
o op pe er ra at to or r C Ch h* () c co on ns st t;

p pr ri iv va at te e:
b ba as si ic c_ _s st tr ri in ng g<C Ch h>* p ps s;
s si iz ze e_ _t ty yp pe e p po os s;
s si iz ze e_ _t ty yp pe e n n;

};

The implementation is largely trivial. For example:

t te em mp pl la at te e<c cl la as ss s C Ch h>
B Ba as si ic c_ _s su ub bs st tr ri in ng g<C Ch h>: : B Ba as si ic c_ _s su ub bs st tr ri in ng g(b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s2 2)

: p ps s(& s s) , n n(s s2 2. l le en ng gt th h())
{

p po os s = s s. f fi in nd d(s s2 2) ;
}

t te em mp pl la at te e<c cl la as ss s C Ch h>
B Ba as si ic c_ _s su ub bs st tr ri in ng g<C Ch h>& B Ba as si ic c_ _s su ub bs st tr ri in ng g<C Ch h>: : o op pe er ra at to or r=(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s)
{

p ps s-> r re ep pl la ac ce e(p po os s, n n, s s) ; / / write through to *ps
r re et tu ur rn n * t th hi is s;

}

t te em mp pl la at te e<c cl la as ss s C Ch h> B Ba as si ic c_ _s su ub bs st tr ri in ng g<C Ch h>: : o op pe er ra at to or r b ba as si ic c_ _s st tr ri in ng g<C Ch h>() c co on ns st t
{

r re et tu ur rn n b ba as si ic c_ _s st tr ri in ng g<C Ch h>(* p ps s, p po os s, n n) ; / / copy from *ps
}

If s s2 2 isn’t found in s s, p po os s will be n np po os s. Attempts to read or write it will throwr ra an ng ge e_ _e er rr ro or r
(§20.3.5).

This B Ba as si ic c_ _s su ub bs st tr ri in ng g can be used like this:

t ty yp pe ed de ef f B Ba as si ic c_ _s su ub bs st tr ri in ng g<c ch ha ar r> S Su ub bs st tr ri in ng g;

v vo oi id d f f()
{

s st tr ri in ng g s s = " M Ma ar ry y h ha ad d a a l li it tt tl le e l la am mb b";
S Su ub bs st tr ri in ng g(s s," l la am mb b") = " f fu un n";
S Su ub bs st tr ri in ng g(s s," a a l li it tt tl le e") = " n no o";
s st tr ri in ng g s s2 2 = " J Jo oe e" + S Su ub bs st tr ri in ng g(s s, s s. f fi in nd d(´ ´) , s st tr ri in ng g: : n np po os s) ;

}

Naturally, this would be much more interesting ifS Su ub bs st tr ri in ng g could do some pattern matching
(§20.6[7]).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

598 Strings Chapter 20

20.3.14 Size and Capacity [string.capacity]

Memory-related issues are handled much as they are forv ve ec ct to or r (§16.3.8):

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h>, c cl la as ss s A A = a al ll lo oc ca at to or r<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng g {
p pu ub bl li ic c:

/ / ...
/ / size, capacity, etc. (like §16.3.8):

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t; / / number of characters (§20.3.4)
s si iz ze e_ _t ty yp pe e m ma ax x_ _s si iz ze e() c co on ns st t; / / largest possible string
s si iz ze e_ _t ty yp pe e l le en ng gt th h() c co on ns st t { r re et tu ur rn n s si iz ze e() ; }
b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n s si iz ze e()== 0 0; }

v vo oi id d r re es si iz ze e(s si iz ze e_ _t ty yp pe e n n, C Ch h c c) ;
v vo oi id d r re es si iz ze e(s si iz ze e_ _t ty yp pe e n n) { r re es si iz ze e(n n, C Ch h()) ; }

s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t; / / like vector: §16.3.8
v vo oi id d r re es se er rv ve e(s si iz ze e_ _t ty yp pe e r re es s_ _a ar rg g = 0 0) ; / / like vector: §16.3.8

a al ll lo oc ca at to or r_ _t ty yp pe e g ge et t_ _a al ll lo oc ca at to or r() c co on ns st t;
};

A call r re es se er rv ve e(r re es s_ _a ar rg g) throwsl le en ng gt th h_ _e er rr ro or r if r re es s_ _a ar rg g>m ma ax x_ _s si iz ze e() .

20.3.15 I/O Operations [string.io]

One of the main uses ofs st tr ri in ng gs is as the target of input and as the source of output:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&, b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& g ge et tl li in ne e(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&, b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, C Ch h e eo ol l) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& g ge et tl li in ne e(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&, b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

The << operator writes a string to ano os st tr re ea am m (§21.2.1). The>> operator reads a whitespace-
terminated word (§3.6, §21.3.1) to its string, expanding the string as needed to hold the word. Ini-
tial whitespace is skipped, and the terminating whitespace character is not entered into the string.

Theg ge et tl li in ne e() function reads a line terminated bye eo ol l to its string, expanding string as needed
to hold the line (§3.6). If noe eo ol l argument is provided, a newline´ \ \n n´ is used as the delimiter. The
line terminator is removed from the stream but not entered into the string. Because as st tr ri in ng g
expands to hold the input, there is no reason to leave the terminator in the stream or to provide a
count of characters read in the wayg ge et t() andg ge et tl li in ne e() do for character arrays (§21.3.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.16 Swap 599

20.3.16 Swap [string.swap]

As for v ve ec ct to or rs (§16.3.9), as sw wa ap p() function for strings can be much more efficient than the general
algorithm, so a specific version is provided:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A>
v vo oi id d s sw wa ap p(b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&, b ba as si ic c_ _s st tr ri in ng g<C Ch h, T Tr r, A A>&) ;

20.4 The C Standard Library [string.cstd]

The C++ standard library inherited the C-style string functions from the C standard library. This
section lists some of the most useful C string functions. The description is not meant to be exhaus-
tive; for further information, check your reference manual. Beware that implementers often add
their own nonstandard functions to the standard header files, so it is easy to get confused about
which functions are guaranteed to be available on every implementation.

The headers presenting the standard C library facilities are listed in §16.1.2. Memory manage-
ment functions can be found in §19.4.6, C I/O functions in §21.8, and the C math library in §22.3.
The functions concerned with startup and termination are described in §3.2 and §9.4.1.1, and the
facilities for reading unspecified function arguments are presented in §7.6. C-style functions for
wide character strings are found in<c cw wc ch ha ar r> and<w wc ch ha ar r. h h>.

20.4.1 C-Style Strings [string.c]

Functions for manipulating C-style strings are found in<s st tr ri in ng g. h h> and<c cs st tr ri in ng g>:

c ch ha ar r* s st tr rc cp py y(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / copy from q into p (incl. terminator)
c ch ha ar r* s st tr rc ca at t(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / append from q to p (incl. terminator)
c ch ha ar r* s st tr rn nc cp py y(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q, i in nt t n n) ; / / copy n char from q into p
c ch ha ar r* s st tr rn nc ca at t(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q, i in nt t n n) ; / / append n char from q to p

s si iz ze e_ _t t s st tr rl le en n(c co on ns st t c ch ha ar r* p p) ; / / length of p (not counting the terminator)

i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / compare: p and q
i in nt t s st tr rn nc cm mp p(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q, i in nt t n n) ; / / compare first n char

c ch ha ar r* s st tr rc ch hr r(c ch ha ar r* p p, i in nt t c c) ; / / find first c in p
c co on ns st t c ch ha ar r* s st tr rc ch hr r(c co on ns st t c ch ha ar r* p p, i in nt t c c) ;
c ch ha ar r* s st tr rr rc ch hr r(c ch ha ar r* p p, i in nt t c c) ; / / find last c in p
c co on ns st t c ch ha ar r* s st tr rr rc ch hr r(c co on ns st t c ch ha ar r* p p, i in nt t c c) ;
c ch ha ar r* s st tr rs st tr r(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / find first q in p
c co on ns st t c ch ha ar r* s st tr rs st tr r(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ;

c ch ha ar r* s st tr rp pb br rk k(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / find first char from q in p
c co on ns st t c ch ha ar r* s st tr rp pb br rk k(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ;

s si iz ze e_ _t t s st tr rs sp pn n(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / number of char in p before any char in q
s si iz ze e_ _t t s st tr rc cs sp pn n(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / number of char in p before a char not in q

A pointer is assumed to be nonzero, and the array ofc ch ha ar r that it points to is assumed to be termi-
nated by0 0. Thes st tr rn n-functions pad with0 0 if there are notn n characters to copy. String comparisons

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

600 Strings Chapter 20

return0 0 if the strings are equal, a negative number if the first argument is lexicographically before
the second, and a positive number otherwise.

Naturally, C doesn’t provide the pairs of overloaded functions. However, they are needed in
C++ for c co on ns st t safety. For example:

v vo oi id d f f(c co on ns st t c ch ha ar r* p pc cc c, c ch ha ar r* p pc c) / / C++
{

* s st tr rc ch hr r(p pc cc c,´ a a´) = ´ b b´; / / error: cannot assign to const char
* s st tr rc ch hr r(p pc c,´ a a´) = ´ b b´; / / ok, but sloppy: there might not be an ’a’ in pc

}

The C++ s st tr rc ch hr r() does not allow you to write to ac co on ns st t. However, a C program may ‘‘take
advantage’’ of the weaker type checking in the Cs st tr rc ch hr r() :

c ch ha ar r* s st tr rc ch hr r(c co on ns st t c ch ha ar r* p p, i in nt t c c) ; /* C standard library function, not C++*/

v vo oi id d g g(c co on ns st t c ch ha ar r* p pc cc c, c ch ha ar r* p pc c) /* C, will not compile in C++*/
{

* s st tr rc ch hr r(p pc cc c,´ a a´) = ´ b b´; /* converts const to non-const: ok in C, error in C++*/
* s st tr rc ch hr r(p pc c,´ a a´) = ´ b b´; /* ok in C and C++*/

}

Whenever possible, C-style strings are best avoided in favor ofs st tr ri in ng gs. C-style strings and their
associated standard functions can be used to produce very efficient code, but even experienced C
and C++ programmers are prone to make uncaught ‘‘silly errors’’ when using them. However, no
C++ programmer can avoid seeing some of these functions in old code. Here is a nonsense exam-
ple illustrating the most common functions:

v vo oi id d f f(c ch ha ar r* p p, c ch ha ar r* q q)
{

i if f (p p==q q) r re et tu ur rn n; / / pointers are equal
i if f (s st tr rc cm mp p(p p, q q)== 0 0) { / / string values are equal

i in nt t i i = s st tr rl le en n(p p) ; / / number of characters (not counting the terminator)
/ / ...

}
c ch ha ar r b bu uf f[2 20 00 0] ;
s st tr rc cp py y(b bu uf f, p p) ; / / copy p into buf (including the terminator)

/ / sloppy: will overflow some day.
s st tr rn nc cp py y(b bu uf f, p p, 2 20 00 0) ; / / copy 200 char from p into buf

/ / sloppy: will fail to copy the terminator some day.
/ / ...

}

Input and output of C-style strings are usually done using thep pr ri in nt tf f family of functions (§21.8).
In <s st td dl li ib b. h h> and <c cs st td dl li ib b>, the standard library provides useful functions for converting

strings representing numeric values into numeric values:

d do ou ub bl le e a at to of f(c co on ns st t c ch ha ar r* p p) ; / / convert p to double
i in nt t a at to oi i(c co on ns st t c ch ha ar r* p p) ; / / convert p to int
l lo on ng g a at to ol l(c co on ns st t c ch ha ar r* p p) ; / / convert p to long

Leading whitespace is ignored. If the string doesn’t represent a number, zero is returned. For

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.4.1 C-Style Strings 601

example, the value ofa at to oi i(" s se ev ve en n") is 0 0. If the string represents a number that cannot be repre-
sented in the intended result type,e er rr rn no o (§16.1.2, §22.3) is set toE ER RA AN NG GE E and an appropriately
huge or tiny value is returned.

20.4.2 Character Classification [string.isalpha]

In <c ct ty yp pe e. h h> and<c cc ct ty yp pe e>, the standard library provides a set of useful functions for dealing with
ASCII and similar character sets:

i in nt t i is sa al lp ph ha a(i in nt t) ; / / letter: ’a’..’z’ ’A’..’Z’ in C locale (§20.2.1, §21.7)
i in nt t i is su up pp pe er r(i in nt t) ; / / upper case letter: ’A’..’Z’ in C locale (§20.2.1, §21.7)
i in nt t i is sl lo ow we er r(i in nt t) ; / / lower case letter: ’a’..’z’ in C locale (§20.2.1, §21.7)
i in nt t i is sd di ig gi it t(i in nt t) ; / / ’0’..’9’
i in nt t i is sx xd di ig gi it t(i in nt t) ; / / ’0’..’9’ or letter
i in nt t i is ss sp pa ac ce e(i in nt t) ; / / ’ ’ ’\t’ ’\v’ return newline formfeed
i in nt t i is sc cn nt tr rl l(i in nt t) ; / / control character (ASCII 0..31 and 127)
i in nt t i is sp pu un nc ct t(i in nt t) ; / / punctuation: none of the above
i in nt t i is sa al ln nu um m(i in nt t) ; / / isalpha() isdigit()
i in nt t i is sp pr ri in nt t(i in nt t) ; / / printable: ascii ’ ’..’˜’
i in nt t i is sg gr ra ap ph h(i in nt t) ; / / isalpha() isdigit()  ispunct()

i in nt t t to ou up pp pe er r(i in nt t c c) ; / / uppercase equivalent to c
i in nt t t to ol lo ow we er r(i in nt t c c) ; / / lowercase equivalent to c

All are usually implemented by a simple lookup, using the character as an index into a table of
character attributes. This means that constructs such as:

i if f ((´ a a´<= c c && c c<=´ z ź) || (´ A A´<= c c && c c<=´ Z Z´)) { / / alphabetic
/ / ...

}

are inefficient in addition to being tedious to write and error-prone (on a machine with the EBCDIC
character set, this will accept nonalphabetic characters).

These functions takei in nt t arguments, and the integer passed must be representable as an
u un ns si ig gn ne ed d c ch ha ar r or E EO OF F (which is most often- 1 1). This can be a problem on systems wherec ch ha ar r is
signed (see §20.6[11]).

Equivalent functions for wide characters are found in<c cw wt ty yp pe e> and<w wt ty yp pe e. h h>.

20.5 Advice[string.advice]

[1] Prefers st tr ri in ng g operations to C-style string functions; §20.4.1.
[2] Uses st tr ri in ng gs as variables and members, rather than as base classes; §20.3, §25.2.1.
[3] You can passs st tr ri in ng gs as value arguments and return them by value to let the system take care

of memory management; §20.3.6.
[4] Usea at t() rather than iterators or[] when you want range checking; §20.3.2, §20.3.5.
[5] Use iterators and[] rather thana at t() when you want to optimize speed; §20.3.2, §20.3.5.
[6] Directly or indirectly, uses su ub bs st tr r() to read substrings andr re ep pl la ac ce e() to write substrings;

§20.3.12, §20.3.13.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

602 Strings Chapter 20

[7] Use thef fi in nd d() operations to localize values in as st tr ri in ng g (rather than writing an explicit loop);
§20.3.11.

[8] Append to as st tr ri in ng g when you need to add characters efficiently; §20.3.9.
[9] Uses st tr ri in ng gs as targets of non-time-critical character input; §20.3.15.
[10] Uses st tr ri in ng g: : n np po os s to indicate ‘‘the rest of thes st tr ri in ng g;’’ §20.3.5.
[11] If necessary, implement heavily-useds st tr ri in ng gs using low-level operations (rather than using

low-level data structures everywhere); §20.3.10.
[12] If you uses st tr ri in ng gs, catchr ra an ng ge e_ _e er rr ro or r ando ou ut t_ _o of f_ _r ra an ng ge esomewhere; §20.3.5.
[13] Be careful not to pass ac ch ha ar r* with the value0 0 to a string function; §20.3.7.
[14] Usec c_ _s st tr r rather to produce a C-style string representation of as st tr ri in ng g only when you have to;

§20.3.7.
[15] Usei is sa al lp ph ha a() , i is sd di ig gi it t() , etc., when you need to know the classification of a character rather

that writing your own tests on character values; §20.4.2.

20.6 Exercises[string.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (∗2) Write a function that takes twos st tr ri in ng gs and returns as st tr ri in ng g that is the concatenation of the

strings with a dot in the middle. For example, givenf fi il le e and w wr ri it te e, the function returns
f fi il le e. w wr ri it te e. Do the same exercise with C-style strings using only C facilities such asm ma al ll lo oc c()
ands st tr rl le en n() . Compare the two functions. What are reasonable criteria for a comparison?

2. (∗2) Make a list of differences betweenv ve ec ct to or r andb ba as si ic c_ _s st tr ri in ng g. Which differences are impor-
tant?

3. (∗2) The string facilities are not perfectly regular. For example, you can assign ac ch ha ar r to a
string, but you cannot initialize as st tr ri in ng g with a c ch ha ar r. Make a list of such irregularities. Which
could have been eliminated without complicating the use of strings? What other irregularities
would this introduce?

4. (∗1.5) Classb ba as si ic c_ _s st tr ri in ng g has a lot of members. Which could be made nonmember functions
without loss of efficiency or notational convenience?

5. (∗1.5) Write a version ofb ba ac ck k_ _i in ns se er rt te er r() (§19.2.4) that works forb ba as si ic c_ _s st tr ri in ng g.
6. (∗2) CompleteB Ba as si ic c_ _s su ub bs st tr ri in ng g from §20.3.13 and integrate it with aS St tr ri in ng g type that overloads

() to mean ‘‘substring of’’ and otherwise acts likes st tr ri in ng g.
7. (∗2.5) Write af fi in nd d() function that finds the first match for a simple regular expression in a

s st tr ri in ng g. Use? to mean ‘‘any character,’’* to mean any number of characters not matching the
next part of the regular expression, and[a ab bc c] to mean any character from the set specified
between the square braces (herea a, b b, andc c). Other characters match themselves. For example,
f fi in nd d(s s," n na am me e:") returns a pointer to the first occurrence ofn na am me e: in s s;
f fi in nd d(s s,"[n nN N] a am me e:") returns a pointer to the first occurrence ofn na am me e: or N Na am me e: in s s; and
f fi in nd d(s s,"[n nN N] a am me e(*)") returns a pointer to the first occurence ofN Na am me e or n na am me e followed
by a (possibly empty) parenthesized sequences of characters ins s.

8. (∗2.5) What operations do you find missing from the simple regular expression function from

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.6 Exercises 603

§20.6[7]? Specify and add them. Compare the expressiveness of your regular expression
matcher to that of a widely distributed one. Compare the performance of your regular expres-
sion matcher to that of a widely distributed one.

9. (∗2.5) Use a regular expression library to implement pattern-matching operations on aS St tr ri in ng g
class that has an associatedS Su ub bs st tr ri in ng g class.

10. (∗2.5) Consider writing an ‘‘ideal’’ class for general text processing. Call itT Te ex xt t. What facili-
ties should it have? What implementation constraints and overheads are imposed by your set of
‘‘ideal’’ facilities?

11. (∗1.5) Define a set of overloaded versions fori is sa al lp ph ha a() , i is sd di ig gi it t() , etc., so that these functions
work correctly forc ch ha ar r, u un ns si ig gn ne ed d c ch ha ar r, ands si ig gn ne ed d c ch ha ar r.

12. (∗2.5) Write aS St tr ri in ng g class optimized for strings having no more than eight characters. Com-
pare its performance to that of theS St tr ri in ng g from §11.12 and your implementation’s version of the
standard librarys st tr ri in ng g. Is it possible to design a string that combines the advantages of a string
optimized for very short strings with the advantages of a perfectly general string?

13. (∗2) Measure the performance of copying ofs st tr ri in ng gs. Does your implementation’s implementa-
tion of s st tr ri in ng g adequately optimize copying?

14. (∗2.5) Compare the performance of the threec co om mp pl le et te e_ _n na am me e() functions from §20.3.9 and
§20.3.10. Try to write a version ofc co om mp pl le et te e_ _n na am me e() that runs as fast as possible. Keep a
record of mistakes found during its implementation and testing.

15. (∗2.5) Imagine that reading medium-long strings (most are 5 to 25 characters long) fromc ci in n is
the bottleneck in your system. Write an input function that reads such strings as fast as you can
think of. You can choose the interface to that function to optimize for speed rather than for con-
venience. Compare the result to your implementation’s>> for s st tr ri in ng gs.

16. (∗1.5) Write a functioni it to os s(i in nt t) that returns as st tr ri in ng g representing itsi in nt t argument.

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

604 Strings Chapter 20

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

21
_ __ _______________________________________

Streams

What you see is all you get.
– Brian Kernighan

Input and output— o os st tr re ea am ms — output of built-in types— output of user-defined types
— virtual output functions— i is st tr re ea am ms — input of built-in types— unformatted input
— stream state— input of user-defined types— I/O exceptions— tying of streams—
sentries— formatting integer and floating-point output— fields and adjustments—
manipulators— standard manipulators— user-defined manipulators— file streams—
closing streams— string streams— stream buffers— locale — stream callbacks—
p pr ri in nt tf f() — advice— exercises.

21.1 Introduction [io.intro]

Designing and implementing a general input/output facility for a programming language is notori-
ously difficult. Traditionally, I/O facilities have been designed exclusively to handle a few built-in
data types. However, a nontrivial C++ program uses many user-defined types, and the input and
output of values of those types must be handled. An I/O facility should be easy, convenient, and
safe to use; efficient and flexible; and, above all, complete. Nobody has come up with a solution
that pleases everyone. It should therefore be possible for a user to provide alternative I/O facilities
and to extend the standard I/O facilities to cope with special applications.

C++ was designed to enable a user to define new types that are as efficient and convenient to
use as built-in types. It is therefore a reasonable requirement that an I/O facility for C++ should be
provided in C++ using only facilities available to every programmer. The stream I/O facilities pre-
sented here are the result of an effort to meet this challenge:

§21.2 Output:What the application programmer thinks of as output is really the conversion of
objects of types, such asi in nt t, c ch ha ar r* , andE Em mp pl lo oy ye ee e_ _r re ec co or rd d, into sequences of charac-
ters. The facilities for writing built-in and user-defined types to output are described.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

606 Streams Chapter 21

§21.3 Input: The facilities for requesting input of characters, strings, and values of other built-
in and user-defined types are presented.

§21.4 Formatting: There are often specific requirements for the layout of the output. For
example, i in nt ts may have to be printed in decimal and pointers in hexadecimal or
floating-point numbers must appear with exactly specified precision. Formatting con-
trols and the programming techniques used to provide them are discussed.

§21.5 Files and Streams:By default, every C++ program can use standard streams, such as
standard output (c co ou ut t), standard input (c ci in n), and error output (c ce er rr r). To use other
devices or files, streams must be created and attached to those files or devices. The
mechanisms for opening and closing files and for attaching streams to files ands st tr ri in ng gs
are described.

§21.6 Buffering: To make I/O efficient, we must use a buffering strategy that is suitable for
both the data written (read) and the destination it is written to (read from). The basic
techniques for buffering streams are presented.

§21.7 Locale:A l lo oc ca al le e is an object that specifies how numbers are printed, what characters are
considered letters, etc. It encapsulates many cultural differences. Locales are implicitly
used by the I/O system and are only briefly described here.

§21.8 C I/O: Thep pr ri in nt tf f() function from the C<s st td di io o. h h> library and the C library’s relation
to the C++ <i io os st tr re ea am m> library are discussed.

Knowledge of the techniques used to implement the stream library is not needed to use the library.
Also, the techniques used for different implementations will differ. However, implementing I/O is
a challenging task. An implementation contains examples of techniques that can be applied to
many other programming and design tasks. Therefore, the techniques used to implement I/O are
worthy of study.

This chapter discusses the stream I/O system to the point where you should be able to appreci-
ate its structure, to use it for most common kinds of I/O, and to extend it to handle new user-
defined types. If you need to implement the standard streams, provide a new kind of stream, or
provide a new locale, you need a copy of the standard, a good systems manual, and/or examples of
working code in addition to what is presented here.

The key components of the stream I/O systems can be represented graphically like this:

i io os s_ _b ba as se e:
locale independent format state

b ba as si ic c_ _i io os s< <> >:
locale dependent format state

stream state

b ba as si ic c_ _i io os st tr re ea am m< <> >:
formatting (<<, >>, etc.)

setup/cleanup

b ba as si ic c_ _s st tr re ea am mb bu uf f< <> >:
buffering

character buffer

real destination/source

l lo oc ca al le e:
format information

..

..

..

..

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.1 Introduction 607

The dotted arrow fromb ba as si ic c_ _i io os st tr re ea am m<> indicates thatb ba as si ic c_ _i io os s<> is a virtual base class; the
solid arrows represent pointers. The classes marked with<> are templates parameterized by a
character type and containing al lo oc ca al le e.

The streams concept and the general notation it provides can be applied to a large class of com-
munication problems. Streams have been used for transmitting objects between machines
(§25.4.1), for encrypting message streams (§21.10[22]), for data compression, for persistent storage
of objects, and much more. However, the discussion here is restricted to simple character-oriented
input and output.

Declarations of stream I/O classes and templates (sufficient to refer to them but not to apply
operations to them) and standardt ty yp pe ed de ef fs are presented in<i io os sf fw wd d>. This header is occasionally
needed when you want to include some but not all of the I/O headers.

21.2 Output [io.out]

Type-safe and uniform treatment of both built-in and user-defined types can be achieved by using a
single overloaded function name for a set of output functions. For example:

p pu ut t(c ce er rr r," x x = ") ; / / cerr is the error output stream
p pu ut t(c ce er rr r, x x) ;
p pu ut t(c ce er rr r,´ \ \n n´) ;

The type of the argument determines whichp pu ut t function will be invoked for each argument. This
solution is used in several languages. However, it is repetitive. Overloading the operator<< to
mean ‘‘put to’’ gives a better notation and lets the programmer output a sequence of objects in a
single statement. For example:

c ce er rr r << " x x = " << x x << ´ \ \n n´;

If x x is ani in nt t with the value1 12 23 3, this statement would print

x x = 1 12 23 3

followed by a newline onto the standard error output stream,c ce er rr r. Similarly, if x x is of typec co om m- -
p pl le ex x (§22.5) with the value(1 1, 2 2. 4 4) , the statement will print

x x = (1 1, 2 2. 4 4)

on c ce er rr r. This style can be used as long asx x is of a type for which operator<< is defined and a user
can trivially define operator<< for a new type.

An output operator is needed to avoid the verbosity that would have resulted from using an out-
put function. But why<<? It is not possible to invent a new lexical token (§11.2). The assign-
ment operator was a candidate for both input and output, but most people seemed to prefer to use
different operators for input and output. Furthermore,= binds the wrong way; that is,c co ou ut t=a a=b b
meansc co ou ut t=(a a=b b) rather than(c co ou ut t=a a)= b b (§6.2). I tried the operators< and>, but the mean-
ings ‘‘less than’’ and ‘‘greater than’’ were so firmly implanted in people’s minds that the new I/O
statements were for all practical purposes unreadable.

The operators<< and>> are not used frequently enough for built-in types to cause that prob-
lem. They are symmetric in a way that can be used to suggest ‘‘to’’ and ‘‘from.’’ When they are

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

608 Streams Chapter 21

used for I/O, I refer to<< as put to and to>> as get from. People who prefer more technical-
sounding names call theminsertersand extractors, respectively. The precedence of<< is low
enough to allow arithmetic expressions as operands without using parentheses. For example:

c co ou ut t << " a a* b b+c c=" << a a* b b+c c << ´ \ \n n´;

Parentheses must be used to write expressions containing operators with precedence lower than
<<’s. For example:

c co ou ut t << " a a^b b| c c=" << (a a^b b| c c) << ´ \ \n n´;

The left shift operator (§6.2.4) can be used in an output statement, but of course it, too, must appear
within parentheses:

c co ou ut t << " a a<<b b=" << (a a<<b b) << ´ \ \n n´;

21.2.1 Output Streams [io.ostream]

An o os st tr re ea am m is a mechanism for converting values of various types into sequences of characters.
Usually, these characters are then output using lower-level output operations. There are many
kinds of characters (§20.2) that can be characterized byc ch ha ar r_ _t tr ra ai it ts s (§20.2.1). Consequently, an
o os st tr re ea am m is a specialization for a particular kind of character of a generalb ba as si ic c_ _o os st tr re ea am m template:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s s st td d: : b ba as si ic c_ _o os st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

v vi ir rt tu ua al l ~b ba as si ic c_ _o os st tr re ea am m() ;
/ / ...

};

This template and its associated output operations are defined in namespaces st td d and presented by
<o os st tr re ea am m>, which contains the output-related parts of<i io os st tr re ea am m>.

Theb ba as si ic c_ _o os st tr re ea am m template parameters control the type of characters that is used by the imple-
mentation; they do not affect the types of values that can be output. Streams implemented using
ordinary c ch ha ar rs and streams implemented using wide characters are directly supported by every
implementation:

t ty yp pe ed de ef f b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r> o os st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _o os st tr re ea am m<w wc ch ha ar r_ _t t> w wo os st tr re ea am m;

On many systems, it is possible to optimize writing of wide characters throughw wo os st tr re ea am m to an
extent that is hard to match for streams using bytes as the unit of output.

It is possible to define streams for which the physical I/O is not done in terms of characters.
However, such streams are beyond the scope of the C++ standard and beyond the scope of this book
(§21.10[15]).

The b ba as si ic c_ _i io os s base class is presented in<i io os s>. It controls formatting (§21.4), locale (§21.7),
and access to buffers (§21.6). It also defines a few types for notational convenience:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.2.1 Output Streams 609

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s s st td d: : b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f T Tr r t tr ra ai it ts s_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e T Tr r: : i in nt t_ _t ty yp pe e i in nt t_ _t ty yp pe e; / / type of integer value of character
t ty yp pe ed de ef f t ty yp pe en na am me e T Tr r: : p po os s_ _t ty yp pe e p po os s_ _t ty yp pe e; / / position in buffer
t ty yp pe ed de ef f t ty yp pe en na am me e T Tr r: : o of ff f_ _t ty yp pe e o of ff f_ _t ty yp pe e; / / offset in buffer

/ / ... see also §21.3.3, §21.3.7, §21.4.4, §21.6.3, and §21.7.1 ...
};

The i io os s_ _b ba as se e base class contains information and operations that are independent of the character
type used, such as the precision used for floating-point output. It therefore doesn’t need to be a
template.

In addition to thet ty yp pe ed de ef fs in i io os s_ _b ba as se e, the stream I/O library uses a signed integral type
s st tr re ea am ms si iz ze e to represent the number of characters transferred in an I/O operation and the size of I/O
buffers. Similarly, at ty yp pe ed de ef f called s st tr re ea am mo of ff f is supplied for expressing offsets in streams and
buffers.

Several standard streams are declared in<i io os st tr re ea am m>:

o os st tr re ea am m c co ou ut t; / / standard output stream of char
o os st tr re ea am m c ce er rr r; / / standard unbuffered output stream for error messages
o os st tr re ea am m c cl lo og g; / / standard output stream for error messages

w wo os st tr re ea am m w wc co ou ut t; / / wide stream corresponding to cout
w wo os st tr re ea am m w wc ce er rr r; / / wide stream corresponding to cerr
w wo os st tr re ea am m w wc cl lo og g; / / wide stream corresponding to clog

Thec ce er rr r andc cl lo og g streams refer to the same output destination; they simply differ in the buffering
they provide. Thec co ou ut t writes to the same destination as C’ss st td do ou ut t (§21.8), whilec ce er rr r andc cl lo og g
write to the same destination as C’ss st td de er rr r. The programmer can create more streams as needed
(see §21.5).

21.2.2 Output of Built-In Types [io.out.builtin]

The classo os st tr re ea am m is defined with the operator<< (‘‘put to’’) to handle output of the built-in types:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _o os st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...

b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(s sh ho or rt t n n) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(i in nt t n n) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(l lo on ng g n n) ;

b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(u un ns si ig gn ne ed d s sh ho or rt t n n) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(u un ns si ig gn ne ed d i in nt t n n) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(u un ns si ig gn ne ed d l lo on ng g n n) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

610 Streams Chapter 21

b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(f fl lo oa at t f f) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(d do ou ub bl le e f f) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(l lo on ng g d do ou ub bl le e f f) ;

b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(b bo oo ol l n n) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(c co on ns st t v vo oi id d* p p) ; / / write pointer value

b ba as si ic c_ _o os st tr re ea am m& p pu ut t(C Ch h c c) ; / / write c
b ba as si ic c_ _o os st tr re ea am m& w wr ri it te e(c co on ns st t C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / p[0]..p[n-1]

/ / ...
};

An o op pe er ra at to or r<<() returns a reference to theo os st tr re ea am m for which it was called so that anothero op pe er ra a- -
t to or r<<() can be applied to it. For example,

c ce er rr r << " x x = " << x x;

wherex x is ani in nt t, will be interpreted as:

(c ce er rr r. o op pe er ra at to or r<<(" x x = ")). o op pe er ra at to or r<<(x x) ;

In particular, this implies that when several items are printed by a single output statement, they will
be printed in the expected order: left to right. For example:

v vo oi id d v va al l(c ch ha ar r c c)
{

c co ou ut t << " i in nt t(´" << c c << "´) = " << i in nt t(c c) << ´ \ \n n´;
}

i in nt t m ma ai in n()
{

v va al l(´ A A´) ;
v va al l(´ Z Z´) ;

}

On an implementation using ASCII characters, this will print:

i in nt t(´ A A´) = 6 65 5
i in nt t(´ Z Z´) = 9 90 0

Note that a character literal has typec ch ha ar r (§4.3.1) so thatc co ou ut t<<´ Z Z´ will print the letterZ Z and not
the integer value9 90 0.

A b bo oo ol l value will be output as0 0 or 1 1 by default. If you don’t like that, you can set the format-
ting flagb bo oo ol la al lp ph ha a from <i io om ma an ni ip p> (§21.4.6.2) and gett tr ru ue eor f fa al ls se e. For example:

i in nt t m ma ai in n()
{

c co ou ut t << t tr ru ue e << ´ ´ << f fa al ls se e << ´ \ \n n´;
c co ou ut t << b bo oo ol la al lp ph ha a; / / use symbolic representation for true and false
c co ou ut t << t tr ru ue e << ´ ´ << f fa al ls se e << ´ \ \n n´;

}

This prints:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.2.2 Output of Built-In Types 611

1 1 0 0
t tr ru ue e f fa al ls se e

More precisely,b bo oo ol la al lp ph ha a ensures that we get a locale-dependent representation ofb bo oo ol l values.
By setting my locale (§21.7) just right, I can get:

1 1 0 0
s sa an nd dt t f fa al ls sk k

Formatting floating-point numbers, the base used for integers, etc., are discussed in §21.4.
The functiono os st tr re ea am m: : o op pe er ra at to or r<<(c co on ns st t v vo oi id d*) prints a pointer value in a form appropriate

to the architecture of the machine used. For example,

i in nt t m ma ai in n()
{

i in nt t i i = 0 0;
i in nt t* p p = n ne ew w i in nt t;
c co ou ut t << " l lo oc ca al l " << &i i << ", f fr re ee e s st to or re e " << p p << ´ \ \n n´;

}

printed

l lo oc ca al l 0 0x x7 7f ff ff fe ea ad d0 0, f fr re ee e s st to or re e 0 0x x5 50 00 0c c

on my machine. Other systems have different conventions for printing pointer values.
Thep pu ut t() andw wr ri it te e() functions simply write characters. Consequently, the<< for outputting

characters need not be a member. Theo op pe er ra at to or r<<() functions that take a character operand can
be implemented as nonmembers usingp pu ut t() :

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&, C Ch h) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&, c ch ha ar r) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>&, c ch ha ar r) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>&, s si ig gn ne ed d c ch ha ar r) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>&, u un ns si ig gn ne ed d c ch ha ar r) ;

Similarly, << is provided for writing out zero-terminated character arrays:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&, c co on ns st t C Ch h*) ;

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&, c co on ns st t c ch ha ar r*) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>&, c co on ns st t c ch ha ar r*) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>&, c co on ns st t s si ig gn ne ed d c ch ha ar r*) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<c ch ha ar r, T Tr r>&, c co on ns st t u un ns si ig gn ne ed d c ch ha ar r*) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

612 Streams Chapter 21

21.2.3 Output of User-Defined Types [io.out.udt]

Consider a user-defined typec co om mp pl le ex x (§11.3):

c cl la as ss s c co om mp pl le ex x {
p pu ub bl li ic c:

d do ou ub bl le e r re ea al l() c co on ns st t { r re et tu ur rn n r re e; }
d do ou ub bl le e i im ma ag g() c co on ns st t { r re et tu ur rn n i im m; }
/ / ...

};

Operator<< can be defined for the new typec co om mp pl le ex x like this:

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&s s, c co om mp pl le ex x z z)
{

r re et tu ur rn n s s << ´(´ << z z. r re ea al l() << ´,´ << z z. i im ma ag g() << ´)´;
}

This << can then be used exactly like<< for a built-in type. For example,

i in nt t m ma ai in n()
{

c co om mp pl le ex x x x(1 1, 2 2) ;
c co ou ut t << " x x = " << x x << ´ \ \n n´;

}

produces

x x = (1 1, 2 2)

Defining an output operation for a user-defined type does not require modification of the declara-
tion of classo os st tr re ea am m. This is fortunate becauseo os st tr re ea am m is defined in<i io os st tr re ea am m>, which users
cannot and should not modify. Not allowing additions too os st tr re ea am m also provides protection against
accidental corruption of that data structure and makes it possible to change the implementation of
ano os st tr re ea am m without affecting user programs.

21.2.3.1 Virtual Output Functions [io.virtual]

The o os st tr re ea am m members are notv vi ir rt tu ua al l. The output operations that a programmer can add are not
members, so they cannot bev vi ir rt tu ua al l either. One reason for this is to achieve close to optimal perfor-
mance for simple operations such as putting a character into a buffer. This is a place where run-
time efficiency is crucial and where inlining is a must. Virtual functions are used to achieve flexi-
bility for the operations dealing with buffer overflow and underflow only (§21.6.4).

However, a programmer sometimes wants to output an object for which only a base class is
known. Since the exact type isn’t known, correct output cannot be achieved simply by defining a
<< for each new type. Instead, a virtual output function can be provided in the abstract base:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.2.3.1 Virtual Output Functions 613

c cl la as ss s M My y_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

v vi ir rt tu ua al l o os st tr re ea am m& p pu ut t(o os st tr re ea am m& s s) c co on ns st t = 0 0; / / write *this to s
};

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m& s s, c co on ns st t M My y_ _b ba as se e& r r)
{

r re et tu ur rn n r r. p pu ut t(s s) ; / / use the right put()
}

That is,p pu ut t() is a virtual function that ensures that the right output operation is used in<<.
Given that, we can write:

c cl la as ss s S So om me et ty yp pe e : p pu ub bl li ic c M My y_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

o os st tr re ea am m& p pu ut t(o os st tr re ea am m& s s) c co on ns st t; / / the real output function: override My_base::put()
};

v vo oi id d f f(c co on ns st t M My y_ _b ba as se e& r r, S So om me et ty yp pe e& s s) / / use<< which calls the right put()
{

c co ou ut t << r r << s s;
}

This integrates the virtualp pu ut t() into the framework provided byo os st tr re ea am m and<<. The technique
is generally useful to provide operations that act like virtual functions, but with the run-time selec-
tion based on their second argument.

21.3 Input [io.in]

Input is handled similarly to output. There is a classi is st tr re ea am m that provides an input operator>>
(‘‘get from’’) for a small set of standard types. Ano op pe er ra at to or r>>() can then be defined for a user-
defined type.

21.3.1 Input Streams [io.istream]

In parallel tob ba as si ic c_ _o os st tr re ea am m (§21.2.1),b ba as si ic c_ _i is st tr re ea am m is defined in<i is st tr re ea am m>, which contains the
input-related parts of<i io os st tr re ea am m>, like this:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s s st td d: : b ba as si ic c_ _i is st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

v vi ir rt tu ua al l ~b ba as si ic c_ _i is st tr re ea am m() ;

/ / ...
};

The base classb ba as si ic c_ _i io os s is described in §21.2.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

614 Streams Chapter 21

Two standard input streamsc ci in n andw wc ci in n are provided in<i io os st tr re ea am m>:

t ty yp pe ed de ef f b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r> i is st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _i is st tr re ea am m<w wc ch ha ar r_ _t t> w wi is st tr re ea am m;

i is st tr re ea am m c ci in n; / / standard input stream of char
w wi is st tr re ea am m w wc ci in n; / / standard input stream of wchar_t

Thec ci in n stream reads from the same source as C’ss st td di in n (§21.8).

21.3.2 Input of Built-In Types [io.in.builtin]

An i is st tr re ea am m provides operator>> for the built-in types:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i is st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...
/ / formatted input:

b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(s sh ho or rt t& n n) ; / / read into n
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(i in nt t& n n) ;
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(l lo on ng g& n n) ;

b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(u un ns si ig gn ne ed d s sh ho or rt t& u u) ; / / read into u
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(u un ns si ig gn ne ed d i in nt t& u u) ;
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(u un ns si ig gn ne ed d l lo on ng g& u u) ;

b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(f fl lo oa at t& f f) ; / / read into f
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(d do ou ub bl le e& f f) ;
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(l lo on ng g d do ou ub bl le e& f f) ;

b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(b bo oo ol l& b b) ; / / read into b
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(v vo oi id d*& p p) ; / / read pointer value into p

/ / ...
};

Theo op pe er ra at to or r>>() input functions are defined in this style:

i is st tr re ea am m& i is st tr re ea am m: : o op pe er ra at to or r>>(T T& t tv va ar r) / / T is a type for which istream::operator>> is declared
{

/ / skip whitespace, then somehow read a T into ‘tvar’
r re et tu ur rn n * t th hi is s;

}

Because>> skips whitespace, you can read a sequence of whitespace-separated integers like this:

i in nt t r re ea ad d_ _i in nt ts s(v ve ec ct to or r<i in nt t>& v v) / / fill v, return number of ints read
{

i in nt t i i = 0 0;
w wh hi il le e (i i<v v. s si iz ze e() && c ci in n>>v v[i i]) i i++;
r re et tu ur rn n i i;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.2 Input of Built-In Types 615

A non-i in nt t on the input will cause the input operation to fail and thus terminate the input loop. For
example, the input:

1 1 2 2 3 3 4 4 5 5. 6 6 7 7 8 8.

will have r re ea ad d_ _i in nt ts s() read in the five integers

1 1 2 2 3 3 4 4 5 5

and leave the dot as the next character to be read from input. Whitespace is defined as the standard
C whitespace (blank, tab, newline, formfeed, and carriage return) by a call toi is ss sp pa ac ce e() as defined
in <c cc ct ty yp pe e> (§20.4.2).

The most common mistake when usingi is st tr re ea am ms is to fail to notice that input didn’t happen as
expected because the input wasn’t of the expected format. One should either check the state of an
input stream (§21.3.3) before relying on values supposedly read in or use exceptions (§21.3.6).

The format expected for input is specified by the current locale (§21.7). By default, theb bo oo ol l
values t tr ru ue e and f fa al ls se e are represented by1 1 and 0 0, respectively. Integers must be decimal and
floating-point numbers of the form used to write them in a C++ program. By settingb ba as se e_ _f fi ie el ld d
(§21.4.2), it is possible to read0 01 12 23 3 as an octal number with the decimal value8 83 3 and0 0x xf ff f as a
hexadecimal number with the decimal value2 25 55 5. The format used to read pointers is completely
implementation-dependent (have a look to see what your implementation does).

Surprisingly, there is no member>> for reading a character. The reason is simply that>> for
characters can be implemented using theg ge et t() character input operations (§21.3.4), so it doesn’t
need to be a member. From a stream, we can read a character into the stream’s character type. If
that character type isc ch ha ar r, we can also read into as si ig gn ne ed d c ch ha ar r andu un ns si ig gn ne ed d c ch ha ar r:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&, C Ch h&) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>&, u un ns si ig gn ne ed d c ch ha ar r&) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>&, s si ig gn ne ed d c ch ha ar r&) ;

From a user’s point of view, it does not matter whether a>> is a member.
Like the other>> operators, these functions first skip whitespace. For example:

v vo oi id d f f()
{

c ch ha ar r c c;
c ci in n >> c c;
/ / ...

}

This places the first non-whitespace character fromc ci in n into c c.
In addition, we can read into an array of characters:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

616 Streams Chapter 21

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&, C Ch h*) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>&, u un ns si ig gn ne ed d c ch ha ar r*) ;

t te em mp pl la at te e<c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<c ch ha ar r, T Tr r>&, s si ig gn ne ed d c ch ha ar r*) ;

These operations first skip whitespace. Then they read into their array operand until they encounter
a whitespace character or end-of-file. Finally, they terminate the string with a0 0. Clearly, this
offers ample opportunity for overflow, so reading into as st tr ri in ng g (§20.3.15) is usually better. How-
ever, you can specify a maximum for the number of characters to be read by>>: i is s. w wi id dt th h(n n)
specifies that the next>> on i is s will read at mostn n- 1 1 characters into an array. For example:

v vo oi id d g g()
{

c ch ha ar r v v[4 4] ;
c ci in n. w wi id dt th h(4 4) ;
c ci in n >> v v;
c co ou ut t << " v v = " << v v << e en nd dl l;

}

This will read at most three characters intov v and add a terminating0 0.
Settingw wi id dt th h() for an i is st tr re ea am m affects only the immediately following>> into an array and

does not affect reading into other types of variables.

21.3.3 Stream State [io.state]

Every stream (i is st tr re ea am m or o os st tr re ea am m) has astateassociated with it. Errors and nonstandard condi-
tions are handled by setting and testing this state appropriately.

The stream state is found inb ba as si ic c_ _i is st tr re ea am m’s baseb ba as si ic c_ _i io os s from <i io os s>:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

b bo oo ol l g go oo od d() c co on ns st t; / / next operation might succeed
b bo oo ol l e eo of f() c co on ns st t; / / end of input seen
b bo oo ol l f fa ai il l() c co on ns st t; / / next operation will fail
b bo oo ol l b ba ad d() c co on ns st t; / / stream is corrupted

i io os st ta at te e r rd ds st ta at te e() c co on ns st t; / / get io state flags
v vo oi id d c cl le ea ar r(i io os st ta at te e f f = g go oo od db bi it t) ; / / set io state flags
v vo oi id d s se et ts st ta at te e(i io os st ta at te e f f) { c cl le ea ar r(r rd ds st ta at te e()| f f) ; } / / add f to io state flags

o op pe er ra at to or r v vo oi id d*() c co on ns st t; / / nonzero if !fail()
b bo oo ol l o op pe er ra at to or r!() c co on ns st t { r re et tu ur rn n f fa ai il l() ; }

/ / ...
};

If the state isg go oo od d() the previous input operation succeeded. If the state isg go oo od d() , the next input

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.3 Stream State 617

operation might succeed; otherwise, it will fail. Applying an input operation to a stream that is not
in theg go oo od d() state is a null operation. If we try to read into a variablev v and the operation fails,
the value ofv v should be unchanged (it is unchanged ifv v is a variable of one of the types handled by
i is st tr re ea am m or o os st tr re ea am m member functions). The difference between the statesf fa ai il l() and b ba ad d() is
subtle. When the state isf fa ai il l() but not alsob ba ad d() , it is assumed that the stream is uncorrupted
and that no characters have been lost. When the state isb ba ad d() , all bets are off.

The state of a stream is represented as a set of flags. Like most constants used to express the
behavior of streams, these flags are defined inb ba as si ic c_ _i io os s’ basei io os s_ _b ba as se e:

c cl la as ss s i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

t ty yp pe ed de ef f implementation_defined2 i io os st ta at te e;
s st ta at ti ic c c co on ns st t i io os st ta at te e b ba ad db bi it t, / / stream is corrupted

e eo of fb bi it t, / / end-of-file seen
f fa ai il lb bi it t, / / next operation will fail
g go oo od db bi it t; / / goodbit==0

/ / ...
};

The I/O state flags can be directly manipulated. For example:

v vo oi id d f f()
{

i io os s_ _b ba as se e: : i io os st ta at te e s s = c ci in n. r rd ds st ta at te e() ; / / returns a set of iostate bits

i if f (s s & i io os s_ _b ba as se e: : b ba ad db bi it t) {
/ / cin characters possibly lost

}
/ / ...
c ci in n. s se et ts st ta at te e(i io os s_ _b ba as se e: : f fa ai il lb bi it t) ;
/ / ...

}

When a stream is used as a condition, the state of the stream is tested byo op pe er ra at to or r v vo oi id d*() or
o op pe er ra at to or r!() . The test succeeds only if the state isg go oo od d() . For example, a general copy function
can be written like this:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d i io oc co op py y(i is st tr re ea am m& i is s, o os st tr re ea am m& o os s)
{

T T b bu uf f;
w wh hi il le e (i is s>>b bu uf f) o os s << b bu uf f << ´ \ \n n´;

}

The i is s>>b bu uf f returns a reference toi is s, which is tested by a call ofi is s: : o op pe er ra at to or r v vo oi id d*() . For
example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

618 Streams Chapter 21

v vo oi id d f f(i is st tr re ea am m& i i1 1, i is st tr re ea am m& i i2 2, i is st tr re ea am m& i i3 3, i is st tr re ea am m& i i4 4)
{

i io oc co op py y<c co om mp pl le ex x>(i i1 1, c co ou ut t) ; / / copy complex numbers
i io oc co op py y<d do ou ub bl le e>(i i2 2, c co ou ut t) ; / / copy doubles
i io oc co op py y<c ch ha ar r>(i i3 3, c co ou ut t) ; / / copy chars
i io oc co op py y<s st tr ri in ng g>(i i4 4, c co ou ut t) ; / / copy whitespace-separated words

}

21.3.4 Input of Characters [io.in.unformatted]

The >> operator is intended for formatted input; that is, reading objects of an expected type and
format. Where this is not desirable and we want to read characters as characters and then examine
them, we use theg ge et t() functions:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i is st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...
/ / unformatted input:

s st tr re ea am ms si iz ze e g gc co ou un nt t() c co on ns st t; / / number of char read by last get()

i in nt t_ _t ty yp pe e g ge et t() ; / / read one Ch (or Tr::eof())

b ba as si ic c_ _i is st tr re ea am m& g ge et t(C Ch h& c c) ; / / read one Ch into c

b ba as si ic c_ _i is st tr re ea am m& g ge et t(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / newline is terminator
b ba as si ic c_ _i is st tr re ea am m& g ge et t(C Ch h* p p, s st tr re ea am ms si iz ze e n n, C Ch h t te er rm m) ;

b ba as si ic c_ _i is st tr re ea am m& g ge et tl li in ne e(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / newline is terminator
b ba as si ic c_ _i is st tr re ea am m& g ge et tl li in ne e(C Ch h* p p, s st tr re ea am ms si iz ze e n n, C Ch h t te er rm m) ;

b ba as si ic c_ _i is st tr re ea am m& i ig gn no or re e(s st tr re ea am ms si iz ze e n n = 1 1, i in nt t_ _t ty yp pe e t t = T Tr r: : e eo of f()) ;
b ba as si ic c_ _i is st tr re ea am m& r re ea ad d(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / read at most n char

/ / ...
};

Theg ge et t() andg ge et tl li in ne e() functions treat whitespace characters exactly like other characters. They
are intended for input operations, where one doesn’t make assumptions about the meanings of the
characters read.

The functioni is st tr re ea am m: : g ge et t(c ch ha ar r&) reads a single character into its argument. For example, a
character-by-character copy program can be written like this:

i in nt t m ma ai in n()
{

c ch ha ar r c c;
w wh hi il le e(c ci in n. g ge et t(c c)) c co ou ut t. p pu ut t(c c) ;

}

The three-arguments s. g ge et t(p p, n n, t te er rm m) reads at at mostn n- 1 1 characters intop p[0 0].. p p[n n- 2 2] . A
call of g ge et t() will always place a0 0 at the end of the characters (if any) it placed in the buffer, sop p

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.4 Input of Characters 619

must point to an array of at leastn n characters. The third argument,t te er rm m, specifies a terminator. A
typical use of the three-argumentg ge et t() is to read a ‘‘line’’ into a fixed-sized buffer for further
analysis. For example:

v vo oi id d f f()
{

c ch ha ar r b bu uf f[1 10 00 0] ;
c ci in n >> b bu uf f; / / suspect: will overflow some day
c ci in n. g ge et t(b bu uf f, 1 10 00 0,´ \ \n n´) ; / / safe
/ / ...

}

If the terminator is found, it is left as the first unread character on the stream. Never callg ge et t()
twice without removing the terminator. For example:

v vo oi id d s su ub bt tl le e_ _i in nf fi in ni it te e_ _l lo oo op p()
{

c ch ha ar r b bu uf f[2 25 56 6] ;

w wh hi il le e (c ci in n) {
c ci in n. g ge et t(b bu uf f, 2 25 56 6) ; / / read a line
c co ou ut t << b bu uf f; / / print a line. Oops: forgot to remove ’\n’ from cin

}
}

This example is a good reason to preferg ge et tl li in ne e() overg ge et t() . A g ge et tl li in ne e() behaves like its corre-
spondingg ge et t() , except that it removes its terminator from thei is st tr re ea am m. For example:

v vo oi id d f f()
{

c ch ha ar r w wo or rd d[1 10 00 0][M MA AX X] ;
i in nt t i i = 0 0;
w wh hi il le e(c ci in n. g ge et tl li in ne e(w wo or rd d[i i++] , 1 10 00 0,´ \ \n n´) && i i<M MA AX X) ;
/ / ...

}

When efficiency isn’t paramount, it is better to read into as st tr ri in ng g (§3.6, §20.3.15). In that way, the
most common allocation and overflow problems cannot occur. However, theg ge et t() , g ge et tl li in ne e() ,
and r re ea ad d() functions are needed to implement such higher-level facilities. The relatively messy
interface is the price we pay for speed, for not having to re-scan the input to figure out what termi-
nated the input operation, for being able to reliably limit the number of characters read, etc.

A call r re ea ad d(p p, n n) reads at mostn n characters intop p[0 0].. p p[n n- 1 1] . The read function does not
rely on a terminator, and it doesn’t put a terminating0 0 into its target. Consequently, it really can
readn n characters (rather than justn n- 1 1). In other words, it simply reads characters and doesn’t try
to make its target into a C-style string.

The i ig gn no or re e() function reads characters liker re ea ad d() , but it doesn’t store them anywhere. Like
r re ea ad d() , it really can readn n characters (rather thann n- 1 1). The default number of characters read by
i ig gn no or re e() is 1 1, so a call ofi ig gn no or re e() without an argument means ‘‘throw the next character away.’’
Like g ge et tl li in ne e() , it optionally takes a terminator and removes that terminator from the input stream
if it gets to it. Note thati ig gn no or re e() ’s default terminator is end-of-file.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

620 Streams Chapter 21

For all of these functions, it is not immediately obvious what terminated the read– and it can
be hard even to remember which function has what termination criterion. However, we can always
inquire whether we reached end-of-file (§21.3.3). Also,g gc co ou un nt t() gives the number of characters
read from the stream by the most recent, unformatted input function call. For example:

v vo oi id d r re ea ad d_ _a a_ _l li in ne e(i in nt t m ma ax x)
{

/ / ...
i if f (c ci in n. f fa ai il l()) { / / Oops: bad input format

c ci in n. c cl le ea ar r() ; / / clear the input flags (§21.3.3)
c ci in n. i ig gn no or re e(m ma ax x,´;´) ; / / skip to semicolon

i if f (! c ci in n) {
/ / oops: we reached the end of the stream

}
e el ls se e i if f (c ci in n. g gc co ou un nt t()== m ma ax x) {

/ / oops: read max characters
}
e el ls se e {

/ / found and discarded the semicolon
}

}
}

Unfortunately, if the maximum number of characters are read there is no way of knowing whether
the terminator was found (as the last character).

Theg ge et t() that doesn’t take an argument is the<i io os st tr re ea am m> version of the<c cs st td di io o> g ge et tc ch ha ar r()
(§21.8). It simply reads a character and returns the character’s numeric value. In that way, it
avoids making assumptions about the character type used. If there is no input character to return,
g ge et t() returns a suitable ‘‘end-of-file’’ marker (that is, the stream’st tr ra ai it ts s_ _t ty yp pe e: : e eo of f()) and sets
the i is st tr re ea am m into e eo of f-state (§21.3.3). For example:

v vo oi id d f f(u un ns si ig gn ne ed d c ch ha ar r* p p)
{

i in nt t i i;
w wh hi il le e((i i = c ci in n. g ge et t()) && i i!= E EO OF F) {

* p p++ = i i;
/ / ...

}
}

E EO OF F is the value ofe eo of f() from the usualc ch ha ar r_ _t tr ra ai it ts s for c ch ha ar r. E EO OF F is presented in<i io os st tr re ea am m>.
Thus, this loop could have been writtenr re ea ad d(p p, M MA AX X_ _I IN NT T) , but presumably we wrote an explicit
loop because we wanted to look at each character as it came in. It has been said that C’s greatest
strength is its ability to read a character and decide to do nothing with it– and to do this fast. It is
indeed an important and underrated strength, and one that C++ aims to preserve.

The standard header<c cc ct ty yp pe e> defines several functions that can be useful when processing
input (§20.4.2). For example, ane ea at tw wh hi it te e() function that reads whitespace characters from a
stream could be defined like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.4 Input of Characters 621

i is st tr re ea am m& e ea at tw wh hi it te e(i is st tr re ea am m& i is s)
{

c ch ha ar r c c;
w wh hi il le e (i is s. g ge et t(c c)) {

i if f (! i is ss sp pa ac ce e(c c)) { / / is c a whitespace character?
i is s. p pu ut tb ba ac ck k(c c) ; / / put c back into the input buffer
b br re ea ak k;

}
}
r re et tu ur rn n i is s;

}

The calli is s. p pu ut tb ba ac ck k(c c) makesc c be the next character read from the streami is s (§21.6.4).

21.3.5 Input of User-Defined Types [io.in.udt]

An input operation can be defined for a user-defined type exactly as an output operation was. How-
ever, for an input operation, it is essential that the second argument be of a non-c co on ns st t reference
type. For example:

i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m& s s, c co om mp pl le ex x& a a)
/*

input formats for a complex ("f" indicates a floating-point number):
f
(f)
(f , f)

*/
{

d do ou ub bl le e r re e = 0 0, i im m = 0 0;
c ch ha ar r c c = 0 0;

s s >> c c;
i if f (c c == ´(´) {

s s >> r re e >> c c;
i if f (c c == ´,´) s s >> i im m >> c c;
i if f (c c != ´)´) s s. c cl le ea ar r(i io os s_ _b ba as se e: : b ba ad db bi it t) ; / / set state

}
e el ls se e {

s s. p pu ut tb ba ac ck k(c c) ;
s s >> r re e;

}

i if f (s s) a a = c co om mp pl le ex x(r re e, i im m) ;
r re et tu ur rn n s s;

}

Despite the scarcity of error-handling code, this will actually handle most kinds of errors. The local
variablec c is initialized to avoid having its value accidentally be´(´ after a failed first>> opera-
tion. The final check of the stream state ensures that the value of the argumenta a is changed only if
everything went well.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

622 Streams Chapter 21

The operation for setting a stream state is calledc cl le ea ar r() because its most common use is to
reset the state of a stream tog go oo od d() ; i io os s_ _b ba as se e: : g go oo od db bi it t is the default argument value for
i io os s_ _b ba as se e: : c cl le ea ar r() (§21.3.3).

21.3.6 Exceptions [io.except]

It is not convenient to test for errors after each I/O operation, so a common cause of error is failing
to do so where it matters. In particular, output operations are typically unchecked, but they do
occasionally fail.

The only function that directly changes the state of a stream isc cl le ea ar r() . Thus, an obvious way
of getting notified by a state change is to askc cl le ea ar r() to throw an exception. Thei io os s_ _b ba as se e mem-
bere ex xc ce ep pt ti io on ns s() does just that:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

c cl la as ss s f fa ai il lu ur re e; / / exception class (see §14.10)

i io os st ta at te e e ex xc ce ep pt ti io on ns s() c co on ns st t; / / get exception state
v vo oi id d e ex xc ce ep pt ti io on ns s(i io os st ta at te e e ex xc ce ep pt t) ; / / set exception state

/ / ...
};

For example,

c co ou ut t. e ex xc ce ep pt ti io on ns s(i io os s_ _b ba as se e: : b ba ad db bi it t| i io os s_ _b ba as se e: : f fa ai il lb bi it t| i io os s_ _b ba as se e: : e eo of fb bi it t) ;

requests thatc cl le ea ar r() should throw ani io os s_ _b ba as se e: : f fa ai il lu ur re e exception ifc co ou ut t goes into statesb ba ad d,
f fa ai il l, ore eo of f – in other words, if any output operation onc co ou ut t doesn’t perform flawlessly. Similarly,

c ci in n. e ex xc ce ep pt ti io on ns s(i io os s_ _b ba as se e: : b ba ad db bi it t| i io os s_ _b ba as se e: : f fa ai il lb bi it t) ;

allows us to catch the not-too-uncommon case in which the input is not in the format we expected,
so an input operation didn’t return a value from the stream.

A call of e ex xc ce ep pt ti io on ns s() with no arguments returns the set of I/O state flags that triggers an
exception. For example:

v vo oi id d p pr ri in nt t_ _e ex xc ce ep pt ti io on ns s(i io os s_ _b ba as se e& i io os s)
{

i io os s_ _b ba as se e: : i io os st ta at te e s s = i io os s. e ex xc ce ep pt ti io on ns s() ;
i if f (s s&i io os s_ _b ba as se e: : b ba ad db bi it t) c co ou ut t << " t th hr ro ow ws s f fo or r b ba ad d";
i if f (s s&i io os s_ _b ba as se e: : f fa ai il lb bi it t) c co ou ut t << " t th hr ro ow ws s f fo or r f fa ai il l";
i if f (s s&i io os s_ _b ba as se e: : e eo of fb bi it t) c co ou ut t << " t th hr ro ow ws s f fo or r e eo of f";
i if f (s s == 0 0) c co ou ut t << " d do oe es sn n´ t t t th hr ro ow w";

}

The primary use of I/O exceptions is to catch unlikely– and therefore often forgotten– errors.
Another is to control I/O. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.6 Exceptions 623

v vo oi id d r re ea ad di in nt ts s(v ve ec ct to or r<i in nt t>& s s) / / not my favorite style!
{

i io os s_ _b ba as se e: : i io os st ta at te e o ol ld d_ _s st ta at te e = c ci in n. e ex xc ce ep pt ti io on ns s() ; / / save exception state
c ci in n. e ex xc ce ep pt ti io on ns s(i io os s_ _b ba as se e: : e eo of fb bi it t) ; / / throw for eof

f fo or r (;;)
t tr ry y {

i in nt t i i;
c ci in n>>i i;
s s. p pu us sh h_ _b ba ac ck k(i i) ;

}
c ca at tc ch h(i io os s_ _b ba as se e: : e eo of f) {

/ / ok: end of file reached
}

c ci in n. e ex xc ce ep pt ti io on ns s(o ol ld d_ _s st ta at te e) ; / / reset exception state
}

The question to ask about this use of exceptions is, ‘‘Is that an error?’’ or ‘‘Is that really excep-
tional?’’ (§14.5). Usually, I find that the answer to either question is no. Consequently, I prefer to
deal with the stream state directly. What can be handled with local control structures within a func-
tion is rarely improved by the use of exceptions.

21.3.7 Tying of Streams [io.tie]

The b ba as si ic c_ _i io os s function t ti ie e() is used to set up and break connections between ani is st tr re ea am m and an
o os st tr re ea am m:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s s st td d: : b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {

/ / ...

b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>* t ti ie e() c co on ns st t; / / get pointer to tied stream
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>* t ti ie e(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>* s s) ; / / tie *this to s

/ / ...
};

Consider:

s st tr ri in ng g g ge et t_ _p pa as ss sw wd d()
{

s st tr ri in ng g s s;
c co ou ut t << " P Pa as ss sw wo or rd d: ";
c ci in n >> s s;
/ / ...

}

How can we be sure thatP Pa as ss sw wo or rd d: appears on the screen before the read operation is executed?
The output onc co ou ut t is buffered, so ifc ci in n and c co ou ut t had been independentP Pa as ss sw wo or rd d: would not
have appeared on the screen until the output buffer was full. The answer is thatc co ou ut t is tied toc ci in n
by the operationc ci in n. t ti ie e(& c co ou ut t) .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

624 Streams Chapter 21

When ano os st tr re ea am m is tied to ani is st tr re ea am m, theo os st tr re ea am m is flushed whenever an input operation on
the i is st tr re ea am m causes underflow; that is, whenever new characters are needed from the ultimate input
source to complete the input operation. Thus,

c co ou ut t << " P Pa as ss sw wo or rd d: ";
c ci in n >> s s;

is equivalent to:

c co ou ut t << " P Pa as ss sw wo or rd d: ";
c co ou ut t. f fl lu us sh h() ;
c ci in n >> s s;

A stream can have at most oneo os st tr re ea am m at a time tied to it. A calls s. t ti ie e(0 0) unties the streams s
from the stream it was tied to, if any. Like most other stream functions that set a value,t ti ie e(s s)
returns the previous value; that is, it returns the previously tied stream or0 0. A call without an argu-
ment,t ti ie e() , returns the current value without changing it.

Of the standard streams,c co ou ut t is tied toc ci in n andw wc co ou ut t is tied tow wc ci in n. Thec ce er rr r streams need
not be tied because they are unbuffered, while thec cl lo og g streams are not meant for user interaction.

21.3.8 Sentries [io.sentry]

When I wrote operators<< and>> for c co om mp pl le ex x, I did not worry about tied streams (§21.3.7) or
whether changing stream state would cause exceptions (§21.3.6). I assumed– correctly– that the
library-provided functions would take care of that for me. But how? There are a couple of dozen
such functions. If we had to write intricate code to handle tied streams,l lo oc ca al le es (§21.7), exceptions,
etc., in each, then the code could get rather messy.

The approach taken is to provide the common code through as se en nt tr ry y class. Code that needs to
be executed first (the ‘‘prefix code’’)– such as flushing a tied stream– is provided as thes se en nt tr ry y’s
constructor. Code that needs to be executed last (the ‘‘suffix code’’)– such as throwing exceptions
caused by state changes– is provided as thes se en nt tr ry y’s destructor:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _o os st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {

/ / ...
c cl la as ss s s se en nt tr ry y;
/ / ...

};

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>: : s se en nt tr ry y {
p pu ub bl li ic c:

e ex xp pl li ic ci it t s se en nt tr ry y(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& s s) ;
~s se en nt tr ry y() ;
o op pe er ra at to or r b bo oo ol l() ;

/ / ...
};

Thus, common code is factored out and an individual function can be written like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.8 Sentries 625

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>: : o op pe er ra at to or r<<(i in nt t i i)
{

s se en nt tr ry y s s(* t th hi is s) ;
i if f (! s s) { / / check whether all is well for output to start

s se et ts st ta at te e(f fa ai il lb bi it t) ;
r re et tu ur rn n * t th hi is s;

}

/ / output the int
r re et tu ur rn n * t th hi is s;

}

This technique of using constructors and destructors to provide common prefix and suffix code
through a class is useful in many contexts.

Naturally,b ba as si ic c_ _i is st tr re ea am m has a similars se en nt tr ry y member class.

21.4 Formatting[io.format]

The examples in §21.2 were all of what is commonly calledunformatted output. That is, an object
was turned into a sequence of characters according to default rules. Often, the programmer needs
more detailed control. For example, we need to be able to control the amount of space used for an
output operation and the format used for output of numbers. Similarly, some aspects of input can
be explicitly controlled.

Control of I/O formatting resides in classb ba as si ic c_ _i io os s and its basei io os s_ _b ba as se e. For example, class
b ba as si ic c_ _i io os s holds the information about the base (octal, decimal, or hexadecimal) to be used when
integers are written or read, the precision of floating-point numbers written or read, etc. It also
holds the functions to set and examine these per-stream control variables.

Classb ba as si ic c_ _i io os s is a base ofb ba as si ic c_ _i is st tr re ea am m andb ba as si ic c_ _o os st tr re ea am m, so format control is on a per-
stream basis.

21.4.1 Format State [io.format.state]

Formatting of I/O is controlled by a set of flags and integer values in the stream’si io os s_ _b ba as se e:

c cl la as ss s i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...
/ / names of format flags:

t ty yp pe ed de ef f implementation_defined1 f fm mt tf fl la ag gs s;
s st ta at ti ic c c co on ns st t f fm mt tf fl la ag gs s

s sk ki ip pw ws s, / / skip whitespace on input

l le ef ft t, / / field adjustment: pad after value
r ri ig gh ht t, / / pad before value
i in nt te er rn na al l, / / pad between sign and value

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

626 Streams Chapter 21

b bo oo ol la al lp ph ha a, / / use symbolic representation of true and false

d de ec c, / / integer base: base 10 output (decimal)
h he ex x, / / base 16 output (hexadecimal)
o oc ct t, / / base 8 output (octal)

s sc ci ie en nt ti if fi ic c, / / floating-point notation: d.ddddddEdd
f fi ix xe ed d, / / dddd.dd

s sh ho ow wb ba as se e, / / on output prefix oct by 0 and hex by 0x
s sh ho ow wp po oi in nt t, / / print trailing zeros
s sh ho ow wp po os s, / / explicit ’+’ for positive ints
u up pp pe er rc ca as se e, / / ’E’, ’X’ rather than ’e’, ’x’

a ad dj ju us st tf fi ie el ld d, / / flags related to field adjustment (§21.4.5)
b ba as se ef fi ie el ld d, / / flags related to integer base (§21.4.2)
f fl lo oa at tf fi ie el ld d; / / flags related to floating-point output (§21.4.3)

f fm mt tf fl la ag gs s u un ni it tb bu uf f; / / flush output after each output operation

f fm mt tf fl la ag gs s f fl la ag gs s() c co on ns st t; / / read flags
f fm mt tf fl la ag gs s f fl la ag gs s(f fm mt tf fl la ag gs s f f) ; / / set flags

f fm mt tf fl la ag gs s s se et tf f(f fm mt tf fl la ag gs s f f) { r re et tu ur rn n f fl la ag gs s(f fl la ag gs s()| f f) ; } / / add flag
f fm mt tf fl la ag gs s s se et tf f(f fm mt tf fl la ag gs s f f, f fm mt tf fl la ag gs s m ma as sk k) { r re et tu ur rn n f fl la ag gs s(f fl la ag gs s()|(f f&m ma as sk k)) ; }/ / add flag
v vo oi id d u un ns se et tf f(f fm mt tf fl la ag gs s m ma as sk k) { f fl la ag gs s(f fl la ag gs s()&~ m ma as sk k) ; } / / clear flags

/ / ...
};

The values of the flags are implementation-defined. Use the symbolic names exclusively, rather
than specific numeric values, even if those values happen to be correct on your implementation
today.

Defining an interface as a set of flags, and providing operations for setting and clearing those
flags is a time-honored if somewhat old-fashioned technique. Its main virtue is that a user can
compose a set of options. For example:

c co on ns st t i io os s_ _b ba as se e: : f fm mt tf fl la ag gs s m my y_ _o op pt t = i io os s_ _b ba as se e: : l le ef ft t| i io os s_ _b ba as se e: : o oc ct t| i io os s_ _b ba as se e: : f fi ix xe ed d;

This allows us to pass options around and install them where needed. For example:

v vo oi id d y yo ou ur r_ _f fu un nc ct ti io on n(i io os s_ _b ba as se e: : f fm mt tf fl la ag gs s o op pt t)
{

i io os s_ _b ba as se e: : f fm mt tf fl la ag gs s o ol ld d_ _o op pt ti io on ns s = c co ou ut t. f fl la ag gs s(o op pt t) ; / / save old_options and set new ones
/ / ...
c co ou ut t. f fl la ag gs s(o ol ld d_ _o op pt ti io on ns s) ; / / reset options

}

v vo oi id d m my y_ _f fu un nc ct ti io on n()
{

y yo ou ur r_ _f fu un nc ct ti io on n(m my y_ _o op pt t) ;
/ / ...

}

Thef fl la ag gs s() function returns the old option set.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.1 Format State 627

Being able to read and set all options allows us to set an individual flag. For example:

m my yo os st tr re ea am m. f fl la ag gs s(m my yo os st tr re ea am m. f fl la ag gs s()| i io os s_ _b ba as se e: : s sh ho ow wp po os s) ;

This makesm my ys st tr re ea am m display an explicit+ in front of positive numbers without affecting other
options. The old options are read, ands sh ho ow wp po os s is set by or-ing it into the set. The functions se et tf f()
does exactly that, so the example could equivalently have been written:

m my yo os st tr re ea am m. s se et tf f(i io os s_ _b ba as se e: : s sh ho ow wp po os s) ;

Once set, a flag retains its value until it is unset.
Controlling I/O options by explicitly setting and clearing flags is crude and error-prone. For

simple cases, manipulators (§21.4.6) provide a cleaner interface. Using flags to control stream state
is a better study in implementation technique than in interface design.

21.4.1.1 Copying Format State [io.copyfmt]

The complete format state of a stream can be copied byc co op py yf fm mt t() :

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...
b ba as si ic c_ _i io os s& c co op py yf fm mt t(c co on ns st t b ba as si ic c_ _i io os s& f f) ;
/ / ...

};

The stream’s buffer (§21.6) and the state of that buffer isn’t copied byc co op py yf fm mt t() . However, all of
the rest of the state is, including the requested exceptions (§21.3.6) and any user-supplied additions
to that state (§21.7.1).

21.4.2 Integer Output [io.out.int]

The technique of or-ing in a new option withf fl la ag gs s() or s se et tf f() works only when a single bit con-
trols a feature. This is not the case for options such as the base used for printing integers and the
style of floating-point output. For such options, the value that specifies a style is not necessarily
represented by a single bit or as a set of independent single bits.

The solution adopted in<i io os st tr re ea am m> is to provide a version ofs se et tf f() that takes a second
‘‘pseudo argument’’ that indicates which kind of option we want to set in addition to the new value.
For example,

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : o oc ct t, i io os s_ _b ba as se e: : b ba as se ef fi ie el ld d) ; / / octal
c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : d de ec c, i io os s_ _b ba as se e: : b ba as se ef fi ie el ld d) ; / / decimal
c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : h he ex x, i io os s_ _b ba as se e: : b ba as se ef fi ie el ld d) ; / / hexadecimal

sets the base of integers without side effects on other parts of the stream state. Once set, a base is
used until reset. For example,

c co ou ut t << 1 12 23 34 4 << ´ ´ << 1 12 23 34 4 << ´ ´; / / default: decimal

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

628 Streams Chapter 21

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : o oc ct t, i io os s_ _b ba as se e: : b ba as se ef fi ie el ld d) ; / / octal
c co ou ut t << 1 12 23 34 4 << ´ ´ << 1 12 23 34 4 << ´ ´;

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : h he ex x, i io os s_ _b ba as se e: : b ba as se ef fi ie el ld d) ; / / hexadecimal
c co ou ut t << 1 12 23 34 4 << ´ ´ << 1 12 23 34 4 << ´ ´;

produces1 12 23 34 4 1 12 23 34 4 2 23 32 22 2 2 23 32 22 2 4 4d d2 2 4 4d d2 2.
If we need to be able to tell which base was used for each number, we can sets sh ho ow wb ba as se e. Thus,

adding

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : s sh ho ow wb ba as se e) ;

before the previous operations, we get1 12 23 34 4 1 12 23 34 4 0 02 23 32 22 2 0 02 23 32 22 2 0 0x x4 4d d2 2 0 0x x4 4d d2 2. The standard
manipulators (§21.4.6.2) provide a more elegant way of specifying the base of integer output.

21.4.3 Floating-Point Output [io.out.float]

Floating-point output is controlled by aformatand aprecision:
– Thegeneralformat lets the implementation choose a format that presents a value in the style

that best preserves the value in the space available. The precision specifies the maximum
number of digits. It corresponds top pr ri in nt tf f() ’s %g g (§21.8).

– Thescientificformat presents a value with one digit before a decimal point and an exponent.
The precision specifies the maximum number of digits after the decimal point. It corre-
sponds top pr ri in nt tf f() ’s %e e.

– The fixed format presents a value as an integer part followed by a decimal point and a frac-
tional part. The precision specifies the maximum number of digits after the decimal point.
It corresponds top pr ri in nt tf f() ’s %f f.

We control the floating-point output format through the state manipulation functions. In particular,
we can set the notation used for printing floating-point values without side effects on other parts of
the stream state. For example,

c co ou ut t << " d de ef fa au ul lt t: \ \t t" << 1 12 23 34 4. 5 56 67 78 89 9 << ´ \ \n n´;

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : s sc ci ie en nt ti if fi ic c, i io os s_ _b ba as se e: : f fl lo oa at tf fi ie el ld d) ; / / use scientific format
c co ou ut t << " s sc ci ie en nt ti if fi ic c: \ \t t" << 1 12 23 34 4. 5 56 67 78 89 9 << ´ \ \n n´;

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : f fi ix xe ed d, i io os s_ _b ba as se e: : f fl lo oa at tf fi ie el ld d) ; / / use fixed-point format
c co ou ut t << " f fi ix xe ed d: \ \t t" << 1 12 23 34 4. 5 56 67 78 89 9 << ´ \ \n n´;

c co ou ut t. s se et tf f(0 0, i io os s_ _b ba as se e: : f fl lo oa at tf fi ie el ld d) ; / / reset to default (that is, general format)
c co ou ut t << " d de ef fa au ul lt t: \ \t t" << 1 12 23 34 4. 5 56 67 78 89 9 << ´ \ \n n´;

produces

d de ef fa au ul lt t: 1 12 23 34 4. 5 57 7
s sc ci ie en nt ti if fi ic c: 1 1. 2 23 34 45 56 68 8e e+0 03 3
f fi ix xe ed d: 1 12 23 34 4. 5 56 67 78 89 90 0
d de ef fa au ul lt t: 1 12 23 34 4. 5 57 7

The default precision (for all formats) is6 6. The precision is controlled by ani io os s_ _b ba as se e member
function:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.3 Floating-Point Output 629

c cl la as ss s i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...
s st tr re ea am ms si iz ze e p pr re ec ci is si io on n() c co on ns st t; / / get precision
s st tr re ea am ms si iz ze e p pr re ec ci is si io on n(s st tr re ea am ms si iz ze e n n) ; / / set precision (and get old precision)
/ / ...

};

A call of p pr re ec ci is si io on n() affects all floating-point I/O operations for a stream up until the next call of
p pr re ec ci is si io on n() . Thus,

c co ou ut t. p pr re ec ci is si io on n(8 8) ;
c co ou ut t << 1 12 23 34 4. 5 56 67 78 89 9 << ´ ´ << 1 12 23 34 4. 5 56 67 78 89 9 << ´ ´ << 1 12 23 34 45 56 6 << ´ \ \n n´;

c co ou ut t. p pr re ec ci is si io on n(4 4) ;
c co ou ut t << 1 12 23 34 4. 5 56 67 78 89 9 << ´ ´ << 1 12 23 34 4. 5 56 67 78 89 9 << ´ ´ << 1 12 23 34 45 56 6 << ´ \ \n n´;

produces

1 12 23 34 4. 5 56 67 79 9 1 12 23 34 4. 5 56 67 79 9 1 12 23 34 45 56 6
1 12 23 35 5 1 12 23 35 5 1 12 23 34 45 56 6

Note that floating-point values are rounded rather than just truncated and thatp pr re ec ci is si io on n() doesn’t
affect integer output.

Theu up pp pe er rc ca as se e flag (§21.4.1) determines whethere e or E E is used to indicate the exponents in the
scientific format.

Manipulators provide a more elegant way of specifying output format for floating-point output
(§21.4.6.2).

21.4.4 Output Fields [io.fields]

Often, we want to fill a specific space on an output line with text. We want to use exactlyn n charac-
ters and not fewer (and more only if the text does not fit). To do this, we specify a field width and a
character to be used if padding is needed:

c cl la as ss s i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...
s st tr re ea am ms si iz ze e w wi id dt th h() c co on ns st t; / / get field width
s st tr re ea am ms si iz ze e w wi id dt th h(s st tr re ea am ms si iz ze e w wi id de e) ; / / set field width
/ / ...

};

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...
C Ch h f fi il ll l() c co on ns st t; / / get filler character
C Ch h f fi il ll l(C Ch h c ch h) ; / / set filler character
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

630 Streams Chapter 21

Thew wi id dt th h() function specifies the minimum number of characters to be used for the next standard
library << output operation of a numeric value,b bo oo ol l, C-style string, character, pointer (§21.2.1),
s st tr ri in ng g (§20.3.15), andb bi it tf fi ie el ld d (§17.5.3.3). For example,

c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t << 1 12 2;

will print 1 12 2 preceded by two spaces.
The ‘‘padding’’ or ‘‘filler’’ character can be specified by thef fi il ll l() function. For example,

c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t. f fi il ll l(´#´) ;
c co ou ut t << " a ab b";

gives the output##a ab b.
The default fill character is the space character and the default field size is0 0, meaning ‘‘as many

characters as needed.’’ The field size can be reset to its default value like this:

c co ou ut t. w wi id dt th h(0 0) ; / / ‘‘as many characters as needed’’

A call w wi id dt th h(n n) function sets the minimum number of characters ton n. If more characters are pro-
vided, they will all be printed. For example,

c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t << " a ab bc cd de ef f";

producesa ab bc cd de ef f rather than justa ab bc cd d. It is usually better to get the right output looking ugly than
to get the wrong output looking just fine (see also §21.10[21]).

A w wi id dt th h(n n) call affects only the immediately following<< output operation:

c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t. f fi il ll l(´#´) ;
c co ou ut t << 1 12 2 << ´:´ << 1 13 3;

This produces##1 12 2: 1 13 3, rather than##1 12 2###:## 1 13 3, as would have been the case hadw wi id dt th h(4 4)
applied to subsequent operations. Had all subsequent output operations been affected byw wi id dt th h() ,
we would have had to explicitly specifyw wi id dt th h() for essentially all values.

The standard manipulators (§21.4.6.2) provide a more elegant way of specifying the width of an
output field.

21.4.5 Field Adjustment [io.field.adjust]

The adjustment of characters within a field can be controlled bys se et tf f() calls:

c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : l le ef ft t, i io os s_ _b ba as se e: : a ad dj ju us st tf fi ie el ld d) ; / / left
c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : r ri ig gh ht t, i io os s_ _b ba as se e: : a ad dj ju us st tf fi ie el ld d) ; / / right
c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : i in nt te er rn na al l, i io os s_ _b ba as se e: : a ad dj ju us st tf fi ie el ld d) ; / / internal

This sets the adjustment of output within an output field defined byi io os s_ _b ba as se e: : w wi id dt th h() without
side effects on other parts of the stream state.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.5 Field Adjustment 631

Adjustment can be specified like this:

c co ou ut t. f fi il ll l(´#´) ;

c co ou ut t << ´(´;
c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t << - 1 12 2 << ") ,(";

c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : l le ef ft t, i io os s_ _b ba as se e: : a ad dj ju us st tf fi ie el ld d) ;
c co ou ut t << - 1 12 2 << ") ,(";

c co ou ut t. w wi id dt th h(4 4) ;
c co ou ut t. s se et tf f(i io os s_ _b ba as se e: : i in nt te er rn na al l, i io os s_ _b ba as se e: : a ad dj ju us st tf fi ie el ld d) ;
c co ou ut t << - 1 12 2 << ")";

This produces:(#- 1 12 2) , (- 1 12 2#) , (-# 1 12 2) . Internal adjustment places fill characters between the
sign and the value. As shown, right adjustment is the default.

21.4.6 Manipulators [io.manipulators]

To save the programmer from having to deal with the state of a stream in terms of flags, the stan-
dard library provides a set of functions for manipulating that state. The key idea is to insert an
operation that modifies the state in between the objects being read or written. For example, we can
explicitly request that an output buffer be flushed:

c co ou ut t << x x << f fl lu us sh h << y y << f fl lu us sh h;

Here,c co ou ut t. f fl lu us sh h() is called at the appropriate times. This is done by a version of<< that takes a
pointer to function argument and invokes it:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _o os st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...

b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m& (* f f)(b ba as si ic c_ _o os st tr re ea am m&)) { r re et tu ur rn n f f(* t th hi is s) ; }
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(i io os s_ _b ba as se e& (* f f)(i io os s_ _b ba as se e&)) ;
b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(b ba as si ic c_ _i io os s<C Ch h, T Tr r>& (* f f)(b ba as si ic c_ _i io os s<C Ch h, T Tr r>&)) ;

/ / ...
};

For this to work, a function must be a nonmember or static-member function with the right type. In
particular,f fl lu us sh h() is defined like this:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& f fl lu us sh h(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& s s)
{

r re et tu ur rn n s s. f fl lu us sh h() ; / / call ostream’s member flush()
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

632 Streams Chapter 21

These declarations ensure that

c co ou ut t << f fl lu us sh h;

is resolved as

c co ou ut t. o op pe er ra at to or r<<(f fl lu us sh h) ;

which calls

f fl lu us sh h(c co ou ut t) ;

which then invokes

c co ou ut t. f fl lu us sh h() ;

The whole rigmarole is done (at compile time) to allowb ba as si ic c_ _o os st tr re ea am m: : f fl lu us sh h() to be called
using thec co ou ut t<<f fl lu us sh h notation.

There is a wide variety of operations we might like to perform just before or just after an input
or output operation. For example:

c co ou ut t << x x;
c co ou ut t. f fl lu us sh h() ;
c co ou ut t << y y;

c ci in n. n no os sk ki ip pw ws s() ; / / don’t skip whitespace
c ci in n >> x x;

When the operations are written as separate statements, the logical connections between the opera-
tions are not obvious. Once the logical connection is lost, the code gets harder to understand. The
notion of manipulators allows operations such asf fl lu us sh h() andn no os sk ki ip pw ws s() to be inserted directly
in the list of input or output operations. For example:

c co ou ut t << x x << f fl lu us sh h << y y << f fl lu us sh h;
c ci in n >> n no os sk ki ip pw ws s >> x x;

Naturally, classb ba as si ic c_ _i is st tr re ea am m provides>> operators for invoking manipulators in a way similar to
classb ba as si ic c_ _o os st tr re ea am m:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i is st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...

b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m& (* p pf f)(b ba as si ic c_ _i is st tr re ea am m&)) ;
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(b ba as si ic c_ _i io os s<C Ch h, T Tr r>& (* p pf f)(b ba as si ic c_ _i io os s<C Ch h, T Tr r>&)) ;
b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(i io os s_ _b ba as se e& (* p pf f)(i io os s_ _b ba as se e&)) ;

/ / ...
};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.6.1 Manipulators Taking Arguments 633

21.4.6.1 Manipulators Taking Arguments [io.manip.arg]

Manipulators that take arguments can also be useful. For example, we might want to write

c co ou ut t << s se et tp pr re ec ci is si io on n(4 4) << a an ng gl le e;

to print the value of the floating-point variablea an ng gl le ewith four digits.
To do this, s se et tp pr re ec ci is si io on n must return an object that is initialized by4 4 and that calls

c co ou ut t: : s se et tp pr re ec ci is si io on n(4 4) when invoked. Such a manipulator is a function object that is invoked by
<< rather than by() . The exact type of that function object is implementation-defined, but it
might be defined like this:

s st tr ru uc ct t s sm ma an ni ip p {
i io os s_ _b ba as se e& (* f f)(i io os s_ _b ba as se e&, i in nt t) ; / / function to be called
i in nt t i i;

s sm ma an ni ip p(i io os s_ _b ba as se e& (* f ff f)(i io os s_ _b ba as se e&, i in nt t) , i in nt t i ii i) : f f(f ff f) , i i(i ii i) { }
};

t te em mp pl la at te e<c cl la ad dd d C Ch h, c cl la as ss s T Tr r>
o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(o os st tr re ea am m<C Ch h, T Tr r>& o os s, s sm ma an ni ip p& m m)
{

r re et tu ur rn n m m. f f(o os s, m m. i i) ;
}

The s sm ma an ni ip p constructor stores its arguments inf f and i i, ando op pe er ra at to or r<< calls f f(i i) . We can now
defines se et tp pr re ec ci is si io on n() like this:

i io os s_ _b ba as se e& s se et t_ _p pr re ec ci is si io on n(i io os s_ _b ba as se e& s s, i in nt t n n) / / helper
{

r re et tu ur rn n s s. s se et tp pr re ec ci is si io on n(n n) ; / / call the member function
}

i in nl li in ne e s sm ma an ni ip p s se et tp pr re ec ci is si io on n(i in nt t n n)
{

r re et tu ur rn n s sm ma an ni ip p(s se et t_ _p pr re ec ci is si io on n, n n) ; / / make the function object
}

We can now write:

c co ou ut t << s se et tp pr re ec ci is si io on n(4 4) << a an ng gl le e ;

A programmer can define new manipulators in the style ofs sm ma an ni ip p as needed (§21.10[22]). Doing
this does not require modification of the definitions of standard library templates and classes such
asb ba as si ic c_ _i is st tr re ea am m, b ba as si ic c_ _o os st tr re ea am m, b ba as si ic c_ _i io os s, andi io os s_ _b ba as se e.

21.4.6.2 Standard I/O Manipulators [io.std.manipulators]

The standard library provides manipulators corresponding to the various format states and state
changes. The standard manipulators are defined in namespaces st td d. Manipulators takingi io o_ _b ba as se e,
i is st tr re ea am m, ando os st tr re ea am marguments are presented in<i io os s>, <o os st tr re ea am m>, and<i io os st tr re ea am m>, respectively.
The rest of the standard manipulators are presented in<i io om ma an ni ip p>.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

634 Streams Chapter 21

i io os s_ _b ba as se e& b bo oo ol la al lp ph ha a(i io os s_ _b ba as se e&) ; / / symbolic representation of true and false (input and output)
i io os s_ _b ba as se e& n no ob bo oo ol la al lp ph ha a(i io os s_ _b ba as se e& s s) ; / / s.unsetf(ios_base::boolalpha)

i io os s_ _b ba as se e& s sh ho ow wb ba as se e(i io os s_ _b ba as se e&) ; / / on output prefix oct by 0 and hex by 0x
i io os s_ _b ba as se e& n no os sh ho ow wb ba as se e(i io os s_ _b ba as se e& s s) ; / / s.unsetf(ios_base::showbase)

i io os s_ _b ba as se e& s sh ho ow wp po oi in nt t(i io os s_ _b ba as se e&) ;
i io os s_ _b ba as se e& n no os sh ho ow wp po oi in nt t(i io os s_ _b ba as se e& s s) ; / / s.unsetf(ios_base::showpoint)

i io os s_ _b ba as se e& s sh ho ow wp po os s(i io os s_ _b ba as se e&) ;
i io os s_ _b ba as se e& n no os sh ho ow wp po os s(i io os s_ _b ba as se e& s s) ; / / s.unsetf(ios_base::showpos)

i io os s_ _b ba as se e& s sk ki ip pw ws s(i io os s_ _b ba as se e&) ; / / skip whitespace
i io os s_ _b ba as se e& n no os sk ki ip pw ws s(i io os s_ _b ba as se e& s s) ; / / s.unsetf(ios_base::skipws)

i io os s_ _b ba as se e& u up pp pe er rc ca as se e(i io os s_ _b ba as se e&) ; / / X and E rather than x and e
i io os s_ _b ba as se e& n no ou up pp pe er rc ca as se e(i io os s_ _b ba as se e&) ; / / x and e rather than X and E

i io os s_ _b ba as se e& i in nt te er rn na al l(i io os s_ _b ba as se e&) ; / / adjust §21.4.5
i io os s_ _b ba as se e& l le ef ft t(i io os s_ _b ba as se e&) ; / / pad after value
i io os s_ _b ba as se e& r ri ig gh ht t(i io os s_ _b ba as se e&) ; / / pad before value

i io os s_ _b ba as se e& d de ec c(i io os s_ _b ba as se e&) ; / / integer base is 10 (§21.4.2)
i io os s_ _b ba as se e& h he ex x(i io os s_ _b ba as se e&) ; / / integer base is 16
i io os s_ _b ba as se e& o oc ct t(i io os s_ _b ba as se e&) ; / / integer base is 8

i io os s_ _b ba as se e& f fi ix xe ed d(i io os s_ _b ba as se e&) ; / / floating-point format dddd.dd (§21.4.3)
i io os s_ _b ba as se e& s sc ci ie en nt ti if fi ic c(i io os s_ _b ba as se e&) ; / / scientific format d.ddddEdd

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& e en nd dl l(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&) ; / / put ’\n’ and flush

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& e en nd ds s(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&) ; / / put ’\0’ and flush

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& f fl lu us sh h(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&) ; / / flush stream

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& w ws s(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&) ; / / eat whitespace

s sm ma an ni ip p r re es se et ti io os sf fl la ag gs s(i io os s_ _b ba as se e: : f fm mt tf fl la ag gs s f f) ; / / clear flags (§21.4)
s sm ma an ni ip p s se et ti io os sf fl la ag gs s(i io os s_ _b ba as se e: : f fm mt tf fl la ag gs s f f) ; / / set flags (§21.4)
s sm ma an ni ip p s se et tb ba as se e(i in nt t b b) ; / / output integers in base b
s sm ma an ni ip p s se et tf fi il ll l(i in nt t c c) ; / / make c the fill character
s sm ma an ni ip p s se et tp pr re ec ci is si io on n(i in nt t n n) ; / / n digits after decimal point
s sm ma an ni ip p s se et tw w(i in nt t n n) ; / / next field is n char

For example,

c co ou ut t << 1 12 23 34 4 << ´,´ << h he ex x << 1 12 23 34 4 << ´,´ << o oc ct t << 1 12 23 34 4 << e en nd dl l;

produces1 12 23 34 4, 4 4d d2 2, 2 23 32 22 2 and

c co ou ut t << ´(´ << s se et tw w(4 4) << s se et tf fi il ll l(´#´) << 1 12 2 << ") (" << 1 12 2 << ") \ \n n";

produces(## 1 12 2) (1 12 2) .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.6.2 Standard I/O Manipulators 635

When using manipulators that do not take arguments,do notadd parentheses. When using stan-
dard manipulators that take arguments, remember to#i in nc cl lu ud de e<i io om ma an ni ip p>. For example:

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: : c co ou ut t << s se et tp pr re ec ci is si io on n(4 4) / / error: setprecision undefined (forgot<iomanip>)
<< s sc ci ie en nt ti if fi ic c() / / error: ostream<<ostream& (spurious parentheses)
<< d d << e en nd dl l;

}

21.4.6.3 User-Defined Manipulators [io.ud.manipulators]

A programmer can add manipulators in the style of the standard ones. Here, I present an additional
style that I have found useful for formatting floating-point numbers.

The p pr re ec ci is si io on n used persists for all output operations, but aw wi id dt th h() operation applies to the
next numeric output operation only. What I want is something that makes it simple to output a
floating-point number in a predefined format without affecting future output operations on the
stream. The basic idea is to define a class that represents formats, another that represents a format
plus a value to be formatted, and then an operator<< that outputs the value to ano os st tr re ea am m accord-
ing to the format. For example:

F Fo or rm m g ge en n4 4(4 4) ; / / general format, precision is 4

v vo oi id d f f(d do ou ub bl le e d d)
{

F Fo or rm m s sc ci i8 8 = g ge en n4 4;
s sc ci i8 8. s sc ci ie en nt ti if fi ic c(). p pr re ec ci is si io on n(8 8) ; / / scientific format, precision 8

c co ou ut t << d d << ´ ´ << g ge en n4 4(d d) << ´ ´ << s sc ci i8 8(d d) << ´ ´ << d d << ´ \ \n n´;
}

A call f f(1 12 23 34 4. 5 56 67 78 89 9) writes

1 12 23 34 4. 5 57 7 1 12 23 35 5 1 1. 2 23 34 45 56 67 78 89 9e e+0 03 3 1 12 23 34 4. 5 57 7

Note how the use of aF Fo or rm m doesn’t affect the state of the stream so that the last output ofd d has the
same default format as the first.

Here is a simplified implementation:

c cl la as ss s B Bo ou un nd d_ _f fo or rm m; / / Form plus value

c cl la as ss s F Fo or rm m {
f fr ri ie en nd d o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co on ns st t B Bo ou un nd d_ _f fo or rm m&) ;

i in nt t p pr rc c; / / precision
i in nt t w wd dt t; / / width, 0 means as wide as necessary
i in nt t f fm mt t; / / general, scientific, or fixed (§21.4.3)
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

636 Streams Chapter 21

p pu ub bl li ic c:
e ex xp pl li ic ci it t F Fo or rm m(i in nt t p p = 6 6) : p pr rc c(p p) / / default precision is 6
{

f fm mt t = 0 0; / / general format (§21.4.3)
w wd dt t = 0 0; / / as wide as necessary

}

B Bo ou un nd d_ _f fo or rm m o op pe er ra at to or r()(d do ou ub bl le e d d) c co on ns st t; / / make a Bound_form for *this and d

F Fo or rm m& s sc ci ie en nt ti if fi ic c() { f fm mt t = i io os s_ _b ba as se e: : s sc ci ie en nt ti if fi ic c; r re et tu ur rn n * t th hi is s; }
F Fo or rm m& f fi ix xe ed d() { f fm mt t = i io os s_ _b ba as se e: : f fi ix xe ed d; r re et tu ur rn n * t th hi is s; }
F Fo or rm m& g ge en ne er ra al l() { f fm mt t = 0 0; r re et tu ur rn n * t th hi is s; }

F Fo or rm m& u up pp pe er rc ca as se e() ;
F Fo or rm m& l lo ow we er rc ca as se e() ;
F Fo or rm m& p pr re ec ci is si io on n(i in nt t p p) { p pr rc c = p p; r re et tu ur rn n * t th hi is s; }

F Fo or rm m& w wi id dt th h(i in nt t w w) { w wd dt t = w w; r re et tu ur rn n * t th hi is s; } / / applies to all types
F Fo or rm m& f fi il ll l(c ch ha ar r) ;

F Fo or rm m& p pl lu us s(b bo oo ol l b b = t tr ru ue e) ; / / explicit plus
F Fo or rm m& t tr ra ai il li in ng g_ _z ze er ro os s(b bo oo ol l b b = t tr ru ue e) ; / / print trailing zeros
/ / ...

};

The idea is that aF Fo or rm m holds all the information needed to format one data item. The default is
chosen to be reasonable for many uses, and the various member functions can be used to reset indi-
vidual aspects of formatting. The() operator is used to bind a value with the format to be used to
output it. AB Bo ou un nd d_ _f fo or rm m can then be output to a given stream by a suitable<< function:

s st tr ru uc ct t B Bo ou un nd d_ _f fo or rm m {
c co on ns st t F Fo or rm m& f f;
d do ou ub bl le e v va al l;

B Bo ou un nd d_ _f fo or rm m(c co on ns st t F Fo or rm m& f ff f, d do ou ub bl le e v v) : f f(f ff f) , v va al l(v v) { }
};

B Bo ou un nd d_ _f fo or rm m F Fo or rm m: : o op pe er ra at to or r()(d do ou ub bl le e d d) { r re et tu ur rn n B Bo ou un nd d_ _f fo or rm m(* t th hi is s, d d) ; }

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m& o os s, c co on ns st t B Bo ou un nd d_ _f fo or rm m& b bf f)
{

o os st tr ri in ng gs st tr re ea am m s s; / / string streams are described in §21.5.3
s s. p pr re ec ci is si io on n(b bf f. f f. p pr rc c) ;
s s. s se et tf f(b bf f. f f. f fm mt t, i io os s_ _b ba as se e: : f fl lo oa at tf fi ie el ld d) ;
s s << b bf f. v va al l; / / compose string in s
r re et tu ur rn n o os s << s s. s st tr r() ; / / output s to os

}

Writing a less simplistic implementation of<< is left as an exercise (§21.10[21]). TheF Fo or rm m and
B Bo ou un nd d_ _f fo or rm m classes are easily extended for formatting integers, strings, etc. (see §21.10[20]).

Note that these declarations make the combination of<< and () into a ternary operator;
c co ou ut t<<s sc ci i4 4(d d) collects theo os st tr re ea am m, the format, and the value into a single function before doing
any real computation.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.5 File Streams and String Streams 637

21.5 File Streams and String Streams[io.files]

When a C++ program starts,c co ou ut t, c ce er rr r, c cl lo og g, c ci in n, and their wide-character equivalents (§21.2.1) are
available for use. These streams are set up by default and their correspondence with I/O devices or
files is determined by ‘‘the system.’’ In addition, you can create your own streams. In this case,
you must specify to what the streams are attached. Attaching a stream to a file or to as st tr ri in ng g is
common enough so as to be supported directly by the standard library. Here is the hierarchy of
standard stream classes:

i io os s_ _b ba as se e

i io os s<>

i is st tr re ea am m<> o os st tr re ea am m<>

i io os st tr re ea am m<>i if fs st tr re ea am m<>i is st tr ri in ng gs st tr re ea am m<> o of fs st tr re ea am m<> o os st tr ri in ng gs st tr re ea am m<>

f fs st tr re ea am m<> s st tr ri in ng gs st tr re ea am m<>

.

..........

The classes suffixed by<> are templates parameterized on the character type, and their names have
ab ba as si ic c_ _ prefix. A dotted line indicates a virtual base class (§15.2.4).

Files and strings are examples of containers that you can both read from and write to. Conse-
quently, you can have a stream that supports both<< and>>. Such a stream is called ani io os st tr re ea am m,
which is defined in namespaces st td d and presented in<i io os st tr re ea am m>:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i io os st tr re ea am m : p pu ub bl li ic c b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>, p pu ub bl li ic c b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r> {
p pu ub bl li ic c:

e ex xp pl li ic ci it t b ba as si ic c_ _i io os st tr re ea am m(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* s sb b) ;
v vi ir rt tu ua al l ~b ba as si ic c_ _i io os st tr re ea am m() ;

};

t ty yp pe ed de ef f b ba as si ic c_ _i io os st tr re ea am m<c ch ha ar r> i io os st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _i io os st tr re ea am m<w wc ch ha ar r_ _t t> w wi io os st tr re ea am m;

Reading and writing from ani io os st tr re ea am m is controlled through the put-buffer and get-buffer opera-
tions on thei io os st tr re ea am m’s s st tr re ea am mb bu uf f (§21.6.4).

21.5.1 File Streams [io.filestream]

Here is a complete program that copies one file to another. The file names are taken as command-
line arguments:

#i in nc cl lu ud de e <f fs st tr re ea am m>
#i in nc cl lu ud de e <c cs st td dl li ib b>

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

638 Streams Chapter 21

v vo oi id d e er rr ro or r(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* p p2 2 = "")
{

c ce er rr r << p p << ´ ´ << p p2 2 << ´ \ \n n´;
s st td d: : e ex xi it t(1 1) ;

}

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

i if f (a ar rg gc c != 3 3) e er rr ro or r(" w wr ro on ng g n nu um mb be er r o of f a ar rg gu um me en nt ts s") ;

s st td d: : i if fs st tr re ea am m f fr ro om m(a ar rg gv v[1 1]) ; / / open input file stream
i if f (! f fr ro om m) e er rr ro or r(" c ca an nn no ot t o op pe en n i in np pu ut t f fi il le e", a ar rg gv v[1 1]) ;

s st td d: : o of fs st tr re ea am m t to o(a ar rg gv v[2 2]) ; / / open output file stream
i if f (! t to o) e er rr ro or r(" c ca an nn no ot t o op pe en n o ou ut tp pu ut t f fi il le e", a ar rg gv v[2 2]) ;

c ch ha ar r c ch h;
w wh hi il le e (f fr ro om m. g ge et t(c ch h)) t to o. p pu ut t(c ch h) ;

i if f (! f fr ro om m. e eo of f() || ! t to o) e er rr ro or r(" s so om me et th hi in ng g s st tr ra an ng ge e h ha ap pp pe en ne ed d") ;
}

A file is opened for input by creating an object of classi if fs st tr re ea am m (input file stream) with the file
name as the argument. Similarly, a file is opened for output by creating an object of classo of fs st tr re ea am m
(output file stream) with the file name as the argument. In both cases, we test the state of the cre-
ated object to see if the file was successfully opened.

A b ba as si ic c_ _o of fs st tr re ea am m is declared like this in<f fs st tr re ea am m>:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _o of fs st tr re ea am m : p pu ub bl li ic c b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r> {
p pu ub bl li ic c:

b ba as si ic c_ _o of fs st tr re ea am m() ;
e ex xp pl li ic ci it t b ba as si ic c_ _o of fs st tr re ea am m(c co on ns st t c ch ha ar r* p p, o op pe en nm mo od de e m m = o ou ut t) ;

b ba as si ic c_ _f fi il le eb bu uf f<C Ch h, T Tr r>* r rd db bu uf f() c co on ns st t;

b bo oo ol l i is s_ _o op pe en n() c co on ns st t;
v vo oi id d o op pe en n(c co on ns st t c ch ha ar r* p p, o op pe en nm mo od de e m m = o ou ut t) ;
v vo oi id d c cl lo os se e() ;

};

As usual,t ty yp pe ed de ef fs are available for the most common types:

t ty yp pe ed de ef f b ba as si ic c_ _i if fs st tr re ea am m<c ch ha ar r> i if fs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _o of fs st tr re ea am m<c ch ha ar r> o of fs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _f fs st tr re ea am m<c ch ha ar r> f fs st tr re ea am m;

t ty yp pe ed de ef f b ba as si ic c_ _i if fs st tr re ea am m<w wc ch ha ar r_ _t t> w wi if fs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _o of fs st tr re ea am m<w wc ch ha ar r_ _t t> w wo of fs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _f fs st tr re ea am m<w wc ch ha ar r_ _t t> w wf fs st tr re ea am m;

An i if fs st tr re ea am m is like ano of fs st tr re ea am m, except that it is derived fromi is st tr re ea am m and is by default opened for
reading. In addition, the standard library offers anf fs st tr re ea am m, which is like ano of fs st tr re ea am m, except that it
is derived fromi io os st tr re ea am m and by default can be both read from and written to.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.5.1 File Streams 639

File stream constructors take a second argument specifying alternative modes of opening:

c cl la as ss s i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

t ty yp pe ed de ef f implementation_defined3 o op pe en nm mo od de e;
s st ta at ti ic c o op pe en nm mo od de e a ap pp p, / / append

a at te e, / / open and seek to end of file (pronounced ‘‘at end’’)
b bi in na ar ry y, / / I/O to be done in binary mode (rather than text mode)
i in n, / / open for reading
o ou ut t, / / open for writing
t tr ru un nc c; / / truncate file to 0-length

/ / ...
};

The actual values ofo op pe en nm mo od de es and their meanings are implementation-defined. Please consult
your systems and library manual for details– and do experiment. The comments should give some
idea of the intended meaning of the modes. For example, we can open a file so that anything writ-
ten to it is appended to the end:

o of fs st tr re ea am m m my ys st tr re ea am m(n na am me e. c c_ _s st tr r() , i io os s_ _b ba as se e: : a ap pp p) ;

It is also possible to open a file for both input and output. For example:

f fs st tr re ea am m d di ic ct ti io on na ar ry y(" c co on nc co or rd da an nc ce e", i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;

21.5.2 Closing of Streams [io.close]

A file can be explicitly closed by callingc cl lo os se e() on its stream:

v vo oi id d f f(o os st tr re ea am m& m my ys st tr re ea am m)
{

/ / ...

m my ys st tr re ea am m. c cl lo os se e() ;
}

However, this is implicitly done by the stream’s destructor. So an explicit call ofc cl lo os se e() is
needed only if the file must be closed before reaching the end of the scope in which its stream was
declared.

This raises the question of how an implementation can ensure that the predefined streamsc co ou ut t,
c ci in n, c ce er rr r, andc cl lo og g are created before their first use and closed (only) after their last use. Naturally,
different implementations of the<i io os st tr re ea am m> stream library can use different techniques to achieve
this. After all, exactly how it is done is an implementation detail that should not be visible to the
user. Here, I present just one technique that is general enough to be used to ensure proper order of
construction and destruction of global objects of a variety of types. An implementation may be
able to do better by taking advantage of special features of a compiler or linker.

The fundamental idea is to define a helper class that is a counter that keeps track of how many
times<i io os st tr re ea am m> has been included in a separately compiled source file:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

640 Streams Chapter 21

c cl la as ss s i io os s_ _b ba as se e: : I In ni it t {
s st ta at ti ic c i in nt t c co ou un nt t;

p pu ub bl li ic c:
I In ni it t() ;
~I In ni it t() ;

};

n na am me es sp pa ac ce e { / / in <iostream>, one copy in each file #including<iostream>
i io os s_ _b ba as se e: : I In ni it t _ __ _i io oi in ni it t;

}

i in nt t i io os s_ _b ba as se e: : I In ni it t: : c co ou un nt t = 0 0; / / in some .c file

Each translation unit (§9.1) declares its own object called_ __ _i io oi in ni it t. The constructor for the_ __ _i io oi in ni it t
objects usesi io os s_ _b ba as se e: : I In ni it t: : c co ou un nt t as a first-time switch to ensure that actual initialization of the
global objects of the stream I/O library is done exactly once:

i io os s_ _b ba as se e: : I In ni it t: : I In ni it t()
{

i if f (c co ou un nt t++ == 0 0) { /* initialize cout, cerr, cin, etc.*/ }
}

Conversely, the destructor for the_ __ _i io oi in ni it t objects usesi io os s_ _b ba as se e: : I In ni it t: : c co ou un nt t as a last-time
switch to ensure that the streams are closed:

i io os s_ _b ba as se e: : I In ni it t: :~ I In ni it t()
{

i if f (-- c co ou un nt t == 0 0) { /* clean up cout (flush, etc.), cerr, cin, etc.*/ }
}

This is a general technique for dealing with libraries that require initialization and cleanup of global
objects. In a system in which all code resides in main memory during execution, the technique is
almost free. When that is not the case, the overhead of bringing each object file into main memory
to execute its initialization function can be noticeable. When possible, it is better to avoid global
objects. For a class in which each operation performs significant work, it can be reasonable to test
a first-time switch (likei io os s_ _b ba as se e: : I In ni it t: : c co ou un nt t) in each operation to ensure initialization. How-
ever, that approach would have been prohibitively expensive for streams. The overhead of a first-
time switch in the functions that read and write single characters would have been quite noticeable.

21.5.3 String Streams [io.stringstream]

A stream can be attached to as st tr ri in ng g. That is, we can read from as st tr ri in ng g and write to as st tr ri in ng g using
the formatting facilities provided by streams. Such streams are called as st tr ri in ng gs st tr re ea am ms. They are
defined in<s ss st tr re ea am m>:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r=c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr ri in ng gs st tr re ea am m : p pu ub bl li ic c b ba as si ic c_ _i io os st tr re ea am m<C Ch h, T Tr r> {
p pu ub bl li ic c:

e ex xp pl li ic ci it t b ba as si ic c_ _s st tr ri in ng gs st tr re ea am m(i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = o ou ut t| i in n) ;
e ex xp pl li ic ci it t b ba as si ic c_ _s st tr ri in ng gs st tr re ea am m(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s, o op pe en nm mo od de e m m = o ou ut t| i in n) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.5.3 String Streams 641

b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr r() c co on ns st t; / / get copy of string
v vo oi id d s st tr r(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h>& s s) ; / / set value to copy of s

b ba as si ic c_ _s st tr ri in ng gb bu uf f<C Ch h, T Tr r>* r rd db bu uf f() c co on ns st t;
};

t ty yp pe ed de ef f b ba as si ic c_ _i is st tr ri in ng gs st tr re ea am m<c ch ha ar r> i is st tr ri in ng gs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _o os st tr ri in ng gs st tr re ea am m<c ch ha ar r> o os st tr ri in ng gs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng gs st tr re ea am m<c ch ha ar r> s st tr ri in ng gs st tr re ea am m;

t ty yp pe ed de ef f b ba as si ic c_ _i is st tr ri in ng gs st tr re ea am m<w wc ch ha ar r_ _t t> w wi is st tr ri in ng gs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _o os st tr ri in ng gs st tr re ea am m<w wc ch ha ar r_ _t t> w wo os st tr ri in ng gs st tr re ea am m;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng gs st tr re ea am m<w wc ch ha ar r_ _t t> w ws st tr ri in ng gs st tr re ea am m;

For example, ano os st tr ri in ng gs st tr re ea am m can be used to format messages st tr ri in ng gs s:

e ex xt te er rn n c co on ns st t c ch ha ar r* s st td d_ _m me es ss sa ag ge e[] ;

s st tr ri in ng g c co om mp po os se e(i in nt t n n, c co on ns st t s st tr ri in ng g& c cs s)
{

o os st tr ri in ng gs st tr re ea am m o os st t;
o os st t << " e er rr ro or r(" << n n << ") " << s st td d_ _m me es ss sa ag ge e[n n] << " (u us se er r c co om mm me en nt t: " << c cs s << ´)´;
r re et tu ur rn n o os st t. s st tr r() ;

}

There is no need to check for overflow becauseo os st t is expanded as needed. This technique can be
most useful for coping with cases in which the formatting required is more complicated than what
is common for a line-oriented output device.

An initial value can be provided for ano os st tr ri in ng gs st tr re ea am m, so we could equivalently have written:

s st tr ri in ng g c co om mp po os se e2 2(i in nt t n n, c co on ns st t s st tr ri in ng g& c cs s)
{

o os st tr ri in ng gs st tr re ea am m o os st t(" e er rr ro or r(") ;
o os st t << n n << ") " << s st td d_ _m me es ss sa ag ge e[n n] << " (u us se er r c co om mm me en nt t: " << c cs s << ´)´;
r re et tu ur rn n o os st t. s st tr r() ;

}

An i is st tr ri in ng gs st tr re ea am m is an input stream reading from as st tr ri in ng g:

#i in nc cl lu ud de e <s ss st tr re ea am m>

v vo oi id d w wo or rd d_ _p pe er r_ _l li in ne e(c co on ns st t s st tr ri in ng g& s s) / / prints one word per line
{

i is st tr ri in ng gs st tr re ea am m i is st t(s s) ;
s st tr ri in ng g w w;
w wh hi il le e (i is st t>>w w) c co ou ut t << w w << ´ \ \n n´;

}

i in nt t m ma ai in n()
{

w wo or rd d_ _p pe er r_ _l li in ne e(" I If f y yo ou u t th hi in nk k C C++ i is s d di if ff fi ic cu ul lt t, t tr ry y E En ng gl li is sh h") ;
}

The initializers st tr ri in ng g is copied into thei is st tr ri in ng gs st tr re ea am m. The end of the string terminates input.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

642 Streams Chapter 21

It is possible to define streams that directly read from and write to arrays of characters
(§21.10[26]). This is often useful when dealing with older code, especially since theo os st tr rs st tr re ea am m
andi is st tr rs st tr re ea am m classes doing that were part of the original streams library.

21.6 Buffering[io.buf]

Conceptually, an output stream puts characters into a buffer. Some time later, the characters are
then written to wherever they are supposed to go. Such a buffer is called as st tr re ea am mb bu uf f (§21.6.4). Its
definition is found in<s st tr re ea am mb bu uf f>. Different types ofs st tr re ea am mb bu uf fs implement different buffering
strategies. Typically, thes st tr re ea am mb bu uf f stores characters in an array until an overflow forces it to write
the characters to their real destination. Thus, ano os st tr re ea am m can be represented graphically like this:

ostream:

tellp()
begin

current
end

streambuf:

real destination

character buffer
.

..

.

The set of template arguments for ano os st tr re ea am m and itss st tr re ea am mb bu uf f must be the same and determines
the type of character used in the character buffer.

An i is st tr re ea am m is similar, except that the characters flow the other way.
Unbuffered I/O is simply I/O where the streambuf immediately transfers each character, rather

than holding on to characters until enough have been gathered for efficient transfer.

21.6.1 Output Streams and Buffers [io.ostreambuf]

An o os st tr re ea am m provides operations for converting values of various types into character sequences
according to conventions (§21.2.1) and explicit formatting directives (§21.4). In addition, an
o os st tr re ea am m provides operations that deal directly with itss st tr re ea am mb bu uf f:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _o os st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...
e ex xp pl li ic ci it t b ba as si ic c_ _o os st tr re ea am m(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) ;

p po os s_ _t ty yp pe e t te el ll lp p() ; / / get current position
b ba as si ic c_ _o os st tr re ea am m& s se ee ek kp p(p po os s_ _t ty yp pe e) ; / / set current position
b ba as si ic c_ _o os st tr re ea am m& s se ee ek kp p(o of ff f_ _t ty yp pe e, i io os s_ _b ba as se e: : s se ee ek kd di ir r) ; / / set current position

b ba as si ic c_ _o os st tr re ea am m& f fl lu us sh h() ; / / empty buffer (to real destination)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.1 Output Streams and Buffers 643

b ba as si ic c_ _o os st tr re ea am m& o op pe er ra at to or r<<(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) ; / / write from b
};

An o os st tr re ea am m is constructed with as st tr re ea am mb bu uf f argument, which determines how the characters writ-
ten are handled and where they eventually go. For example, ano os st tr ri in ng gs st tr re ea am m (§21.5.3) or an
o of fs st tr re ea am m (§21.5.1) are created by initializing ano os st tr re ea am m with a suitables st tr re ea am mb bu uf f (§21.6.4).

Thes se ee ek kp p() functions are used to position ano os st tr re ea am m for writing. Thep p suffix indicates that
it is the position used forputting characters into the stream. These functions have no effect unless
the stream is attached to something for which positioning is meaningful, such as a file. The
p po os s_ _t ty yp pe e represents a character position in a file, and theo of ff f_ _t ty yp pe e represents an offset from a point
indicated by ani io os s_ _b ba as se e: : s se ee ek kd di ir r:

c cl la as ss s i io os s_ _b ba as se e {
/ / ...

t ty yp pe ed de ef f implementation_defined4 s se ee ek kd di ir r;
s st ta at ti ic c c co on ns st t s se ee ek kd di ir r b be eg g, / / seek from beginning of current file

c cu ur r, / / seek from current position
e en nd d; / / seek backwards from end of current file

/ / ...
};

Stream positions start at0 0, so we can think of a file as an array ofn n characters. For example:

i in nt t f f(o of fs st tr re ea am m& f fo ou ut t)
{

f fo ou ut t. s se ee ek kp p(1 10 0) ;
f fo ou ut t << ´#´;
f fo ou ut t. s se ee ek kp p(- 2 2, i io os s_ _b ba as se e: : c cu ur r) ;
f fo ou ut t << ´*´;

}

This places a# into f fi il le e[1 10 0] and a* in f fi il le e[8 8] . There is no similar way to do random access on
elements of a plaini is st tr re ea am m or o os st tr re ea am m (see §21.10[13]).

Thef fl lu us sh h() operation allows the user to empty the buffer without waiting for an overflow.
It is possible to use<< to write as st tr re ea am mb bu uf f directly into ano os st tr re ea am m. This is primarily handy

for implementers of I/O mechanisms.

21.6.2 Input Streams and Buffers [io.istreambuf]

An i is st tr re ea am m provides operations for reading characters and converting them into values of various
types (§21.3.1). In addition, ani is st tr re ea am m provides operations that deal directly with itss st tr re ea am mb bu uf f:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i is st tr re ea am m : v vi ir rt tu ua al l p pu ub bl li ic c b ba as si ic c_ _i io os s<C Ch h, T Tr r> {
p pu ub bl li ic c:

/ / ...

e ex xp pl li ic ci it t b ba as si ic c_ _i is st tr re ea am m(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

644 Streams Chapter 21

p po os s_ _t ty yp pe e t te el ll lg g() ; / / get current position
b ba as si ic c_ _i is st tr re ea am m& s se ee ek kg g(p po os s_ _t ty yp pe e) ; / / set current position
b ba as si ic c_ _i is st tr re ea am m& s se ee ek kg g(o of ff f_ _t ty yp pe e, i io os s_ _b ba as se e: : s se ee ek kd di ir r) ; / / set current position

b ba as si ic c_ _i is st tr re ea am m& p pu ut tb ba ac ck k(C Ch h c c) ; / / put c back into the buffer
b ba as si ic c_ _i is st tr re ea am m& u un ng ge et t() ; / / putback most recent char read
i in nt t_ _t ty yp pe e p pe ee ek k() ; / / look at next character to be read

i in nt t s sy yn nc c() ; / / clear buffer (flush input)

b ba as si ic c_ _i is st tr re ea am m& o op pe er ra at to or r>>(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) ; / / read into b
b ba as si ic c_ _i is st tr re ea am m& g ge et t(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>& b b, C Ch h t t = T Tr r: : n ne ew wl li in ne e()) ;

s st tr re ea am ms si iz ze e r re ea ad ds so om me e(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / read at most n char
};

The positioning functions work like theiro os st tr re ea am m counterparts (§21.6.1). Theg g suffix indicates
that it is the position used forgettingcharacters from the stream. Thep p andg g suffixes are needed
because we can create ani io os st tr re ea am m derived from bothi is st tr re ea am m ando os st tr re ea am m and such a stream needs
to keep track of both a get position and a put position.

Thep pu ut tb ba ac ck k() function allows a program to put an unwanted character back to be read some
other time, as shown in §21.3.5. Theu un ng ge et t() function puts the most recently read character back.
Unfortunately, backing up an input stream is not always possible. For example, trying to back up
past the first character read will seti io os s_ _b ba as se e: : f fa ai il lb bi it t. What is guaranteed is that you can back up
one character after a successful read. Thep pe ee ek k() reads the next character but leaves it in the
s st tr re ea am mb bu uf f so that it can be read again. Thus,c c=p pe ee ek k() is equivalent to(c c=g ge et t() , u un ng ge et t() , c c)
and to(p pu ut tb ba ac ck k(c c=g ge et t()) , c c) . Note that settingf fa ai il lb bi it t might trigger an exception (§21.3.6).

Flushing ani is st tr re ea am m is done usings sy yn nc c() . This cannot always be done right. For some kinds
of streams, we would have to reread characters from the real source– and that is not always possi-
ble or desirable. Consequently,s sy yn nc c() returns 0 0 if it succeeded. If it failed, it sets
i io os s_ _b ba as se e: : b ba ad db bi it t (§21.3.3) and returns- 1 1. Again, settingb ba ad db bi it t might trigger an exception
(§21.3.6).

The >> andg ge et t() operations that target as st tr re ea am mb bu uf f are primarily useful for implementers of
I/O facilities. Only such implementers should manipulates st tr re ea am mb bu uf fs directly.

The r re ea ad ds so om me e() function is a low-level operation that allows a user to peek at a stream to see
if there are any characters available to read. This can be most useful when it is undesirable to wait
for input, say, from a keyboard. See alsoi in n_ _a av va ai il l() (§21.6.4).

21.6.3 Streams and Buffers [io.rdbuf]

The connection between a stream and its buffer is maintained in the stream’sb ba as si ic c_ _i io os s:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _i io os s : p pu ub bl li ic c i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

b ba as si ic c_ _s st tr re ea am mb bu uf f<c ch ha ar rT T, t tr ra ai it ts s>* r rd db bu uf f() c co on ns st t; / / get buffer
b ba as si ic c_ _s st tr re ea am mb bu uf f<c ch ha ar rT T, t tr ra ai it ts s>* r rd db bu uf f(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) ; / / set buffer

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.3 Streams and Buffers 645

l lo oc ca al le e i im mb bu ue e(c co on ns st t l lo oc ca al le e& l lo oc c) ; / / set locale (and get old locale)

c ch ha ar r n na ar rr ro ow w(c ch ha ar r_ _t ty yp pe e c c, c ch ha ar r d d) c co on ns st t; / / make char value from char_type c
c ch ha ar r_ _t ty yp pe e w wi id de en n(c ch ha ar r c c) c co on ns st t; / / make char_type value from char c

/ / ...

p pr ro ot te ec ct te ed d:
b ba as si ic c_ _i io os s() ;
v vo oi id d i in ni it t(b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* b b) ; / / set initial buffer

};

In addition to reading and setting the stream’ss st tr re ea am mb bu uf f (§21.6.4),b ba as si ic c_ _i io os s providesi im mb bu ue e() to
read and re-set the stream’s locale (§21.7) by callingi im mb bu ue e() on its i io os s_ _b ba as se e (§21.7.1) and
p pu ub bi im mb bu ue e() on its buffer (§21.6.4).

The n na ar rr ro ow w() and w wi id de en n() functions are used to convertc ch ha ar rs to and from a buffer’s
c ch ha ar r_ _t ty yp pe e. The second argument ofn na ar rr ro ow w(c c, d d) is thec ch ha ar r returned if there isn’t ac ch ha ar r corre-
sponding to thec ch ha ar r_ _t ty yp pe evaluec c.

21.6.4 Stream Buffers [io.streambuf]

The I/O operations are specified without any mention of file types, but not all devices can be
treated identically with respect to buffering strategies. For example, ano os st tr re ea am m bound to as st tr ri in ng g
(§21.5.3) needs a different kind of buffer than does ano os st tr re ea am m bound to a file (§21.5.1). These
problems are handled by providing different buffer types for different streams at the time of initial-
ization. There is only one set of operations on these buffer types, so theo os st tr re ea am m functions do not
contain code distinguishing them. The different types of buffers are derived from classs st tr re ea am mb bu uf f.
Classs st tr re ea am mb bu uf f provides virtual functions for operations where buffering strategies differ, such as
the functions that handle overflow and underflow.

Theb ba as si ic c_ _s st tr re ea am mb bu uf f class provides two interfaces. The public interface is aimed primarily at
implementers of stream classes such asi is st tr re ea am m, o os st tr re ea am m, f fs st tr re ea am m, s st tr ri in ng gs st tr re ea am m, etc. In addition,
a protected interface is provided for implementers of new buffering strategies and ofs st tr re ea am mb bu uf fs for
new input sources and output destinations.

To understand as st tr re ea am mb bu uf f, it is useful first to consider the underlying model of a buffer area
provided by the protected interface. Assume that thes st tr re ea am mb bu uf f has aput area into which <<
writes, and aget areafrom which>> reads. Each area is described by a beginning pointer, current
pointer, and one-past-the-end pointer. These pointers are made available through functions:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr re ea am mb bu uf f {
p pr ro ot te ec ct te ed d:

C Ch h* e eb ba ac ck k() c co on ns st t; / / start of get-buffer
C Ch h* g gp pt tr r() c co on ns st t; / / next filled character (next char read comes from here)
C Ch h* e eg gp pt tr r() c co on ns st t; / / one-past-end of get-buffer

v vo oi id d g gb bu um mp p(i in nt t n n) ; / / add n to gptr()
v vo oi id d s se et tg g(C Ch h* b be eg gi in n, C Ch h* n ne ex xt t, C Ch h* e en nd d) ; / / set eback(), gptr(), and egptr()

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

646 Streams Chapter 21

C Ch h* p pb ba as se e() c co on ns st t; / / start of put-buffer
C Ch h* p pp pt tr r() c co on ns st t; / / next free char (next char written goes here)
C Ch h* e ep pp pt tr r() c co on ns st t; / / one-past-end of put-buffer
v vo oi id d p pb bu um mp p(i in nt t n n) ; / / add n to pptr()
v vo oi id d s se et tp p(C Ch h* b be eg gi in n, C Ch h* e en nd d) ; / / set pbase() and pptr() to begin, and epptr() to end
/ / ...

};

Given an array of characters,s se et tg g() ands se et tp p() can set up the pointers appropriately. An imple-
mentation might access its get area like this:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>: : i in nt t_ _t ty yp pe e b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>: : s sn ne ex xt tc c() / / read next character
{

i if f (g gp pt tr r()== 0 0) r re et tu ur rn n u uf fl lo ow w() ; / / no input buffering
g gb bu um mp p(1 1) ; / / move to next character
i if f (g gp pt tr r()>= e eg gp pt tr r()) r re et tu ur rn n u un nd de er rf fl lo ow w() ; / / re-fill buffer
r re et tu ur rn n * g gp pt tr r() ; / / return the now current character

}

The public interface of as st tr re ea am mb bu uf f looks like this:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr re ea am mb bu uf f {
p pu ub bl li ic c:

/ / usual typedefs (§21.2.1)

b ba as si ic c_ _s st tr re ea am mb bu uf f() ;
v vi ir rt tu ua al l ~b ba as si ic c_ _s st tr re ea am mb bu uf f() ;

l lo oc ca al le e p pu ub bi im mb bu ue e(c co on ns st t l lo oc ca al le e &l lo oc c) ; / / set locale (and get old locale)
l lo oc ca al le e g ge et tl lo oc c() c co on ns st t; / / get locale

b ba as si ic c_ _s st tr re ea am mb bu uf f* p pu ub bs se et tb bu uf f(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / set buffer space

/ / position (§21.6.1):
p po os s_ _t ty yp pe e p pu ub bs se ee ek ko of ff f(o of ff f_ _t ty yp pe e o of ff f, i io os s_ _b ba as se e: : s se ee ek kd di ir r w wa ay y,

i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;
p po os s_ _t ty yp pe e p pu ub bs se ee ek kp po os s(p po os s_ _t ty yp pe e p p, i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;

i in nt t p pu ub bs sy yn nc c() ; / / sync() input (§21.6.2)

i in nt t_ _t ty yp pe e s sn ne ex xt tc c() ; / / get next character
i in nt t_ _t ty yp pe e s sb bu um mp pc c() ; / / advance gptr() by 1
i in nt t_ _t ty yp pe e s sg ge et tc c() ; / / get current char
s st tr re ea am ms si iz ze e s sg ge et tn n(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / get into p[0]..p[n-1]

i in nt t_ _t ty yp pe e s sp pu ut tb ba ac ck kc c(C Ch h c c) ; / / put c back into buffer (§21.6.2)
i in nt t_ _t ty yp pe e s su un ng ge et tc c() ; / / unget last char

i in nt t_ _t ty yp pe e s sp pu ut tc c(C Ch h c c) ; / / put c
s st tr re ea am ms si iz ze e s sp pu ut tn n(c co on ns st t C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / put p[0]..p[n-1]

s st tr re ea am ms si iz ze e i in n_ _a av va ai il l() ; / / is input ready?

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.4 Stream Buffers 647

/ / ...
};

The public interface contains functions for inserting characters into the buffer and extracting char-
acters from the buffer. These functions are simple and easily inlined. This is crucial for efficiency.

Functions that implement parts of a specific buffering strategy invoke corresponding functions
in the protected interface. For example,p pu ub bs se et tb bu uf f() calls s se et tb bu uf f() , which is overridden by a
derived class to implement that class’ notion of getting memory for the buffered characters. Using
two functions to implement an operation such ass se et tb bu uf f() allows ani io os st tr re ea am m implementer to do
some ‘‘housekeeping’’ before and after the user’s code. For example, an implementer might wrap
a try-block around the call of the virtual function and catch exceptions thrown by the user code.
This use of a pair of public and protected functions is yet another general technique that just hap-
pens to be useful in the context of I/O.

By default,s se et tb bu uf f(0 0, 0 0) means ‘‘unbuffered’’ ands se et tb bu uf f(p p, n n) means usep p[0 0].. p p[n n- 1 1]
to hold buffered characters.

A call to i in n_ _a av va ai il l() is used to see how many characters are available in the buffer. This can be
used to avoid waiting for input. When reading from a stream connected to a keyboard,c ci in n. g ge et t(c c)
might wait until the user comes back from lunch. On some systems and for some applications, it
can be worthwhile taking that into account when reading. For example:

i if f (c ci in n. r rd db bu uf f(). i in n_ _a av va ai il l()) { / / get() will not block
c ci in n. g ge et t(c c) ;
/ / do something

}
e el ls se e { / / get() might block

/ / do something else
}

In addition to the public interface used byb ba as si ic c_ _i is st tr re ea am m and b ba as si ic c_ _o os st tr re ea am m, b ba as si ic c_ _s st tr re ea am mb bu uf f
offers a protected interface to implementers ofs st tr re ea am mb bu uf fs. This is where the virtual functions that
determine policy are declared:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _s st tr re ea am mb bu uf f {
p pr ro ot te ec ct te ed d:

/ / ...

v vi ir rt tu ua al l v vo oi id d i im mb bu ue e(c co on ns st t l lo oc ca al le e &l lo oc c) ; / / set locale

v vi ir rt tu ua al l b ba as si ic c_ _s st tr re ea am mb bu uf f* s se et tb bu uf f(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ;

v vi ir rt tu ua al l p po os s_ _t ty yp pe e s se ee ek ko of ff f(o of ff f_ _t ty yp pe e o of ff f, i io os s_ _b ba as se e: : s se ee ek kd di ir r w wa ay y,
i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;

v vi ir rt tu ua al l p po os s_ _t ty yp pe e s se ee ek kp po os s(p po os s_ _t ty yp pe e p p,
i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;

v vi ir rt tu ua al l i in nt t s sy yn nc c() ; / / sync() input (§21.6.2)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

648 Streams Chapter 21

v vi ir rt tu ua al l i in nt t s sh ho ow wm ma an ny yc c() ;
v vi ir rt tu ua al l s st tr re ea am ms si iz ze e x xs sg ge et tn n(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / get n chars
v vi ir rt tu ua al l i in nt t_ _t ty yp pe e u un nd de er rf fl lo ow w() ; / / get area empty
v vi ir rt tu ua al l i in nt t_ _t ty yp pe e u uf fl lo ow w() ;

v vi ir rt tu ua al l i in nt t_ _t ty yp pe e p pb ba ac ck kf fa ai il l(i in nt t_ _t ty yp pe e c c = T Tr r: : e eo of f()) ; / / putback failed

v vi ir rt tu ua al l s st tr re ea am ms si iz ze e x xs sp pu ut tn n(c co on ns st t C Ch h* p p, s st tr re ea am ms si iz ze e n n) ; / / put n chars
v vi ir rt tu ua al l i in nt t_ _t ty yp pe e o ov ve er rf fl lo ow w(i in nt t_ _t ty yp pe e c c = T Tr r: : e eo of f()) ; / / put area full

};

The u un nd de er rf fl lo ow w() andu uf fl lo ow w() functions are called to get the next character from the real input
source when the buffer is empty. If no more input is available from that source, the stream is set
into e eo of f state (§21.3.3). If doing that doesn’t cause an exception,t tr ra ai it ts s_ _t ty yp pe e: : e eo of f() is returned.
Unbuffered input usesu uf fl lo ow w() ; buffered input usesu un nd de er rf fl lo ow w() . Remember that there typically
are more buffers in your system than the ones introduced by thei io os st tr re ea am m library, so you can suffer
buffering delays even when using unbuffered stream I/O.

Theo ov ve er rf fl lo ow w() function is called to transfer characters to the real output destination when the
buffer is full. A call o ov ve er rf fl lo ow w(c c) outputs the contents of the buffer plus the characterc c. If no
more output can be written to that target, the stream is put intoe eo of f state (§21.3.3). If doing that
doesn’t cause an exception,t tr ra ai it ts s_ _t ty yp pe e: : e eo of f() is returned.

Thes sh ho ow wm ma an ny yc c() – ‘‘show how many characters’’– function is an odd function intended to
allow a user to learn something about the state of a machine’s input system. It returns an estimate
of how many characters can be read ‘‘soon,’’ say, by emptying the operating system’s buffers
rather than waiting for a disc read. A call tos sh ho ow wm ma an ny yc c() returns- 1 1 if it cannot promise that any
character can be read without encountering end-of-file. This is (necessarily) rather low-level and
highly implementation-dependent. Don’t uses sh ho ow wm ma an ny yc c() without a careful reading of your sys-
tem documentation and a few experiments.

By default, every stream gets the global locale (§21.7). Ap pu ub bi im mb bu ue e(l lo oc c) or i im mb bu ue e(l lo oc c) call
makes a stream usel lo oc c as its locale.

A s st tr re ea am mb bu uf f for a particular kind of stream is derived fromb ba as si ic c_ _s st tr re ea am mb bu uf f. It provides the
constructors and initialization functions that connect thes st tr re ea am mb bu uf f to a real source of (target for)
characters and overrides the virtual functions that determine the buffering strategy. For example:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r = c ch ha ar r_ _t tr ra ai it ts s<C Ch h> >
c cl la as ss s b ba as si ic c_ _f fi il le eb bu uf f : p pu ub bl li ic c b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r> {
p pu ub bl li ic c:

b ba as si ic c_ _f fi il le eb bu uf f() ;
v vi ir rt tu ua al l ~b ba as si ic c_ _f fi il le eb bu uf f() ;

b bo oo ol l i is s_ _o op pe en n() c co on ns st t;
b ba as si ic c_ _f fi il le eb bu uf f* o op pe en n(c co on ns st t c ch ha ar r* p p, i io os s_ _b ba as se e: : o op pe en nm mo od de e m mo od de e) ;
b ba as si ic c_ _f fi il le eb bu uf f* c cl lo os se e() ;

p pr ro ot te ec ct te ed d:
v vi ir rt tu ua al l i in nt t s sh ho ow wm ma an ny yc c() ;
v vi ir rt tu ua al l i in nt t_ _t ty yp pe e u un nd de er rf fl lo ow w() ;
v vi ir rt tu ua al l i in nt t_ _t ty yp pe e u uf fl lo ow w() ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.4 Stream Buffers 649

v vi ir rt tu ua al l i in nt t_ _t ty yp pe e p pb ba ac ck kf fa ai il l(i in nt t_ _t ty yp pe e c c = T Tr r: : e eo of f()) ;
v vi ir rt tu ua al l i in nt t_ _t ty yp pe e o ov ve er rf fl lo ow w(i in nt t_ _t ty yp pe e c c = T Tr r: : e eo of f()) ;

v vi ir rt tu ua al l b ba as si ic c_ _s st tr re ea am mb bu uf f<C Ch h, T Tr r>* s se et tb bu uf f(C Ch h* p p, s st tr re ea am ms si iz ze e n n) ;
v vi ir rt tu ua al l p po os s_ _t ty yp pe e s se ee ek ko of ff f(o of ff f_ _t ty yp pe e o of ff f, i io os s_ _b ba as se e: : s se ee ek kd di ir r w wa ay y,

i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;
v vi ir rt tu ua al l p po os s_ _t ty yp pe e s se ee ek kp po os s(p po os s_ _t ty yp pe e p p,

i io os s_ _b ba as se e: : o op pe en nm mo od de e m m = i io os s_ _b ba as se e: : i in n| i io os s_ _b ba as se e: : o ou ut t) ;
v vi ir rt tu ua al l i in nt t s sy yn nc c() ;
v vi ir rt tu ua al l v vo oi id d i im mb bu ue e(c co on ns st t l lo oc ca al le e& l lo oc c) ;

};

The functions for manipulating buffers, etc., are inherited unchanged fromb ba as si ic c_ _s st tr re ea am mb bu uf f. Only
functions that affect initialization and buffering policy need to be separately provided.

As usual, the obvioust ty yp pe ed de ef fs and their wide stream counterparts are provided:

t ty yp pe ed de ef f b ba as si ic c_ _s st tr re ea am mb bu uf f<c ch ha ar r> s st tr re ea am mb bu uf f;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng gb bu uf f<c ch ha ar r> s st tr ri in ng gb bu uf f;
t ty yp pe ed de ef f b ba as si ic c_ _f fi il le eb bu uf f<c ch ha ar r> f fi il le eb bu uf f;

t ty yp pe ed de ef f b ba as si ic c_ _s st tr re ea am mb bu uf f<w wc ch ha ar r_ _t t> w ws st tr re ea am mb bu uf f;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng gb bu uf f<w wc ch ha ar r_ _t t> w ws st tr ri in ng gb bu uf f;
t ty yp pe ed de ef f b ba as si ic c_ _f fi il le eb bu uf f<w wc ch ha ar r_ _t t> w wf fi il le eb bu uf f;

21.7 Locale[io.locale]

A l lo oc ca al le e is an object that controls the classification of characters into letters, digits, etc.; the colla-
tion order of strings; and the appearance of numeric values on input and output. Most commonly a
l lo oc ca al le e is used implicitly by thei io os st tr re ea am ms library to ensure that the usual conventions for some nat-
ural language or culture is adhered to. In such cases, a programmer never sees al lo oc ca al le e object.
However, by changing as st tr re ea am m’s l lo oc ca al le e, a programmer can change the way the stream behaves to
suit a different set of conventions

A locale is an object of classl lo oc ca al le edefined in namespaces st td d presented in<l lo oc ca al le e>:

c cl la as ss s l lo oc ca al le e {
p pu ub bl li ic c:

/ / ...

l lo oc ca al le e() t th hr ro ow w() ; / / copy of current global locale
e ex xp pl li ic ci it t l lo oc ca al le e(c co on ns st t c ch ha ar r* n na am me e) ; / / construct locale using C locale name
b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r> n na am me e() c co on ns st t; / / give name of this locale

l lo oc ca al le e(c co on ns st t l lo oc ca al le e&) t th hr ro ow w() ; / / copy locale
c co on ns st t l lo oc ca al le e& o op pe er ra at to or r=(c co on ns st t l lo oc ca al le e&) t th hr ro ow w() ; / / copy locale

s st ta at ti ic c l lo oc ca al le e g gl lo ob ba al l(c co on ns st t l lo oc ca al le e&) ; / / set the global locale (get the previous locale)
s st ta at ti ic c c co on ns st t l lo oc ca al le e& c cl la as ss si ic c() ; / / get the locale that C defines

};

Here, I omitted all of the interesting pieces and left only what is needed to switch from one existing
locale to another. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

650 Streams Chapter 21

v vo oi id d f f()
{

s st td d: : l lo oc ca al le e l lo oc c(" P PO OS SI IX X") ; / / standard locale for POSIX

c ci in n. i im mb bu ue e(l lo oc c) ; / / let cin use loc
/ / ...
c ci in n. i im mb bu ue e(s st td d: : l lo oc ca al le e: : g gl lo ob ba al l()) ; / / reset cin to use the default locale

}

The i im mb bu ue e() function is a member ofb ba as si ic c_ _i io os s (§21.7.1).
As shown, some fairly standard locales have character string names. These tend to be shared

with C.
It is possible to set thel lo oc ca al le e that is used by all newly constructed streams:

v vo oi id d g g(c co on ns st t l lo oc ca al le e& l lo oc c = l lo oc ca al le e()) / / use current global locale by default
{

l lo oc ca al le e o ol ld d_ _g gl lo ob ba al l = l lo oc ca al le e: : g gl lo ob ba al l(l lo oc c) ; / / make loc the default locale
/ / ...

}

Setting the globall lo oc ca al le e does not change the behavior of existing streams that are using the previ-
ous value of the globall lo oc ca al le e. In particular,c ci in n, c co ou ut t, etc., are not affected. If they should be
changed, they must be explicitlyi im mb bu ue e() d.

Imbuing a stream with al lo oc ca al le e changes facets of its behavior. It is possible to use members of
a l lo oc ca al le e directly, to define newl lo oc ca al le es, and to extendl lo oc ca al le es with new facets. For example, a
l lo oc ca al le e can also be used explicitly to control the appearance of monetary units, dates, etc., on input
and output (§21.10[25]) and conversion between codesets. However, discussion of that is beyond
the scope of this book. Please consult your implementation’s documentation.

The C-style locale is presented in<c cl lo oc ca al le e> and<l lo oc ca al le e. h h>.

21.7.1 Stream Callbacks [io.callbacks]

Sometimes, people want to add to the state of a stream. For example, one might want a stream to
‘‘know’’ whether a c co om mp pl le ex x should be output in polar or Cartesian coordinates. Classi io os s_ _b ba as se e
provides a functionx xa al ll lo oc c() to allocate space for such simple state information. The value
returned byx xa al ll lo oc c() identifies a pair of locations that can be accessed byi iw wo or rd d() andp pw wo or rd d() :

c cl la as ss s i io os s_ _b ba as se e {
p pu ub bl li ic c:

/ / ...

~i io os s_ _b ba as se e() ;

l lo oc ca al le e i im mb bu ue e(c co on ns st t l lo oc ca al le e& l lo oc c) ; / / get and set locale
l lo oc ca al le e g ge et tl lo oc c() c co on ns st t; / / get locale

s st ta at ti ic c i in nt t x xa al ll lo oc c() ; / / get an integer and a pointer (both initialized to 0)
l lo on ng g& i iw wo or rd d(i in nt t i i) ; / / access the integer iword(i)
v vo oi id d*& p pw wo or rd d(i in nt t i i) ; / / access the pointer pword(i)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.7.1 Stream Callbacks 651

/ / callbacks:

e en nu um m e ev ve en nt t { e er ra as se e_ _e ev ve en nt t, i im mb bu ue e_ _e ev ve en nt t, c co op py yf fm mt t_ _e ev ve en nt t }; / / event type

t ty yp pe ed de ef f v vo oi id d (* e ev ve en nt t_ _c ca al ll lb ba ac ck k)(e ev ve en nt t, i io os s_ _b ba as se e&, i in nt t i i) ;
v vo oi id d r re eg gi is st te er r_ _c ca al ll lb ba ac ck k(e ev ve en nt t_ _c ca al ll lb ba ac ck k f f, i in nt t i i) ; / / attach f to word(i)

};

Sometimes, an implementer or a user needs to be notified about a change in a stream’s state. The
r re eg gi is st te er r_ _c ca al ll lb ba ac ck k() function ‘‘registers’’ a function to be called when its ‘‘event’’ occurs. Thus,
a call of i im mb bu ue e() , c co op py yf fm mt t() , or ~i io os s_ _b ba as se e() will call a function ‘‘registered’’ for an
i im mb bu ue e_ _e ev ve en nt t, c co op py yf fm mt t_ _e ev ve en nt t, or e er ra as se e_ _e ev ve en nt t, respectively. When the the state changes, registered
functions are called with the argumenti i supplied by theirr re eg gi is st te er r_ _c ca al ll lb ba ac ck k() .

This storage and callback mechanism is fairly obscure. Use it only when you absolutely need to
extend the low-level formatting facilities.

21.8 C Input/Output [io.c]

Because C++ and C code are often intermixed, C++ stream I/O is sometimes mixed with the C
p pr ri in nt tf f() family of I/O functions. The C-style I/O functions are presented by<c cs st td di io o> and
<s st td di io o. h h>. Also, because C functions can be called from C++ some programmers may prefer to
use the more familiar C I/O functions. Even if you prefer stream I/O, you will undoubtedly
encounter C-style I/O at some time.

C and C++ I/O can be mixed on a per-character basis. A call ofs sy yn nc c_ _w wi it th h_ _s st td di io o() before the
first stream I/O operation in the execution of a program guarantees that the C-style and C++-style
I/O operations share buffers. A call ofs sy yn nc c_ _w wi it th h_ _s st td di io o(f fa al ls se e) before the first stream I/O opera-
tion prevents buffer sharing and can improve I/O performance on some implementations.

c cl la as ss s i io os s_ _b ba as se e {
/ / ...
s st ta at ti ic c b bo oo ol l s sy yn nc c_ _w wi it th h_ _s st td di io o(b bo oo ol l s sy yn nc c = t tr ru ue e) ; / / get and set

};

The general advantage of the stream output functions over the C standard library functionp pr ri in nt tf f()
is that the stream functions are type safe and have a common style for specifying output of objects
of built-in and user-defined types.

The general C output functions

i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* f fo or rm ma at t ...) ; / / write to stdout
i in nt t f fp pr ri in nt tf f(F FI IL LE E*, c co on ns st t c ch ha ar r* f fo or rm ma at t ...) ; / / write to ‘‘file’’ (stdout, stderr)
i in nt t s sp pr ri in nt tf f(c ch ha ar r* p p, c co on ns st t c ch ha ar r* f fo or rm ma at t ...) ; / / write to p[0]..

produce formatted output of an arbitrary sequence of arguments under control of the format string
f fo or rm ma at t. The format string contains two types of objects: plain characters, which are simply copied
to the output stream, and conversion specifications, each of which causes conversion and printing
of the next argument. Each conversion specification is introduced by the character%. For example:

p pr ri in nt tf f(" t th he er re e w we er re e %d d m me em mb be er rs s p pr re es se en nt t.", n no o_ _o of f_ _m me em mb be er rs s) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

652 Streams Chapter 21

Here %d d specifies thatn no o_ _o of f_ _m me em mb be er rs s is to be treated as ani in nt t and printed as the appropriate
sequence of decimal digits. Withn no o_ _o of f_ _m me em mb be er rs s==1 12 27 7, the output is

t th he er re e w we er re e 1 12 27 7 m me em mb be er rs s p pr re es se en nt t.

The set of conversion specifications is quite large and provides a great degree of flexibility. Fol-
lowing the%, there may be:

- an optional minus sign that specifies left-adjustment of the converted value in the field;
+ an optional plus sign that specifies that a value of a signed type will always begin with a+

or - sign;
an optional# that specifies that floating-point values will be printed with a decimal point

even if no nonzero digits follow, that trailing zeroes will be printed, that octal values will
be printed with an initial0 0, and that hexadecimal values will be printed with an initial0 0x x
or 0 0X X;

d an optional digit string specifying a field width; if the converted value has fewer characters
than the field width, it will be blank-padded on the left (or right, if the left-adjustment indi-
cator has been given) to make up the field width; if the field width begins with a zero,
zero-padding will be done instead of blank-padding;

. an optional period that serves to separate the field width from the next digit string;
d an optional digit string specifying a precision that specifies the number of digits to appear

after the decimal point, for e- and f-conversion, or the maximum number of characters to
be printed from a string;

* a field width or precision may be* instead of a digit string. In this case an integer argu-
ment supplies the field width or precision;

h an optional characterh h, specifying that a followingd d, o o, x x, or u u corresponds to a short inte-
ger argument;

l an optional characterl l, specifying that a followingd d, o o, x x, or u u corresponds to a long inte-
ger argument;

% indicating that the character%is to be printed; no argument is used;
c a character that indicates the type of conversion to be applied. The conversion characters

and their meanings are:
d The integer argument is converted to decimal notation;
o The integer argument is converted to octal notation;
x The integer argument is converted to hexadecimal notation with an initial0 0x x;
X The integer argument is converted to hexadecimal notation with an initial0 0X X;
f Thef fl lo oa at t or d do ou ub bl le eargument is converted to decimal notation in the style[-]ddd.ddd.

The number ofd’s after the decimal point is equal to the precision for the argument.
If necessary, the number is rounded. If the precision is missing, six digits are given;
if the precision is explicitly0 0 and# isn’t specified, no decimal point is printed;

e Thef fl lo oa at t or d do ou ub bl le eargument is converted to decimal notation in the scientific style
[-]d.ddde+dd or [-]d.ddde-dd, where there is one digit before the decimal point and
the number of digits after the decimal point is equal to the precision specification for
the argument. If necessary, the number is rounded. If the precision is missing, six
digits are given; if the precision is explicitly0 0 and# isn’t specified, no digits and no
decimal point are printed;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.8 C Input/Output 653

E As e e, but with an uppercaseE E used to identify the exponent;
g The f fl lo oa at t or d do ou ub bl le e argument is printed in style d, in style f, or in style e, whichever

gives the greatest precision in minimum space;
G As g g, but with an uppercaseE E used to identify the exponent.
c The character argument is printed. Null characters are ignored;
s The argument is taken to be a string (character pointer), and characters from the string

are printed until a null character or until the number of characters indicated by the
precision specification is reached; however, if the precision is 0 or missing, all charac-
ters up to a null are printed.

p The argument is taken to be a pointer. The representation printed is implementation-
dependent.

u The unsigned integer argument is converted to decimal notation;
In no case does a nonexistent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width.

Here is a more elaborate example:

c ch ha ar r* l li in ne e_ _f fo or rm ma at t = " \ \n n#l li in ne e %d d \ \"%s s\ \" \ \n n";

i in nt t m ma ai in n()
{

i in nt t l li in ne e = 1 13 3;
c ch ha ar r* f fi il le e_ _n na am me e = " C C++/ m ma ai in n. c c";

p pr ri in nt tf f(" i in nt t a a; \ \n n") ;
p pr ri in nt tf f(l li in ne e_ _f fo or rm ma at t, l li in ne e, f fi il le e_ _n na am me e) ;
p pr ri in nt tf f(" i in nt t b b; \ \n n") ;

}

which produces:

i in nt t a a;

#l li in ne e 1 13 3 " C C++/ m ma ai in n. c c"
i in nt t b b;

Usingp pr ri in nt tf f() is unsafe in the sense that type checking is not done. For example, here is a well-
known way of getting unpredictable output, a core dump, or worse:

c ch ha ar r x x;
/ / ...
p pr ri in nt tf f(" b ba ad d i in np pu ut t c ch ha ar r: %s s", x x) ; / / %s should have been %c

Thep pr ri in nt tf f() does, however, provide great flexibility in a form that is familiar to C programmers.
Similarly, g ge et tc ch ha ar r() provides a familiar way of reading characters from input:

i in nt t i i;
w wh hi il le e ((i i=g ge et tc ch ha ar r())!= E EO OF F) { / / C character input

/ / use i
}

Note that to be able to test for end-of-file against thei in nt t valueE EO OF F, the value ofg ge et tc ch ha ar r() must
be put into ani in nt t rather than into ac ch ha ar r.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

654 Streams Chapter 21

For further details of C I/O, see your C reference manual or Kernighan and Ritchie:The C Pro-
gramming Language [Kernighan,1988].

21.9 Advice[io.advice]

[1] Define<< and>> for user-defined types with values that have meaningful textural representa-
tions; §21.2.3, §21.3.5.

[2] Use parentheses when printing expressions containing operators of low precedence; §21.2.
[3] You don’t need to modifyi is st tr re ea am m or o os st tr re ea am m to add new<< and>> operators; §21.2.3.
[4] You can define a function so that it behaves as av vi ir rt tu ua al l function based on itssecond(or sub-

sequent) argument; §21.2.3.1.
[5] Remember that by default>> skips whitespace; §21.3.2.
[6] Use lower-level input functions such asg ge et t() andr re ea ad d() primarily in the implementation of

higher-lever input functions; §21.3.4.
[7] Be careful with the termination criteria when usingg ge et t() , g ge et tl li in ne e() , andr re ea ad d() ; §21.3.4.
[8] Prefer manipulators to state flags for controlling I/O; §21.3.3, §21.4, §21.4.6.
[9] Use exceptions to catch rare I/O errors (only); §21.3.6.
[10] Tie streams used for interactive I/O; §21.3.7.
[11] Use sentries to concentrate entry and exit code for many functions in one place; §21.3.8.
[12] Don’t use parentheses after a no-argument manipulator; §21.4.6.2.
[13] Remember to#i in nc cl lu ud de e<i io om ma an ni ip p> when using standard manipulators; §21.4.6.2.
[14] You can achieve the effect (and efficiency) of a ternary operator by defining a simple function

object; §21.4.6.3.
[15] Remember thatw wi id dt th h specifications apply to the following I/O operation only; §21.4.4.
[16] Remember thatp pr re ec ci is si io on n specifications apply to all following floating-point output opera-

tions; §21.4.3.
[17] Use string streams for in-memory formatting; §21.5.3.
[18] You can specify a mode for a file stream ; §21.5.1.
[19] Distinguish sharply between formatting (i io os st tr re ea am ms) and buffering (s st tr re ea am mb bu uf fs) when extend-

ing the I/O system; §21.1, §21.6.
[20] Implement nonstandard ways of transmitting values as stream buffers; §21.6.4.
[21] Implement nonstandard ways of formatting values as stream operations; §21.2.3, §21.3.5.
[22] You can isolate and encapsulate calls of user-defined code by using a pair of functions;

§21.6.4.
[23] You can usei in n_ _a av va ai il l() to determine whether an input operation will block before reading;

§21.6.4.
[24] Distinguish between simple operations that need to be efficient and operations that implement

policy (make the formeri in nl li in ne eand the latterv vi ir rt tu ua al l); §21.6.4.
[25] Usel lo oc ca al le e to localize ‘‘cultural differences;’’ §21.7.
[26] Uses sy yn nc c_ _w wi it th h_ _s st td di io o(x x) to mix C-style and C++-style I/O and to disassociate C-style and

C++-style I/O; §21.8.
[27] Beware of type errors in C-style I/O; §21.8.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.10 Exercises 655

21.10 Exercises[io.exercises]

1. (∗1.5) Read a file of floating-point numbers, make complex numbers out of pairs of numbers
read, and write out the complex numbers.

2. (∗1.5) Define a typeN Na am me e_ _a an nd d_ _a ad dd dr re es ss s. Define << and >> for it. Copy a stream of
N Na am me e_ _a an nd d_ _a ad dd dr re es ss s objects.

3. (∗2.5) Copy a stream ofN Na am me e_ _a an nd d_ _a ad dd dr re es ss s objects in which you have inserted as many errors
as you can think of (e.g., format errors and premature end of string). Handle these errors in a
way that ensures that the copy function reads most of the correctly formatted
N Na am me e_ _a an nd d_ _a ad dd dr re es ss ses, even when the input is completely messed up.

4. (∗2.5) Redefine the I/O formatN Na am me e_ _a an nd d_ _a ad dd dr re es ss s to make it more robust in the presence of
format errors.

5. (∗2.5) Design some functions for requesting and reading information of various types. Ideas:
integer, floating-point number, file name, mail address, date, personal information, etc. Try to
make them foolproof.

6. (∗1.5) Write a program that prints (a) all lowercase letters, (b) all letters, (c) all letters and dig-
its, (d) all characters that may appear in a C++ identifier on your system, (e) all punctuation
characters, (f) the integer value of all control characters, (g) all whitespace characters, (h) the
integer value of all whitespace characters, and finally (i) all printing characters.

7. (∗2) Read a sequence of lines of text into a fixed-sized character buffer. Remove all whitespace
characters and replace each alphanumeric character with the next character in the alphabet
(replacez z by a a and9 9 by 0 0). Write out the resulting line.

8. (∗3) Write a ‘‘miniature’’ stream I/O system that provides classesi is st tr re ea am m, o os st tr re ea am m, i if fs st tr re ea am m,
o of fs st tr re ea am m providing functions such aso op pe er ra at to or r<<() ando op pe er ra at to or r>>() for integers and oper-
ations such aso op pe en n() andc cl lo os se e() for files.

9. (∗4) Implement the C standard I/O library (<s st td di io o. h h>) using the C++ standard I/O library
(<i io os st tr re ea am m>).

10. (∗4) Implement the C++ standard I/O library (<i io os st tr re ea am m>) using the C standard I/O library
(<s st td di io o. h h>).

11. (∗4) Implement the C and C++ libraries so that they can be used simultaneously.
12. (∗2) Implement a class for which[] is overloaded to implement random reading of characters

from a file.
13. (∗3) Repeat §21.10[12] but make[] useful for both reading and writing. Hint: Make[] return

an object of a ‘‘descriptor type’’ for which assignment means ‘‘assign through descriptor to
file’’ and implicit conversion toc ch ha ar r ‘‘means read from file through descriptor.’’

14. (∗2) Repeat §21.10[13] but let[] index objects of arbitrary types, not just characters.
15. (∗3.5) Implement versions ofi is st tr re ea am m ando os st tr re ea am m that read and write numbers in their binary

form rather than converting them into a character representation. Discuss the advantages and
disadvantages of this approach compared to the character-based approach.

16. (∗3.5) Design and implement a pattern-matching input operation. Usep pr ri in nt tf f-style format
strings to specify a pattern. It should be possible to try out several patterns against some input
to find the actual format. One might derive a pattern-matching input class fromi is st tr re ea am m.

17. (∗4) Invent (and implement) a much better kind of pattern for pattern matching. Be specific
about what is better about it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

656 Streams Chapter 21

18. (∗2) Define an output manipulatorb ba as se ed d that takes two arguments– a base and ani in nt t value–
and outputs the integer in the representation specified by the base. For example,b ba as se ed d(2 2, 9 9)
should print1 10 00 01 1.

19. (∗2) Write manipulators that turn character echoing on and off.
20. (∗2) ImplementB Bo ou un nd d_ _f fo or rm m from §21.4.6.3 for the usual set of built-in types.
21. (∗2) Re-implementB Bo ou un nd d_ _f fo or rm m from §21.4.6.3 so that an output operation never overflows its

w wi id dt th h() . It should be possible for a programmer to ensure that output is never quietly trun-
cated beyond its specified precision.

22. (∗3) Implement ane en nc cr ry yp pt t(k k) manipulator that ensures that output on itso os st tr re ea am m is encrypted
using the keyk k. Provide a similard de ec cr ry yp pt t(k k) manipulator for ani is st tr re ea am m. Provide the means
for turning the encryption off for a stream so that further I/O is cleartext.

23. (∗2) Trace a character’s route through your system from the keyboard to the screen for a simple:

c ch ha ar r c c;
c ci in n >> c c;
c co ou ut t << c c << e en nd dl l;

24. (∗2) Modify r re ea ad di in nt ts s() (§21.3.6) to handle all exceptions. Hint: Resource acquisition is
initialization.

25. (∗2.5) There is a standard way of reading, writing, and representing dates under control of a
l lo oc ca al le e. Find it in the documentation of your implementation and write a small program that
reads and writes dates using this mechanism. Hint:s st tr ru uc ct t t tm m.

26. (∗2.5) Define ano os st tr re ea am m calledo os st tr rs st tr re ea am m that can be attached to an array of characters (a C-
style string) in a way similar to the wayo os st tr ri in ng gs st tr re ea am m is attached to as st tr ri in ng g. However, do not
copy the array into or out of theo os st tr rs st tr re ea am m. Theo os st tr rs st tr re ea am m should simply provide a way of
writing to its array argument. It might be used for in-memory formatting like this:

c ch ha ar r b bu uf f[m me es ss sa ag ge e_ _s si iz ze e] ;
o os st tr rs st tr re ea am m o os st t(b bu uf f, m me es ss sa ag ge e_ _s si iz ze e) ;
d do o_ _s so om me et th hi in ng g(a ar rg gu um me en nt ts s, o os st t) ; / / output to buf through ost
c co ou ut t << b bu uf f; / / ost adds terminating 0

An operation such asd do o_ _s so om me et th hi in ng g() can write to the streamo os st t, passo os st t on to its subopera-
tions, etc., using the standard output operations. There is no need to check for overflow because
o os st t knows its size and will go intof fa ai il l() state when it is full. Finally, ad di is sp pl la ay y() operation
can write the message to a ‘‘real’’ output stream. This technique can be most useful for coping
with cases in which the final display operation involves writing to something more complicated
than a traditional line-oriented output device. For example, the text fromo os st t could be placed in
a fixed-sized area somewhere on a screen. Similarly, define classi is st tr rs st tr re ea am m as an input string
stream reading from a zero-terminated string of characters. Interpret the terminating zero char-
acter as end-of-file. Theses st tr rs st tr re ea am ms were part of the original streams library and can often be
found in<s st tr rs st tr re ea am m. h h>.

27. (∗2.5) Implement a manipulatorg ge en ne er ra al l() that resets a stream to its original (general) format
in the same way as sc ci ie en nt ti if fi ic c() (§21.4.6.2) sets a stream to use scientific format.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

22
_ __ _______________________________________

Numerics

The purpose of computing is insight, not numbers.
– R.W. Hamming

... but for the student,
numbers are often the best road to insight.

– A. Ralston

Introduction— numeric limits— mathematical functions— v va al la ar rr ra ay y — vector opera-
tions — slices — s sl li ic ce e_ _a ar rr ra ay y — elimination of temporaries— g gs sl li ic ce e_ _a ar rr ra ay y —
m ma as sk k_ _a ar rr ra ay y — i in nd di ir re ec ct t_ _a ar rr ra ay y — c co om mp pl le ex x — generalized algorithms— random num-
bers— advice— exercises.

22.1 Introduction [num.intro]

It is rare to write any real code without doing some calculation. However, most code requires little
mathematics beyond simple arithmetic. This chapter presents the facilities the standard library
offers to people who go beyond that.

Neither C nor C++ were designed primarily with numeric computation in mind. However,
numeric computation typically occurs in the context of other work– such as database access, net-
working, instrument control, graphics, simulation, financial analysis, etc.– so C++ becomes an
attractive vehicle for computations that are part of a larger system. Furthermore, numeric methods
have come a long way from being simple loops over vectors of floating-point numbers. Where
more complex data structures are needed as part of a computation, C++’s strengths become rele-
vant. The net effect is that C++ is increasingly used for scientific and engineering computation
involving sophisticated numerics. Consequently, facilities and techniques supporting such compu-
tation have emerged. This chapter describes the parts of the standard library that support numerics
and presents a few techniques for dealing with issues that arise when people express numeric

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

658 Numerics Chapter 22

computations in C++. I make no attempt to teach numeric methods. Numeric computation is a fas-
cinating topic in its own right. To understand it, you need a good course in numerical methods or
at least a good textbook– not just a language manual and tutorial.

22.2 Numeric Limits [num.limits]

To do anything interesting with numbers, we typically need to know something about general prop-
erties of built-in numeric types that are implementation-defined rather than fixed by the rules of the
language itself (§4.6). For example, what is the largesti in nt t? What is the smallestf fl lo oa at t? Is ad do ou u- -
b bl le e rounded or truncated when assigned to af fl lo oa at t? How many bits are there in ac ch ha ar r?

Answers to such questions are provided by the specializations of then nu um me er ri ic c_ _l li im mi it ts s template
presented in<l li im mi it ts s>. For example:

v vo oi id d f f(d do ou ub bl le e d d, i in nt t i i)
{

i if f (n nu um me er ri ic c_ _l li im mi it ts s<c ch ha ar r>: : d di ig gi it ts s != 8 8) {
/ / unusual bytes (number of bits not 8)

}

i if f (i i<n nu um me er ri ic c_ _l li im mi it ts s<s sh ho or rt t>: : m mi in n() || n nu um me er ri ic c_ _l li im mi it ts s<s sh ho or rt t>: : m ma ax x()< i i) {
/ / i cannot be stored in a short without loss of precision

}

i if f (0 0<d d && d d<n nu um me er ri ic c_ _l li im mi it ts s<d do ou ub bl le e>: : e ep ps si il lo on n()) d d = 0 0;

i if f (n nu um me er ri ic c_ _l li im mi it ts s<Q Qu ua ad d>: : i is s_ _s sp pe ec ci ia al li iz ze ed d) {
/ / limits information available for type Quad

}
}

Each specialization provides the relevant information for its argument type. Thus, the general
n nu um me er ri ic c_ _l li im mi it ts s template is simply a notational handle for a set of constants and inline functions:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s n nu um me er ri ic c_ _l li im mi it ts s {
p pu ub bl li ic c:

s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _s sp pe ec ci ia al li iz ze ed d = f fa al ls se e; / / is information available for numeric_limits<T>?

/ / uninteresting defaults
};

The real information is in the specializations. Each implementation of the standard library provides
a specialization ofn nu um me er ri ic c_ _l li im mi it ts s for each fundamental type (the character types, the integer and
floating-point types, andb bo oo ol l) but not for any other plausible candidates such asv vo oi id d, enumera-
tions, or library types (such asc co om mp pl le ex x<d do ou ub bl le e>).

For an integral type such asc ch ha ar r, only a few pieces of information are of interest. Here is
n nu um me er ri ic c_ _l li im mi it ts s<c ch ha ar r> for an implementation in which ac ch ha ar r has 8 bits and is signed:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.2 Numeric Limits 659

c cl la as ss s n nu um me er ri ic c_ _l li im mi it ts s<c ch ha ar r> {
p pu ub bl li ic c:

s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _s sp pe ec ci ia al li iz ze ed d = t tr ru ue e; / / yes, we have information

s st ta at ti ic c c co on ns st t i in nt t d di ig gi it ts s = 8 8; / / number of bits (‘‘binary digits’’)

s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _s si ig gn ne ed d = t tr ru ue e; / / this implementation has char signed
s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _i in nt te eg ge er r = t tr ru ue e; / / char is an integral type

i in nl li in ne e s st ta at ti ic c c ch ha ar r m mi in n() t th hr ro ow w() { r re et tu ur rn n - 1 12 28 8; } / / smallest value
i in nl li in ne e s st ta at ti ic c c ch ha ar r m ma ax x() t th hr ro ow w() { r re et tu ur rn n 1 12 27 7; } / / largest value

/ / lots of declarations not relevant to a char
};

Most members ofn nu um me er ri ic c_ _l li im mi it ts s are intended to describe floating-point numbers. For example,
this describes one possible implementation off fl lo oa at t:

c cl la as ss s n nu um me er ri ic c_ _l li im mi it ts s<f fl lo oa at t> {
p pu ub bl li ic c:

s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _s sp pe ec ci ia al li iz ze ed d = t tr ru ue e;

s st ta at ti ic c c co on ns st t i in nt t r ra ad di ix x = 2 2; / / base of exponent (in this case, binary)
s st ta at ti ic c c co on ns st t i in nt t d di ig gi it ts s = 2 24 4; / / number radix digits in mantissa
s st ta at ti ic c c co on ns st t i in nt t d di ig gi it ts s1 10 0 = 6 6; / / number of base 10 digits in mantissa

s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _s si ig gn ne ed d = t tr ru ue e;
s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _i in nt te eg ge er r = f fa al ls se e;
s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _e ex xa ac ct t = f fa al ls se e;

i in nl li in ne e s st ta at ti ic c f fl lo oa at t m mi in n() t th hr ro ow w() { r re et tu ur rn n 1 1. 1 17 75 54 49 94 43 35 5E E- 3 38 8F F; }
i in nl li in ne e s st ta at ti ic c f fl lo oa at t m ma ax x() t th hr ro ow w() { r re et tu ur rn n 3 3. 4 40 02 28 82 23 34 47 7E E+3 38 8F F; }

i in nl li in ne e s st ta at ti ic c f fl lo oa at t e ep ps si il lo on n() t th hr ro ow w() { r re et tu ur rn n 1 1. 1 19 92 20 09 92 29 90 0E E- 0 07 7F F; }
i in nl li in ne e s st ta at ti ic c f fl lo oa at t r ro ou un nd d_ _e er rr ro or r() t th hr ro ow w() { r re et tu ur rn n 0 0. 5 5F F; }

i in nl li in ne e s st ta at ti ic c f fl lo oa at t i in nf fi in ni it ty y() t th hr ro ow w() { r re et tu ur rn n /* some value*/; }
i in nl li in ne e s st ta at ti ic c f fl lo oa at t q qu ui ie et t_ _N Na aN N() t th hr ro ow w() { r re et tu ur rn n /* some value*/; }
i in nl li in ne e s st ta at ti ic c f fl lo oa at t s si ig gn na al li in ng g_ _N Na aN N() t th hr ro ow w() { r re et tu ur rn n /* some value*/; }
i in nl li in ne e s st ta at ti ic c f fl lo oa at t d de en no or rm m_ _m mi in n() t th hr ro ow w() { r re et tu ur rn n m mi in n() ; }

s st ta at ti ic c c co on ns st t i in nt t m mi in n_ _e ex xp po on ne en nt t = - 1 12 25 5;
s st ta at ti ic c c co on ns st t i in nt t m mi in n_ _e ex xp po on ne en nt t1 10 0 = - 3 37 7;
s st ta at ti ic c c co on ns st t i in nt t m ma ax x_ _e ex xp po on ne en nt t = +1 12 28 8;
s st ta at ti ic c c co on ns st t i in nt t m ma ax x_ _e ex xp po on ne en nt t1 10 0 = +3 38 8;

s st ta at ti ic c c co on ns st t b bo oo ol l h ha as s_ _i in nf fi in ni it ty y = t tr ru ue e;
s st ta at ti ic c c co on ns st t b bo oo ol l h ha as s_ _q qu ui ie et t_ _N Na aN N = t tr ru ue e;
s st ta at ti ic c c co on ns st t b bo oo ol l h ha as s_ _s si ig gn na al li in ng g_ _N Na aN N = t tr ru ue e;
s st ta at ti ic c c co on ns st t f fl lo oa at t_ _d de en no or rm m_ _s st ty yl le e h ha as s_ _d de en no or rm m = d de en no or rm m_ _a ab bs se en nt t; / / enum from<limits>
s st ta at ti ic c c co on ns st t b bo oo ol l h ha as s_ _d de en no or rm m_ _l lo os ss s = f fa al ls se e;

s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _i ie ec c5 55 59 9 = t tr ru ue e; / / conforms to IEC-559
s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _b bo ou un nd de ed d = t tr ru ue e;
s st ta at ti ic c c co on ns st t b bo oo ol l i is s_ _m mo od du ul lo o = f fa al ls se e;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

660 Numerics Chapter 22

s st ta at ti ic c c co on ns st t b bo oo ol l t tr ra ap ps s = t tr ru ue e;
s st ta at ti ic c c co on ns st t b bo oo ol l t ti in ny yn ne es ss s_ _b be ef fo or re e = t tr ru ue e;

s st ta at ti ic c c co on ns st t f fl lo oa at t_ _r ro ou un nd d_ _s st ty yl le e r ro ou un nd d_ _s st ty yl le e = r ro ou un nd d_ _t to o_ _n ne ea ar re es st t; / / enum from<limits>
};

Note thatm mi in n() is the smallestpositivenormalized number and thate ep ps si il lo on n is the smallest posi-
tive floating-point number such that1 1+e ep ps si il lo on n- 1 1 is representable.

When defining a scalar type along the lines of the built-in ones, it is a good idea also to provide
a suitable specialization ofn nu um me er ri ic c_ _l li im mi it ts s. For example, if I wrote a quadruple-precision type
Q Qu ua ad d or if a vendor provided an extended-precision integerl lo on ng g l lo on ng g, a user could reasonably
expectn nu um me er ri ic c_ _l li im mi it ts s<Q Qu ua ad d> andn nu um me er ri ic c_ _l li im mi it ts s<l lo on ng g l lo on ng g> to be supplied.

One can imagine specializations ofn nu um me er ri ic c_ _l li im mi it ts s describing properties of user-defined types
that have little to do with floating-point numbers. In such cases, it is usually better to use the gen-
eral technique for describing properties of a type than to specializen nu um me er ri ic c_ _l li im mi it ts s with properties
not considered in the standard. Latin1...UL float_denom_style

Floating-point values are represented as inline functions. Integral values inn nu um me er ri ic c_ _l li im mi it ts s,
however, must be represented in a form that allows them to be used in constant expressions. That
implies that they must have in-class initializers (§10.4.6.2). If you uses st ta at ti ic c c co on ns st t members rather
than enumerators for that, remember to define thes st ta at ti ic cs.

22.2.1 Limit Macros [num.limit.c]

From C, C++ inherited macros that describe properties of integers. These are found in<c cl li im mi it ts s>
and <l li im mi it ts s. h h> and have names such asC CH HA AR R_ _B BI IT T and I IN NT T_ _M MA AX X. Similarly, <c cf fl lo oa at t> and
<f fl lo oa at t. h h> define macros describing properties of floating-point numbers. They have names such
asD DB BL L_ _M MI IN N_ _E EX XP P, F FL LT T_ _R RA AD DI IX X, andL LD DB BL L_ _M MA AX X.

As ever, macros are best avoided.

22.3 Standard Mathematical Functions[num.math]

The headers<c cm ma at th h> and<m ma at th h. h h> provide what is commonly referred to as ‘‘the usual mathe-
matical functions:’’

d do ou ub bl le e a ab bs s(d do ou ub bl le e) ; / / absolute value; not in C, same as fabs()
d do ou ub bl le e f fa ab bs s(d do ou ub bl le e) ; / / absolute value

d do ou ub bl le e c ce ei il l(d do ou ub bl le e d d) ; / / smallest integer not less than d
d do ou ub bl le e f fl lo oo or r(d do ou ub bl le e d d) ; / / largest integer not greater than d

d do ou ub bl le e s sq qr rt t(d do ou ub bl le e d d) ; / / square root of d, d must be non-negative

d do ou ub bl le e p po ow w(d do ou ub bl le e d d, d do ou ub bl le e e e) ; / / d to the power of e,
/ / error if d==0 and e<=0 or if d<0 and e isn’t an integer.

d do ou ub bl le e p po ow w(d do ou ub bl le e d d, i in nt t i i) ; / / d to the power of i; not in C

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.3 Standard Mathematical Functions 661

d do ou ub bl le e c co os s(d do ou ub bl le e) ; / / cosine
d do ou ub bl le e s si in n(d do ou ub bl le e) ; / / sine
d do ou ub bl le e t ta an n(d do ou ub bl le e) ; / / tangent

d do ou ub bl le e a ac co os s(d do ou ub bl le e) ; / / arc cosine
d do ou ub bl le e a as si in n(d do ou ub bl le e) ; / / arc sine
d do ou ub bl le e a at ta an n(d do ou ub bl le e) ; / / arc tangent
d do ou ub bl le e a at ta an n2 2(d do ou ub bl le e x x, d do ou ub bl le e y y) ; / / atan(x/y)

d do ou ub bl le e s si in nh h(d do ou ub bl le e) ; / / hyperbolic sine
d do ou ub bl le e c co os sh h(d do ou ub bl le e) ; / / hyperbolic cosine
d do ou ub bl le e t ta an nh h(d do ou ub bl le e) ; / / hyperbolic tangent

d do ou ub bl le e e ex xp p(d do ou ub bl le e) ; / / exponential, base e
d do ou ub bl le e l lo og g(d do ou ub bl le e d d) ; / / natural (base e) logarithm, d must be> 0
d do ou ub bl le e l lo og g1 10 0(d do ou ub bl le e d d) ; / / base 10 logarithm, d must be> 0

d do ou ub bl le e m mo od df f(d do ou ub bl le e d d, d do ou ub bl le e* p p) ; / / return fractional part of d, place integral part in *p
d do ou ub bl le e f fr re ex xp p(d do ou ub bl le e d d, i in nt t* p p) ; / / find x in [.5,1) and y so that d = x*pow(2,y),

/ / return x and store y in *p
d do ou ub bl le e f fm mo od d(d do ou ub bl le e d d, d do ou ub bl le e m m) ; / / floating-point remainder, same sign as d
d do ou ub bl le e l ld de ex xp p(d do ou ub bl le e d d, i in nt t i i) ; / / d*pow(2,i)

In addition,<c cm ma at th h> and<m ma at th h. h h> supply these functions forf fl lo oa at t andl lo on ng g d do ou ub bl le earguments.
Where several values are possible results– as witha as si in n() – the one nearest to0 0 is returned.

The result ofa ac co os s() is non-negative.
Errors are reported by settinge er rr rn no o from <c ce er rr rn no o> to E ED DO OM M for a domain error and to

E ER RA AN NG GE E for a range error. For example:

v vo oi id d f f()
{

e er rr rn no o = 0 0; / / clear old error state
s sq qr rt t(- 1 1) ;
i if f (e er rr rn no o==E ED DO OM M) c ce er rr r << " s sq qr rt t() n no ot t d de ef fi in ne ed d f fo or r n ne eg ga at ti iv ve e a ar rg gu um me en nt t";
p po ow w(n nu um me er ri ic c_ _l li im mi it ts s<d do ou ub bl le e>: : m ma ax x() , 2 2) ;
i if f (e er rr rn no o == E ER RA AN NG GE E) c ce er rr r << " r re es su ul lt t o of f p po ow w() t to oo o l la ar rg ge e t to o r re ep pr re es se en nt t a as s a a d do ou ub bl le e";

}

For historical reasons, a few mathematical functions are found in the<c cs st td dl li ib b> header rather than
in <c cm ma at th h>:

i in nt t a ab bs s(i in nt t) ; / / absolute value
l lo on ng g a ab bs s(l lo on ng g) ; / / absolute value (not in C)
l lo on ng g l la ab bs s(l lo on ng g) ; / / absolute value

s st tr ru uc ct t d di iv v_ _t t { implementation_defined q qu uo ot t, r re em m; };
s st tr ru uc ct t l ld di iv v_ _t t { implementation_defined q qu uo ot t, r re em m; };

d di iv v_ _t t d di iv v(i in nt t n n, i in nt t d d) ; / / divide n by d, return (quotient,remainder)
l ld di iv v_ _t t d di iv v(l lo on ng g i in nt t n n, l lo on ng g i in nt t d d) ; / / divide n by d, return (quotient,remainder) (not in C)
l ld di iv v_ _t t l ld di iv v(l lo on ng g i in nt t n n, l lo on ng g i in nt t d d) ; / / divide n by d, return (quotient,remainder)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

662 Numerics Chapter 22

22.4 Vector Arithmetic [num.valarray]

Much numeric work relies on relatively simple single-dimensional vectors of floating-point values.
In particular, such vectors are well supported by high-performance machine architectures, libraries
relying on such vectors are in wide use, and very aggressive optimization of code using such
vectors is considered essential in many fields. Consequently, the standard library provides a vector
– calledv va al la ar rr ra ay y – designed specifically for speed of the usual numeric vector operations.

When looking at thev va al la ar rr ra ay y facilities, it is wise to remember that they are intended as a rela-
tively low-level building block for high-performance computation. In particular, the primary
design criterion wasn’t ease of use, but rather effective use of high-performance computers when
relying on aggressive optimization techniques. If your aim is flexibility and generality rather than
efficiency, you are probably better off building on the standard containers from Chapter 16 and
Chapter 17 than trying to fit into the simple, efficient, and deliberately traditional framework of
v va al la ar rr ra ay y.

One could argue thatv va al la ar rr ra ay y should have been calledv ve ec ct to or r because it is a traditional mathe-
matical vector and thatv ve ec ct to or r (§16.3) should have been calleda ar rr ra ay y. However, this is not the way
the terminology evolved. Av va al la ar rr ra ay y is a vector optimized for numeric computation, av ve ec ct to or r is a
flexible container designed for holding and manipulating objects of a wide variety of types, and an
array is a low-level, built-in type.

Thev va al la ar rr ra ay y type is supported by four auxiliary types for specifying subsets of av va al la ar rr ra ay y:
– s sl li ic ce e_ _a ar rr ra ay y andg gs sl li ic ce e_ _a ar rr ra ay y represent the notion of slices (§22.4.6, §22.4.8),
– m ma as sk k_ _a ar rr ra ay y specifies a subset by marking each element in or out (§22.4.9), and
– i in nd di ir re ec ct t_ _a ar rr ra ay y lists the indices of the elements to be considered (§22.4.10).

22.4.1 Valarray Construction [num.valarray.ctor]

The v va al la ar rr ra ay y type and its associated facilities are defined in namespaces st td d and presented in
<v va al la ar rr ra ay y>:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s s st td d: : v va al la ar rr ra ay y {
/ / representation

p pu ub bl li ic c:
t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;

v va al la ar rr ra ay y() ; / / valarray with size()==0
e ex xp pl li ic ci it t v va al la ar rr ra ay y(s si iz ze e_ _t t n n) ; / / n elements with value T()
v va al la ar rr ra ay y(c co on ns st t T T& v va al l, s si iz ze e_ _t t n n) ; / / n elements with value val
v va al la ar rr ra ay y(c co on ns st t T T* p p, s si iz ze e_ _t t n n) ; / / n elements with values p[0], p[1], ...
v va al la ar rr ra ay y(c co on ns st t v va al la ar rr ra ay y& v v) ; / / copy of v

v va al la ar rr ra ay y(c co on ns st t s sl li ic ce e_ _a ar rr ra ay y<T T>&) ; / / see §22.4.6
v va al la ar rr ra ay y(c co on ns st t g gs sl li ic ce e_ _a ar rr ra ay y<T T>&) ; / / see §22.4.8
v va al la ar rr ra ay y(c co on ns st t m ma as sk k_ _a ar rr ra ay y<T T>&) ; / / see §22.4.9
v va al la ar rr ra ay y(c co on ns st t i in nd di ir re ec ct t_ _a ar rr ra ay y<T T>&) ; / / see §22.4.10

~v va al la ar rr ra ay y() ;

/ / ...
};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.1 Valarray Construction 663

This set of constructors allows us to initializev va al la ar rr ra ay ys from the auxiliary numeric array types and
from single values. For example:

v va al la ar rr ra ay y<d do ou ub bl le e> v v0 0; / / placeholder, we can assign to v0 later
v va al la ar rr ra ay y<f fl lo oa at t> v v1 1(1 10 00 00 0) ; / / 1000 elements with value float()==0.0F

v va al la ar rr ra ay y<i in nt t> v v2 2(- 1 1, 2 20 00 00 0) ; / / 2000 elements with value– 1
v va al la ar rr ra ay y<d do ou ub bl le e> v v3 3(1 10 00 0, 9 9. 8 80 06 64 4) ; / / bad mistake: floating-point valarray size

v va al la ar rr ra ay y<d do ou ub bl le e> v v4 4 = v v3 3; / / v4 has v3.size() elements

In the two-argument constructors, the value comes before the number of elements. This differs
from the convention for other standard containers (§16.3.4).

The number of elements of an argumentv va al la ar rr ra ay y to a copy constructor determines the size of
the resultingv va al la ar rr ra ay y.

Most programs need data from tables or input; this is supported by a constructor that copies ele-
ments from a built-in array. For example:

c co on ns st t d do ou ub bl le e v vd d[] = { 0 0, 1 1, 2 2, 3 3, 4 4 };
c co on ns st t i in nt t v vi i[] = { 0 0, 1 1, 2 2, 3 3, 4 4 };

v va al la ar rr ra ay y<d do ou ub bl le e> v v3 3(v vd d, 4 4) ; / / 4 elements: 0,1,2,3
v va al la ar rr ra ay y<d do ou ub bl le e> v v4 4(v vi i, 4 4) ; / / type error: vi is not pointer to double
v va al la ar rr ra ay y<d do ou ub bl le e> v v5 5(v vd d, 8 8) ; / / undefined: too few elements in initializer

This form of initialization is important because numeric software that produces data in the form of
large arrays is common.

The v va al la ar rr ra ay y and its auxiliary facilities were designed for high-speed computing. This is
reflected in a few constraints on users and by a few liberties granted to implementers. Basically, an
implementer ofv va al la ar rr ra ay y is allowed to use just about every optimization technique you can think
of. For example, operations may be inlined and thev va al la ar rr ra ay y operations are assumed to be free of
side effects (except on their explicit arguments of course). Also,v va al la ar rr ra ay ys are assumed to be alias
free, and the introduction of auxiliary types and the elimination of temporaries is allowed as long as
the basic semantics are maintained. Thus, the declarations in<v va al la ar rr ra ay y> may look somewhat dif-
ferent from what you find here (and in the standard), but they should provide the same operations
with the same meaning for code that doesn’t go out of the way to break the rules. In particular, the
elements of av va al la ar rr ra ay y should have the usual copy semantics (§17.1.4).

22.4.2 Valarray Subscripting and Assignment [num.valarray.sub]

For v va al la ar rr ra ay ys, subscripting is used both to access individual elements and to obtain subarrays:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v va al la ar rr ra ay y {
p pu ub bl li ic c:

/ / ...
v va al la ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t v va al la ar rr ra ay y& v v) ; / / copy v
v va al la ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t T T& v va al l) ; / / assign val to every element

T T o op pe er ra at to or r[](s si iz ze e_ _t t) c co on ns st t;
T T& o op pe er ra at to or r[](s si iz ze e_ _t t) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

664 Numerics Chapter 22

v va al la ar rr ra ay y o op pe er ra at to or r[](s sl li ic ce e) c co on ns st t; / / see §22.4.6
s sl li ic ce e_ _a ar rr ra ay y<T T> o op pe er ra at to or r[](s sl li ic ce e) ;

v va al la ar rr ra ay y o op pe er ra at to or r[](c co on ns st t g gs sl li ic ce e&) c co on ns st t; / / see §22.4.8
g gs sl li ic ce e_ _a ar rr ra ay y<T T> o op pe er ra at to or r[](c co on ns st t g gs sl li ic ce e&) ;

v va al la ar rr ra ay y o op pe er ra at to or r[](c co on ns st t v va al la ar rr ra ay y<b bo oo ol l>&) c co on ns st t; / / see §22.4.9
m ma as sk k_ _a ar rr ra ay y<T T> o op pe er ra at to or r[](c co on ns st t v va al la ar rr ra ay y<b bo oo ol l>&) ;

v va al la ar rr ra ay y o op pe er ra at to or r[](c co on ns st t v va al la ar rr ra ay y<s si iz ze e_ _t t>&) c co on ns st t; / / see §22.4.10
i in nd di ir re ec ct t_ _a ar rr ra ay y<T T> o op pe er ra at to or r[](c co on ns st t v va al la ar rr ra ay y<s si iz ze e_ _t t>&) ;

v va al la ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t s sl li ic ce e_ _a ar rr ra ay y<T T>&) ; / / see §22.4.6
v va al la ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t g gs sl li ic ce e_ _a ar rr ra ay y<T T>&) ; / / see §22.4.8
v va al la ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t m ma as sk k_ _a ar rr ra ay y<T T>&) ; / / see §22.4.9
v va al la ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t i in nd di ir re ec ct t_ _a ar rr ra ay y<T T>&) ; / / see §22.4.10

/ / ...
};

A v va al la ar rr ra ay y can be assigned to another of the same size. As one would expect,v v1 1=v v2 2 copies every
element ofv v2 2 into its corresponding position inv v1 1. If v va al la ar rr ra ay ys have different sizes, the result of
assignment is undefined. Becausev va al la ar rr ra ay y is designed to be optimized for speed, it would be
unwise to assume that assigning with av va al la ar rr ra ay y of the wrong size would cause an easily compre-
hensible error (such as an exception) or other ‘‘reasonable’’ behavior.

In addition to this conventional assignment, it is possible to assign a scalar to av va al la ar rr ra ay y. For
example,v v=7 7 assigns7 7 to every element of thev va al la ar rr ra ay y v v. This may be surprising, and is best
understood as an occasionally useful degenerate case of the operator assignment operations
(§22.4.3).

Subscripting with an integer behaves conventionally and does not perform range checking.
In addition to the selection of individual elements,v va al la ar rr ra ay y subscripting provides four ways of

extracting subarrays (§22.4.6). Conversely, assignment (and constructors §22.4.1) accepts such
subarrays as operands. The set of assignments onv va al la ar rr ra ay y ensures that it is not necessary to con-
vert an auxiliary array type, such ass sl li ic ce e_ _a ar rr ra ay y, to v va al la ar rr ra ay y before assigning it. An implementa-
tion may similarly replicate other vector operations, such as+ and* , to assure efficiency. In addi-
tion, many powerful optimization techniques exist for vector operations involvings sl li ic ce es and the
other auxiliary vector types.

22.4.3 Member Operations [num.valarray.member]

The obvious, as well as a few less obvious, member functions are provided:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v va al la ar rr ra ay y {
p pu ub bl li ic c:

/ / ...

v va al la ar rr ra ay y& o op pe er ra at to or r*=(c co on ns st t T T& a ar rg g) ; / / v[i]*=arg for every element
/ / similarly: /=, %=, +=, – =, ˆ=, &=, =, <<=, and>>=

T T s su um m() c co on ns st t; / / sum of elements

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.3 Member Operations 665

v va al la ar rr ra ay y s sh hi if ft t(i in nt t i i) c co on ns st t; / / logical shift (left for 0<i, right for i<0)
v va al la ar rr ra ay y c cs sh hi if ft t(i in nt t i i) c co on ns st t; / / cyclic shift (left for 0<i, right for i<0)

v va al la ar rr ra ay y a ap pp pl ly y(T T f f(T T)) c co on ns st t; / / result[i] = f(v[i]) for every element
v va al la ar rr ra ay y a ap pp pl ly y(T T f f(c co on ns st t T T&)) c co on ns st t;

v va al la ar rr ra ay y o op pe er ra at to or r-() c co on ns st t; / / result[i] = -v[i] for every element
v va al la ar rr ra ay y o op pe er ra at to or r+() c co on ns st t; / / result[i] = +v[i] for every element
v va al la ar rr ra ay y o op pe er ra at to or r~() c co on ns st t; / / result[i] = ˜v[i] for every element
v va al la ar rr ra ay y o op pe er ra at to or r!() c co on ns st t; / / result[i] = !v[i] for every element

T T m mi in n() c co on ns st t; / / smallest value using< for comparison; if size()==0 the value is undefined
T T m ma ax x() c co on ns st t; / / largest value using< for comparison; if size()==0 the value is undefined

s si iz ze e_ _t t s si iz ze e() c co on ns st t; / / number of elements
v vo oi id d r re es si iz ze e(s si iz ze e_ _t t n n, c co on ns st t T T& v va al l = T T()) ; / / n elements with value val

};

For example, ifv v is av va al la ar rr ra ay y, it can be scaled like this:v v*=. 2 2, and this:v v/= 1 1. 3 3. That is, apply-
ing a scalar to a vector means applying the scalar to each element of the vector. As usual, it is eas-
ier to optimize uses of*= than uses of a combination of* and= (§11.3.1).

Note that the non-assignment operations construct a newv va al la ar rr ra ay y. For example:

d do ou ub bl le e i in nc cr r(d do ou ub bl le e d d) { r re et tu ur rn n d d+1 1; }

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

v va al la ar rr ra ay y<d do ou ub bl le e> v v2 2 = v v. a ap pp pl ly y(i in nc cr r) ; / / produce incremented valarray
}

This does not change the value ofv v. Unfortunately,a ap pp pl ly y() does not accept a function object
(§18.4) as an argument (§22.9[1]).

The logical and cyclic shift functions,s sh hi if ft t() andc cs sh hi if ft t() , return a newv va al la ar rr ra ay y with the ele-
ments suitably shifted and leave the original one unchanged. For example, the cyclic shift
v v2 2=v v. c cs sh hi if ft t(n n) produces av va al la ar rr ra ay y so thatv v2 2[i i]== v v[(i i+n n)%v v. s si iz ze e()] . The logical shift
v v3 3=v v. s sh hi if ft t(n n) produces av va al la ar rr ra ay y so thatv v3 3[i i] is v v[i i+n n] if i i+n n is a valid index forv v. Other-
wise, the result is the default element value. This implies that boths sh hi if ft t() andc cs sh hi if ft t() shift left
when given a positive argument and right when given a negative argument. For example:

v vo oi id d f f()
{

i in nt t a al lp ph ha a[] = { 1 1, 2 2, 3 3, 4 4, 5 5 , 6 6, 7 7, 8 8 };
v va al la ar rr ra ay y<i in nt t> v v(a al lp ph ha a, 8 8) ; / / 1, 2, 3, 4, 5, 6, 7, 8
v va al la ar rr ra ay y<i in nt t> v v2 2 = v v. s sh hi if ft t(2 2) ; / / 3, 4, 5, 6, 7, 8, 0, 0
v va al la ar rr ra ay y<i in nt t> v v3 3 = v v<<2 2; / / 4, 8, 12, 16, 20, 24, 28, 32
v va al la ar rr ra ay y<i in nt t> v v4 4 = v v. s sh hi if ft t(- 2 2) ; / / 0, 0, 1, 2, 3, 4, 5, 6
v va al la ar rr ra ay y<i in nt t> v v5 5 = v v>>2 2; / / 0, 0, 0, 1, 1, 1, 1, 2
v va al la ar rr ra ay y<i in nt t> v v6 6 = v v. c cs sh hi if ft t(2 2) ; / / 3, 4, 5, 6, 7, 8, 1, 2
v va al la ar rr ra ay y<i in nt t> v v7 7 = v v. c cs sh hi if ft t(- 2 2) ; / / 7, 8, 1, 2, 3, 4, 5, 6

}

For v va al la ar rr ra ay ys, >> and << are bit shift operators, rather than element shift operators or I/O

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

666 Numerics Chapter 22

operators (§22.4.4). Consequently,<<= and>>= can be used to shift bits within elements of an
integral type. For example:

v vo oi id d f f(v va al la ar rr ra ay y<i in nt t> v vi i, v va al la ar rr ra ay y<d do ou ub bl le e> v vd d)
{

v vi i <<= 2 2; / / vi[i] <<=2 for all elements of vi
v vd d <<= 2 2; / / error: shift is not defined for floating-point values

}

It is possible to change the size of av va al la ar rr ra ay y. However,r re es si iz ze e() is n no ot t an operation intended to
makev va al la ar rr ra ay y into a data structure that can grow dynamically the way av ve ec ct to or r and as st tr ri in ng g can.
Instead,r re es si iz ze e() is a re-initialize operation that replaces the existing contents of av va al la ar rr ra ay y by a
set of default values. The old values are lost.

Often, a resizedv va al la ar rr ra ay y is one that we created as an empty vector. Consider how we might
initialize av va al la ar rr ra ay y from input:

v vo oi id d f f()
{

i in nt t n n = 0 0;
c ci in n >> n n; / / read array size
i if f (n n<=0 0) e er rr ro or r(" b ba ad d a ar rr ra ay y b bo ou un nd d") ;

v va al la ar rr ra ay y<d do ou ub bl le e> v v(n n) ; / / make an array of the right size
i in nt t i i = 0 0;
w wh hi il le e (i i<n n && c ci in n>>v v[i i++]) ; / / fill array
i if f (i i!= n n) e er rr ro or r(" t to oo o f fe ew w e el le em me en nt ts s o on n i in np pu ut t") ;

/ / ...
}

If we want to handle the input in a separate function, we might do it like this:

v vo oi id d i in ni it ti ia al li iz ze e_ _f fr ro om m_ _i in np pu ut t(v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

i in nt t n n = 0 0;
c ci in n >> n n; / / read array size
i if f (n n<=0 0) e er rr ro or r(" b ba ad d a ar rr ra ay y b bo ou un nd d") ;

v v. r re es si iz ze e(n n) ; / / make v the right size
i in nt t i i = 0 0;
w wh hi il le e (i i<n n && c ci in n>>v v[i i++]) ; / / fill array
i if f (i i!= n n) e er rr ro or r(" t to oo o f fe ew w e el le em me en nt ts s o on n i in np pu ut t") ;

}

v vo oi id d g g()
{

v va al la ar rr ra ay y<d do ou ub bl le e> v v; / / make a default array
i in ni it ti ia al li iz ze e_ _f fr ro om m_ _i in np pu ut t(v v) ; / / give v the right size and elements
/ / ...

}

This avoids copying large amounts of data.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.3 Member Operations 667

If we want av va al la ar rr ra ay y holding valuable data to grow dynamically, we must use a temporary:

v vo oi id d g gr ro ow w(v va al la ar rr ra ay y<i in nt t>& v v, s si iz ze e_ _t t n n)
{

i if f (n n<=v v. s si iz ze e()) r re et tu ur rn n;

v va al la ar rr ra ay y<i in nt t> t tm mp p(n n) ; / / n default elements

c co op py y(& v v[0 0] ,& v v[v v. s si iz ze e()] ,& t tm mp p[0 0]) ; / / copy algorithm from §18.6.1
v v. r re es si iz ze e(n n) ;
c co op py y(& t tm mp p[0 0] ,& t tm mp p[v v. s si iz ze e()] ,& v v[0 0]) ;

}

This is not the intended way to usev va al la ar rr ra ay y. A v va al la ar rr ra ay y is intended to have a fixed size after
being given its initial value.

The elements of av va al la ar rr ra ay y form a sequence; that is,v v[0 0].. v v[n n- 1 1] are contiguous in mem-
ory. This implies thatT T* is a random-access iterator (§19.2.1) forv va al la ar rr ra ay y<T T> so that standard
algorithms, such asc co op py y() , can be used. However, it would be more in the spirit ofv va al la ar rr ra ay y to
express the copy in terms of assignment and subarrays:

v vo oi id d g gr ro ow w2 2(v va al la ar rr ra ay y<i in nt t>& v v, s si iz ze e_ _t t n n)
{

i if f (n n<=v v. s si iz ze e()) r re et tu ur rn n;

v va al la ar rr ra ay y<i in nt t> t tm mp p(n n) ; / / n default elements
s sl li ic ce e s s(0 0, v v. s si iz ze e() , 1 1) ; / / subarray of v.size() elements (see §22.4.5)

t tm mp p[s s] = v v;
v v. r re es si iz ze e(n n) ;
v v[s s] = t tm mp p;

}

If for some reason input data is organized so that you have to count the elements before knowing
the size of vector needed to hold them, it is usually best to read the input into av ve ec ct to or r (§16.3.5) and
then copy the elements into av va al la ar rr ra ay y.

22.4.4 Nonmember Operations [valarray.ops]

The usual binary operators and mathematical functions are provided:

t te em mp pl la at te e<c cl la as ss s T T> v va al la ar rr ra ay y<T T> o op pe er ra at to or r*(c co on ns st t v va al la ar rr ra ay y<T T>&, c co on ns st t v va al la ar rr ra ay y<T T>&) ;
t te em mp pl la at te e<c cl la as ss s T T> v va al la ar rr ra ay y<T T> o op pe er ra at to or r*(c co on ns st t v va al la ar rr ra ay y<T T>&, c co on ns st t T T&) ;
t te em mp pl la at te e<c cl la as ss s T T> v va al la ar rr ra ay y<T T> o op pe er ra at to or r*(c co on ns st t T T&, c co on ns st t v va al la ar rr ra ay y<T T>&) ;

/ / similarly: /, %, +,– , ˆ, &, , <<, >>, &&, , ==, !=, <, >, <=, >=, atan2, and pow

t te em mp pl la at te e<c cl la as ss s T T> v va al la ar rr ra ay y<T T> a ab bs s(c co on ns st t v va al la ar rr ra ay y<T T>&) ;

/ / similarly: acos, asin, atan, cos, cosh, exp, log, log10, sin, sinh, sqrt, tan, and tanh

The binary operations are defined forv va al la ar rr ra ay ys and for combinations of av va al la ar rr ra ay y and its scalar
type. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

668 Numerics Chapter 22

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& v v, v va al la ar rr ra ay y<d do ou ub bl le e>& v v2 2, d do ou ub bl le e d d)
{

v va al la ar rr ra ay y<d do ou ub bl le e> v v3 3 = v v* v v2 2; / / v3[i] = v[i]*v2[i] for all i
v va al la ar rr ra ay y<d do ou ub bl le e> v v4 4 = v v* d d; / / v4[i] = v[i]*d for all i
v va al la ar rr ra ay y<d do ou ub bl le e> v v5 5 = d d* v v2 2; / / v5[i] = d*v2[i] for all i

v va al la ar rr ra ay y<d do ou ub bl le e> v v6 6 = c co os s(v v) ; / / v6[i] = cos(v[i]) for all i
}

These vector operations all apply their operations to each element of their operand(s) in the way
indicated by the* and c co os s() examples. Naturally, an operation can be used only if the corre-
sponding operation is defined for the template argument type. Otherwise, the compiler will issue
an error when trying to specialize the template (§13.5).

Where the result is av va al la ar rr ra ay y, its length is the same as itsv va al la ar rr ra ay y operand. If the lengths of
the two arrays are not the same, the result of a binary operator on twov va al la ar rr ra ay ys is undefined.

Curiously enough, no I/O operations are provided forv va al la ar rr ra ay y (§22.4.3);<< and>> are shift
operations. However, I/O versions of>> and<< for v va al la ar rr ra ay y are easily defined (§22.9[5]).

Note that thesev va al la ar rr ra ay y operations return newv va al la ar rr ra ay ys rather than modifying their operands.
This can be expensive, but it doesn’t have to be when aggressive optimization techniques are
applied (e.g., see §22.4.7).

All of the operators and mathematical functions onv va al la ar rr ra ay ys can also be applied to
s sl li ic ce e_ _a ar rr ra ay ys (§22.4.6), g gs sl li ic ce e_ _a ar rr ra ay ys (§22.4.8), m ma as sk k_ _a ar rr ra ay ys (§22.4.9), i in nd di ir re ec ct t_ _a ar rr ra ay ys
(§22.4.10), and combinations of these types. However, an implementation is allowed to convert an
operand that is not av va al la ar rr ra ay y to av va al la ar rr ra ay y before performing a required operation.

22.4.5 Slices [num.slice]

A s sl li ic ce e is an abstraction that allows us to manipulate a vector efficiently as a matrix of arbitrary
dimension. It is the key notion of Fortran vectors and of the BLAS (Basic Linear Algebra Subpro-
grams) library, which is the basis for much numeric computation. Basically, a slice is everyn nth
element of some part of av va al la ar rr ra ay y:

c cl la as ss s s st td d: : s sl li ic ce e {
/ / starting index, a length, and a stride

p pu ub bl li ic c:
s sl li ic ce e() ;
s sl li ic ce e(s si iz ze e_ _t t s st ta ar rt t, s si iz ze e_ _t t s si iz ze e, s si iz ze e_ _t t s st tr ri id de e) ;

s si iz ze e_ _t t s st ta ar rt t() c co on ns st t; / / index of first element
s si iz ze e_ _t t s si iz ze e() c co on ns st t; / / number of elements
s si iz ze e_ _t t s st tr ri id de e() c co on ns st t; / / element n is at start()+n*stride()

};

A stride is the distance (in number of elements) between two elements of thes sl li ic ce e. Thus, as sl li ic ce e
describes a sequence of integers. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.5 Slices 669

s si iz ze e_ _t t s sl li ic ce e_ _i in nd de ex x(c co on ns st t s sl li ic ce e& s s, s si iz ze e_ _t t i i) / / map i to its corresponding index
{

r re et tu ur rn n s s. s st ta ar rt t()+ i i* s s. s st tr ri id de e() ;
}

v vo oi id d p pr ri in nt t_ _s se eq q(c co on ns st t s sl li ic ce e& s s) / / print the elements of s
{

f fo or r (i in nt t i i = 0 0; i i<s s. s si iz ze e() ; i i++) c co ou ut t << s sl li ic ce e_ _i in nd de ex x(s s, i i) << " ";
}

v vo oi id d f f()
{

p pr ri in nt t_ _s se eq q(s sl li ic ce e(0 0, 3 3, 4 4)) ; / / row 0
c co ou ut t << ", ";
p pr ri in nt t_ _s se eq q(s sl li ic ce e(1 1, 3 3, 4 4)) ; / / row 1
c co ou ut t << ", ";
p pr ri in nt t_ _s se eq q(s sl li ic ce e(0 0, 4 4, 1 1)) ; / / column 0
c co ou ut t << ", ";
p pr ri in nt t_ _s se eq q(s sl li ic ce e(4 4, 4 4, 1 1)) ; / / column 1

}

prints0 0 4 4 8 8 , 1 1 5 5 9 9 , 0 0 1 1 2 2 3 3 , 4 4 5 5 6 6 7 7.
In other words, as sl li ic ce e describes a mapping of non-negative integers into indices. The number

of elements (thes si iz ze e()) doesn’t affect the mapping (addressing) but simply allows us to find the
end of a sequence. This mapping can be used to simulate two-dimensional arrays within a one-
dimensional array (such asv va al la ar rr ra ay y) in an efficient, general, and reasonably convenient way. Con-
sider a 3-by-4 matrix the way we often think of it (§C.7):

00 01 02

10 11 12

20 21 22

30 31 32

Following Fortran conventions, we can lay it out in memory like this:

00 10 20 30 01 11 21 31 02 12 22 32

0 4 8

0 1 2 3

This isnot the way arrays are laid out in C++ (see §C.7). However, we should be able to present a
concept with a clean and logical interface and then choose a representation to suit the constraints of
the problem. Here, I have chosen to use Fortran layout to ease the interaction with numeric soft-
ware that follows that convention. I have not, however, gone so far as to start indexing from1 1
rather than0 0; that is left as an exercise (§22.9[9]). Much numeric computation is done and will
remain done in a mixture of languages and using a variety of libraries. Often the ability to manipu-
late data in a variety of formats determined by those libraries and language standards is essential.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

670 Numerics Chapter 22

Row x x can be described by as sl li ic ce e(x x, 3 3, 4 4) . That is, the first element of rowx x is thex xth ele-
ment of the vector, the next element of the row is the(x x+4 4) th, etc., and there are3 3 elements in
each row. In the figures,s sl li ic ce e(0 0, 3 3, 4 4) describes the row0 00 0, 0 01 1, and0 02 2.

Columny y can be described bys sl li ic ce e(4 4* y y, 4 4, 1 1) . That is, the first element of columny y is the
4 4* y yth element of the vector, the next element of the column is the(4 4* y y+1 1) th, etc., and there are4 4
elements in each column. In the figures,s sl li ic ce e(0 0, 4 4, 1 1) describes the column0 00 0, 1 10 0, 2 20 0, and3 30 0.

In addition to its use for simulating two-dimensional arrays, as sl li ic ce e can describe many other
sequences. It is a fairly general way of specifying very simple sequences. This notion is explored
further in §22.4.8.

One way of thinking of a slice is as an odd kind of iterator: as sl li ic ce e allows us to describe a
sequence of indices for av va al la ar rr ra ay y. We could build a real iterator based on that:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Sl li ic ce e_ _i it te er r {
v va al la ar rr ra ay y<T T>* v v;
s sl li ic ce e s s;
s si iz ze e_ _t t c cu ur rr r; / / index of current element

T T& r re ef f(s si iz ze e_ _t t i i) c co on ns st t { r re et tu ur rn n (* v v)[s s. s st ta ar rt t()+ i i* s s. s st tr ri id de e()] ; }
p pu ub bl li ic c:

S Sl li ic ce e_ _i it te er r(v va al la ar rr ra ay y<T T>* v vv v, s sl li ic ce e s ss s) : v v(v vv v) , s s(s ss s) , c cu ur rr r(0 0) { }

S Sl li ic ce e_ _i it te er r e en nd d()
{

S Sl li ic ce e_ _i it te er r t t = * t th hi is s;
t t. c cu ur rr r = s s. s si iz ze e() ; / / index of last-plus-one element
r re et tu ur rn n t t;

}

S Sl li ic ce e_ _i it te er r& o op pe er ra at to or r++() { c cu ur rr r++; r re et tu ur rn n * t th hi is s; }
S Sl li ic ce e_ _i it te er r o op pe er ra at to or r++(i in nt t) { S Sl li ic ce e_ _i it te er r t t = * t th hi is s; c cu ur rr r++; r re et tu ur rn n t t; }

T T& o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n r re ef f(c cu ur rr r=i i) ; } / / C style subscript
T T& o op pe er ra at to or r()(s si iz ze e_ _t t i i) { r re et tu ur rn n r re ef f(c cu ur rr r=i i) ; } / / Fortran-style subscript
T T& o op pe er ra at to or r*() { r re et tu ur rn n r re ef f(c cu ur rr r) ; } / / current element

/ / ...
};

Since as sl li ic ce e has a size, we could even provide range checking. Here, I have taken advantage of
s sl li ic ce e: : s si iz ze e() to provide ane en nd d() operation to provide an iterator for the one-past-the-end ele-
ment of thev va al la ar rr ra ay y.

Since as sl li ic ce e can describe either a row or a column, theS Sl li ic ce e_ _i it te er r allows us to traverse a
v va al la ar rr ra ay y by row or by column.

For S Sl li ic ce e_ _i it te er r to be useful,==, != , and< must be defined:

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l o op pe er ra at to or r==(c co on ns st t S Sl li ic ce e_ _i it te er r<T T>& p p, c co on ns st t S Sl li ic ce e_ _i it te er r<T T>& q q)
{

r re et tu ur rn n p p. c cu ur rr r==q q. c cu ur rr r && p p. s s. s st tr ri id de e()== q q. s s. s st tr ri id de e() && p p. s s. s st ta ar rt t()== q q. s s. s st ta ar rt t() ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.5 Slices 671

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l o op pe er ra at to or r!=(c co on ns st t S Sl li ic ce e_ _i it te er r<T T>& p p, c co on ns st t S Sl li ic ce e_ _i it te er r<T T>& q q)
{

r re et tu ur rn n !(p p==q q) ;
}

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l o op pe er ra at to or r<(c co on ns st t S Sl li ic ce e_ _i it te er r<T T>& p p, c co on ns st t S Sl li ic ce e_ _i it te er r<T T>& q q)
{

r re et tu ur rn n p p. c cu ur rr r<q q. c cu ur rr r && p p. s s. s st tr ri id de e()== q q. s s. s st tr ri id de e() && p p. s s. s st ta ar rt t()== q q. s s. s st ta ar rt t() ;
}

22.4.6 Slice_array [num.slicearray]

From av va al la ar rr ra ay y and as sl li ic ce e, we can build something that looks and feels like av va al la ar rr ra ay y, but
which is really simply a way of referring to the subset of the array described by the slice. Such a
s sl li ic ce e_ _a ar rr ra ay y is defined like this:

t te em mp pl la at te e <c cl la as ss s T T> c cl la as ss s s st td d: : s sl li ic ce e_ _a ar rr ra ay y {
p pu ub bl li ic c:

t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;

v vo oi id d o op pe er ra at to or r=(c co on ns st t v va al la ar rr ra ay y<T T>&) ;
v vo oi id d o op pe er ra at to or r=(c co on ns st t T T& v va al l) ; / / assign val to each element

v vo oi id d o op pe er ra at to or r*=(c co on ns st t v va al la ar rr ra ay y<T T>& v va al l) ; / / v[i]*=val for each element
/ / similarly: /=, %=, +=, – =, ˆ=, &=, =, <<=, >>=

~s sl li ic ce e_ _a ar rr ra ay y() ;
p pr ri iv va at te e:

s sl li ic ce e_ _a ar rr ra ay y() ; / / prevent construction
s sl li ic ce e_ _a ar rr ra ay y(c co on ns st t s sl li ic ce e_ _a ar rr ra ay y&) ; / / prevent copying
s sl li ic ce e_ _a ar rr ra ay y& o op pe er ra at to or r=(c co on ns st t s sl li ic ce e_ _a ar rr ra ay y&) ; / / prevent copying

v va al la ar rr ra ay y<T T>* p p; / / implementation-defined representation
s sl li ic ce e s s;

};

A user cannot directly create as sl li ic ce e_ _a ar rr ra ay y. Instead, the user subscripts av va al la ar rr ra ay y to create a
s sl li ic ce e_ _a ar rr ra ay y for a given slice. Once thes sl li ic ce e_ _a ar rr ra ay y is initialized, all references to it indirectly go to
the v va al la ar rr ra ay y for which it is created. For example, we can create something that represents every
second element of an array like this:

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& d d)
{

s sl li ic ce e_ _a ar rr ra ay y<d do ou ub bl le e>& v v_ _e ev ve en n = d d[s sl li ic ce e(0 0, d d. s si iz ze e()/ 2 2, 2 2)] ;
s sl li ic ce e_ _a ar rr ra ay y<d do ou ub bl le e>& v v_ _o od dd d = d d[s sl li ic ce e(1 1, d d. s si iz ze e()/ 2 2, 2 2)] ;

v v_ _o od dd d *= 2 2; / / double every odd element of d
v v_ _e ev ve en n = 0 0; / / assign 0 to every even element of d

}

The ban on copyings sl li ic ce e_ _a ar rr ra ay ys is necessary so as to allow optimizations that rely on absence of
aliases. It can be quite constraining. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

672 Numerics Chapter 22

s sl li ic ce e_ _a ar rr ra ay y<d do ou ub bl le e> r ro ow w(v va al la ar rr ra ay y<d do ou ub bl le e>& d d, i in nt t i i)
{

s sl li ic ce e_ _a ar rr ra ay y<d do ou ub bl le e> v v = d d[s sl li ic ce e(0 0, 2 2, d d. s si iz ze e()/ 2 2)] ; / / error: attempt to copy

r re et tu ur rn n d d[s sl li ic ce e(i i%2 2, i i, d d. s si iz ze e()/ 2 2)] ; / / error: attempt to copy
}

Often copying as sl li ic ce e is a reasonable alternative to copying as sl li ic ce e_ _a ar rr ra ay y.
Slices can be used to express a variety of subsets of an array. For example, we might use slices

to manipulate contiguous subarrays like this:

i in nl li in ne e s sl li ic ce e s su ub b_ _a ar rr ra ay y(s si iz ze e_ _t t f fi ir rs st t, s si iz ze e_ _t t c co ou un nt t) / / [first:first+count[
{

r re et tu ur rn n s sl li ic ce e(f fi ir rs st t, c co ou un nt t, 1 1) ;
}

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

s si iz ze e_ _t t s sz z = v v. s si iz ze e() ;
i if f (s sz z<2 2) r re et tu ur rn n;
s si iz ze e_ _t t n n = s sz z/ 2 2;
s si iz ze e_ _t t n n2 2 = s sz z- n n;

v va al la ar rr ra ay y<d do ou ub bl le e> h ha al lf f1 1(n n) ;
v va al la ar rr ra ay y<d do ou ub bl le e> h ha al lf f2 2(n n2 2) ;

h ha al lf f1 1 = v v[s su ub b_ _a ar rr ra ay y(0 0, n n)] ; / / copy of first half of v
h ha al lf f2 2 = v v[s su ub b_ _a ar rr ra ay y(n n, n n2 2)] ; / / copy of second half of v

/ / ...
}

The standard library does not provide a matrix class. Instead, the intent is forv va al la ar rr ra ay y ands sl li ic ce e to
provide the tools for building matrices optimized for a variety of needs. Consider how we might
implement a simple two-dimensional matrix using av va al la ar rr ra ay y ands sl li ic ce e_ _a ar rr ra ay ys:

c cl la as ss s M Ma at tr ri ix x {
v va al la ar rr ra ay y<d do ou ub bl le e>* v v;
s si iz ze e_ _t t d d1 1, d d2 2;

p pu ub bl li ic c:
M Ma at tr ri ix x(s si iz ze e_ _t t x x, s si iz ze e_ _t t y y) ; / / note: no default constructor
M Ma at tr ri ix x& M Ma at tr ri ix x(c co on ns st t M Ma at tr ri ix x&) ;
M Ma at tr ri ix x& o op pe er ra at to or r=(c co on ns st t M Ma at tr ri ix x&) ;
~M Ma at tr ri ix x() ;

s si iz ze e_ _t t s si iz ze e() c co on ns st t { r re et tu ur rn n d d1 1* d d2 2; }
s si iz ze e_ _t t d di im m1 1() c co on ns st t { r re et tu ur rn n d d1 1; }
s si iz ze e_ _t t d di im m2 2() c co on ns st t { r re et tu ur rn n d d2 2; }

S Sl li ic ce e_ _i it te er r<d do ou ub bl le e> r ro ow w(s si iz ze e_ _t t i i) ;
C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e> r ro ow w(s si iz ze e_ _t t i i) c co on ns st t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.6 Slice_array 673

S Sl li ic ce e_ _i it te er r<d do ou ub bl le e> c co ol lu um mn n(s si iz ze e_ _t t i i) ;
C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e> c co ol lu um mn n(s si iz ze e_ _t t i i) c co on ns st t;

d do ou ub bl le e& o op pe er ra at to or r()(s si iz ze e_ _t t x x, s si iz ze e_ _t t y y) ; / / Fortran-style subscripts
d do ou ub bl le e o op pe er ra at to or r()(s si iz ze e_ _t t x x, s si iz ze e_ _t t y y) c co on ns st t;

S Sl li ic ce e_ _i it te er r<d do ou ub bl le e> o op pe er ra at to or r()(s si iz ze e_ _t t i i) { r re et tu ur rn n r ro ow w(i i) ; }
C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e> o op pe er ra at to or r()(s si iz ze e_ _t t i i) c co on ns st t { r re et tu ur rn n r ro ow w(i i) ; }

S Sl li ic ce e_ _i it te er r<d do ou ub bl le e> o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n r ro ow w(i i) ; } / / C-style subscript
C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e> o op pe er ra at to or r[](s si iz ze e_ _t t i i) c co on ns st t { r re et tu ur rn n r ro ow w(i i) ; }

M Ma at tr ri ix x& o op pe er ra at to or r*=(d do ou ub bl le e) ;

v va al la ar rr ra ay y<d do ou ub bl le e>& a ar rr ra ay y() { r re et tu ur rn n * v v; }
};

The representation of aM Ma at tr ri ix x is av va al la ar rr ra ay y. We impose dimensionality on that array through slic-
ing. When necessary, we can view that representation as having one, two, three, etc., dimensions in
the same way that we provide the default two-dimensional view throughr ro ow w() and c co ol lu um mn n() .
The S Sl li ic ce e_ _i it te er rs are used to circumvent the ban on copyings sl li ic ce e_ _a ar rr ra ay ys s. I couldn’t return a
s sl li ic ce e_ _a ar rr ra ay y:

s sl li ic ce e_ _a ar rr ra ay y<d do ou ub bl le e> r ro ow w(s si iz ze e_ _t t i i) { r re et tu ur rn n (* v v)(s sl li ic ce e(i i, d d1 1, d d2 2)) ; }

so I returned an iterator containing a pointer to thev va al la ar rr ra ay y and thes sl li ic ce e itself instead of a
s sl li ic ce e_ _a ar rr ra ay y.

We need an additional class ‘‘iterator for slice of constants,’’C Cs sl li ic ce e_ _i it te er r to express the distinc-
tion between a slice of ac co on ns st t M Ma at tr ri ix x and a slice of a non-c co on ns st t M Ma at tr ri ix x:

i in nl li in ne e S Sl li ic ce e_ _i it te er r<d do ou ub bl le e> M Ma at tr ri ix x: : r ro ow w(s si iz ze e_ _t t i i)
{

r re et tu ur rn n S Sl li ic ce e_ _i it te er r<d do ou ub bl le e>(v v, s sl li ic ce e(i i, d d1 1, d d2 2)) ;
}

i in nl li in ne e C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e> M Ma at tr ri ix x: : r ro ow w(s si iz ze e_ _t t i i) c co on ns st t
{

r re et tu ur rn n C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e>(v v, s sl li ic ce e(i i, d d1 1, d d2 2)) ;
}

i in nl li in ne e S Sl li ic ce e_ _i it te er r<d do ou ub bl le e> M Ma at tr ri ix x: : c co ol lu um mn n(s si iz ze e_ _t t i i)
{

r re et tu ur rn n S Sl li ic ce e_ _i it te er r<d do ou ub bl le e>(v v, s sl li ic ce e(i i* d d2 2, d d2 2, 1 1)) ;
}

i in nl li in ne e C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e> M Ma at tr ri ix x: : c co ol lu um mn n(s si iz ze e_ _t t i i) c co on ns st t
{

r re et tu ur rn n C Cs sl li ic ce e_ _i it te er r<d do ou ub bl le e>(v v, s sl li ic ce e(i i* d d2 2, d d2 2, 1 1)) ;
}

The definition ofC Cs sl li ic ce e_ _i it te er r is identical to that ofS Sl li ic ce e_ _i it te er r, except that it returnsc co on ns st t references
to elements of its slice.

The rest of the member operations are fairly trivial:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

674 Numerics Chapter 22

M Ma at tr ri ix x: : M Ma at tr ri ix x(s si iz ze e_ _t t x x, s si iz ze e_ _t t y y)
{

/ / check that x and y are sensible
d d1 1 = x x;
d d2 2 = y y;
v v = n ne ew w v va al la ar rr ra ay y<d do ou ub bl le e>(x x* y y) ;

}

d do ou ub bl le e& M Ma at tr ri ix x: : o op pe er ra at to or r()(s si iz ze e_ _t t x x, s si iz ze e_ _t t y y)
{

r re et tu ur rn n r ro ow w(x x)[y y] ;
}

d do ou ub bl le e m mu ul l(c co on ns st t v va al la ar rr ra ay y<d do ou ub bl le e>& v v1 1, c co on ns st t v va al la ar rr ra ay y<d do ou ub bl le e>& v v2 2)
{

d do ou ub bl le e r re es s = 0 0;
f fo or r (i in nt t i i = 0 0; i i<v v1 1. s si iz ze e() ; i i++) r re es s+= v v1 1[i i]* v v2 2[i i] ;
r re et tu ur rn n r re es s;

}

v va al la ar rr ra ay y<d do ou ub bl le e> o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x& m m, c co on ns st t v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

v va al la ar rr ra ay y<d do ou ub bl le e> r re es s(m m. d di im m1 1()) ;
f fo or r (i in nt t i i = 0 0; i i<m m. d di im m1 1() ; i i++) r re es s(i i) = m mu ul l(m m. r ro ow w(i i) , v v) ;
r re et tu ur rn n r re es s;

}

M Ma at tr ri ix x& M Ma at tr ri ix x: : o op pe er ra at to or r*=(d do ou ub bl le e d d)
{

(* v v) *= d d;
r re et tu ur rn n * t th hi is s;

}

I provided(i i, j j) to expressM Ma at tr ri ix x subscripting because() is a single operator and because that
notation is the most familiar to many in the numeric community. The concept of a row provides
the more familiar (in the C and C++ communities)[i i][j j] notation:

v vo oi id d f f(M Ma at tr ri ix x& m m)
{

m m(1 1, 2 2) = 5 5; / / Fortran-style subscripts
m m. r ro ow w(1 1)(2 2) = 6 6;
m m. r ro ow w(1 1)[2 2] = 7 7;
m m[1 1](2 2) = 8 8; / / undesirable mixed style (but it works)
m m[1 1][2 2] = 9 9; / / C++-style subscripts

}

The use ofs sl li ic ce e_ _a ar rr ra ay ys s to express subscripting assumes a good optimizer.
Generalizing this to ann n-dimensional matrix of arbitrary elements and with a reasonable set of

operations is left as an exercise (§22.9[7]).
Maybe your first idea for a two-dimensional vector was something like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.6 Slice_array 675

c cl la as ss s M Ma at tr ri ix x {
v va al la ar rr ra ay y< v va al la ar rr ra ay y<d do ou ub bl le e> > v v;

p pu ub bl li ic c:
/ / ...

};

This would also work (§22.9[10]). However, it is not easy to match the efficiency and compatibil-
ity required by high-performance computations without dropping to the lower and more conven-
tional level represented byv va al la ar rr ra ay y pluss sl li ic ce es.

22.4.7 Temporaries, Copying, and Loops [num.matrix]

If you build a vector or a matrix class, you will soon find that three related problems have to be
faced to satisfy performance-conscious users:

[1] The number of temporaries must be minimized.
[2] Copying of matrices must be minimized.
[3] Multiple loops over the same data in composite operations must be minimized.

These issues are not directly addressed by the standard library. However, I can outline a technique
that can be used to produce highly optimized implementations.

ConsiderU U=M M* V V+W W, whereU U, V V, andW W are vectors andM M is a matrix. A naive implementa-
tion introduces temporary vectors forM M* V V and M M* V V+W W and copies the results ofM M* V V and
M M* V V+W W. A smart implementation calls a functionm mu ul l_ _a ad dd d_ _a an nd d_ _a as ss si ig gn n(& U U,& M M,& V V,& W W) that
introduces no temporaries, copies no vectors, and touches each element of the matrices the mini-
mum number of times.

This degree of optimization is rarely necessary for more than a few kinds of expressions, so a
simple solution to efficiency problems is to provide functions such asm mu ul l_ _a ad dd d_ _a an nd d_ _a as ss si ig gn n() and
let the user call those where it matters. However, it is possible to design aM Ma at tr ri ix x so that such opti-
mizations are applied automatically for expressions of the right form. That is, we can treat
U U=M M* V V+W W as a use of a single operator with four operands. The basic technique was demon-
strated foro os st tr re ea am m manipulators (§21.4.6.3). In general, it can be used to make a combination ofn n
binary operators act like an(n n+1 1) -ary operator. HandlingU U=M M* V V+W W requires the introduction of
two auxiliary classes. However, the technique can result in impressive speedups (say, 30 times) on
some systems by enabling more-powerful optimization techniques.

First, we define the result of multiplying aM Ma at tr ri ix x by aV Ve ec ct to or r:

s st tr ru uc ct t M MV Vm mu ul l {
c co on ns st t M Ma at tr ri ix x& m m;
c co on ns st t V Ve ec ct to or r& v v;

M MV Vm mu ul l(c co on ns st t M Ma at tr ri ix x& m mm m, c co on ns st t V Ve ec ct to or r &v vv v) : m m(m mm m) , v v(v vv v) { }

o op pe er ra at to or r V Ve ec ct to or r() ; / / evaluate and return result
};

i in nl li in ne e M MV Vm mu ul l o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x& m mm m, c co on ns st t V Ve ec ct to or r& v vv v)
{

r re et tu ur rn n M MV Vm mu ul l(m mm m, v vv v) ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

676 Numerics Chapter 22

This ‘‘multiplication’’ does nothing except store references to its operands; the evaluation ofM M* V V
is deferred. The object produced by* is closely related to what is called ac cl lo os su ur re e in many techni-
cal communities. Similarly, we can deal with what happens if we add aV Ve ec ct to or r:

s st tr ru uc ct t M MV Vm mu ul lV Va ad dd d {
c co on ns st t M Ma at tr ri ix x& m m;
c co on ns st t V Ve ec ct to or r& v v;
c co on ns st t V Ve ec ct to or r& v v2 2;

M MV Vm mu ul lV Va ad dd d(c co on ns st t M MV Vm mu ul l& m mv v, c co on ns st t V Ve ec ct to or r& v vv v) : m m(m mv v. m m) , v v(m mv v. v v) , v v2 2(v vv v) { }

o op pe er ra at to or r V Ve ec ct to or r() ; / / evaluate and return result
};

i in nl li in ne e M MV Vm mu ul lV Va ad dd d o op pe er ra at to or r+(c co on ns st t M MV Vm mu ul l& m mv v, c co on ns st t V Ve ec ct to or r& v vv v)
{

r re et tu ur rn n M MV Vm mu ul lV Va ad dd d(m mv v, v vv v) ;
}

This defers the evaluation ofM M* V V+W W. We now have to ensure that it all gets evaluated using a
good algorithm when it is assigned to aV Ve ec ct to or r:

c cl la as ss s V Ve ec ct to or r {
/ / ...

p pu ub bl li ic c:
V Ve ec ct to or r(c co on ns st t M MV Vm mu ul lV Va ad dd d& m m) / / initialize by result of m
{

/ / allocate elements, etc.
m mu ul l_ _a ad dd d_ _a an nd d_ _a as ss si ig gn n(t th hi is s,& m m. m m,& m m. v v,& m m. v v2 2) ;

}

V Ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t M MV Vm mu ul lV Va ad dd d& m m) / / assign the result of m to *this
{

m mu ul l_ _a ad dd d_ _a an nd d_ _a as ss si ig gn n(t th hi is s,& m m. m m,& m m. v v,& m m. v v2 2) ;
r re et tu ur rn n * t th hi is s;

}
/ / ...

};

Now U U=M M* V V+W W is automatically expanded to

U U. o op pe er ra at to or r=(M MV Vm mu ul lV Va ad dd d(M MV Vm mu ul l(M M, V V) , W W))

which because of inlining resolves to the desired simple call

m mu ul l_ _a ad dd d_ _a an nd d_ _a as ss si ig gn n(& U U,& M M,& V V,& W W)

Clearly, this eliminates the copying and the temporaries. In addition, we might write
m mu ul l_ _a ad dd d_ _a an nd d_ _a as ss si ig gn n() in an optimized fashion. However, if we just wrote it in a fairly simple
and unoptimized fashion, it would still be in a form that offered great opportunities to an optimizer.

I introduced a newV Ve ec ct to or r (rather than using av va al la ar rr ra ay y) because I needed to define assignment
(and assignment must be a member function; §11.2.2). However,v va al la ar rr ra ay y is a strong candidate for
the representation of thatV Ve ec ct to or r.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.7 Temporaries, Copying, and Loops 677

The importance of this technique is that most really time-critical vector and matrix computa-
tions are done using a few relatively simple syntactic forms. Typically, there is no real gain in opti-
mizing expressions of half-a-dozen operators this way; more conventional techniques (§11.6) suf-
fice.

This technique is based on the idea of using compile-time analysis and closure objects to trans-
fer evaluation of subexpression into an object representing a composite operation. It can be applied
to a variety of problems with the common attribute that several pieces of information need to be
gathered into one function before evaluation can take place. I refer to the objects generated to defer
evaluation ascomposition closure objects, or simplycompositors.

22.4.8 Generalized Slices [num.gslice]

The M Ma at tr ri ix x example in §22.4.6 showed how twos sl li ic ce es could be used to describe rows and
columns of a two-dimensional array. In general, as sl li ic ce e can describe any row or column of ann n-
dimensional array (§22.9[7]). However, sometimes we need to extract a subarray that is not a row
or a column. For example, we might want to extract the 2-by-3 matrix from the top-left corner of a
3-by-4 matrix:

00 01 02

10 11 12

20 21 22

30 31 32

Unfortunately, these elements are not allocated in a way that can be described by a single slice:

00 10 20 30 01 11 21 31 02 12 22 32

0 1 2

4 5 6

A g gs sl li ic ce e is a ‘‘generalized slice’’ that contains (almost) the information fromn n slices:

c cl la as ss s s st td d: : g gs sl li ic ce e {
/ / instead of 1 stride and one size like slice, gslice holds n strides and n sizes

p pu ub bl li ic c:
g gs sl li ic ce e() ;
g gs sl li ic ce e(s si iz ze e_ _t t s s, c co on ns st t v va al la ar rr ra ay y<s si iz ze e_ _t t>& l l, c co on ns st t v va al la ar rr ra ay y<s si iz ze e_ _t t>& d d) ;

s si iz ze e_ _t t s st ta ar rt t() c co on ns st t; / / index of first element
v va al la ar rr ra ay y<s si iz ze e_ _t t> s si iz ze e() c co on ns st t; / / number of elements in dimension
v va al la ar rr ra ay y<s si iz ze e_ _t t> s st tr ri id de e() c co on ns st t; / / stride for index[0], index[1], ...

};

The extra values allow ag gs sl li ic ce e to specify a mapping betweenn n integers and an index to be used to
address elements of an array. For example, we can describe the layout of the 2-by-3 matrix by a
pair of (length,stride) pairs. As shown in §22.4.5, a length of2 2 and a stride of4 4 describes two

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

678 Numerics Chapter 22

elements of a row of the 3-by-4 matrix, when Fortran layout is used. Similarly, a length of3 3 and a
stride of1 1 describes 3 elements of a column. Together, they describe every element of the 2-by-3
submatrix. To list the elements, we can write:

s si iz ze e_ _t t g gs sl li ic ce e_ _i in nd de ex x(c co on ns st t g gs sl li ic ce e& s s, s si iz ze e_ _t t i i, s si iz ze e_ _t t j j)
{

r re et tu ur rn n s s. s st ta ar rt t()+ i i* s s. s st tr ri id de e()[0 0]+ j j* s s. s st tr ri id de e()[1 1] ;
}

s si iz ze e_ _t t l le en n[] = { 2 2, 3 3 }; / / (len[0],str[0]) describes a row
s si iz ze e_ _t t s st tr r[] = { 4 4, 1 1 }; / / (len[1],str[1]) describes a column

v va al la ar rr ra ay y<s si iz ze e_ _t t> l le en ng gt th hs s(l le en n, 2 2) ;
v va al la ar rr ra ay y<s si iz ze e_ _t t> s st tr ri id de es s(s st tr r, 2 2) ;

v vo oi id d f f()
{

g gs sl li ic ce e s s(0 0, l le en ng gt th hs s, s st tr ri id de es s) ;

f fo or r (i in nt t i i = 0 0 ; i i<s s. s si iz ze e()[0 0] ; i i++) c co ou ut t << g gs sl li ic ce e_ _i in nd de ex x(s s, i i, 0 0) << " ";/ / row
c co ou ut t << ", ";
f fo or r (i in nt t j j = 0 0 ; j j<s s. s si iz ze e()[1 1] ; j j++) c co ou ut t << g gs sl li ic ce e_ _i in nd de ex x(s s, 0 0, j j) << " ";/ / column

}

This prints0 0 4 4 , 0 0 1 1 2 2.
In this way, ag gs sl li ic ce e with two (length,stride) pairs describes a subarray of a 2-dimensional

array, ag gs sl li ic ce e with three (length,stride) pairs describes a subarray of a 3-dimensional array, etc.
Using a g gs sl li ic ce e as the index of av va al la ar rr ra ay y yields a g gs sl li ic ce e_ _a ar rr ra ay y consisting of the elements
described by theg gs sl li ic ce e. For example:

v vo oi id d f f(v va al la ar rr ra ay y<f fl lo oa at t>& v v)
{

g gs sl li ic ce e m m(0 0, l le en ng gt th hs s, s st tr ri id de es s) ;
v v[m m] = 0 0; / / assign 0 to v[0],v[1],v[2],v[4],v[5],v[6]

}

The g gs sl li ic ce e_ _a ar rr ra ay y offers the same set of members ass sl li ic ce e_ _a ar rr ra ay y. In particular, ag gs sl li ic ce e_ _a ar rr ra ay y
cannot be constructed directly by the user and cannot be copied (§22.4.6). Instead, ag gs sl li ic ce e_ _a ar rr ra ay y
is the result of using ag gs sl li ic ce eas the subscript of av va al la ar rr ra ay y (§22.4.2).

22.4.9 Masks [num.mask]

A m ma as sk k_ _a ar rr ra ay y provides yet another way of specifying a subset of av va al la ar rr ra ay y and making the result
look like av va al la ar rr ra ay y. In the context ofv va al la ar rr ra ay ys, a mask is simply av va al la ar rr ra ay y<b bo oo ol l>. When a
mask is used as a subscript for av va al la ar rr ra ay y, a t tr ru ue e bit indicates that the corresponding element of the
v va al la ar rr ra ay y is considered part of the result. This allows us to operate on a subset of av va al la ar rr ra ay y even if
there is no simple pattern (such as as sl li ic ce e) that describes that subset. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.9 Masks 679

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

b bo oo ol l b b[] = { t tr ru ue e , f fa al ls se e, f fa al ls se e, t tr ru ue e, f fa al ls se e, t tr ru ue e };
v va al la ar rr ra ay y<b bo oo ol l> m ma as sk k(b b, 6 6) ; / / elements 0, 3, and 5

v va al la ar rr ra ay y<d do ou ub bl le e> v vv v = c co os s(v v[m ma as sk k]) ; / / vv[0]==cos(v[0]), vv[1]==cos(v[3]),
/ / vv[2]==cos(v[5])

}

Them ma as sk k_ _a ar rr ra ay y offers the same set of members ass sl li ic ce e_ _a ar rr ra ay y. In particular, am ma as sk k_ _a ar rr ra ay y can-
not be constructed directly by the user and cannot be copied (§22.4.6). Instead, am ma as sk k_ _a ar rr ra ay y is
the result of using av va al la ar rr ra ay y<b bo oo ol l> as the subscript of av va al la ar rr ra ay y (§22.4.2). The number of ele-
ments of av va al la ar rr ra ay y used as a mask must not be greater than the number of elements of the
v va al la ar rr ra ay y for which it is used as a subscript.

22.4.10 Indirect Arrays [num.indirect]

An i in nd di ir re ec ct t_ _a ar rr ra ay y provides a way of arbitrarily subsetting and reordering av va al la ar rr ra ay y. For exam-
ple:

v vo oi id d f f(v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

s si iz ze e_ _t t i i[] = { 3 3, 2 2, 1 1, 0 0 }; / / first four elements in reverse order
v va al la ar rr ra ay y<s si iz ze e_ _t t> i in nd de ex x(i i, 4 4) ; / / elements 3, 2, 1, 0 (in that order)

v va al la ar rr ra ay y<d do ou ub bl le e> v vv v = l lo og g(v v[i in nd de ex x]) ; / / vv[0]==log(v[3]), vv[1]==log(v[2]),
/ / vv[2]==log(v[1]), vv[3]==log(v[0])

}

If an index is specified twice, we have referred to an element of av va al la ar rr ra ay y twice in the same opera-
tion. That’s exactly the kind of aliasing thatv va al la ar rr ra ay ys do not allow, so the behavior of an
i in nd di ir re ec ct t_ _a ar rr ra ay y is undefined if an index is repeated.

The i in nd di ir re ec ct t_ _a ar rr ra ay y offers the same set of members ass sl li ic ce e_ _a ar rr ra ay y. In particular, a an
i in nd di ir re ec ct t_ _a ar rr ra ay y cannot be constructed directly by the user and cannot be copied (§22.4.6). Instead,
an i in nd di ir re ec ct t_ _a ar rr ra ay y is the result of using av va al la ar rr ra ay y<s si iz ze e_ _t t> as the subscript of av va al la ar rr ra ay y
(§22.4.2). The number of elements of av va al la ar rr ra ay y used as a subscript must not be greater than the
number of elements of thev va al la ar rr ra ay y for which it is used as a subscript.

22.5 Complex Arithmetic[num.complex]

The standard library provides ac co om mp pl le ex x template along the lines of thec co om mp pl le ex x class described in
§11.3. The libraryc co om mp pl le ex x needs to be a template to serve the need for complex numbers based on
different scalar types. In particular, specializations are provided forc co om mp pl le ex x using f fl lo oa at t, d do ou ub bl le e,
andl lo on ng g d do ou ub bl le eas its scalar type.

Thec co om mp pl le ex x template is defined in namespaces st td d and presented in<c co om mp pl le ex x>:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

680 Numerics Chapter 22

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s s st td d: : c co om mp pl le ex x {
T T r re e, i im m;

p pu ub bl li ic c:
t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;

c co om mp pl le ex x(c co on ns st t T T& r r = T T() , c co on ns st t T T& i i = T T()) : r re e(r r) , i im m(i i) { }
t te em mp pl la at te e<c cl la as ss s X X> c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<X X>& a a) : r re e(a a. r re e) , i im m(a a. i im m) { }

T T r re ea al l() c co on ns st t { r re et tu ur rn n r re e; }
T T i im ma ag g() c co on ns st t { r re et tu ur rn n i im m; }

c co om mp pl le ex x<T T>& o op pe er ra at to or r=(c co on ns st t T T& z z) ; / / assign complex(z,0)
t te em mp pl la at te e<c cl la as ss s X X> c co om mp pl le ex x<T T>& o op pe er ra at to or r=(c co on ns st t c co om mp pl le ex x<X X>&) ;
/ / similarly: +=, – =, *=, /=

};

The representation and the inline functions are here for illustration. One could– barely– imagine
a standard libraryc co om mp pl le ex x that used a different representation. Note the use of member templates
to ensure initialization and assignment of anyc co om mp pl le ex x type with any other (§13.6.2).

Throughout this book, I have usedc co om mp pl le ex x as a class rather than as a template. This is feasible
because I assumed a bit of namespace magic to get thec co om mp pl le ex x of d do ou ub bl le e that I usually prefer:

t ty yp pe ed de ef f s st td d: : c co om mp pl le ex x<d do ou ub bl le e> c co om mp pl le ex x;

The usual unary and binary operators are defined:

t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> o op pe er ra at to or r+(c co on ns st t c co om mp pl le ex x<T T>&, c co on ns st t c co om mp pl le ex x<T T>&) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> o op pe er ra at to or r+(c co on ns st t c co om mp pl le ex x<T T>&, c co on ns st t T T&) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> o op pe er ra at to or r+(c co on ns st t T T&, c co on ns st t c co om mp pl le ex x<T T>&) ;

/ / similarly: – , *, /, ==, and !=

t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> o op pe er ra at to or r+(c co on ns st t c co om mp pl le ex x<T T>&) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> o op pe er ra at to or r-(c co on ns st t c co om mp pl le ex x<T T>&) ;

The coordinate functions are provided:

t te em mp pl la at te e<c cl la as ss s T T> T T r re ea al l(c co on ns st t c co om mp pl le ex x<T T>&) ;
t te em mp pl la at te e<c cl la as ss s T T> T T i im ma ag g(c co on ns st t c co om mp pl le ex x<T T>&) ;

t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> c co on nj j(c co on ns st t c co om mp pl le ex x<T T>&) ;

/ / construct from polar coordinates (abs(),arg()):
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> p po ol la ar r(c co on ns st t T T& r rh ho o, c co on ns st t T T& t th he et ta a) ;

t te em mp pl la at te e<c cl la as ss s T T> T T a ab bs s(c co on ns st t c co om mp pl le ex x<T T>&) ; / / sometimes called rho
t te em mp pl la at te e<c cl la as ss s T T> T T a ar rg g(c co on ns st t c co om mp pl le ex x<T T>&) ; / / sometimes called theta

t te em mp pl la at te e<c cl la as ss s T T> T T n no or rm m(c co on ns st t c co om mp pl le ex x<T T>&) ; / / square of abs()

The usual set of mathematical functions is provided:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.5 Complex Arithmetic 681

t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> s si in n(c co on ns st t c co om mp pl le ex x<T T>&) ;
/ / similarly: sinh, sqrt, tan, tanh, cos, cosh, exp, log, and log10

t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> p po ow w(c co on ns st t c co om mp pl le ex x<T T>&, i in nt t) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> p po ow w(c co on ns st t c co om mp pl le ex x<T T>&, c co on ns st t T T&) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> p po ow w(c co on ns st t c co om mp pl le ex x<T T>&, c co on ns st t c co om mp pl le ex x<T T>&) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> p po ow w(c co on ns st t T T&, c co on ns st t c co om mp pl le ex x<T T>&) ;

Finally, stream I/O is provided:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r>>(b ba as si ic c_ _i is st tr re ea am m<C Ch h, T Tr r>&, c co om mp pl le ex x<T T>&) ;
t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h, T Tr r>&, c co on ns st t c co om mp pl le ex x<T T>&) ;

A complex is written out in the format(x x, y y) and can be read in the formatsx x, (x x) , and(x x, y y)
(§21.2.3, §21.3.5). The specializationsc co om mp pl le ex x<f fl lo oa at t>, c co om mp pl le ex x<d do ou ub bl le e>, and c co om mp pl le ex x<l lo on ng g
d do ou ub bl le e> are provided to restrict conversions (§13.6.2) and to provide opportunities for optimized
implementations. For example:

c cl la as ss s c co om mp pl le ex x<d do ou ub bl le e> {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
t ty yp pe ed de ef f d do ou ub bl le e v va al lu ue e_ _t ty yp pe e;

c co om mp pl le ex x(d do ou ub bl le e r r = 0 0. 0 0, d do ou ub bl le e i i = 0 0. 0 0) : r re e(r r) , i im m(i i) { }
c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<f fl lo oa at t>& a a) : r re e(a a. r re ea al l()) , i im m(a a. i im ma ag g()) { }
e ex xp pl li ic ci it t c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<l lo on ng g d do ou ub bl le e>& a a) : r re e(a a. r re ea al l()) , i im m(a a. i im ma ag g()) { }

/ / ...
};

Now ac co om mp pl le ex x<f fl lo oa at t> can be quietly converted to ac co om mp pl le ex x<d do ou ub bl le e>, while ac co om mp pl le ex x< l lo on ng g
d do ou ub bl le e> can’t. Similar specializations ensures that ac co om mp pl le ex x<f fl lo oa at t> and ac co om mp pl le ex x<d do ou ub bl le e> can
be quietly converted to ac co om mp pl le ex x< l lo on ng g d do ou ub bl le e> but that ac co om mp pl le ex x< l lo on ng g d do ou ub bl le e> cannot be
implicitly converted to ac co om mp pl le ex x<d do ou ub bl le e> or to ac co om mp pl le ex x<f fl lo oa at t> and ac co om mp pl le ex x<d do ou ub bl le e> can-
not be implicitly converted to ac co om mp pl le ex x<f fl lo oa at t>. For example:

v vo oi id d f f(c co om mp pl le ex x<f fl lo oa at t> c cf f, c co om mp pl le ex x<d do ou ub bl le e> c cd d, c co om mp pl le ex x<l lo on ng g d do ou ub bl le e> c cl ld d)
{

c co om mp pl le ex x<d do ou ub bl le e> c c = c cf f; / / fine
c c = c cd d; / / fine
c c = c cl ld d; / / error: possible truncation
c c = c co om mp pl le ex x<d do ou ub bl le e>(c cl ld d) ; / / ok: you asked for truncation

c cf f = c cl ld d; / / error: possible truncation
c cf f = c cd d; / / error: possible truncation
c cf f = c co om mp pl le ex x<f fl lo oa at t>(c cl ld d) ; / / ok: you asked for truncation
c cf f = c co om mp pl le ex x<f fl lo oa at t>(c cd d) ; / / ok: you asked for truncation

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

682 Numerics Chapter 22

22.6 Generalized Numeric Algorithms[num.general]

In <n nu um me er ri ic c>, the standard library provides a few generalized numeric algorithms in the style of
the non-numeric algorithms from<a al lg go or ri it th hm m> (Chapter 18) :

_ __
Generalized Numeric Algorithms<numeric>_ ___ __

a ac cc cu um mu ul la at te e(()) Accumulate results of operation on a sequence
i in nn ne er r_ _p pr ro od du uc ct t(()) Accumulate results of operation on two sequences
p pa ar rt ti ia al l_ _s su um m(()) Generate sequence by operation on a sequence
a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e(()) Generate sequence by operation on a sequence_ __ 














These algorithms generalize common operations such as computing a sum by letting them apply to
all kinds of sequences and by making the operation applied to elements on those sequences a
parameter. For each algorithm, the general version is supplemented by a version applying the most
common operator for that algorithm.

22.6.1 Accumulate [num.accumulate]

Thea ac cc cu um mu ul la at te e() algorithm can be understood as the generalization of a sum of the elements of a
vector. Thea ac cc cu um mu ul la at te e() algorithm is defined in namespaces st td d and presented in<n nu um me er ri ic c>:

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s T T> T T a ac cc cu um mu ul la at te e(I In n f fi ir rs st t, I In n l la as st t, T T i in ni it t)
{

w wh hi il le e (f fi ir rs st t != l la as st t) i in ni it t = i in ni it t + * f fi ir rs st t++; / / plus
r re et tu ur rn n i in ni it t;

}

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s T T, c cl la as ss s B Bi in nO Op p> T T a ac cc cu um mu ul la at te e(I In n f fi ir rs st t, I In n l la as st t, T T i in ni it t, B Bi in nO Op p o op p)
{

w wh hi il le e (f fi ir rs st t != l la as st t) i in ni it t = o op p(i in ni it t,* f fi ir rs st t++) ; / / general operation
r re et tu ur rn n i in ni it t;

}

The simple version ofa ac cc cu um mu ul la at te e() adds elements of a sequence using their+ operator. For
example:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& p pr ri ic ce e, l li is st t<f fl lo oa at t>& i in nc cr r)
{

i in nt t i i = a ac cc cu um mu ul la at te e(p pr ri ic ce e. b be eg gi in n() , p pr ri ic ce e. e en nd d() , 0 0) ; / / accumulate in int
d do ou ub bl le e d d = 0 0;
d d = a ac cc cu um mu ul la at te e(i in nc cr r. b be eg gi in n() , i in nc cr r. e en nd d() , d d) ; / / accumulate in double
/ / ...

}

Note how the type of the initial value passed determines the return type.
Not all items that we want to add are available as elements of a sequence. Where they are not,

we can often supply an operation fora ac cc cu um mu ul la at te e() to call in order to produce the items to be
added. The most obvious kind of operation to pass is one that extracts a value from a data struc-
ture. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.6.1 Accumulate 683

s st tr ru uc ct t R Re ec co or rd d {
/ / ...
i in nt t u un ni it t_ _p pr ri ic ce e;
i in nt t n nu um mb be er r_ _o of f_ _u un ni it ts s;

};

l lo on ng g p pr ri ic ce e(l lo on ng g v va al l, c co on ns st t R Re ec co or rd d& r r)
{

r re et tu ur rn n v va al l + r r. u un ni it t_ _p pr ri ic ce e * r r. n nu um mb be er r_ _o of f_ _u un ni it ts s;
}

v vo oi id d f f(c co on ns st t v ve ec ct to or r<R Re ec co or rd d>& v v)
{

c co ou ut t << " T To ot ta al l v va al lu ue e: " << a ac cc cu um mu ul la at te e(v v. b be eg gi in n() , v v. e en nd d() , 0 0, p pr ri ic ce e) << ´ \ \n n´;
}

Operations similar toa ac cc cu um mu ul la at te eare calledr re ed du uc ce eandr re ed du uc ct ti io on n in some communities.

22.6.2 Inner_product [num.inner]

Accumulating from a sequence is very common, while accumulating from a pair of sequences is
not uncommon. Thei in nn ne er r_ _p pr ro od du uc ct t() algorithm is defined in namespaces st td d and presented in
<n nu um me er ri ic c>:

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s T T>
T T i in nn ne er r_ _p pr ro od du uc ct t(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, T T i in ni it t)
{

w wh hi il le e (f fi ir rs st t != l la as st t) i in ni it t = i in ni it t + * f fi ir rs st t++ * * f fi ir rs st t2 2++;
r re et tu ur rn n i in ni it t;

}

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s I In n2 2, c cl la as ss s T T, c cl la as ss s B Bi in nO Op p, c cl la as ss s B Bi in nO Op p2 2>
T T i in nn ne er r_ _p pr ro od du uc ct t(I In n f fi ir rs st t, I In n l la as st t, I In n2 2 f fi ir rs st t2 2, T T i in ni it t, B Bi in nO Op p o op p, B Bi in nO Op p2 2 o op p2 2)
{

w wh hi il le e (f fi ir rs st t != l la as st t) i in ni it t = o op p(i in ni it t, o op p2 2(* f fi ir rs st t++,* f fi ir rs st t2 2++)) ;
r re et tu ur rn n i in ni it t;

}

As usual, only the beginning of the second input sequence is passed as an argument. The second
input sequence is assumed to be at least as long as the first.

The key operation in multiplying aM Ma at tr ri ix x by av va al la ar rr ra ay y is ani in nn ne er r_ _p pr ro od du uc ct t:

v va al la ar rr ra ay y<d do ou ub bl le e> o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x& m m, c co on ns st t v va al la ar rr ra ay y<d do ou ub bl le e>& v v)
{

v va al la ar rr ra ay y<d do ou ub bl le e> r re es s(m m. d di im m1 1()) ;

f fo or r (i in nt t i i=0 0; i i<m m. d di im m1 1() ; i i++) {
S Sl li ic ce e_ _i it te er r<d do ou ub bl le e>& r ri i = m m. r ro ow w(i i) ;
r re es s(i i) = i in nn ne er r_ _p pr ro od du uc ct t(r ri i. b be eg gi in n() , r ri i. e en nd d() ,& v v[0 0] , 0 0) ;

}
r re et tu ur rn n r re es s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

684 Numerics Chapter 22

v va al la ar rr ra ay y<d do ou ub bl le e> o op pe er ra at to or r*(c co on ns st t v va al la ar rr ra ay y<d do ou ub bl le e>& v v, c co on ns st t M Ma at tr ri ix x& m m)
{

v va al la ar rr ra ay y<d do ou ub bl le e> r re es s(m m. d di im m2 2()) ;

f fo or r (i in nt t j j=0 0; j j<m m. d di im m2 2() ; j j++) {
S Sl li ic ce e_ _i it te er r<d do ou ub bl le e>& c cj j = m m. c co ol lu um mn n(j j) ;
r re es s(j j) = i in nn ne er r_ _p pr ro od du uc ct t(& v v[0 0] ,& v v[v v. s si iz ze e()] , c cj j. b be eg gi in n() , 0 0) ;

}
r re et tu ur rn n r re es s;

}

Some forms ofi in nn ne er r_ _p pr ro od du uc ct t are often referred to as ‘‘dot product.’’

22.6.3 Incremental Change [num.incremental]

The p pa ar rt ti ia al l_ _s su um m() and a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e() algorithms are inverses of each other and deal
with the notion of incremental change. They are defined in namespaces st td d and presented in
<n nu um me er ri ic c>:

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s O Ou ut t> O Ou ut t a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s) ;

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s B Bi in nO Op p>
O Ou ut t a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, B Bi in nO Op p o op p) ;

Given a sequencea a, b b, c c, d d, etc.,a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e() producesa a, b b- a a, c c- b b, d d- c c, etc.
Consider a vector of temperature readings. We could transform it into a vector of temperature

changes like this:

v ve ec ct to or r<d do ou ub bl le e> t te em mp ps s;

v vo oi id d f f()
{

a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e(t te em mp ps s. b be eg gi in n() , t te em mp ps s. e en nd d() , t te em mp ps s. b be eg gi in n()) ;
}

For example,1 17 7, 1 19 9, 2 20 0, 2 20 0, 1 17 7 turns into1 17 7, 2 2, 1 1, 0 0, - 3 3.
Conversely,p pa ar rt ti ia al l_ _s su um m() allows us to compute the end result of a set of incremental

changes:

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s O Ou ut t, c cl la as ss s B Bi in nO Op p>
O Ou ut t p pa ar rt ti ia al l_ _s su um m(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s, B Bi in nO Op p o op p)
{

i if f (f fi ir rs st t==l la as st t) r re et tu ur rn n r re es s;
* r re es s = * f fi ir rs st t;
T T v va al l = * f fi ir rs st t;
w wh hi il le e (++ f fi ir rs st t != l la as st t) {

v va al l = o op p(v va al l,* f fi ir rs st t) ;
*++ r re es s = v va al l;

}
r re et tu ur rn n ++r re es s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.6.3 Incremental Change 685

t te em mp pl la at te e <c cl la as ss s I In n, c cl la as ss s O Ou ut t> O Ou ut t p pa ar rt ti ia al l_ _s su um m(I In n f fi ir rs st t, I In n l la as st t, O Ou ut t r re es s)
{

r re et tu ur rn n p pa ar rt ti ia al l_ _s su um m(f fi ir rs st t, l la as st t, r re es s, p pl lu us s) ; / / §18.4.3
}

Given a sequencea a, b b, c c, d d, etc. ,p pa ar rt ti ia al l_ _s su um m() producesa a, a a+b b, a a+b b+c c, a a+b b+c c+d d, etc. For
example:

v vo oi id d f f()
{

p pa ar rt ti ia al l_ _s su um m(t te em mp ps s. b be eg gi in n() , t te em mp ps s. e en nd d() , t te em mp ps s. b be eg gi in n()) ;
}

Note the wayp pa ar rt ti ia al l_ _s su um m() incrementsr re es s before assigning a new value through it. This allows
r re es s to be the same sequence as its input;a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e() behaves similarly. Thus,

p pa ar rt ti ia al l_ _s su um m(v v. b be eg gi in n() , v v. e en nd d() , v v. b be eg gi in n()) ;

turns the sequencea a, b b, c c, d d into a a, a a+b b, a a+b b+c c, a a+b b+c c+d d, and

a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e(v v. b be eg gi in n() , v v. e en nd d() , v v. b be eg gi in n()) ;

turns it back into the original. In particular,p pa ar rt ti ia al l_ _s su um m() turns1 17 7, 2 2, 1 1, 0 0, - 3 3 back into1 17 7, 1 19 9,
2 20 0, 2 20 0, 1 17 7.

For people who think of temperature differences as a boring detail of meteorology or science
lab experiments, I point out that analyzing changes in stock prices involves exactly the same two
operations.

22.7 Random Numbers[num.random]

Random numbers are essential to many simulations and games. In<c cs st td dl li ib b> and<s st td dl li ib b. h h>, the
standard library provides a simple basis for the generation of random numbers:

#d de ef fi in ne e R RA AN ND D_ _M MA AX X i im mp pl le em me en nt ta at ti io on n_ _d de ef fi in ne ed d /* large positive integer*/

i in nt t r ra an nd d() ; / / pseudo-random number between 0 and RAND_MAX
i in nt t s sr ra an nd d(i in nt t i i) ; / / seed random number generator by i

Producing a good random-number generator isn’t easy, and unfortunately not all systems deliver a
goodr ra an nd d() . In particular, the low-order bits of a random number are often suspect, sor ra an nd d()% n n
is not a good portable way of generating a random number between0 0 and n n- 1 1. Often,
(d do ou ub bl le e(r ra an nd d())/ R RA AN ND D_ _M MA AX X)* n n gives acceptable results.

A call of s sr ra an nd d() starts a new sequence of random numbers from theseedgiven as argument.
For debugging, it is often important that a sequence of random numbers from a given seed be
repeatable. However, we often want to start each real run with a new seed. In fact, to make games
unpredictable, it is often useful to pick a seed from the environment of a program. For such pro-
grams, some bits from a real-time clock often make a good seed.

If you must write your own random-number generator, be sure to test it carefully (§22.9[14]).
A random-number generator is often more useful if represented as a class. In that way,

random-number generators for different distributions are easily built:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

686 Numerics Chapter 22

c cl la as ss s R Ra an nd di in nt t { / / uniform distribution in the interval [0,max]
u un ns si ig gn ne ed d l lo on ng g r ra an nd dx x;

p pu ub bl li ic c:
R Ra an nd di in nt t(l lo on ng g s s = 0 0) { r ra an nd dx x=s s; }
v vo oi id d s se ee ed d(l lo on ng g s s) { r ra an nd dx x=s s; }

/ / magic numbers chosen to use 31 bits of a 32-bit long:

i in nt t a ab bs s(i in nt t x x) { r re et tu ur rn n x x&0 0x x7 7f ff ff ff ff ff ff f; }
s st ta at ti ic c d do ou ub bl le e m ma ax x() { r re et tu ur rn n 2 21 14 47 74 48 83 36 64 48 8. 0 0; } / / note: a double
i in nt t d dr ra aw w() { r re et tu ur rn n r ra an nd dx x = r ra an nd dx x* 1 11 10 03 35 51 15 52 24 45 5 + 1 12 23 34 45 5; }

d do ou ub bl le e f fd dr ra aw w(){ r re et tu ur rn n a ab bs s(d dr ra aw w())/ m ma ax x() ; }

i in nt t o op pe er ra at to or r()() { r re et tu ur rn n a ab bs s(d dr ra aw w()) ; }
};

c cl la as ss s U Ur ra an nd d : p pu ub bl li ic c R Ra an nd di in nt t { / / uniform distribution in the interval [0:n[
i in nt t n n;

p pu ub bl li ic c:
U Ur ra an nd d(i in nt t n nn n) { n n = n nn n; }

i in nt t o op pe er ra at to or r()() { i in nt t r r = n n* f fd dr ra aw w() ; r re et tu ur rn n (r r==n n) ? n n- 1 1 : r r; }
};

c cl la as ss s E Er ra an nd d : p pu ub bl li ic c R Ra an nd di in nt t { / / exponential distribution random number generator
i in nt t m me ea an n;

p pu ub bl li ic c:
E Er ra an nd d(i in nt t m m) { m me ea an n=m m; }
i in nt t o op pe er ra at to or r()() { r re et tu ur rn n - m me ea an n * l lo og g((m ma ax x()- d dr ra aw w())/ m ma ax x() + . 5 5) ; }

};

Here is a simple test:

i in nt t m ma ai in n()
{

U Ur ra an nd d d dr ra aw w(1 10 0) ;
m ma ap p<i in nt t, i in nt t> b bu uc ck ke et t;
f fo or r (i in nt t i i = 0 0; i i< 1 10 00 00 00 00 00 0; i i++) b bu uc ck ke et t[d dr ra aw w()]++;
f fo or r(i in nt t j j = 0 0; j j<1 10 0; j j++) c co ou ut t << b bu uc ck ke et t[j j] << ´ \ \n n´;

}

Unless each bucket has approximately the value 10,000, there is a bug somewhere.
These random-number generators are slightly edited versions of what I shipped with the very

first C++ library (actually, the first ‘‘C with Classes’’ library; §1.4).

22.8 Advice[num.advice]

[1] Numerical problems are often subtle. If you are not 100% certain about the mathematical
aspects of a numerical problem, either take expert advice or experiment; §22.1.

[2] Usen nu um me er ri ic c_ _l li im mi it ts s to determine properties of built-in types; §22.2.
[3] Specializen nu um me er ri ic c_ _l li im mi it ts s for user-defined scalar types; §22.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.8 Advice 687

[4] Usev va al la ar rr ra ay y for numeric computation when run-time efficiency is more important than flexi-
bility with respect to operations and element types; §22.4.

[5] Express operations on part of an array in terms of slices rather than loops; §22.4.6.
[6] Use compositors to gain efficiency through elimination of temporaries and better algorithms;

§22.4.7.
[7] Uses st td d: : c co om mp pl le ex x for complex arithmetic; §22.5.
[8] You can convert old code that uses ac co om mp pl le ex x class to use thes st td d: : c co om mp pl le ex x template by

using at ty yp pe ed de ef f; §22.5.
[9] Consider a ac cc cu um mu ul la at te e() , i in nn ne er r_ _p pr ro od du uc ct t() , p pa ar rt ti ia al l_ _s su um m() , and a ad dj ja ac ce en nt t_ _d di if ff fe er re en nc ce e()

before you write a loop to compute a value from a list; §22.6.
[10] Prefer a random-number class for a particular distribution over direct use ofr ra an nd d() ; §22.7.
[11] Be careful that your random numbers are sufficiently random; §22.7.

22.9 Exercises[num.exercises]

1. (∗1.5) Write a function that behaves likea ap pp pl ly y() from §22.4.3, except that it is a nonmember
function and accepts function objects.

2. (∗1.5) Write a function that behaves likea ap pp pl ly y() from §22.4.3 , except that it is a nonmember
function, accepts function objects, and modifies itsv va al la ar rr ra ay y argument.

3. (∗2) CompleteS Sl li ic ce e_ _i it te er r (§22.4.5). Take special care when defining the destructor.
4. (∗1.5) Rewrite the program from §17.4.1.3 usinga ac cc cu um mu ul la at te e() .
5. (∗2) Implement I/O operators<< and>> for v va al la ar rr ra ay y. Implement ag ge et t_ _a ar rr ra ay y() function that

creates av va al la ar rr ra ay y of a size specified as part of the input itself.
6. (∗2.5) Define and implement a three-dimensional matrix with suitable operations.
7. (∗2.5) Define and implement ann n- dimensional matrix with suitable operations.
8. (∗2.5) Implement av va al la ar rr ra ay y-like class and implement+ and* for it. Compare its performance

to the performance of your C++ implementation’sv va al la ar rr ra ay y. Hint: Include x x=0 0. 5 5(x x+y y)- z z
among your test cases and try it with a variety of sizes for the vectorsx x, y y, andz z.

9. (∗3) Implement a Fortran-style arrayF Fo or rt t_ _a ar rr ra ay y where indices start from1 1 rather than0 0.
10. (∗3) ImplementM Ma at tr ri ix x using av va al la ar rr ra ay y member as the representation of the elements (rather

than a pointer or a reference to av va al la ar rr ra ay y).
11. (∗2.5) Use compositors (§22.4.7) to implement efficient multidimensional subscripting using

the [] notation. For example,v v1 1[x x] , v v2 2[x x][y y] , v v2 2[x x] , v v3 3[x x][y y][z z] , v v3 3[x x][y y] , and
v v3 3[x x] should all yield the appropriate elements and subarrays using a simple calculation of an
index.

12. (∗2) Generalize the idea from the program in §22.7 into a function that, given a generator as an
argument, prints a simple graphical representation of its distribution that can be used as a crude
visual check of the generator’s correctness.

13. (∗1) If n n is ani in nt t, what is the distribution of(d do ou ub bl le e(r ra an nd d())/ R RA AN ND D_ _M MA AX X)* n n?
14. (∗2.5) Plot points in a square output area. The coordinate pairs for the points should be gener-

ated byU Ur ra an nd d(N N) , whereN N is the number of pixels on a side of the output area. What does
the output tell you about the distribution of numbers generated byU Ur ra an nd d?

15. (∗2) Implement a Normal distribution generator,N Nr ra an nd d.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

688 Numerics Chapter 22

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Part IV

Design Using C+ +

This part presents C++ and the techniques it supports in the larger picture of software
development. The focus is on design and the effective realization of design in terms of
language constructs.

Chapters

23 Development and Design
24 Design and Programming
25 Roles of Classes

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

690 Design Using C++ Part IV

‘‘... I am just now beginning to discover the difficulty of expressing one’s ideas on
paper. As long as it consists solely of description it is pretty easy; but where reasoning
comes into play, to make a proper connection, a clearness & a moderate fluency, is to
me, as I have said, a difficulty of which I had no idea ...’’

– Charles Darwin

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

23
_ __ _______________________________________

Development and Design

There is no silver bullet.
– F. Brooks

Building software— aims and means— development process— development cycle—
design aims— design steps— finding classes— specifying operations— specifying
dependencies— specifying interfaces— reorganizing class hierarchies— models—
experimentation and analysis— testing— software maintenance— efficiency— man-
agement— reuse— scale— the importance of individuals— hybrid design— bibliog-
raphy— advice.

23.1 Overview[design.overview]

This chapter is the first of three that present the production of software in increasing detail, starting
from a relatively high-level view of design and ending with C++ specific programming techniques
and concepts directly supporting such design. After the introduction and a brief discussion of the
aims and means of software development in §23.3, this chapter has two major parts:

§23.4 A view of the software development process
§23.5 Practical observations about the organization of software development

Chapter 24 discusses the relationship between design and programming language. Chapter 25 pre-
sents some roles that classes play in the organization of software from a design perspective. Taken
as a whole, the three chapters of Part 4 aim to bridge the gap between would-be language-
independent design and programming that is myopically focussed on details. Both ends of this
spectrum have their place in a large project, but to avoid disaster and excessive cost, they must be
part of a continuum of concerns and techniques.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

692 Development and Design Chapter 23

23.2 Introduction [design.intro]

Constructing any nontrivial piece of software is a complex and often daunting task. Even for an
individual programmer, the actual writing of program statements is only one part of the process.
Typically, issues of problem analysis, overall program design, documentation, testing, and mainte-
nance, as well as the management of all of this, dwarf the task of writing and debugging individual
pieces of code. Naturally, one might simply label the totality of these activities ‘‘programming’’
and thereafter make a logically coherent claim that ‘‘I don’t design, I just program;’’ but whatever
one calls the activity, it is important sometimes to focus on its individual parts– just as it is impor-
tant occasionally to consider the complete process. Neither the details nor the big picture must be
permanently lost in the rush to get a system shipped– although often enough that is exactly what
happens.

This chapter focusses on the parts of program development that do not involve writing and
debugging individual pieces of code. The discussion is less precise and less detailed than the dis-
cussions of individual language features and specific programming techniques presented elsewhere
in this book. This is necessary because there can be no cookbook method for creating good soft-
ware. Detailed ‘‘how to’’ descriptions can exist for specific well-understood kinds of applications,
but not for more general application areas. There is no substitute for intelligence, experience, and
taste in programming. In consequence, this chapter offers only general advice, alternative
approaches, and cautionary observations.

The discussion is hampered by the abstract nature of software and the fact that techniques that
work for smaller projects (say, for one or two people writing 10,000 lines of code) do not necessar-
ily scale to medium and large projects. For this reason, some discussions are formulated in terms
of analogies from less abstract engineering disciplines rather than in terms of code examples.
Please remember that ‘‘proof by analogy’’ is fraud, so analogy is used here for exposition only.
Discussions of design issues phrased in C++ specific terms and with examples can be found in
Chapter 24 and Chapter 25. The ideas expressed in this chapter are reflected in both the C++ lan-
guage itself and in the presentation of the individual examples throughout this book.

Please also remember that because of the extraordinary diversity of application areas, people,
and program-development environments, you cannot expect every observation made here to apply
directly to your current problem. The observations are drawn from real-life projects and apply to a
wide variety of situations, but they cannot be considered universal. Look at these observations with
a healthy degree of skepticism.

C++ can be used simply as a better C. However, doing so leaves the most powerful techniques
and language features unused so that only a small fraction of the potential benefits of using C++
will be gained. This chapter focusses on approaches to design that enable effective use of C++’s
data abstraction and object-oriented programming facilities; such techniques are often called
object-oriented design.

A few major themes run through this chapter:
– The most important single aspect of software development is to be clear about what you are

trying to build.
– Successful software development is a long-term activity.
– The systems we construct tend to be at the limit of the complexity that we and our tools can

handle.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.2 Introduction 693

– There are no ‘‘cookbook’’ methods that can replace intelligence, experience, and good taste
in design and programming.

– Experimentation is essential for all nontrivial software development.
– Design and programming are iterative activities.
– The different phases of a software project, such as design, programming, and testing, cannot

be strictly separated.
– Programming and design cannot be considered without also considering the management of

these activities.
It is easy– and typically expensive– to underestimate any of these points. It is hard to transform
the abstract ideas they embody into practice. The need for experience should be noted. Like boat
building, bicycling, and programming, design is not a skill that can be mastered through theoretical
study alone.

Too often, we forget the human aspects of system building and consider the software develop-
ment process as simply ‘‘a series of well-defined steps, each performing specific actions on inputs
according to predefined rules to produce the desired outputs.’’ The very language used conceals
the human involvement! Design and programming are human activities; forget that and all is lost.

This chapter is concerned with the design of systems that are ambitious relative to the experi-
ence and resources of the people building the system. It seems to be the nature of individuals and
organizations to attempt projects that are at the limits of their ability. Projects that don’t offer such
challenges don’t need a discussion of design. Such projects already have established frameworks
that need not be upset. Only when something ambitious is attempted is there a need to adopt new
and better tools and procedures. There is also a tendency to assign projects that ‘‘we know how to
do’’ to relative novices who don’t.

There is no ‘‘one right way’’ to design and build all systems. I would consider belief in ‘‘the
one right way’’ a childhood disease, if experienced programmers and designers didn’t succumb to it
so often. Please remember that just because a technique worked for you last year and for one pro-
ject, it does not follow that it will work unmodified for someone else or for a different project. It is
most important to keep an open mind.

Clearly, much of the discussion here relates to larger-scale software development. Readers who
are not involved in such development can sit back and enjoy a look at the horrors they have
escaped. Alternatively, they can look for the subset of the discussion that relates to individual
work. There is no lower limit to the size of programs for which it is sensible to design before start-
ing to code. There is, however, a lower limit for which any particular approach to design and docu-
mentation is appropriate. See §23.5.2 for a discussion of issues of scale.

The most fundamental problem in software development is complexity. There is only one basic
way of dealing with complexity: divide and conquer. A problem that can be separated into two
sub-problems that can be handled separately is more than half solved by that separation. This sim-
ple principle can be applied in an amazing variety of ways. In particular, the use of a module or a
class in the design of systems separates the program into two parts– the implementation and its
users– connected only by an (ideally) well-defined interface. This is the fundamental approach to
handling the inherent complexity of a program. Similarly, the process of designing a program can
be broken into distinct activities with (ideally) well-defined interactions between the people
involved. This is the basic approach to handling the inherent complexity of the development pro-
cess and the people involved in it.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

694 Development and Design Chapter 23

In both cases, the selection of the parts and the specification of the interfaces between the parts
is where the most experience and taste is required. Such selection is not a simple mechanical pro-
cess but typically requires insights that can be achieved only through a thorough understanding of a
system at suitable levels of abstraction (see §23.4.2, §24.3.1, and §25.3). A myopic view of a pro-
gram or of a software development process often leads to seriously flawed systems. Note also that
for both people and programs,separation is easy. The hard part is to ensure effective
communicationbetween parties on different sides of a barrier without destroying the barrier or sti-
fling the communication necessary to achieve cooperation.

This chapter presents an approach to design, not a complete design method. A complete formal
design method is beyond the scope of this book. The approach presented here can be used with dif-
ferent degrees of formalization and as the basis for different formalizations. Similarly, this chapter
is not a literature survey and does not attempt to touch every topic relevant to software develop-
ment or to present every viewpoint. Again, that is beyond the scope of this book. A literature sur-
vey can be found in [Booch,1994]. Note that terms are used here in fairly general and conventional
ways. Most ‘‘interesting’’ terms, such asdesign, prototype, andprogrammer, have several differ-
ent and often conflicting definitions in the literature. Please be careful not to read something unin-
tended into what is said here based on specialized or locally precise definitions of the terms.

23.3 Aims and Means[design.aims]

The purpose of professional programming is to deliver a product that satisfies its users. The pri-
mary means of doing so is to produce software with a clean internal structure and to grow a group
of designers and programmers skilled enough and motivated enough to respond quickly and effec-
tively to change and opportunities.

Why? The internal structure of the program and the process by which it was created are ideally
of no concern to the end user. Stronger: if the end user has to worry about how the program was
written, then there is something wrong with that program. Given that, what is the importance of the
structure of a program and of the people who create the program?

A program needs a clean internal structure to ease:
– testing,
– porting,
– maintenance,
– extension,
– reorganization, and
– understanding.

The main point is that every successful major piece of software has an extended life in which it is
worked on by a succession of programmers and designers, ported to new hardware, adapted to
unanticipated uses, and repeatedly reorganized. Throughout the software’s life, new versions of it
must be produced with acceptable error rates and on time. Not planning for this is planning to fail.

Note that even though end users ideally don’t have to know the internal structure of a system,
they might actually want to. For example, a user might want to know the design of a system in
detail to be able to assess its likely reliability and potential for revision and extension. If the soft-
ware in question is not a complete system– rather, a set of libraries for building other software–

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.3 Aims and Means 695

then the users will want to know more ‘‘details’’ to be able to better use the libraries and also to
better benefit from them as sources of ideas.

A balance has to be struck between the lack of an overall design for a piece of software and
overemphasis on structure. The former leads to endless cutting of corners (‘‘we’ll just ship this one
and fix the problem in the next release’’). The latter leads to overelaborate designs in which essen-
tials are lost in formalism and to situations where implementation gets delayed by program reorga-
nizations (‘‘but this new structure ismuchbetter than the old one; people will want to wait for it’’).
It also often results in systems so demanding of resources that they are unaffordable to most poten-
tial users. Such balancing acts are the most difficult aspects of design and the area in which talent
and experience show themselves. The choices are hard for the individual designer or programmer
and harder for the larger projects in which more people with differing skills are involved.

A program needs to be produced and maintained by an organization that can do this despite
changes of personnel, direction, and management structure. A popular approach to coping with this
problem has been to try to reduce system development into a few relatively low-level tasks slotted
into a rigid framework. That is, the idea is to create a class of easy-to-train (cheap) and inter-
changeable low-level programmers (‘‘coders’’) and a class of somewhat less cheap but equally
interchangeable (and therefore equally dispensable) designers. The coders are not supposed to
make design decisions, while the designers are not supposed to concern themselves with the grubby
details of coding. This approach often fails. Where it does work, it produces overly large systems
with poor performance.

The problems with this approach are:
– insufficient communication between implementers and designers, which leads to missed

opportunities, delays, inefficiencies, and repeated problems due to failure to learn from
experience; and

– insufficient scope for initiative among implementers, which leads to lack of professional
growth, lack of initiative, sloppiness, and high turnover.

Basically, such a system lacks feedback mechanisms to allow people to benefit from other people’s
experience. It is wasteful of scarce human talent. Creating a framework within which people can
utilize diverse talents, develop new skills, contribute ideas, and enjoy themselves is not just the
only decent thing to do but also makes practical and economic sense.

On the other hand, a system cannot be built, documented, and maintained indefinitely without
some form of formal structure. Simply finding the best people and letting them attack the problem
as they think best is often a good start for a project requiring innovation. However, as the project
progresses, more scheduling, specialization, and formalized communication between the people
involved in the project become necessary. By ‘‘formal’’ I don’t mean a mathematical or mechani-
cally verifiable notation (although that is nice, where available and applicable) but rather a set of
guidelines for notation, naming, documentation, testing, etc. Again, a balance and a sense of appro-
priateness is necessary. A too-rigid system can prevent growth and stifle innovation. In this case,
it is the manager’s talent and experience that is tested. For the individual, the equivalent dilemma
is to choose where to try to be clever and where to simply ‘‘do it by the book.’’

The recommendation is to plan not just for the next release of the current project but also for the
longer term. Looking only to the next release is planning to fail. We must develop organizations
and software development strategies aimed at producing and maintaining many releases of many
projects; that is, we must plan for a series of successes.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

696 Development and Design Chapter 23

The purpose of ‘‘design’’ is to create a clean and relatively simple internal structure, sometimes
also called anarchitecture, for a program. In other words, we want to create a framework into
which the individual pieces of code can fit and thereby guide the writing of those individual pieces
of code.

A design is the end product of the design process (as far as there is anendproduct of an itera-
tive process). It is the focus of the communication between the designer and the programmer and
between programmers. It is important to have a sense of proportion here. If I– as an individual
programmer– design a small program that I’m going to implement tomorrow, the appropriate level
of precision and detail may be some scribbles on the back of an envelope. At the other extreme, the
development of a system involving hundreds of designers and programmers may require books of
specifications carefully written using formal or semi-formal notations. Determining a suitable level
of detail, precision, and formality for a design is in itself a challenging technical and managerial
task.

In this and the following chapters, I assume that the design of a system is expressed as a set of
class declarations (typically with their private declarations omitted as spurious details) and their
relationships. This is a simplification. Many more issues enter into a specific design; for example,
concurrency, management of namespaces, uses of nonmember function and data, parameterization
of classes and functions, organization of code to minimize recompilation, persistence, and use of
multiple computers. However, simplification is necessary for a discussion at this level of detail,
and classes are the proper focus of design in the context of C++. Some of these other issues are
mentioned in passing in this chapter, and some that directly affect the design of C++ programs are
discussed in Chapter 24 and Chapter 25. For a more detailed discussion and examples of a specific
object-oriented design method, see [Booch,1994].

I leave the distinction between analysis and design vague because a discussion of this issue is
beyond the scope of this book and is sensitive to variations in specific design methods. It is essen-
tial to pick an analysis method to match the design method and to pick a design method to match
the programming style and language used.

23.4 The Development Process[design.process]

Software development is an iterative and incremental process. Each stage of the process is revis-
ited repeatedly during the development, and each visit refines the end products of that stage. In
general, the process has no beginning and no end. When designing and implementing a system,
you start from a base of other people’s designs, libraries, and application software. When you fin-
ish, you leave a body of design and code for others to refine, revise, extend, and port. Naturally, a
specific project can have a definite beginning and end, and it is important (though often surpris-
ingly hard) to delimit the project cleanly and precisely in time and scope. However, pretending that
you are starting from a clean slate can cause serious problems. Pretending that the world ends at
the ‘‘final delivery’’ can cause equally serious problems for your successors (often yourself in a
different role).

One implication of this is that the following sections could be read in any order because the
aspects of design and implementation can be almost arbitrarily interleaved in a real project. That is,
‘‘design’’ is almost always redesign based on a previous design and some implementation

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4 The Development Process 697

experience. Furthermore, the design is constrained by schedules, the skills of the people involved,
compatibility issues, etc. A major challenge to a designer/manager/programmer is to create order
in this process without stifling innovation and destroying the feedback loops that are necessary for
successful development.

The development process has three stages:
– Analysis: defining the scope of the problem to be solved
– Design: creating an overall structure for a system
– Implementation: writing and testing the code

Please remember the iterative nature of this process– it is significant that these stages are not num-
bered. Note that some major aspects of program development don’t appear as separate stages
because they ought to permeate the process:

– Experimentation
– Testing
– Analysis of the design and the implementation
– Documentation
– Management

Software ‘‘maintenance’’ is simply more iterations through this development process (§23.4.6).
It is most important that analysis, design, and implementation don’t become too detached from

each other and that the people involved share a culture so that they can communicate effectively. In
larger projects, this is all too often not the case. Ideally, individuals move from one stage to
another during a project; the best way to transfer subtle information is in a person’s head. Unfortu-
nately, organizations often establish barriers against such transfers, for example, by giving design-
ers higher status and/or higher pay than ‘‘mere programmers.’’ If it is not practical for people to
move around to learn and teach, they should at least be encouraged to talk regularly with individu-
als involved in ‘‘the other’’ stages of the development.

For small-to-medium projects, there often is no distinction made between analysis and design;
these two phases have been merged into one. Similarly, in small projects there often is no distinc-
tion made between design and programming. Naturally, this solves the communication problems.
It is important to apply an appropriate degree of formality for a given project and to maintain an
appropriate degree of separation between these phases (§23.5.2). There is no one right way to do
this.

The model of software development described here differs radically from the traditional
‘‘waterfall model.’’ In a waterfall model, the development progresses in an orderly and linear fash-
ion through the development stages from analysis to testing. The waterfall model suffers from the
fundamental problem that information tends to flow only one way. When problems are found
‘‘downstream,’’ there is often strong methodological and organizational pressure to provide a local
fix; that is, there is pressure to solve the problem without affecting the previous stages of the pro-
cess. This lack of feedback leads to deficient designs, and the local fixes lead to contorted imple-
mentations. In the inevitable cases in which information does flow back toward the source and
cause changes to the design, the result is a slow and cumbersome ripple effect through a system that
is geared to prevent the need for such change and therefore unwilling and slow to respond. The
argument for ‘‘no change’’ or for a ‘‘local fix’’ thus becomes an argument that one suborganization
cannot impose large amounts of work on other suborganizations ‘‘for its own convenience.’’ In
particular, by the time a major flaw is found there has often been so much paperwork generated

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

698 Development and Design Chapter 23

relating to the flawed decision that the effort involved in modifying the documentation dwarfs the
effort needed to fix the code. In this way, paperwork can become the major problem of software
development. Naturally, such problems can– and do– occur however one organizes the develop-
ment of large systems. After all,somepaperwork is essential. However, the pretense of a linear
model of development (a waterfall) greatly increases the likelihood that this problem will get out of
hand.

The problem with the waterfall model is insufficient feedback and the inability to respond to
change. The danger of the iterative approach outlined here is a temptation to substitute a series of
nonconverging changes for real thought and progress. Both problems are easier to diagnose than to
solve, and however one organizes a task, it is easy and tempting to mistake activity for progress.
Naturally, the emphasis on the different stages of the development process changes as a project pro-
gresses. Initially, the emphasis is on analysis and design, and programming issues receive less
attention. As time passes, resources shift towards design and programming and then become more
focussed on programming and testing. However, the key is never to focus on one part of the
analysis/design/implementation spectrum to the exclusion of all other concerns.

Remember that no amount of attention to detail, no application of proper management tech-
nique, no amount of advanced technology can help you if you don’t have a clear idea of what you
are trying to achieve. More projects fail for lack of well-defined and realistic goals than for any
other reason. Whatever you do and however you go about it, be clear about your aims, define tan-
gible goals and milestones, and don’t look for technological solutions to sociological problems. On
the other hand, do use whateverappropriatetechnology is available– even if it involves an invest-
ment; people do work better with appropriate tools and in reasonable surroundings. Don’t get
fooled into believing that following this advice is easy.

23.4.1 The Development Cycle [design.cycle]

Developing a system should be an iterative activity. The main loop consists of repeated trips
through this sequence:

[0] Examine the problem.
[1] Create an overall design.
[2] Find standard components.

– Customize the components for this design.
[3] Create new standard components.

– Customize the components for this design.
[4] Assemble the design.

As an analogy, consider a car factory. For a project to start, there needs to be an overall design for
a new type of car. This first cut will be based on some kind of analysis and specifies the car in gen-
eral terms related mostly to its intended use rather than to details of how to achieve desired proper-
ties. Deciding which properties are desirable– or even better, providing a relatively simple guide
to deciding which properties are desirable– is often the hardest part of a project. When done well,
this is typically the work of a single insightful individual and is often called avision. It is quite
common for projects to lack such clear goals– and for projects to falter or fail for that reason.

Say we want to build a medium-sized car with four doors and a fairly powerful engine. The
first stage in the design is most definitely not to start designing the car (and all of its sub-

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.1 The Development Cycle 699

components) from scratch. A software designer or programmer in a similar circumstance might
unwisely try exactly that.

The first stage is to consider which components are available from the factory’s own inventory
and from reliable suppliers. The components thus found need not be exactly right for the new car.
There will be ways of customizing the components. It might even be possible to affect the specifi-
cation of the ‘‘next release’’ of such components to make them more suitable for our project. For
example, there may be an engine available with the right properties except for a slight deficiency in
delivered power. Either we or the engine supplier might be able to add a turbocharger to compen-
sate without affecting the basic design. Note that making such a change ‘‘without affecting the
basic design’’ is unlikely unless the original design anticipated at least some form of customization.
Such customization will typically require cooperation between you and your engine supplier. A
software designer or programmer has similar options. In particular, polymorphic classes and tem-
plates can often be used effectively for customization. However, don’t expect to be able to effect
arbitrary extensions without foresight by or cooperation with the provider of such a class.

Having run out of suitable standard components, the car designer doesn’t rush to design optimal
new components for the new car. That would simply be too expensive. Assume that there were no
suitable air conditioning unit available and that there was a suitable L-shaped space available in the
engine compartment. One solution would be to design an L-shaped air conditioning unit. How-
ever, the probability that this oddity could be used in other car types– even after extensive cus-
tomization– is low. This implies that our car designer will not be able to share the cost of produc-
ing such units with the designers of other car types and that the useful life of the unit will be short.
It will thus be worthwhile to design a unit that has a wider appeal; that is, design a unit that has a
cleaner design and is more suited for customization than our hypothetical L-shaped oddity. This
will probably involve more work than the L-shaped unit and might even involve a modification of
the overall design of our car to accommodate the more general-purpose unit. Because the new unit
was designed to be more widely useful than our L-shaped wonder, it will presumably need a bit of
customization to fit our revised needs perfectly. Again, the software designer or programmer has a
similar option. That is, rather than writing project-specific code the designer can design a new
component of a generality that makes it a good candidate to become a standard in some universe.

Finally, when we have run out of potential standard components we assemble the ‘‘final’’
design. We use as few specially designed widgets as possible because next year we will have to go
through a variant of this exercise again for the next new model and the specially designed widgets
will be the ones we most likely will have to redo or throw away. Sadly, the experience with tradi-
tionally designed software is that few parts of a system can even be recognized as discrete compo-
nents, and few of those are of use outside their original project.

I’m not saying that all car designers are as rational as I have outlined in this analogy or that all
software designers make the mistakes mentioned. On the contrary, this model can be made to work
with software. In particular, this chapter and the next present techniques for making it work with
C++. I do claim, however, that the intangible nature of software makes those mistakes harder to
avoid (§24.3.1, §24.3.4), and in §23.5.3 I argue that corporate culture often discourages people
from using the model outlined here.

Note that this model of development really works well only when you consider the longer term.
If your horizon extends only to the next release, the creation and maintenance of standard compo-
nents makes no sense. It will simply be seen as spurious overhead. This model is suggested for an

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

700 Development and Design Chapter 23

organization with a life that spans several projects and of a size that makes worthwhile the neces-
sary extra investment in tools (for design, programming, and project management) and education
(of designers, programmers, and managers). It is a sketch of a kind of software factory. Curiously
enough, it differs only in scale from the practices of the best individual programmers, who over the
years build up a stock of techniques, designs, tools, and libraries to enhance their personal effec-
tiveness. It seems, in fact, that most organizations have failed to take advantage of the best per-
sonal practices due to both a lack of vision and an inability to manage such practices on more than a
very small scale.

Note that it is unreasonable to expect ‘‘standard components’’ to be universally standard. There
will exist a few international standard libraries. However, most components will be standard (only)
within a country, an industry, a company, a product line, a department, an application area, etc.
The world is simply too large for universal standards to be a realistic or indeed a to be desirable aim
for all components and tools.

Aiming for universality in an initial design is a prescription for a project that will never be com-
pleted. One reason that the development cycle is a cycle is that it is essential to have a working
system from which to gain experience (§23.4.3.6).

23.4.2 Design Aims [design.design]

What are the overall aims of a design? Simplicity is one, of course, but simplicity according to
what criteria? We assume that a design will have to evolve. That is, the system will have to be
extended, ported, tuned, and generally changed in a number of ways that cannot all be foreseen.
Consequently, we must aim for a design and an implemented system that is simple under the con-
straint that it will be changed in many ways. In fact, it is realistic to assume that the requirements
for the system will change several times between the time of the initial design and the first release
of the system.

The implication is that the system must be designed toremain as simple as possible under a
sequence of changes. We must design for change; that is, we must aim for

– flexibility,
– extensibility, and
– portability.

This is best done by trying to encapsulate the areas of a system that are likely to change and by pro-
viding non-intrusive ways for a later designer/programmer to modify the behavior of the code.
This is done by identifying the key concepts of an application and giving each class the exclusive
responsibility for the maintenance of all information relating to a single concept. In that case, a
change can be effected by a modification of that class only. Ideally, a change to a single concept
can be done by deriving a new class (§23.4.3.5) or by passing a different argument to a template.
Naturally, this ideal is much easier to state than to follow.

Consider an example. In a simulation involving meteorological phenomena, we want to display
a rain cloud. How do we do that? We cannot have a general routine to display the cloud because
what a cloud looks like depends on the internal state of the cloud, and that state should be the sole
responsibility of the cloud.

A first solution to this problem is to let the cloud display itself. This style of solution is accept-
able in many limited contexts. However, it is not general because there are many ways to view a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.2 Design Aims 701

cloud: for example, as a detailed picture, as a rough outline, or as an icon on a map. In other words,
what a cloud looks like depends on both the cloud and its environment.

A second solution to the problem is to make the cloud aware of its environment and then let the
cloud display itself. This solution is acceptable in even more contexts. However, it is still not a
general solution. Having the cloud know about such details of its environment violates the dictum
that a class is responsible for one thing only and that every ‘‘thing’’ is the responsibility of some
class. It may not be possible to come up with a coherent notion of ‘‘the cloud’s environment’’
because in general what a cloud looks like depends on both the cloud and the viewer. Even in real
life, what the cloud looks like to me depends rather strongly on how I look at it; for example, with
my naked eyes, through a polarizing filter, or with a weather radar. In addition to the viewer and
the cloud, some ‘‘general background’’ such as the relative position of the sun might have to be
taken into account. Adding other objects, such as other clouds and airplanes, further complicates
the matter. To make life really hard for the designer, add the possibility of having several simulta-
neous viewers.

A third solution is to have the cloud– and other objects such as airplanes and the sun–
describe themselves to a viewer. This solution has sufficient generality to serve most purposes†. It
may, however, impose a significant cost in both complexity and run-time overhead. For example,
how do we arrange for a viewer to understand the descriptions produced by clouds and other
objects?

Rain clouds are not particularly common in programs (but for an example, see §15.2), but
objects that need to be involved in a variety of I/O operations are. This makes the cloud example
relevant to programs in general and to the design of libraries in particular. C++ code for a logically
similar example can be found in the manipulators used for formatted output in the stream I/O sys-
tem (§21.4.6, §21.4.6.3). Note that the third solution is not ‘‘the right solution;’’ it is simply the
most general solution. A designer must balance the various needs of a system to choose the level
of generality and abstraction that is appropriate for a given problem in a given system. As a rule of
thumb, the right level of abstraction for a long-lived program is the most general you can compre-
hend and afford,not the absolutely most general. Generalization beyond the scope of a given pro-
ject and beyond the experience of the people involved can be harmful; that is, it can cause delays,
unacceptable inefficiencies, unmanageable designs, and plain failure.

To make such techniques manageable and economical, we must also design and manage for
reuse (§23.5.1) and not completely forget about efficiency (§23.4.7).

23.4.3 Design Steps [design.steps]

Consider designing a single class. Typically, this isnot a good idea. Concepts donot exist in iso-
lation; rather, a concept is defined in the context of other concepts. Similarly, a class does not exist
in isolation but is defined together with logically related classes. Typically, one works on a set of
related classes. Such a set is often called aclass libraryor acomponent. Sometimes all classes in a
component constitute a single class hierarchy, sometimes they are members of a single namespace,
and sometimes they are a more ad-hoc collection of declarations (§24.4).

† Even this model is unlikely to be sufficient for extreme cases like high-quality graphics based on ray tracing. I suspect that
achieving such detail requires the designer to move to a different level of abstraction.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

702 Development and Design Chapter 23

The set of classes in a component is united by some logical criteria, often by a common style
and often by a reliance on common services. A component is thus the unit of design, documenta-
tion, ownership, and often reuse. This does not mean that if you use one class from a component,
you must understand and use all the classes from the component or maybe get the code for every
class in the component loaded into your program. On the contrary, we typically strive to ensure
that a class can be used with only minimal overhead in machine resources and human effort. How-
ever, to use any part of a component we need to understand the logical criteria that define the com-
ponent (hopefully made abundantly clear in the documentation), the conventions and style embod-
ied in the design of the component and its documentation, and the common services (if any).

So consider how one might approach the design of a component. Because this is often a chal-
lenging task, it is worthwhile breaking it into steps to help focus on the various subtasks in a logical
and complete way. As usual, there is no one right way of doing this. However, here is a series of
steps that have worked for some people:

[1] Find the concepts/classes and their most fundamental relationships.
[2] Refine the classes by specifying the sets of operations on them.

– Classify these operations. In particular, consider the needs for construction, copying,
and destruction.

– Consider minimalism, completeness, and convenience.
[3] Refine the classes by specifying their dependencies.

– Consider parameterization, inheritance, and use dependencies.
[4] Specify the interfaces.

– Separate functions into public and protected operations.
– Specify the exact type of the operations on the classes.

Note that these are steps in an iterative process. Typically, several loops through this sequence are
needed to produce a design one can comfortably use for an initial implementation or a re-
implementation. One advantage of well-done analysis and data abstraction as described here is that
it becomes relatively easy to reshuffle class relationships even after code has been written. This is
never a trivial task, though.

After that, we implement the classes and go back and review the design based on what was
learned from implementing them. In the following subsections, I discuss these steps one by one.

23.4.3.1 Step 1: Find Classes [design.find]

Find the concepts/classes and their most fundamental relationships. The key to a good design is to
model some aspect of ‘‘reality’’ directly– that is, capture the concepts of an application as classes,
represent the relationships between classes in well-defined ways such as inheritance, and do this
repeatedly at different levels of abstraction. But how do we go about finding those concepts?
What is a practical approach to deciding which classes we need?

The best place to start looking is in the application itself, as opposed to looking in the computer
scientist’s bag of abstractions and concepts. Listen to someone who will become an expert user of
the system once it has been built and to someone who is a somewhat dissatisfied user of the system
being replaced. Note the vocabulary they use.

It is often said that the nouns will correspond to the classes and objects needed in the program;
often that is indeed the case. However, that is by no means the end of the story. Verbs may denote

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.3.1 Step 1: Find Classes 703

operations on objects, traditional (global) functions that produce new values based on the value of
their arguments, or even classes. As examples of the latter, note the function objects (§18.4) and
manipulators (§21.4.6). Verbs such as ‘‘iterate’’ or ‘‘commit’’ can be represented by an iterator
object and an object representing a database commit operation, respectively. Even adjectives can
often usefully be represented by classes. Consider the adjectives ‘‘storable,’’ ‘‘concurrent,’’ ‘‘reg-
istered,’’ and ‘‘bounded.’’ These may be classes intended to allow a designer or programmer to
pick and choose among desirable attributes for later-designed classes by specifying virtual base
classes (§15.2.4).

Not all classes correspond to application-level concepts. For example, some represent system
resources and implementation-level abstractions (§24.3.1). It is also important to avoid modeling
an old system too closely. For example, we don’t want a system that is centered around a database
to faithfully replicate aspects of a manual system that exist only to allow individuals to manage the
physical shuffling of pieces of paper.

Inheritance is used to represent commonality among concepts. Most important, it is used to
represent hierachical organization based on the behavior of classes representing individual concepts
(§1.7, §12.2.6, §24.3.2). This is sometimes referred to asclassificationor eventaxonomy. Com-
monality must be actively sought. Generalization and classification are high-level activities that
require insight to give useful and lasting results. A common base should represent a more general
concept rather than simply a similar concept that happens to require less data to represent.

Note that the classification should be of aspects of the concepts that we model in our system,
rather than aspects that may be valid in other areas. For example, in mathematics a circle is a kind
of an ellipse, but in most programs a circle should not be derived from an ellipse or an ellipse
derived from a circle. The often-heard arguments ‘‘because that’s the way it is in mathematics’’
and ‘‘because the representation of a circle is a subset of that of an ellipse’’ are not conclusive and
most often wrong. This is because for most programs, the key property of a circle is that it has a
center and a fixed distance to its perimeter. All behavior of a circle (all operations) must maintain
this property (invariant; §24.3.7.1). On the other hand, an ellipse is characterized by two focal
points that in many programs can be changed independently of each other. If those focal points
coincide, the ellipse looks like a circle, but it is not a circle because its operations do not preserve
the circle invariant. In most systems, this difference will be reflected by having a circle and an
ellipse provide sets of operations that are not subsets of each other.

We don’t just think up a set of classes and relationships between classes and use them for the
final system. Instead, we create an initial set of classes and relationships. These are then refined
repeatedly (§23.4.3.5) to reach a set of class relationships that are sufficiently general, flexible, and
stable to be of real help in the further evolution of a system.

The best tool for finding initial key concepts/classes is a blackboard. The best method for their
initial refinement is discussions with experts in the application domain and a couple of friends.
Discussion is necessary to develop a viable initial vocabulary and conceptual framework. Few peo-
ple can do that alone. One way to evolve a set of useful classes from an initial set of candidates is
to simulate a system, with designers taking the roles of classes. This brings the inevitable absurdi-
ties of the initial ideas out into the open, stimulates discussion of alternatives, and creates a shared
understanding of the evolving design. This activity can be supported by and documented by notes
on index cards. Such cards are usually called CRC cards (‘‘Class, Responsibility, and Collabora-
tors’’; [Wirfs-Brock,1990]) because of the information they record.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

704 Development and Design Chapter 23

A use caseis a description of a particular use of a system. Here is a simple example of a use
case for a telephony system: take the phone off hook, dial a number, the phone at the other end
rings, the phone at the other end is taken off hook. Developing a set of such use cases can be of
immense value at all stages of development. Initially, finding use cases can help us understand
what we are trying to build. During design, they can be used to trace a path through the system (for
example, using CRC cards) to check that the relatively static description of the system in terms of
classes and objects actually makes sense from a user’s point of view. During programming and
testing, the use cases become a source of test cases. In this way, use cases provide an orthogonal
way of viewing the system and act as a reality check.

Use cases view the system as a (dynamic) working entity. They can therefore trap a designer
into a functional view of a system and distract from the essential task of finding useful concepts
that can be mapped into classes. Especially in the hands of someone with a background in struc-
tured analysis and weak experience with object-oriented programming/design, an emphasis on use
cases can lead to a functional decomposition. A set of use cases is not a design. A focus on the use
of the system must be matched by a complementary focus on the system’s structure.

A team can become trapped into an inherently futile attempt to find and describea al ll l of the use
cases. This is a costly mistake. Much as when we look for candidate classes for a system, there
comes a time when we must say, ‘‘Enough is enough. The time has come to try out what we have
and see what happens.’’ Only by using a plausible set of classes and a plausible set of use cases in
further development can we obtain the feedback that is essential to obtaining a good system. It is
always hard to know when to stop a useful activity. It is especially hard to know when to stop
when we know that we must return later to complete the task.

How many cases are enough? In general it is impossible to answer that question. However, in
a given project, there comes a time when it is clear that most of the ordinary functioning of the sys-
tem has been covered and a fair bit of the more unusual and error handling issues have been
touched upon. Then it is time to get on with the next round of design and programming.

When you are trying to estimate the coverage of the system by a set of use cases, it can be use-
ful to separate the cases into primary and secondary use cases. The primary ones describe the
system’s most common and ‘‘normal’’ actions, and the secondary describe the more unusual and
error-handling scenarios. An example of a secondary use case would be a variant of the ‘‘make a
phone call’’ case, in which the called phone is off hook, dialing its caller. It is often said that when
80% of the primary use cases and some of the secondary ones have been covered, it is time to pro-
ceed, but since we cannot know what constitutes ‘‘all of the cases’’ in advance, this is simply a rule
of thumb. Experience and good sense matter here.

The concepts, operations, and relationships mentioned here are the ones that come naturally
from our understanding of the application area or that arise from further work on the class structure.
They represent our fundamental understanding of the application. Often, they are classifications of
the fundamental concepts. For example, a hook-and-ladder is a fire engine, which is a truck, which
is a vehicle. Sections §23.4.3.2 and §23.4.5 explain a few ways of looking at classes and class hier-
archies with the view of making improvements.

Beware of viewgraph engineering! At some stage, you will be asked to present the design to
someone and you will produce a set of diagrams explaining the structure of the system being built.
This can be a very useful exercise because it helps focus your attention on what is important about
the system and forces you to express your ideas in terms that others can understand. A presentation

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.3.1 Step 1: Find Classes 705

is an invaluable design tool. Preparing a presentation with the aim of conveying real understanding
to people with the interest and ability to produce constructive criticism is an exercise in conceptual-
ization and clean expression of ideas.

However, a formal presentation of a design is also a very dangerous activity because there is a
strong temptation to present an ideal system– a system you wished you could build, a system your
high management wish they had– rather than what you have and what you might possibly produce
in a reasonable time. When different approaches compete and executives don’t really understand or
care about ‘‘the details,’’ presentations can become lying competitions, in which the team that pre-
sents the most grandiose system gets to keep its job. In such cases, clear expression of ideas is
often replaced by heavy jargon and acronyms. If you are a listener to such a presentation– and
especially if you are a decision maker and you control development resources– it is desperately
important that you distinguish wishful thinking from realistic planning. High-quality presentation
materials are no guarantee of quality of the system described. In fact, I have often found that orga-
nizations that focus on the real problems get caught short when it comes to presenting their results
compared to organizations that are less concerned with the production of real systems.

When looking for concepts to represent as classes, note that there are important properties of a
system that cannot be represented as classes. For example, reliability, performance, and testability
are important measurable properties of a system. However, even the most thoroughly object-
oriented system will not have its reliability localized in a reliability object. Pervasive properties of
a system can be specified, designed for, and eventually verified through measurement. Concern for
such properties must be applied across all classes and may be reflected in rules for the design and
implementation of individual classes and components (§23.4.3).

23.4.3.2 Step 2: Specify Operations [design.operations]

Refine the classes by specifying the sets of operations on them. Naturally, it is not possible to sepa-
rate finding the classes from figuring out what operations are needed on them. However, there is a
practical difference in that finding the classes focusses on the key concepts and deliberately de-
emphasizes the computational aspects of the classes, whereas specifying the operations focusses on
finding a complete and usable set of operations. It is most often too hard to consider both at the
same time, especially since related classes should be designed together. When it is time to consider
both together, CRC cards (§23.4.3.1) are often helpful.

In considering what functions are to be provided, several philosophies are possible. I suggest
the following strategy:

[1] Consider how an object of the class is to be constructed, copied (if at all), and destroyed.
[2] Define theminimalset of operations required by the concept the class is representing. Typi-

cally, these operations become the member functions (§10.3).
[3] Consider which operations could be added for notational convenience. Include only a few

really important ones. Often, these operations become the nonmember ‘‘helper functions’’
(§10.3.2).

[4] Consider which operations are to be virtual, that is, operations for which the class can act as
an interface for an implementation supplied by a derived class.

[5] Consider what commonality of naming and functionality can be achieved across all the
classes of the component.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

706 Development and Design Chapter 23

This is clearly a statement of minimalism. It is far easier to add every function that could conceiv-
ably be useful and to make all operations virtual. However, the more functions, the more likely
they are to remain unused and the more likely they are to constrain the implementation and the fur-
ther evolution of the system. In particular, functions that directly read or write part of the state of
an object of a class often constrain the class to a single implementation strategy and severely limit
the potential for redesign. Such functions lower the level of abstraction from a concept to one
implementation of it. Adding functions also causes more work for the implementer– and for the
designer in the next redesign. It ismucheasier to add a function once the need for it has been
clearly established than to remove it once it has become a liability.

The reason for requiring that the decision to make a function virtual be explicit rather than a
default or an implementation detail is that making a function virtual critically affects the use of its
class and the relationships between that class and other classes. Objects of a class with even a sin-
gle virtual function have a nontrivial layout compared to objects in languages such as C and For-
tran. A class with even a single virtual function potentially acts as the interface to yet-to-be-defined
classes, and a virtual function implies a dependency on yet-to-be-defined classes (§24.3.2.1).

Note that minimalism requires more work from the designer, rather than less.
When choosing operations, it is important to focus on what is to be done rather than how it is to

be done. That is, we should focus more on desired behavior than on implementation issues.
It is sometimes useful to classify operations on a class in terms of their use of the internal state

of objects:
– Foundation operators: constructors, destructors and copy operators
– Inspectors: operations that do not modify the state of an object
– Modifiers: operations that do modify the state of an object
– Conversions: operations that produce an object of another type based on the value (state) of

the object to which they are applied
– Iterators: operations that allow access to or use of a sequence of contained objects

These categories are not orthogonal. For example, an iterator can be designed to be either an
inspector or a modifier. These categories are simply a classification that has helped people
approach the design of class interfaces. Naturally, other classifications are possible. Such classifi-
cations are especially useful for maintaining consistency across a set of classes within a component.

C++ provides support for the distinction between inspectors and modifiers in the form ofc co on ns st t
and non-c co on ns st t member functions. Similarly, the notions of constructors, destructors, copy opera-
tions, and conversion functions are directly supported.

23.4.3.3 Step 3: Specify Dependencies [design.dependencies]

Refine the classes by specifying their dependencies. The various dependencies are discussed in
§24.3. The key ones to consider in the context of design are parameterization,inheritance, anduse
relationships. Each involves consideration of what it means for a class to be responsible for a sin-
gle property of a system. To be responsible certainly doesn’t mean that the class has to hold all the
data itself or that its member functions have to perform all the necessary operations directly. On
the contrary, each class having a single area of responsibility ensures that much of the work of a
class is done by directing requests ‘‘elsewhere’’ for handling by some other class that has that par-
ticular subtask as its responsibility. However, be warned that overuse of this technique can lead to

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.3.3 Step 3: Specify Dependencies 707

inefficient and incomprehensible designs by proliferating classes and objects to the point where no
work is done except by a cascade of forwarded requests for service. Whatcan be done here and
now, should be.

The need to consider inheritance and use relationships at the design stage (and not just during
implementation) follows directly from the use of classes to represent concepts. It also implies that
the component (§23.4.3, §24.4), and not the individual class, is the unit of design.

Parameterization– often leading to the use of templates– is a way of making implicit depen-
dencies explicit so that several alternatives can be represented without adding new concepts. Often,
there is a choice between leaving something as a dependency on a context, representing it as a
branch of an inheritance tree, or using a parameter (§24.4.1).

23.4.3.4 Step 4: Specify Interfaces [design.interfaces]

Specify the interfaces. Private functions don’t usually need to be considered at the design stage.
What implementation issues must be considered in the design stage are best dealt with as part of the
consideration of dependencies in Step 2. Stronger: I use as a rule of thumb that unless at least two
significantly different implementations of a class are possible, then there is probably something
wrong with the class. That is, it is simply an implementation in disguise and not a representation of
a proper concept. In many cases, considering if some form of lazy evaluation is feasible for a class
is a good way of approaching the question, ‘‘Is the interface to this class sufficiently
implementation-independent?’’

Note that public bases and friends are part of the public interface of a class; see also §11.5 and
§24.4.2. Providing separate interfaces for inheriting and general clients by defining separate pro-
tected and public interfaces can be a rewarding exercise.

This is the step where the exact types of arguments are considered and specified. The ideal is to
have as many interfaces as possible statically typed with application-level types; see §24.2.3 and
§24.4.2.

When specifying the interfaces, look out for classes where the operations seem to support more
than one level of abstraction. For example, some member functions of a classF Fi il le e may take argu-
ments of typeF Fi il le e_ _d de es sc cr ri ip pt to or r and others string arguments that are meant to be file names. The
F Fi il le e_ _d de es sc cr ri ip pt to or r operations operate on a different level of abstraction than do the file name opera-
tions, so one must wonder whether they belong in the same class. Maybe it would be better to have
two file classes, one supporting the notion of a file descriptor and another supporting the notion of a
file name. Typically, all operations on a class should support the same level of abstraction. When
they don’t, a reorganization of the class and related classes should be considered.

23.4.3.5 Reorganization of Class Hierarchies [design.hier]

In Step 1 and again in Step 3, we examine the classes and class hierarchies to see if they adequately
serve our needs. Typically they don’t, and we have to reorganize to improve that structure or a
design and/or an implementation.

The most common reorganizations of a class hierarchy are factoring the common part of two
classes into a new class and splitting a class into two new ones. In both cases, the result is three
classes: a base class and two derived classes. When should such reorganizations be done? What
are common indicators that such a reorganization might be useful?

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

708 Development and Design Chapter 23

Unfortunately, there are no simple, general answers to such questions. This is not really sur-
prising because what we are talking about are not minor implementation details, but changes to the
basic concepts of a system. The fundamental– and nontrivial– operation is to look for common-
ality between classes and factor out the common part. The exact criteria for commonality are unde-
fined but should reflect commonality in the concepts of the system, not just implementation conve-
niences. Clues that two or more classes have commonality that might be factored out into a com-
mon base class are common patterns of use, similarity of sets of operations, similarity of implemen-
tations, and simply that these classes often turn up together in design discussions. Conversely, a
class might be a good candidate for splitting into two if subsets of the operations of that class have
distinct usage patterns, if such subsets access separate subsets of the representation, and if the class
turns up in apparently unrelated design discussions. Sometimes, making a set of related classes
into a template is a way of providing necessary alternatives in a systematic manner (§24.4.1).

Because of the close relationship between classes and concepts, problems with the organization
of a class hierarchy often surface as problems with the naming of classes and the use of class names
in design discussions. If design discussion using class names and the classification implied by the
class hierarchies sounds awkward, then there is probably an opportunity to improve the hierarchies.
Note that I’m implying that two people are much better at analyzing a class hierarchy than is one.
Should you happen to be without someone with whom to discuss a design, then writing a tutorial
description of the design using the class names can be a useful alternative.

One of the most important aims of a design is to provide interfaces that can remain stable in the
face of changes (§23.4.2). Often, this is best achieved by making a class on which many classes
and functions depend into an abstract class presenting very general operations. Details are best rel-
egated to more specialized derived classes on which fewer classes and functions directly depend.
Stronger: the more classes that depend on a class, the more general that class should be and the
fewer details it should reveal.

There is a strong temptation to add operations (and data) to a class used by many. This is often
seen as a way of making that class more useful and less likely to need (further) change. The effect
of such thinking is a class with a fat interface (§24.4.3) and with data members supporting several
weakly related functions. This again implies that the class must be modified whenever there is a
significant change to one of the many classes it supports. This, in turn, implies changes to appar-
ently unrelated user classes and derived classes. Instead of complicating a class that is central to a
design, we should usually keep it general and abstract. When necessary, specialized facilities
should be presented as derived classes. See [Martin,1995] for examples.

This line of thought leads to hierarchies of abstract classes, with the classes near the roots being
the most general and having the most other classes and functions dependent on them. The leaf
classes are the most specialized and have only very few pieces of code depending directly on them.
As an example, consider the final version of theI Iv va al l_ _b bo ox x hierarchy (§12.4.3, §12.4.4).

23.4.3.6 Use of Models [design.model]

When I write an article, I try to find a suitable model to follow. That is, rather than immediately
starting to type I look for papers on a similar topic to see if I can find one that can be an initial pat-
tern for my paper. If the model I choose is a paper I wrote myself on a related topic, I might even
be able to leave parts of the text in place, modify other parts as needed, and add new information

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.3.6 Use of Models 709

only where the logic of the information I’m trying to convey requires it. For example, this book is
written that way based on its first and second editions. An extreme form of this writing technique
is the form letter. In that case, I simply fill in a name and maybe add a few lines to ‘‘personalize’’
the letter. In essence, I’m writing such letters by specifying the differences from a basic model.

Such use of existing systems as models for new designs is the norm rather than the exception in
all forms of creative endeavors. Whenever possible, design and programming should be based on
previous work. This limits the degrees of freedom that the designer has to deal with and allows
attention to be focussed on a few issues at a time. Starting a major project ‘‘completely from
scratch’’ can be exhilarating. However, often a more accurate description is ‘‘intoxicating’’ and the
result is a drunkard’s walk through the design alternatives. Having a model is not constraining and
does not require that the model should be slavishly followed; it simply frees the designer to con-
sider one aspect of a design at a time.

Note that the use of models is inevitable because any design will be synthesized from the expe-
riences of its designers. Having an explicit model makes the choice of a model a conscious deci-
sion, makes assumptions explicit, defines a common vocabulary, provides an initial framework for
the design, and increases the likelihood that the designers have a common approach.

Naturally, the choice of an initial model is in itself an important design decision and often can
be made only after a search for potential models and careful evaluation of alternatives. Further-
more, in many cases a model is suitable only with the understanding that major modification is nec-
essary to adapt the ideas to a particular new application. Software design is hard, and we need all
the help we can get. We should not reject the use of models out of misplaced disdain for ‘‘imita-
tion.’’ Imitation is the sincerest form of flattery, and the use of models and previous work as inspi-
ration is– within the bounds of propriety and copyright law– acceptable technique for innovative
work in all fields: what was good enough for Shakespeare is good enough for us. Some people
refer to such use of models in design as ‘‘design reuse.’’

Documenting general elements that turn up in many designs together with some description of
the design problem they solve and the conditions under which they can be used is an obvious idea
– at least once you think of it. The wordpatternis often used to describe such a general and useful
design element, and a literature exists documenting patterns and their use (for example,
[Gamma,1994] and [Coplien,1995]).

It is a good idea for a designer to be acquainted with popular patterns in a given application
domain. As a programmer, I prefer patterns that have some code associated with them as concrete
examples. Like most people, I understand a general idea (in this case, a pattern) best when I have a
concrete example (in this case, a piece of code illustrating a use of the pattern) to help me. People
who use patterns heavily have a specialized vocabulary to ease communication among themselves.
Unfortunately, this can become a private language that effectively excludes outsiders from under-
standing. As always, it is essential to ensure proper communication among people involved in dif-
ferent parts of a project (§23.3) and also with the design and programming communities at large.

Every successful large system is a redesign of a somewhat smaller working system. I know of
no exceptions to this rule. The closest I can think of are projects that failed, muddled on for years
at great cost, and then eventually became successes years after their intended completion date.
Such projects unintentionally– and often unacknowledged– simply first built a nonworking sys-
tem, then transformed that into a working system, and finally redesigned that into a system that
approximated the original aims. This implies that it is a folly to set out to build a large system from

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

710 Development and Design Chapter 23

scratch exactly right according to the latest principles. The larger and the more ambitious a system
we aim for, the more important it is to have a model from which to work. For a large system, the
only really acceptable model is a somewhat smaller, relatedworkingsystem.

23.4.4 Experimentation and Analysis [design.experiment]

At the start of an ambitious development project, we do not know the best way to structure the sys-
tem. Often, we don’t even know precisely what the system should do because particulars will
become clear only through the effort of building, testing, and using the system. How– short of
building the complete system– do we get the information necessary to understand what design
decisions are significant and to estimate their ramifications?

We conduct experiments. Also, we analyze the design and implementation as soon as we have
something to analyze. Most frequently and importantly, we discuss the design and implementation
alternatives. In all but the rarest cases, design is a social activity in which designs are developed
through presentations and discussions. Often, the most important design tool is a blackboard; with-
out it, the embryonic concepts of a design cannot be developed and shared among designers and
programmers.

The most popular form of experiment seems to be to build a prototype, that is, a scaled-down
version of the system or a part of the system. A prototype doesn’t have stringent performance crite-
ria, machine and programming-environment resources are typically ample, and the designers and
programmers tend to be uncommonly well educated, experienced, and motivated. The idea is to get
a version running as fast as possible to enable exploration of design and implementation choices.

This approach can be very successful when done well. It can also be an excuse for sloppiness.
The problem is that the emphasis of a prototype can easily shift from ‘‘exploring design alterna-
tives’’ to ‘‘getting some sort of system running as soon as possible.’’ This easily leads to a disin-
terest in the internal structure of the prototype (‘‘after all, it is only a prototype’’) and a neglect of
the design effort in favor of playing around with the prototype implementation. The snag is that
such an implementation can degenerate into the worst kind of resource hog and maintenance night-
mare while giving the illusion of an ‘‘almost complete’’ system. Almost by definition, a prototype
does not have the internal structure, the efficiency, and the maintenance infrastructure that allows it
to scale to real use. Consequently, a ‘‘prototype’’ that becomes an ‘‘almost product’’ soaks up time
and energy that could have been better spent on the product. The temptation for both developers
and managers is to make the prototype into a product and postpone ‘‘performance engineering’’
until the next release. Misused this way, prototyping is the negation of all that design stands for.

A related problem is that the prototype developers can fall in love with their tools. They can
forget that the expense of their (necessary) convenience cannot always be afforded by a production
system and that the freedom from constraints and formalities offered by their small research group
cannot easily be maintained for a larger group working toward a set of interlocking deadlines.

On the other hand, prototypes can be invaluable. Consider designing a user interface. In this
case, the internal structure of the part of the system that doesn’t interact directly with the user often
is irrelevant and there are no other feasible ways of getting experience with users’ reactions to the
look and feel of a system. Another example is a prototype designed strictly for studying the inter-
nal workings of a system. Here, the user interface can be rudimentary– possibly with simulated
users instead of real ones.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.4 Experimentation and Analysis 711

Prototyping is a way of experimenting. The desired results from building a prototype are the
insights that building it brings, not the prototype itself. Maybe the most important criterion for a
prototype is that it has to be so incomplete that it is obviously an experimental vehicle and cannot
be turned into a product without a major redesign and reimplementation. Having a prototype
‘‘incomplete’’ helps keep the focus on the experiment and minimizes the danger of having the pro-
totype become a product. It also minimizes the temptation to try to base the design of the product
too closely on the design of the prototype– thus forgetting or ignoring the inherent limitations of
the prototype. After use, a prototype should be thrown away.

It should be remembered that in many cases, there are experimental techniques that can be used
as alternatives to prototyping. Where those can be used, they are often preferable because of their
greater rigor and lower demands on designer time and system resources. Examples are mathemati-
cal models and various forms of simulators. In fact, one can see a continuum from mathematical
models, through more and more detailed simulations, through prototypes, through partial imple-
mentations, to a complete system.

This leads to the idea of growing a system from an initial design and implementation through
repeated redesign and reimplementation. This is the ideal strategy, but it can be very demanding on
design and implementation tools. Also, the approach suffers from the risk of getting burdened with
so much code reflecting initial design decisions that a better design cannot be implemented. At
least for now, this strategy seems limited to small-to-medium-scale projects, in which major
changes to the overall design are unlikely, and for redesigns and reimplementations after the initial
release of the system, where such a strategy is inevitable.

In addition to experiments designed to provide insights into design choices, analysis of a design
and/or an implementation itself can be an important source of further insights. For example, stud-
ies of the various dependencies between classes (§24.3) can be most helpful, and traditional
implementer’s tools such as call graphs, performance measurements, etc., must not be ignored.

Note that specifications (the output of the analysis phase) and designs are as prone to errors as is
the implementation. In fact, they may be more so because they are even less concrete, are often
specified less precisely, are not executable, and typically are not supported by tools of a sophistica-
tion comparable to what is available for checking and analyzing the implementation. Increasing the
formality of the language/notation used to express a design can go some way toward enabling the
application of tools to help the designer. This must not be done at the cost of impoverishing the
programming language used for implementation (§24.3.1). Also, a formal notation can itself be a
source of complexity and problems. This happens when the formalism is ill suited to the practical
problem to which it is applied, when the rigor of the formalism exceeds the mathematical back-
ground and maturity of the designers and programmers involved, and when the formal description
of a system gets out of touch with the system it is supposedly describing.

Design is inherently error-prone and hard to support with effective tools. This makes experi-
ence and feedback essential. Consequently, it is fundamentally flawed to consider the software-
development process a linear process starting with analysis and ending with testing. An emphasis
on iterative design and implementation is needed to gain sufficient feedback from experience dur-
ing the various stages of development.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

712 Development and Design Chapter 23

23.4.5 Testing [design.test]

A program that has not been tested does not work. The ideal of designing and/or verifying a pro-
gram so that it works the first time is unattainable for all but the most trivial programs. We should
strive toward that ideal, but we should not be fooled into thinking that testing is easy.

‘‘How to test?’’ is a question that cannot be answered in general. ‘‘When to test?’’ however,
does have a general answer: as early and as often as possible. Test strategies should be generated
as part of the design and implementation efforts or at least should be developed in parallel with
them. As soon as there is a running system, testing should begin. Postponing serious testing until
‘‘after the implementation is complete’’ is a prescription for slipped schedules and/or flawed
releases.

Wherever possible, a system should be designed specifically so that it is relatively easy to test.
In particular, mechanisms for testing can often be designed right into the system. Sometimes this is
not done out of fear of causing expensive run-time testing or for fear that the redundancy necessary
for consistency checks will unduly enlarge data structures. Such fear is usually misplaced because
most actual testing code and redundancy can, if necessary, be stripped out of the code before the
system is shipped. Assertions (§24.3.7.2) are sometimes useful here.

More important than specific tests is the idea that the structure of the system should be such that
we have a reasonable chance of convincing ourselves and our users/customers that we can eliminate
errors by a combination of static checking, static analysis, and testing. Where a strategy for fault
tolerance is developed (§14.9), a testing strategy can usually be designed as a complementary and
closely related aspect of the total design.

If testing issues are completely discounted in the design phase, then testing, delivery date, and
maintenance problems will result. The class interfaces and the class dependencies (as described in
§24.3 and §24.4.2) are usually a good place to start work on a testing strategy.

Determining how much testing is enough is usually hard. However, too little testing is a more
common problem than too much. Exactly how many resources should be allocated to testing com-
pared to design and implementation naturally depends on the nature of the system and the methods
used to construct it. However, as a rule of thumb, I can suggest that more resources in time, effort,
and talent should be spent testing a system than on constructing the initial implementation. Testing
should focus on problems that would have disastrous consequences and on problems that would
occur frequently.

23.4.6 Software Maintenance [design.maintain]

‘‘Software maintenance’’ is a misnomer. The word ‘‘maintenance’’ suggests a misleading analogy
to hardware. Software doesn’t need oiling, doesn’t have moving parts that wear down, and doesn’t
have crevices in which water can collect and cause rust. Software can be replicatedexactlyand
transported over long distances at minute costs. Software is not hardware.

The activities that go under the name of software maintenance are really redesign and reimple-
mentation and thus belong under the usual program development cycle. When flexibility, extensi-
bility, and portability are emphasized in the design, the traditional sources of maintenance problems
are addressed directly.

Like testing, maintenance must not be an afterthought or an activity segregated from the main-
stream of development. In particular, it is important to have some continuity in the group of people

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.4.6 Software Maintenance 713

involved in a project. It is not easy to successfully transfer maintenance to a new (and typically
less-experienced) group of people with no links to the original designers and implementers. When
a major change of people is necessary, there must be an emphasis on transferring an understanding
of the system’s structure and of the system’s aims to the new people. If a ‘‘maintenance crew’’ is
left guessing about the architecture of the system or must deduce the purpose of system compo-
nents from their implementation, the structure of a system can deteriorate rapidly under the impact
of local patches. Documentation is typically much better at conveying details than in helping new
people to understand key ideas and principles.

23.4.7 Efficiency [design.efficiency]

Donald Knuth observed that ‘‘premature optimization is the root of all evil.’’ Some people have
learned that lesson all too well and consider all concern for efficiency evil. On the contrary, effi-
ciency must be kept in mind throughout the design and implementation effort. However, that does
not mean the designer should be concerned with micro-efficiencies, but that first-order efficiency
issues must be considered.

The best strategy for efficiency is to produce a clean and simple design. Only such a design can
remain relatively stable over the lifetime of the project and serve as a base for performance tuning.
Avoiding the gargantuanism that plagues large projects is essential. Far too often people add fea-
tures ‘‘just in case’’ (§23.4.3.2, §23.5.3) and end up doubling and quadrupling the size and run-
time of systems to support frills. Worse, such overelaborate systems are often unnecessarily hard to
analyze so that it becomes difficult to distinguish the avoidable overheads from the unavoidable.
Thus, even basic analysis and optimization is discouraged. Optimization should be the result of
analysis and performance measurement, not random fiddling with the code. Especially in larger
systems, a designer’s or programmer’s ‘‘intuition’’ is an unreliable guide in matters of efficiency.

It is important to avoid inherently inefficient constructs and constructs that will take much time
and cleverness to optimize to an acceptable performance level. Similarly, it is important to mini-
mize the use of inherently nonportable constructs and tools because using such tools and constructs
condemns the project to run on older (less powerful and/or more expensive) computers.

23.5 Management[design.management]

Provided it makes some minimum of sense, most people do what they are encouraged to do. In
particular, if in the context of a software project you reward certain ways of operating and penalize
others, only exceptional programmers and designers will risk their careers to do what they consider
right in the face of management opposition, indifference, and red tape†. It follows that an organiza-
tion should have a reward structure that matches its stated aims of design and programming. How-
ever, all too often this is not the case: a major change of programming style can be achieved only
through a matching change of design style, and both typically require changes in management style
to be effective. Mental and organizational inertia all too easily leads to a local change that is not

† An organization that treats its programmers as morons will soon have programmers that are willing and able to act like mo-
rons only.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

714 Development and Design Chapter 23

supported by global changes required to ensure its success. A fairly typical example is a change to
a language that supports object-oriented programming, such as C++, without a matching change in
the design strategies to take advantage of its facilities (see also §24.2). Another is a change to
‘‘object-oriented design’’ without the introduction of a programming language to support it.

23.5.1 Reuse [design.reuse]

Increased reuse of code and design is often cited as a major reason for adopting a new program-
ming language or design strategy. However, most organizations reward individuals and groups that
choose to re-invent the wheel. For example, a programmer may have his productivity measured in
lines of code; will he produce small programs relying on standard libraries at the cost of income
and, possibly, status? A manager may be paid somewhat proportionally to the number of people in
her group; is she going to use software produced in another group when she can hire another couple
of programmers for her own group instead? A company can be awarded a government contract,
where the profit is a fixed percentage of the development cost; is that company going to minimize
its profits by using the most effective development tools? Rewarding reuse is hard, but unless man-
agement finds ways to encourage and reward it, reuse will not happen.

Reuse is primarily a social phenomenon. I can use someone else’s software provided that:
[1] It works: to be reusable, software must first be usable.
[2] It is comprehensible: program structure, comments, documentation, and tutorial material are

important.
[3] It can coexist with software not specifically written to coexist with it.
[4] It is supported (or I’m willing to support it myself; typically, I’m not).
[5] It is economical (can I share the development and maintenance costs with other users?).
[6] I can find it.

To this, we may add that a component is not reusable until someone has ‘‘reused’’ it. The task of
fitting a component into an environment typically leads to refinements in its operation, generaliza-
tions of its behavior, and improvements in its ability to coexist with other software. Until this exer-
cise has been done at least once, even components that have been designed and implemented with
the greatest care tend to have unintended and unexpected rough corners.

My experience is that the conditions necessary for reuse will exist only if someone makes it
their business to make such sharing work. In a small group, this typically means that an individual,
by design or by accident, becomes the keeper of common libraries and documentation. In a larger
organization, this means that a group or department is chartered to gather, build, document, popu-
larize, and maintain software for use by many groups.

The importance of such a ‘‘standard components’’ group cannot be overestimated. Note that as
a first approximation, a system reflects the organization that produced it. If an organization has no
mechanism for promoting and rewarding cooperation and sharing, cooperation and sharing will be
rare. A standard components group must actively promote its components. This implies that good
traditional documentation is essential but insufficient. In addition, the components group must pro-
vide tutorials and other information that allow a potential user to find a component and understand
why it might be of help. This implies that activities that traditionally are associated with marketing
and education must be undertaken by the components group.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.5.1 Reuse 715

Whenever possible, the members of this group should work in close cooperation with applica-
tions builders. Only then can they be sufficiently aware of the needs of users and alert to the oppor-
tunities for sharing components among different applications. This argues for there to be a consul-
tancy role for such an organization and for the use of internships to transfer information into and
out of the components group.

The success of a ‘‘components group’’ must be measured in terms of the success of its clients.
If its success is measured simply in terms of the amount of tools and services it can convince devel-
opment organizations to accept, such a group can become corrupted into a mere peddler of com-
mercial software and a proponent of ever-changing fads.

Not all code needs to be reusable, and reusability is not a universal property. Saying that a
component is ‘‘reusable’’ means that its reuse within a certain framework requires little or no work.
In most cases, moving to a different framework will require significant work. In this respect, reuse
strongly resembles portability. It is important to note that reuse is the result of design aimed at
reuse, refinement of components based on experience, and deliberate effort to search out existing
components to (re)use. Reuse does not magically arise from mindless use of specific language fea-
tures or coding techniques. C++ features such as classes, virtual functions, and templates allow
designs to be expressed so that reuse is made easier (and thus more likely), but in themselves such
features do not ensure reusability.

23.5.2 Scale [design.scale]

It is easy for an individual or an organization to get excited about ‘‘doing things right.’’ In an insti-
tutional setting, this often translates into ‘‘developing and strictly following proper procedures.’’
In both cases, common sense can be the first victim of a genuine and often ardent desire to improve
the way things are done. Unfortunately, once common sense is missing there is no limit to the
damage that can unwittingly be done.

Consider the stages of the development process listed in §23.4 and the stages of the design steps
listed in §23.4.3. It is relatively easy to elaborate these stages into a proper design method where
each stage is more precisely defined and has well-defined inputs and outputs and a semiformal
notation for expressing these inputs and outputs. Checklists can be developed to ensure that the
design method is adhered to, and tools can be developed to enforce a large number of the procedu-
ral and notational conventions. Further, looking at the classification of dependencies presented in
§24.3 one could decree that certain dependencies were good and others bad and provide analysis
tools to ensure that these value judgements were applied uniformly across a project. To complete
this ‘‘firming up’’ of the software-production process, one would define standards for documenta-
tion (including rules for spelling and grammar and typesetting conventions) and for the general
look of the code (including specifications of which language features can and cannot be used, speci-
fications of what kinds of libraries can and cannot be used, conventions for indentation and the
naming of functions, variables, and types, etc.).

Much of this can be helpful for the success of a project. At least, it would be a folly to set out
to design a system that will eventually contain ten million lines of code that will be developed by
hundreds of people and maintained and supported by thousands more over a decade or more with-
out a fairly well-defined and somewhat rigid framework along the lines described previously.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

716 Development and Design Chapter 23

Fortunately, most systems do not fall into this category. However, once the idea is accepted
that such a design method or adherence to such a set of coding and documentation standards is ‘‘the
right way,’’ pressure builds to apply it universally and in every detail. This can lead to ludicrous
constraints and overheads on small projects. In particular, it can lead to paper shuffling and forms
filling replacing productive work as the measure of progress and success. If that happens, real
designers and programmers will leave the project and be replaced with bureaucrats.

Once such a ridiculous misapplication of a (hopefully perfectly reasonable) design method has
occurred in a community, its failure becomes the excuse for avoiding almost all formality in the
development process. This in turn naturally leads to the kind of messes and failures that the design
method was designed to prevent in the first place.

The real problem is to find an appropriate degree of formality for the development of a particu-
lar project. Don’t expect to find an easy answer to this problem. Essentially every approach works
for a small project. Worse, it seems that essentially every approach– however ill conceived and
however cruel to the individuals involved– also works for a large project, provided you are willing
to throw indecent amounts of time and money at the problem.

A key problem in every software project is how to maintain the integrity of the design. This
problem increases more than linearly with scale. Only an individual or a small group of people can
grasp and keep sight of the overall aims of a major project. Most people must spend so much of
their time on subprojects, technical details, day-to-day administration, etc., that the overall design
aims are easily forgotten or subordinated to more local and immediate goals. It also is a recipe for
failure not to have an individual or group with the explicit task of maintaining the integrity of the
design. It is a recipe for failure not to enable such an individual or group to have an effect on the
project as a whole.

Lack of a consistent long-term aim is much more damaging to a project and an organization
than the lack of any individual feature. It should be the job of some small number of individuals to
formulate such an overall aim, to keep that aim in mind, to write the key overall design documents,
to write the introductions to the key concepts, and generally to help others to keep the overall aim
in mind.

23.5.3 Individuals [design.people]

Use of design as described here places a premium on skillful designers and programmers. Thus, it
makes the choice of designers and programmers critical to the success of an organization.

Managers often forget that organizations consist of individuals. A popular notion is that pro-
grammers are equal and interchangeable. This is a fallacy that can destroy an organization by driv-
ing out many of the most effective individuals and condemning the remaining people to work at
levels well below their potential. Individuals are interchangeable only if they are not allowed to
take advantage of skills that raise them above the absolute minimum required for the task in ques-
tion. Thus, the fiction of interchangeability is inhumane and inherently wasteful.

Most programming performance measures encourage wasteful practices and fail to take critical
individual contributions into account. The most obvious example is the relatively widespread prac-
tice of measuring progress in terms of number of lines of code produced, number of pages of docu-
mentation produced, number of tests passed, etc. Such figures look good on management charts
but bear only the most tenuous relation to reality. For example, if productivity is measured in terms

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.5.3 Individuals 717

of number of lines of code produced, a successful application of reuse will appear to cause negative
performance of programmers. A successful application of the best principles in the redesign of a
major piece of software typically has the same effect.

Quality of work produced is far harder to measure than quantity of output, yet individuals and
groups must be rewarded based on the quality of their output rather than by crude quantity mea-
sures. Unfortunately, the design of practical quality measures has– to the best of my knowledge–
hardly begun. In addition, measures that incompletely describe the state of a project tend to warp
development. People adapt to meet local deadlines and to optimize individual and group perfor-
mance as defined by the measures. As a direct result, overall system integrity and performance suf-
fer. For example, if a deadline is defined in terms of bugs removed or known bugs remaining, we
may see that deadline met at the expense of run-time performance or hardware resources needed to
run the system. Conversely, if only run-time performance is measured the error rate will surely rise
when the developers struggle to optimize the system for benchmarks. The lack of good and com-
prehensive quality measures places great demands on the technical expertise of managers, but the
alternative is a systematic tendency to reward random activity rather than progress. Don’t forget
that managers are also individuals. Managers need as least as much education on new techniques
as do the people they manage.

As in other areas of software development, we must consider the longer term. It is essentially
impossible to judge the performance of an individual on the basis of a single year’s work. Most
individuals do, however, have consistent long-term track records that can be reliable predictors of
technical judgement and a useful help in evaluating immediate past performance. Disregard of
such records– as is done when individuals are considered merely as interchangeable cogs in the
wheels of an organization– leaves managers at the mercy of misleading quantity measurements.

One consequence of taking a long-term view and avoiding the ‘‘interchangeable morons school
of management’’ is that individuals (both developers and managers) need longer to grow into the
more demanding and interesting jobs. This discourages job hopping as well as job rotation for
‘‘career development.’’ A low turnover of both key technical people and key managers must be a
goal. No manager can succeed without a rapport with key designers and programmers and some
recent and relevant technical knowledge. Conversely, no group of designers and developers can
succeed in the long run without support from competent managers and a minimum of understand-
ing of the larger nontechnical context in which they work.

Where innovation is needed, senior technical people, analysts, designers, programmers, etc.,
have a critical and difficult role to play in the introduction of new techniques. These are the people
who must learn new techniques and in many cases unlearn old habits. This is not easy. These indi-
viduals have typically made great personal investments in the old ways of doing things and rely on
successes achieved using these ways of operating for their technical reputation. So do many techni-
cal managers.

Naturally, there is often a fear of change among such individuals. This can lead to an overesti-
mation of the problems involved in a change and a reluctance to acknowledge problems with the
old ways of doing things. Equally naturally, people arguing for change tend to overestimate the
beneficial effects of new ways of doing things and to underestimate the problems involved in a
change. These two groups of individualsmustcommunicate, theymustlearn to talk the same lan-
guage, theymusthelp each other hammer out a model for transition. The alternative is organiza-
tional paralysis and the departure of the most capable individuals from both groups. Both groups

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

718 Development and Design Chapter 23

should remember that the most successful ‘‘old timers’’ are often the ‘‘young turks’’ of yesteryear.
Given a chance to learn without humiliation, more experienced programmers and designers can
become the most successful and insightful proponents of change. Their healthy skepticism, knowl-
edge of users, and acquaintance with the organizational hurdles can be invaluable. Proponents of
immediate and radical change must realize that a transition, often involving a gradual adoption of
new techniques, is more often than not necessary. Conversely, individuals who have no desire to
change should search out areas in which no change is needed rather than fight vicious rear-guard
battles in areas in which new demands have already significantly altered the conditions for success.

23.5.4 Hybrid Design [design.hybrid]

Introducing new ways of doing things into an organization can be painful. The disruption to the
organization and the individuals in the organization can be significant. In particular, an abrupt
change that overnight turns productive and proficient members of ‘‘the old school’’ into ineffective
novices in ‘‘the new school’’ is typically unacceptable. However, it is rare to achieve major gains
without changes, and significant changes typically involve risks.

C++ was designed to minimize such risks by allowing a gradual adoption of techniques.
Although it is clear that the largest benefits from using C++ are achieved through data abstraction,
object-oriented programming, and object-oriented design, it is not clear that the fastest way to
achieve these gains is a radical break with the past. Occasionally, such a clean break is feasible.
More often, the desire for improvement is– or should be– tempered by concerns about how to
manage the transition. Consider:

– Designers and programmers need time to acquire new skills.
– New code needs to cooperate with old code.
– Old code needs to be maintained (often indefinitely).
– Work on existing designs and programs needs to be completed (on time).
– Tools supporting the new techniques need to be introduced into the local environment.

These factors lead naturally to a hybrid style of design– even where that isn’t the intention of some
designers. It is easy to underestimate the first two points.

By supporting several programming paradigms, C++ supports the notion of a gradual introduc-
tion into an organization in several ways:

– Programmers can remain productive while learning C++.
– C++ can yield significant benefits in a tool-poor environment.
– C++ program fragments can cooperate well with code written in C and other traditional lan-

guages.
– C++ has a large C-compatible subset.

The idea is that programmers can make the move to C++ from a traditional language by first adopt-
ing C++ while retaining a traditional (procedural) style of programming. Then they use the data
abstraction techniques. Finally– when the language and its associated tools have been mastered–
they move on to object-oriented programming and generic programming. Note that a well-
designed library is much easier to use than it was to design and implement, so a novice can benefit
from the more advanced uses of abstraction even during the early stages of this progress.

The idea of learning object-oriented design, object-oriented programming, and C++ in stages is
supported by facilities for mixing C++ code with code written in languages that do not support

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.5.4 Hybrid Design 719

C++’s notions of data abstraction and object-oriented programming (§24.2.1). Many interfaces can
simply be left procedural because there will be no immediate benefits in doing anything more com-
plicated. For many key libraries, this will already have been done by the library provider so that
the C++ programmer can stay ignorant of the actual implementation language. Using libraries writ-
ten in languages such as C is the first, and initially most important, form of reuse in C++.

The next stage– to be used only where a more elaborate technique is actually needed– is to
present facilities written in languages such as C and Fortran as classes by encapsulating the data
structures and functions in C++ interface classes. A simple example of lifting the semantics from
the procedure plus data structure level to the data abstraction level is the string class from §11.12.
There, encapsulation of the C character string representation and the standard C string functions is
used to produce a string type that is much simpler to use.

A similar technique can be used to fit a built-in or stand-alone type into a class hierarchy
(§23.5.1). This allows designs for C++ to evolve to use data abstraction and class hierarchies in the
presence of code written in languages in which these concepts are missing and even under the con-
straint that the resulting code must be callable from procedural languages.

23.6 Annotated Bibliography[design.ref]

This chapter only scratches the surface of the issues of design and of the management of program-
ming projects. For that reason, a short annotated bibliography is provided. An extensive annotated
bibliography can be found in [Booch,1994].

[Anderson,1990] Bruce Anderson and Sanjiv Gossain:An Iterative Design Model for Reus-
able Object-Oriented Software. Proc. OOPSLA’90. Ottawa, Canada. A
description of an iterative design and redesign model with a specific exam-
ple and a discussion of experience.

[Booch,1994] Grady Booch:Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings. 1994. ISBN 0-8053-5340-2. Contains a detailed
description of design, a specific design method with a graphical notation,
and several large examples of designs expressed in C++. It is an excellent
book to which this chapter owes much. It provides a more in-depth treat-
ment of many of the issues in this chapter.

[Booch,1996] Grady Booch:Object Solutions. Benjamin/Cummings. 1996. ISBN 0-
8053-0594-7. Describes the development of object-oriented systems from
a management perspective. Contains extensive C++ code examples.

[Brooks,1982] Fred Brooks:The Mythical Man Month. Addison-Wesley. 1982. Every-
one should read this book every couple of years. A warning against
hubris. It is a bit dated on technical matters, but it is not at all dated in
matters related to individuals, organizations, and scale. Republished with
additions in 1997. ISBN 1-201-83595-9.

[Brooks,1987] Fred Brooks:No Silver Bullet. IEEE Computer, Vol. 20, No. 4. April
1987. A summary of approaches to large-scale software development,
with a much-needed warning against belief in miracle cures (‘‘silver bul-
lets’’).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

720 Development and Design Chapter 23

[Coplien,1995] James O. Coplien and Douglas C. Schmidt (editors):Pattern Languages of
Program Design. Addison-Wesley. 1995. ISBN 1-201-60734-4.

[Gamma,1994] Eric Gamma, et. al.:Design Patterns. Addison-Wesley. 1994. ISBN 0-
201-63361-2. A practical catalog of techniques for creating flexible and
reusable software, with a nontrivial, well-explained example. Contains
extensive C++ code examples.

[DeMarco,1987] T. DeMarco and T. Lister:Peopleware. Dorset House Publishing Co.
1987. One of the few books that focusses on the role of people in the pro-
duction of software. A must for every manager. Smooth enough for bed-
side reading. An antidote for much silliness.

[Jacobson,1992] Ivar Jacobson et. al.:Object-Oriented Software Engineering. Addison-
Wesley. 1992. ISBN 0-201-54435-0. A thorough and practical descrip-
tion of software development in an industrial setting with an emphasis on
use cases (§23.4.3.1). Miscasts C++ by describing it as it was ten years
ago.

[Kerr,1987] Ron Kerr:A Materialistic View of the Software ‘‘Engineering’’ Analogy.
In SIGPLAN Notices, March 1987. The use of analogy in this chapter and
the next owes much to the observations in this paper and to the presenta-
tions by and discussions with Ron that preceded it.

[Liskov,1987] Barbara Liskov:Data Abstraction and Hierarchy. Proc. OOPSLA’87
(Addendum). Orlando, Florida. A discussion of how the use of inheri-
tance can compromise data abstraction. Note, C++ has specific language
support to help avoid most of the problems mentioned (§24.3.4).

[Martin,1995] Robert C. Martin:Designing Object-Oriented C++ Applications Using the
Booch Method. Prentice-Hall. 1995. ISBN 0-13-203837-4. Shows how
to go from a problem to C++ code in a fairly systematic way. Presents
alternative designs and principles for choosing between them. More prac-
tical and more concrete than most books on design. Contains extensive
C++ code examples.

[Parkinson,1957] C. N. Parkinson:Parkinson’s Law and other Studies in Administration.
Houghton Mifflin. Boston. 1957. One of the funniest and most cutting
descriptions of disasters caused by administrative processes.

[Meyer,1988] Bertrand Meyer:Object Oriented Software Construction. Prentice Hall.
1988. Pages 1-64 and 323-334 give a good introduction to one view of
object-oriented programming and design with many sound pieces of prac-
tical advice. The rest of the book describes the Eiffel language. Tends to
confuse Eiffel with universal principles.

[Shlaer,1988] S. Shlaer and S. J. Mellor:Object-Oriented Systems AnalysisandObject
Lifecycles. Yourdon Press. ISBN 0-13-629023-X and 0-13-629940-7.
Presents a view of analysis, design, and programming that differs strongly
from the one presented here and embodied in C++ and does so using a
vocabulary that makes it sound rather similar.

[Snyder,1986] Alan Snyder:Encapsulation and Inheritance in Object-Oriented Program-
ming Languages. Proc. OOPSLA’86. Portland, Oregon. Probably the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 23.6 Annotated Bibliography 721

first good description of the interaction between encapsulation and inheri-
tance. Also provides a nice discussion of some notions of multiple inheri-
tance.

[Wirfs-Brock,1990] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener:Designing
Object-Oriented Software. Prentice Hall. 1990. Describes an anthropo-
morphic design method based on role playing using CRC (Classes,
Responsibilities, and Collaboration) cards. The text, if not the method
itself, is biased toward Smalltalk.

23.7 Advice[design.advice]

[1] Know what you are trying to achieve; §23.3.
[2] Keep in mind that software development is a human activity; §23.2, §23.5.3.
[3] Proof by analogy is fraud; §23.2.
[4] Have specific and tangible aims; §23.4.
[5] Don’t try technological fixes for sociological problems; §23.4.
[6] Consider the longer term in design and in the treatment of people; §23.4.1, §23.5.3.
[7] There is no lower limit to the size of programs for which it is sensible to design before starting

to code; §23.2.
[8] Design processes to encourage feedback; §23.4.
[9] Don’t confuse activity for progress; §23.3, §23.4.
[10] Don’t generalize beyond what is needed, what you have direct experience with, and what can

be tested; §23.4.1, §23.4.2.
[11] Represent concepts as classes; §23.4.2, §23.4.3.1.
[12] There are properties of a system that should not be represented as a class; §23.4.3.1.
[13] Represent hierarchical relationships between concepts as class hierarchies; §23.4.3.1.
[14] Actively search for commonality in the concepts of the application and implementation and

represent the resulting more general concepts as base classes; §23.4.3.1, §23.4.3.5.
[15] Classifications in other domains are not necessarily useful classifications in an inheritance

model for an application; §23.4.3.1.
[16] Design class hierarchies based on behavior and invariants; §23.4.3.1, §23.4.3.5, §24.3.7.1.
[17] Consider use cases; §23.4.3.1.
[18] Consider using CRC cards; §23.4.3.1.
[19] Use existing systems as models, as inspiration, and as starting points; §23.4.3.6.
[20] Beware of viewgraph engineering; §23.4.3.1.
[21] Throw a prototype away before it becomes a burden; §23.4.4
[22] Design for change, focusing on flexibility, extensibility, portability, and reuse; §23.4.2.
[23] Focus on component design; §23.4.3.
[24] Let each interface represent a concept at a single level of abstraction; §23.4.3.1.
[25] Design for stability in the face of change; §23.4.2.
[26] Make designs stable by making heavily-used interfaces minimal, general, and abstract;

§23.4.3.2, §23.4.3.5.
[27] Keep it small. Don’t add features ‘‘just in case;’’ §23.4.3.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

722 Development and Design Chapter 23

[28] Always consider alternative representations for a class. If no alternative representation is plau-
sible, the class is probably not representing a clean concept; §23.4.3.4.

[29] Repeatedly review and refine both the design and the implementation; §23.4, §23.4.3.
[30] Use the best tools available for testing and for analyzing the problem, the design, and the

implementation; §23.3, §23.4.1, §23.4.4.
[31] Experiment, analyze, and test as early as possible and as often as possible; §23.4.4, §23.4.5.
[32] Don’t forget about efficiency; §23.4.7.
[33] Keep the level of formality appropriate to the scale of the project; §23.5.2.
[34] Make sure that someone is in charge of the overall design; §23.5.2.
[35] Document, market, and support reusable components; §23.5.1.
[36] Document aims and principles as well as details; §23.4.6.
[37] Provide tutorials for new developers as part of the documentation; §23.4.6.
[38] Reward and encourage reuse of designs, libraries, and classes; §23.5.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

24
_ __ _______________________________________

Design and Programming

Keep it simple:
as simple as possible,

but no simpler.
– A. Einstein

Design and programming language— classes— inheritance— type checking— pro-
gramming— what do classes represent?— class hierarchies— dependencies— con-
tainment— containment and inheritance— design tradeoffs— use relationships—
programmed-in relationships— invariants— assertions— encapsulation— compo-
nents— templates— interfaces and implementations— advice.

24.1 Overview[lang.overview]

This chapter considers the ways programming languages in general and C++ in particular can sup-
port design:

§24.2 The fundamental role of classes, class hierarchies, type checking, and programming itself
§24.3 Uses of classes and class hierarchies, focussing on dependencies between different parts

of a program
§24.4 The notion of acomponent, which is the basic unit of design, and some practical observa-

tions about how to express interfaces
More general design issues are found in Chapter 23, and the various uses of classes are discussed in
more detail in Chapter 25.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

724 Design and Programming Chapter 24

24.2 Design and Programming Language[lang.intro]

If I were to build a bridge, I would seriously consider what material to build it out of. Also, the
design of the bridge would be heavily influenced by the choice of material and vice versa. Reason-
able designs for stone bridges differ from reasonable designs for steel bridges, from reasonable
designs for wooden bridges, etc. I would not expect to be able to select the proper material for a
bridge without knowing a bit about the various materials and their uses. Naturally, you don’t have
to be an expert carpenter to design a wooden bridge, but you do have to know the fundamentals of
wooden constructions to choose between wood and iron as the material for a bridge. Furthermore,
even though you don’t personally have to be an expert carpenter to design a wooden bridge, you do
need quite a detailed knowledge of the properties of wood and the mores of carpenters.

The analogy is that to choose a language for some software, you need knowledge of several lan-
guages, and to design a piece of software successfully, you need a fairly detailed knowledge of the
chosen implementation language– even if you never personally write a single line of that software.
The good bridge designer respects the properties of materials and uses them to enhance the design.
Similarly, the good software designer builds on the strengths of the implementation language and–
as far as possible– avoids using it in ways that cause problems for implementers.

One might think that this sensitivity to language issues comes naturally when only a single
designer/programmer is involved. However, even in such cases the programmer can be seduced
into misusing the language due to inadequate experience or undue respect for styles of program-
ming established for radically different languages. When the designer is different from the pro-
grammer– and especially if they do not share a common culture– the likelihood of introducing
error, inelegance, and inefficiencies into the resulting system approaches certainty.

So what can a programming language do for a designer? It can provide features that allow the
fundamental notions of the design to be represented directly in the programming language. This
eases the implementation, makes it easier to maintain the correspondence between the design and
the implementation, enables better communication between designers and implementers, and
allows better tools to be built to support both designers and implementers.

For example, most design methods are concerned about dependencies between different parts of
a program (usually to minimize them and to ensure that they are well defined and understood). A
language that supports explicit interfaces between parts of a program can support such design
notions. It can guarantee that only the expected dependencies actually exist. Because many depen-
dencies are explicit in code written in such a language, tools that read a program to produce charts
of dependencies can be provided. This eases the job of designers and others that need to under-
stand the structure of a program. A programming language such as C++ can be used to decrease the
gap between design and program and consequently reduce the scope for confusion and misunder-
standings.

The key notion of C++ is that of a class. A C++ class is a type. Together with namespaces,
classes are also a primary mechanism for information hiding. Programs can be specified in terms
of user-defined types and hierarchies of such user-defined types. Both built-in and user-defined
types obey statically checked type rules. Virtual functions provide a mechanism for run-time bind-
ing without breaking the static type rules. Templates support the design of parameterized types.
Exceptions provide a way of making error handling more regular. These C++ features can be used
without incurring overhead compared to C programs. These are the first-order properties of C++

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2 Design and Programming Language 725

that must be understood and considered by a designer. In addition, generally available major
libraries– such as matrix libraries, database interfaces, graphical user interface libraries, and con-
currency support libraries– can strongly affect design choices.

Fear of novelty sometimes leads to sub-optimal use of C++. So does misapplication of lessons
from other languages, systems, and application areas. Poor design tools can also warp designs.
Five ways designers fail to take advantage of language features and fail to respect limitations are
worth mentioning:

[1] Ignore classes and express the design in a way that constrains implementers to use the C
subset only.

[2] Ignore derived classes and virtual functions and use only the data abstraction subset.
[3] Ignore the static type checking and express the design in such a way that implementers are

constrained to simulate dynamic type checking.
[4] Ignore programming and express systems in a way that aims to eliminate programmers.
[5] Ignore everything except class hierarchies.

These variants are typical for designers with
[1] a C, traditional CASE, or structured design background,
[2] an Ada83, Visual Basic, or data abstraction background,
[3] a Smalltalk or Lisp background,
[4] a nontechnical or very specialized background,
[5] a background with heavy emphasis on ‘‘pure’’ object-oriented programming,

respectively. In each case, one must wonder if the implementation language was well chosen, if the
design method was well chosen, or if the designer had failed to adapt to the tool in hand.

There is nothing unusual or shameful in such a mismatch. It is simply a mismatch that delivers
sub-optimal designs and imposes unnecessary burdens on programmers. It does the same to
designers when the conceptual framework of the design method is noticeably poorer than C++’s
conceptual framework. Therefore, we avoid such mismatches wherever possible.

The following discussion is phrased as answers to objections because that is the way it often
occurs in real life.

24.2.1 Ignoring Classes [lang.ignore.class]

Consider design that ignores classes. The resulting C++ program will be roughly equivalent to the
C program that would have resulted from the same design process– and this program would again
be roughly equivalent to the COBOL program that would have resulted from the same design pro-
cess. In essence, the design has been made ‘‘programming language independent’’ at the cost of
forcing the programmer to code in the common subset of C and COBOL. This approach does have
advantages. For example, the strict separation of data and code that results makes it easy to use tra-
ditional databases that are designed for such programs. Because a minimal programming language
is used, it would appear that less skill– or at least different skills– would be required from pro-
grammers. For many applications– say, a traditional sequential database update program– this
way of thinking is quite reasonable, and the traditional techniques developed over decades are ade-
quate for the job.

However, suppose the application differs sufficiently from traditional sequential processing of
records (or characters) or the complexity involved is higher– say, in an interactive CASE system.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

726 Design and Programming Chapter 24

The lack of language support for data abstraction implied by the decision to ignore classes will
hurt. The inherent complexity will show up in the application somewhere, and if the system is
implemented in an impoverished language, the code will not reflect the design directly. The pro-
gram will have too many lines of source code, lack type checking, and will in general not be amen-
able to tools. This is the prescription for a maintenance nightmare.

A common band-aid for this problem is to build specific tools to support the notions of the
design method. These tools then provide higher-level constructs and checking to compensate for
deficiencies of the (deliberately impoverished) implementation language. Thus, the design method
becomes a special-purpose and typically corporate-owned programming language. Such program-
ming languages are in most contexts poor substitutes for a widely available, general-purpose pro-
gramming language supported by suitable design tools.

The most common reason for ignoring classes in design is simple inertia. Traditional program-
ming languages don’t support the notion of a class, and traditional design techniques reflect this
deficiency. The most common focus of design has been the decomposition of the problems into a
set of procedures performing required actions. This notion, called procedural programming in
Chapter 2, is in the context of design often calledfunctional decomposition. A common question
is, ‘‘Can we use C++ together with a design method based on functional decomposition?’’ You
can, but you will most likely end up using C++ as simply a better C and will suffer the problems
mentioned previously. This may be acceptable in a transition period, for already completed
designs, and for subsystems in which classes do not appear to offer significant benefits (given the
experience of the individuals involved at this time). For the longer term and in general, however,
the policy against large-scale use of classes implied by functional decomposition is not compatible
with effective use of C++ or any other language that has support for abstraction.

The procedure-oriented and object-oriented views of programming are fundamentally different
and typically lead to radically different solutions to the same problem. This observation is as true
for the design phase as it is for the implementation phase: you can focus the design on the actions
taken or on the entities represented, but not simultaneously on both.

So why prefer ‘‘object-oriented design’’ over the traditional design methods based on func-
tional decomposition? A first-order answer is that functional decomposition leads to insufficient
data abstraction. From this, it follows that the resulting design is

– less resilient to change,
– less amenable to tools,
– less suited for parallel development, and
– less suited for concurrent execution.

The problem is that functional decomposition causes interesting data to become global because
when a system is structured as a tree of functions, any data accessed by two functions must be glo-
bal to both. This ensures that ‘‘interesting’’ data bubbles up toward the root of the tree as more and
more functions require access to it (as ever in computing, trees grow from the root down). Exactly
the same process can be seen in single-rooted class hierarchies, in which ‘‘interesting’’ data and
functions tend to bubble up toward a root class (§24.4). Focussing on the specification of classes
and the encapsulation of data addresses this problem by making the dependencies between different
parts of a program explicit and tractable. More important, though, it reduces the number of depen-
dencies in a system by improving locality of reference to data.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2.1 Ignoring Classes 727

However, some problems are best solved by writing a set of procedures. The point of an
‘‘object-oriented’’ approach to design is not that there should never be any nonmember functions in
a program or that no part of a system may be procedure-oriented. Rather, the key point is to decou-
ple different parts of a program to better reflect the concepts of the application. Typically, that is
best done when classes, not functions, are the primary focus on the design effort. The use of a pro-
cedural style should be a conscious decision and not simply a default. Both classes and procedures
should be used appropriately relative to the application and not just as artifacts of an inflexible
design method.

24.2.2 Avoiding Inheritance [lang.avoid.hier]

Consider design that avoids inheritance. The resulting programs simply fail to take advantage of a
key C++ feature, while still reaping many benefits of C++ compared to C, Pascal, Fortran, COBOL,
etc. Common reasons for doing this– apart from inertia– are claims that ‘‘inheritance is an imple-
mentation detail,’’ ‘‘inheritance violates information hiding,’’ and ‘‘inheritance makes cooperation
with other software harder.’’

Considering inheritance merely an implementation detail ignores the way that class hierarchies
can directly model key relationships between concepts in the application domain. Such relation-
ships should be explicit in the design to allow designers to reason about them.

A strong case can be made for excluding inheritance from the parts of a C++ program that must
interface directly with code written in other languages. This is, however,not a sufficient reason for
avoiding the use of inheritance throughout a system; it is simply a reason for carefully specifying
and encapsulating a program’s interface to ‘‘the outer world.’’ Similarly, worries about compro-
mising information hiding through the use of inheritance (§24.3.2.1) are a reason to be careful with
the use of virtual functions and protected members (§15.3). They are not a reason for general
avoidance.

In many cases, there is no real advantage to be gained from inheritance. However, in a large
project a policy of ‘‘no inheritance’’ will result in a less comprehensible and less flexible system in
which inheritance is ‘‘faked’’ using more traditional language and design constructs. Further, I
suspect that despite such a policy, inheritance will eventually be used anyway because C++ pro-
grammers will find convincing arguments for inheritance-based designs in various parts of the sys-
tem. Therefore, a ‘‘no inheritance’’ policy will ensure only that a coherent overall architecture will
be missing and will restrict the use of class hierarchies to specific subsystems.

In other words, keep an open mind. Class hierarchies are not an essential part of every good
program, but in many cases they can help in both the understanding of the application and the
expression of a solution. The fact that inheritance can be misused and overused is a reason for cau-
tion; it is a not reason for prohibition.

24.2.3 Ignoring Static Type Checking [lang.type]

Consider design that ignores static type checking. Commonly stated reasons to ignore static type
checking in the design phase are that ‘‘types are an artifact of the programming language,’’ that ‘‘it
is more natural to think about objects without bothering about types,’’ and that ‘‘static type check-
ing forces us to think about implementation issues too early.’’ This attitude is fine as far as it goes
and harmless up to a point. It is reasonable to ignore details of type checking in the design stage,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

728 Design and Programming Chapter 24

and it is often safe to ignore type issues almost completely in the analysis stage and early design
stages. However, classes and class hierarchies are very useful in the design. In particular, they
allow us to be specific about concepts, allow us to be precise about their relationships, and help us
reason about the concepts. As the design progresses, this precision takes the form of increasingly
precise statements about classes and their interfaces.

It is important to realize that precisely-specified and strongly-typed interfaces are a fundamental
design tool. C++ was designed with this in mind. A strongly-typed interface ensures (up to a
point) that only compatible pieces of software can be compiled and linked together and thus allows
these pieces of software to make relatively strong assumptions about each other. These assump-
tions are guaranteed by the type system. The effect of this is to minimize the use of run-time tests,
thus promoting efficiency and causing significant reductions in the integration phase of multiperson
projects. In fact, strong positive experience with integrating systems that provide strongly-typed
interfaces is the reason integration isn’t a major topic of this chapter.

Consider an analogy. In the physical world, we plug gadgets together all the time, and a seem-
ingly infinite number of standards for plugs exists. The most obvious thing about these plugs is
that they are specifically designed to make it impossible to plug two gadgets together unless the
gadgets were designed to be plugged together, and then they can be connected only in the right
way. You cannot plug an electric shaver into a high-power socket. Had you been able to, you
would have ended up with a fried shaver or a fried shavee. Much ingenuity is expended on ensur-
ing that incompatible pieces of hardware cannot be plugged together. The alternative to using
many incompatible plugs is gadgets that protect themselves against undesirable behavior from gad-
gets plugged into their sockets. A surge protector is a good example of this. Because perfect com-
patibility cannot be guaranteed at the ‘‘plug compatibility level,’’ we occasionally need the more
expensive protection of circuitry that dynamically adapts to and/or protects from a range of inputs.

The analogy is almost exact. Static type checking is equivalent to plug compatibility, and
dynamic checking corresponds to protection/adaptation circuitry. If both checks fail– in either the
physical world or the software world– serious damage can result. In large systems, both forms of
checking are used. In the early stages of a design, it may be reasonable simply to say, ‘‘These two
gadgets should be plugged together.’’ However, it soon becomes relevant exactly how they should
be plugged together. What guarantees does the plug provide about behavior? What error condi-
tions are possible? What are the first-order cost estimates?

The use of ‘‘static typing’’ is not limited to the physical world. The use of units (for example,
meters, kilograms, and seconds) to prevent the mixing of incompatible entities is pervasive in phy-
sics and engineering.

In the description of the design steps in §23.4.3, type information enters the picture in Step 2
(presumably after being superficially considered in Step 1) and becomes a major issue in Step 4.

Statically-checked interfaces are the prime vehicle for ensuring cooperation between C++ soft-
ware developed by different groups. The documentation of these interfaces (including the exact
types involved) is the primary means of communication between separate groups of programmers.
These interfaces are one of the most important outputs of the design process and a focus of commu-
nication between designers and programmers.

Ignoring type issues when considering interfaces leads to designs that obscure the structure of
the program and postpone error detection until run time. For example, an interface can be specified
in terms of self-identifying objects:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2.3 Ignoring Static Type Checking 729

/ / Example assuming dynamic type checking instead of static checking:

S St ta ac ck k s s; / / Stack can hold pointers to objects of any type

v vo oi id d f f()
{

s s. p pu us sh h(n ne ew w S Sa aa ab b9 90 00 0) ;
s s. p pu us sh h(n ne ew w S Sa aa ab b3 37 7B B) ;

s s. p po op p()-> t ta ak ke eo of ff f() ; / / fine: a Saab 37B is a plane
s s. p po op p()-> t ta ak ke eo of ff f() ; / / run-time error: car cannot take off

}

This is a severe underspecification of the interface (ofS St ta ac ck k: : p pu us sh h()) that forces dynamic check-
ing rather than static checking. The stacks s is meant to holdP Pl la an ne es, but that was left implicit in the
code, so it becomes the user’s obligation to make sure the requirement is upheld.

A more precise specification– a template plus virtual functions rather than unconstrained
dynamic type checking– moves error detection from run time to compile time:

S St ta ac ck k<P Pl la an ne e*> s s; / / Stack can hold pointers to Planes

v vo oi id d f f()
{

s s. p pu us sh h(n ne ew w S Sa aa ab b9 90 00 0) ; / / error: a Saab900 is not a Plane
s s. p pu us sh h(n ne ew w S Sa aa ab b3 37 7B B) ;

s s. p po op p()-> t ta ak ke eo of ff f() ; / / fine: a Saab 37B is a plane
s s. p po op p()-> t ta ak ke eo of ff f() ;

}

A similar point is made in §16.2.2. The difference in run time between dynamic checking and
static checking can be significant. The overhead of dynamic checking is usually a factor in the
range of 3 to 10.

One should not go to the other extreme, though. It is not possible to catch all errors by static
checking. For example, even the most thoroughly statically checked program is vulnerable to hard-
ware failures. See also §25.4.1 for an example where complete static checking would be infeasible.
However, the ideal is to have the vast majority of interfaces be statically typed with application-
level types; see §24.4.2.

Another problem is that a design can be perfectly reasonable in the abstract but can cause seri-
ous trouble because it fails to take into account limitations of a basic tool, in this case C++. For
example, a functionf f() that needs to perform an operationt tu ur rn n_ _r ri ig gh ht t() on an argument can do so
only provided all of its arguments are of a common type:

c cl la as ss s P Pl la an ne e {
/ / ...
v vo oi id d t tu ur rn n_ _r ri ig gh ht t() ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

730 Design and Programming Chapter 24

c cl la as ss s C Ca ar r {
/ / ...
v vo oi id d t tu ur rn n_ _r ri ig gh ht t() ;

};

v vo oi id d f f(X X* p p) / / what type should X be?
{

p p-> t tu ur rn n_ _r ri ig gh ht t() ;
/ / ...

}

Some languages (such as Smalltalk and CLOS) allow two types to be used interchangeably if they
have the same operations by relating every type through a common base and postponing name reso-
lution until run time. However, C++ (intentionally) supports this notion through templates and
compile-time resolution only. A non-template function can accept arguments of two types only if
the two types can be implicitly converted to a common type. Thus, in the previous exampleX X must
be a common base ofP Pl la an ne eandC Ca ar r (e.g., aV Ve eh hi ic cl le eclass).

Typically, examples inspired by notions alien to C++ canbe mapped into C++ by expressing the
assumptions explicitly. For example, givenP Pl la an ne e andC Ca ar r (without a common base), we can still
create a class hierarchy that allows us to pass an object containing aC Ca ar r or a P Pl la an ne e to f f(X X*)
(§25.4.1). However, doing this often requires an undesirable amount of mechanism and cleverness.
Templates are often a useful tool for such concept mappings. A mismatch between design notions
and C++ typically leads to ‘‘unnatural-looking’’ and inefficient code. Maintenance programmers
tend to dislike the non-idiomatic code that arises from such mismatches.

A mismatch between the design technique and the implementation language can be compared to
word-for-word translation between natural languages. For example, English with German grammar
is as awkward as German with English grammar, and both can be close to incomprehensible to
someone fluent in only one of those languages.

Classes in a program are the concrete representation of the concepts of the design. Conse-
quently, obscuring the relationships between the classes obscures the fundamental concepts of the
design.

24.2.4 Avoiding Programming [lang.prog]

Programming is costly and unpredictable compared to many other activities, and the resulting code
is often less than 100% reliable. Programming is labor-intensive and– for a variety of reasons–
most serious project delays manifest themselves by code not being ready to ship. So, why not elim-
inate programming as an activity altogether?

To many managers, getting rid of the arrogant, undisciplined, over-paid, technology-obsessed,
improperly-dressed, etc. programmers† would appear to be a significant added benefit. To a pro-
grammer, this suggestion may sound absurd. However, important problem areas with realistic
alternatives to traditional programming do exist. For specific areas, it is possible to generate code
directly from a high-level specification. In other areas, code can be generated by manipulating
shapes on a screen. For example, useful user interfaces can be constructed by direct manipulation

† Yes, I’m a programmer.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2.4 Avoiding Programming 731

in a tiny fraction of the time it would take to construct the same interface by writing traditional
code. Similarly, database layouts and the code for accessing data according to such layouts can be
generated from specifications that are far simpler than the code needed to express those operations
directly in C++ or in any other general-purpose programming language. State machines that are
smaller, faster, and more correct than most programmers could produce can be generated from
specifications or by a direct manipulation interface.

These techniques work well in specific areas where there is either a sound theoretical founda-
tion (e.g., math, state machines, and relational databases) or where a general framework exists into
which small application fragments can be embedded (e.g., graphical user interfaces, network simu-
lations, and database schema). The obvious usefulness of these techniques in limited– and typi-
cally crucial– areas can tempt people to think that the elimination of traditional programming by
these techniques is ‘‘just around the corner.’’ It is not. The reason is that expanding specification
techniques outside areas with sound theoretical frameworks implies that the complexity of a
general-purpose programming language would be needed in the specification language. This
defeats the purpose of a clean and well-founded specification language.

It is sometimes forgotten that the framework that allows elimination of traditional programming
in an area is a system or library that has been designed, programmed, and tested in the traditional
way. In fact, one popular use of C++ and the techniques described in this book is to design and
build such systems.

A compromise that provides a small fraction of the expressiveness of a general-purpose lan-
guage is the worst of both worlds when applied outside a restricted application domain. Designers
who stick to a high-level modeling point of view are annoyed by the added complexity and produce
specifications from which horrendous code is produced. Programmers who apply ordinary pro-
gramming techniques are frustrated by the lack of language support and generate better code only
by excessive effort and by abandoning high-level models.

I see no signs that programming as an activity can be successfully eliminated outside areas that
either have well-founded theoretical bases or in which the basic programming is provided by a
framework. In either case, there is a dramatic drop in the effectiveness of the techniques as one
leaves the original framework and attempts more general-purpose work. Pretending otherwise is
tempting and dangerous. Conversely, ignoring the high-level specification techniques and the
direct-manipulation techniques in domains in which they are well-founded and reasonably mature
would be a folly.

Designing tools, libraries, and frameworks is one of the highest forms of design and program-
ming. Constructing a useful mathematically-based model of an application area is one of the high-
est forms of analysis. Thus, providing a tool, language, framework, etc., that makes the result of
such work available to thousands is a way for programmers and designers to escape the trap of
becoming craftsmen of one-of-a-kind artifacts.

It is most important that a specification system or a foundation library be able to interface effec-
tively with a general-purpose programming language. Otherwise, the framework provided is inher-
ently limiting. This implies that specification systems and direct-manipulation systems that gener-
ate code at a suitable high level into an accepted general-purpose programming language have a
great advantage. A proprietary language is a long-term advantage to its provider only. If the code
generated is so low-level that general code added must be written without the benefits of abstrac-
tion, then reliability, maintainability, and economy are lost. In essence, a generation system should

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

732 Design and Programming Chapter 24

be designed to combine the strengths of higher-level specifications and higher-level programming
languages. To exclude one or the other is to sacrifice the interests of system builders to the inter-
ests of tool providers. Successful large systems are multilevel and modular and evolve over time.
Consequently, successful efforts to produce such systems involve a variety of languages, libraries,
tools, and techniques.

24.2.5 Using Class Hierarchies Exclusively [lang.pure]

When we find that something new actually works, we often go a bit overboard and apply it indis-
criminately. In other words, a great solution to some problems often appears to bethe solution to
almost all problems. Class hierarchies and operations that are polymorphic on their (one) object
provide a great solution to many problems. However, not every concept is best represented as a
part of a hierarchy and not every software component is best represented as a class hierarchy.

Why not? A class hierarchy expresses relationships between its classes and a class represents a
concept. Now what is the common relationship between a smile, the driver for my CD-ROM
reader, a recording of Richard Strauss’ Don Juan, a line of text, a satellite, my medical records, and
a real-time clock? Placing them all in a single hierarchy when their only shared property is that
they are programming artifacts (they are all ‘‘objects’’) is of little fundamental value and can cause
confusion (§15.4.5). Forcing everything into a single hierarchy can introduce artificial similarities
and obscure real ones. A hierarchy should be used only if analysis reveals conceptual commonality
or if design and programming discover useful commonality in the structures used to implement the
concepts. In the latter case, we have to be very careful to distinguish genuine commonality (to be
reflected as subtyping by public inheritance) and useful implementation simplifications (to be
reflected as private inheritance; §24.3.2.1).

This line of thinking leads to a program that has several unrelated or weakly-related class hier-
archies, each representing a set of closely related concepts. It also leads to the notion of a concrete
class (§25.2) that is not part of a hierarchy because placing such a class in a hierarchy would com-
promise its performance and its independence of the rest of the system.

To be effective, most critical operations on a class that is part of a class hierarchy must be vir-
tual functions. Furthermore, much of that class’ data must be protected rather than private. This
makes it vulnerable to modification from further derived classes and can seriously complicate test-
ing. Where stricter encapsulation makes sense from a design point of view, non-virtual functions
and private data should be used (§24.3.2.1).

Having one argument of an operation (the one designating ‘‘the object’’) special can lead to
contorted designs. When several arguments are best treated equally, an operation is best repre-
sented as a nonmember function. This does not imply that such functions should be global. In fact,
almost all such free-standing functions should be members of a namespace (§24.4).

24.3 Classes[lang.class]

The most fundamental notion of object-oriented design and programming is that the program is a
model of some aspects of reality. The classes in the program represent the fundamental concepts of
the application and, in particular, the fundamental concepts of the ‘‘reality’’ being modeled. Real-
world objects and artifacts of the implementation are represented by objects of these classes.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3 Classes 733

The analysis of relationships between classes and within parts of a class is central to the design
of a system:

§24.3.2 Inheritance relationships
§24.3.3 Containment relationships
§24.3.5 Use relationships
§24.2.4 Programmed-in relationships
§24.3.7 Relationships within a class

Because a C++ class is a type, classes and the relationships between classes receive significant sup-
port from compilers and are generally amenable to static analysis.

To be relevant in a design, a class doesn’t just have to represent a useful concept; it must also
provide a suitable interface. Basically, the ideal class has a minimal and well-defined dependence
on the rest of the world and presents an interface that exposes the minimal amount of information
necessary to the rest of the world (§24.4.2).

24.3.1 What Do Classes Represent? [lang.what]

There are essentially two kinds of classes in a system:
[1] Classes that directly reflect the concepts in the application domain; that is, concepts that are

used by end-users to describe their problems and solutions
[2] Classes that are artifacts of the implementation; that is, concepts that are used by the design-

ers and programmers to describe their implementation techniques.
Some of the classes that are artifacts of the implementation may also represent real-world entities.
For example, the hardware and software resources of a system provide good candidates for classes
in an application. This reflects the fact that a system can be viewed from several viewpoints. This
implies that one person’s implementation detail is another person’s application. A well-designed
system will contain classes supporting logically separate views of the system. For example:

[1] Classes representing user-level concepts (e.g., cars and trucks)
[2] Classes representing generalizations of the user-level concepts (e.g. vehicles)
[3] Classes representing hardware resources (e.g., a memory management class)
[4] Classes representing system resources (e.g., output streams)
[5] Classes used to implement other classes (e.g., lists, queues, locks)
[6] Built-in data types and control structures.

In larger systems, keeping logically separate types of classes separate and maintaining separation
between several levels of abstraction becomes a challenge. A simple example can be considered to
have three levels of abstraction:

[1+2] Provide an application level view of the system
[3+4] Represent the machine on which the model runs
[5+6] Represent a low-level (programming language) view of the implementation.

The larger the system, the more levels of abstraction are typically needed for the description of the
system and the more difficult it becomes to define and maintain the levels. Note that such levels of
abstraction have direct counterparts in nature and in other types of human constructions. For exam-
ple, a house can be considered as consisting of

[1] atoms;
[2] molecules;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

734 Design and Programming Chapter 24

[3] lumber and bricks;
[4] floors, walls, and ceilings; and
[5] rooms.

As long as these levels of abstraction are kept separate, you can maintain a coherent view of the
house. However, if you mix them, absurdities arise. For example, the statement, ‘‘My house con-
sists of several thousand pounds of carbon, some complex polymers, about 5,000 bricks, two bath-
rooms, and 13 ceilings,’’ is silly. Given the abstract nature of software, the equivalent statement
about a complex system is not always recognized for what it is.

The translation of a concept in the application area into a class in a design is not a simple
mechanical operation. It often requires significant insights. Note that the concepts in an applica-
tion area are themselves abstractions. For example, ‘‘taxpayers,’’ ‘‘monks,’’ and ‘‘employees’’
don’t really exist in nature; such concepts are themselves labels put on individuals to classify them
relative to some system. The real or even the imagined world (literature, especially science fiction)
is sometimes simply a source of ideas for concepts that mutate radically in the transition into
classes. For example, the screen of my PC doesn’t really resemble my desktop despite its being
designed to support the desktop metaphor†, and the windows on my screen bear only the slightest
relation to the contraptions that let drafts into my office. The point about modeling reality is not to
slavishly follow what we see but rather to use it as a starting point for design, a source of inspira-
tion, and an anchor to hold on to when the intangible nature of software threatens to overcome our
ability to understand our programs.

A word of caution: beginners often find it hard to ‘‘find the classes,’’ but that problem is usu-
ally soon overcome without long-term ill effects. Next, however, often follows a phase in which
classes– and their inheritance relationships– seem to multiply uncontrollably. This can cause
long-term problems with the complexity, comprehensibility, and efficiency of the resulting pro-
gram. Not every minute detail needs to be represented by a distinct class, and not every relation-
ship between classes needs to be represented as an inheritance relationship. Try to remember that
the aim of a design is to model a system at anappropriatelevel of detail and atappropriatelevels
of abstraction. Finding a balance between simplicity and generality is not easy.

24.3.2 Class Hierarchies [lang.hier]

Consider simulating the traffic flow of a city to determine the likely times needed for emergency
vehicles to reach their destinations. Clearly, we need to represent cars, trucks, ambulances, fire
engines of various sorts, police cars, busses, etc. Inheritance comes into play because a real-world
concept does not exist in isolation; it exists with numerous relationships to other concepts. Without
understanding these relationships, we cannot understand the concepts. Consequently, a model that
does not represent such relationships does not adequately represent our concepts. That is, in our
programs we need classes to represent concepts, but that is not enough. We also need ways of rep-
resenting relationships between classes. Inheritance is one powerful way of representing hierarchi-
cal relationships directly. In our example, we would probably consider emergency vehicles special
and want also to distinguish between car-like and truck-like vehicles. This would yield a class hier-
archy along these lines:

† I wouldn’t be able to tolerate such a mess on my screen, anyway.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.2 Class Hierarchies 735

V Ve eh hi ic cl le e

C Ca ar r E Em me er rg ge en nc cy y T Tr ru uc ck k

P Po ol li ic ce e_ _c ca ar r A Am mb bu ul la an nc ce e F Fi ir re e_ _e en ng gi in ne e

H Ho oo ok k_ _a an nd d_ _l la ad dd de er r

..

Here,E Em me er rg ge en nc cy y represents the aspects of an emergency vehicle that are relevant to the simulation:
it can violate some traffic rules, has priority in intersections when on an emergency call, it is under
control of a dispatcher, etc.

Here is the C++ version:

c cl la as ss s V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s C Ca ar r : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s T Tr ru uc ck k : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s P Po ol li ic ce e_ _c ca ar r : p pu ub bl li ic c C Ca ar r , p pr ro ot te ec ct te ed d E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s A Am mb bu ul la an nc ce e : p pu ub bl li ic c C Ca ar r , p pr ro ot te ec ct te ed d E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s F Fi ir re e_ _e en ng gi in ne e : p pu ub bl li ic c T Tr ru uc ck k , p pr ro ot te ec ct te ed d E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s H Ho oo ok k_ _a an nd d_ _l la ad dd de er r : p pu ub bl li ic c F Fi ir re e_ _e en ng gi in ne e { /* ... */ };

Inheritance is the highest level relationship that can be represented directly in C++ and the one that
figures largest in the early stages of a design. Often there is a choice between using inheritance to
represent a relationship and using membership. Consider an alternative notion of what it means to
be an emergency vehicle: a vehicle is an emergency vehicle if it displays a flashing light. This
would allow a simplification of the class hierarchy by replacing theE Em me er rg ge en nc cy y class by a member
in classV Ve eh hi ic cl le e:

V Ve eh hi ic cl le e { e ep pt tr r }

C Ca ar r T Tr ru uc ck k

P Po ol li ic ce e_ _c ca ar r A Am mb bu ul la an nc ce e F Fi ir re e_ _e en ng gi in ne e

H Ho oo ok k_ _a an nd d_ _l la ad dd de er r

..

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

736 Design and Programming Chapter 24

ClassE Em me er rg ge en nc cy y is now simply used as a member in classes that might need to act as emergency
vehicles:

c cl la as ss s E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s V Ve eh hi ic cl le e { p pr ro ot te ec ct te ed d: E Em me er rg ge en nc cy y* e ep pt tr r; /* ... */ }; / / better: provide proper interface to eptr
c cl la as ss s C Ca ar r : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s T Tr ru uc ck k : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s P Po ol li ic ce e_ _c ca ar r : p pu ub bl li ic c C Ca ar r { /* ... */ };
c cl la as ss s A Am mb bu ul la an nc ce e : p pu ub bl li ic c C Ca ar r { /* ... */ };
c cl la as ss s F Fi ir re e_ _e en ng gi in ne e : p pu ub bl li ic c T Tr ru uc ck k { /* ... */ };
c cl la as ss s H Ho oo ok k_ _a an nd d_ _l la ad dd de er r : p pu ub bl li ic c F Fi ir re e_ _e en ng gi in ne e { /* ... */ };

Here, a vehicle is an emergency vehicle ifV Ve eh hi ic cl le e: : e ep pt tr r is nonzero. The ‘‘plain’’ cars and trucks
are initialized withV Ve eh hi ic cl le e: : e ep pt tr r zero; the others are initialized withV Ve eh hi ic cl le e: : e ep pt tr r nonzero. For
example:

C Ca ar r: : C Ca ar r() / / Car constructor
{

e ep pt tr r = 0 0;
}

P Po ol li ic ce e_ _c ca ar r: : P Po ol li ic ce e_ _c ca ar r() / / Police_car constructor
{

e ep pt tr r = n ne ew w E Em me er rg ge en nc cy y;
}

Defining things this way enables a simple conversion of an emergency vehicle to an ordinary vehi-
cle and vice versa:

v vo oi id d f f(V Ve eh hi ic cl le e* p p)
{

d de el le et te e p p-> e ep pt tr r;
p p-> e ep pt tr r = 0 0; / / no longer an emergency vehicle

/ / ...

p p-> e ep pt tr r = n ne ew w E Em me er rg ge en nc cy y; / / an emergency vehicle again
}

So, which variant of the class hierarchy is best? The general answer is, ‘‘The program that most
directly models the aspects of the real world that we are interested in is the best.’’ That is, in
choosing between models we should aim for greater realism under the inevitable constraints of effi-
ciency and simplicity. In this case, the easy conversion between ordinary vehicles and emergency
vehicles seems unrealistic to me. Fire engines and ambulances are purpose-built vehicles manned
by trained personnel and operated using dispatch procedures requiring specialized communication
equipment. This view indicates that being an emergency vehicle should be a fundamental concept
and represented directly in the program to improve type checking and other uses of tools. Had we
been modeling a place where the roles of vehicles were less firmly defined– say, an area where
private vehicles were routinely used to carry emergency personnel to accident sites and where com-
munication was primarily based on portable radios– the other way of modeling the system might
have been more appropriate.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.2 Class Hierarchies 737

For people who consider traffic simulations esoteric, it might be worth pointing out that such
tradeoffs between inheritance and membership almost invariably occur in a design. The scrollbar
example in §24.3.3 is an equivalent example.

24.3.2.1 Dependencies within a Class Hierarchy [lang.internal]

Naturally, a derived class depends on its base classes. It is less often appreciated that the opposite
can also be true†. If a class has a virtual function, the class depends on derived classes to imple-
ment part of its functionality whenever a derived class overrides that function. If a member of a
base class itself calls one of the class’ virtual functions, then the base class depends on its derived
classes for its own implementation. Similarly, if a class uses a protected member, then it is again
dependent on its derived classes for its own implementation. Consider:

c cl la as ss s B B {
/ / ...

p pr ro ot te ec ct te ed d:
i in nt t a a;

p pu ub bl li ic c:
v vi ir rt tu ua al l i in nt t f f() ;
i in nt t g g() { i in nt t x x = f f() ; r re et tu ur rn n x x- a a; }

};

What doesg g() do? The answer critically depends on the definition off f() in some derived class.
Here is a version that will ensure thatg g() returns1 1:

c cl la as ss s D D1 1 : p pu ub bl li ic c B B {
i in nt t f f() { r re et tu ur rn n a a+1 1; }

};

and a version that makesg g() write ‘‘H He el ll lo o, w wo or rl ld d! ’’ and return0 0:

c cl la as ss s D D2 2 : p pu ub bl li ic c B B {
i in nt t f f() { c co ou ut t<<" H He el ll lo o, w wo or rl ld d! \ \n n"; r re et tu ur rn n a a; }

};

This example illustrates one of the most important points about virtual functions. Why is it silly?
Why wouldn’t a programmer ever write something like that? The answer is that a virtual function
is part of an interface to a base class, and that class can supposedly be used without knowledge of
the classes derived from it. Consequently, it must be possible to describe the expected behavior of
an object of the base class in such a way that programs can be written without knowledge of the
derived classes. Every class that overrides the virtual function must implement a variant of that
behavior. For example, the virtual functionr ro ot ta at te e() of a S Sh ha ap pe e class rotates a shape. The
r ro ot ta at te e() functions for derived classes such asC Ci ir rc cl le e and T Tr ri ia an ng gl le e must rotate objects of their
respective type; otherwise, a fundamental assumption about classS Sh ha ap pe e is violated. No such
assumption about behavior is made for classB B or its derived classesD D1 1 andD D2 2; thus, the example
is nonsensical. Even the namesB B, D D1 1, D D2 2, f f, andg g were chosen to obscure any possible meanings.

† This observation has been summarized as: ‘‘Insanity is hereditary. You get it from your children.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

738 Design and Programming Chapter 24

The specification of the expected behavior of virtual functions is amajor focus of class design.
Choosing good names for classes and functions is important– and not always easy.

Is a dependency on unknown (possibly yet unwritten) derived classes good or bad? Naturally,
that depends on the intent of the programmer. If the intent is to isolate a class from all external
influences so that it can be proven to behave in a specific way, then protected members and virtual
functions are best avoided. If, however, the intent is to provide a framework into which a later pro-
grammer (such as the same programmer a few weeks later) can add code, then virtual functions are
often an elegant mechanism for achieving this; and protected member functions have proven conve-
nient for supporting such use. This technique is used in the stream I/O library (§21.6) and was
illustrated by the final version of theI Iv va al l_ _b bo ox x hierarchy (§12.4.2).

If a v vi ir rt tu ua al l function is meant to be used only indirectly by a derived class, it can be leftp pr ri iv va at te e.
For example, consider a simple buffer template:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s B Bu uf ff fe er r {
p pu ub bl li ic c:

v vo oi id d p pu ut t(T T) ; / / call overflow(T) if buffer is full
T T g ge et t() ; / / call underflow() if buffer is empty
/ / ...

p pr ri iv va at te e:
v vi ir rt tu ua al l i in nt t o ov ve er rf fl lo ow w(T T) ;
v vi ir rt tu ua al l i in nt t u un nd de er rf fl lo ow w() ;
/ / ...

};

Thep pu ut t() andg ge et t() functions callv vi ir rt tu ua al l functionso ov ve er rf fl lo ow w() andu un nd de er rf fl lo ow w() , respectively.
A user can now implement a variety of buffer types to suit a variety of needs by overridingo ov ve er r- -
f fl lo ow w() andu un nd de er rf fl lo ow w() :

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Ci ir rc cu ul la ar r_ _b bu uf ff fe er r : p pu ub bl li ic c B Bu uf ff fe er r<T T> {
i in nt t o ov ve er rf fl lo ow w(T T) ; / / wrap around if full
i in nt t u un nd de er rf fl lo ow w() ;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s E Ex xp pa an nd di in ng g_ _b bu uf ff fe er r : p pu ub bl li ic c B Bu uf ff fe er r<T T> {
i in nt t o ov ve er rf fl lo ow w(T T) ; / / increase buffer size if full
i in nt t u un nd de er rf fl lo ow w() ;
/ / ...

};

Only if a derived class needed to callo ov ve er rf fl lo ow w() andu un nd de er rf fl lo ow w() directly would these functions
need to bep pr ro ot te ec ct te ed d rather thanp pr ri iv va at te e.

24.3.3 Containment Relationships [lang.contain]

Where containment is used, there are two major alternatives for representing an object of a classX X:
[1] Declare a member of typeX X.
[2] Declare a member of typeX X* or typeX X&.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.3 Containment Relationships 739

If the value of the pointer is never changed, these alternatives are equivalent, except for efficiency
issues and the way you write constructors and destructors:

c cl la as ss s X X {
p pu ub bl li ic c:

X X(i in nt t) ;
/ / ...

};

c cl la as ss s C C {
X X a a;
X X* p p;
X X& r r;

p pu ub bl li ic c:
C C(i in nt t i i, i in nt t j j, i in nt t k k) : a a(i i) , p p(n ne ew w X X(j j)) , r r(* n ne ew w X X(k k)) { }
~C C() { d de el le et te e p p; d de el le et te e &r r; }

};

In such cases, membership of the object itself, as in the case ofC C: : a a, is usually preferable because
it is the most efficient in time, space, and keystrokes. It is also less error-prone because the connec-
tion between the contained object and the containing object is covered by the rules of construction
and destruction (§10.4.1, §12.2.2, §14.4.1). However, see also §24.4.2 and §25.7.

The pointer solution should be used when there is a need to change the pointer to the ‘‘con-
tained’’ object during the life of the ‘‘containing’’ object. For example:

c cl la as ss s C C2 2 {
X X* p p;

p pu ub bl li ic c:
C C2 2(i in nt t i i) : p p(n ne ew w X X(i i)) { }
~C C2 2() { d de el le et te e p p; }

X X* c ch ha an ng ge e(X X* q q)
{

X X* t t = p p;
p p = q q;
r re et tu ur rn n t t;

}
};

Another reason for using a pointer member is to allow the ‘‘contained’’ member to be supplied as
an argument:

c cl la as ss s C C3 3 {
X X* p p;

p pu ub bl li ic c:
C C3 3(X X* q q) : p p(q q) { }
/ / ...

};

By having objects contain pointers to other objects, we create what are often calledobject
hierarchies. This is an alternative and complementary technique to using class hierarchies. As
shown in the emergency vehicle example in §24.3.2, it is often a tricky design issue to choose

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

740 Design and Programming Chapter 24

between representing a property of a class as a base class or representing it as a member. A need to
override is an indication that the former is the better choice. Conversely, a need to be able to allow
the property to be represented by a variety of types is an indication that the latter is the better
choice. For example:

c cl la as ss s X XX X : p pu ub bl li ic c X X { /* ... */ };

c cl la as ss s X XX XX X : p pu ub bl li ic c X X { /* ... */ };

v vo oi id d f f()
{

C C3 3* p p1 1 = n ne ew w C C3 3(n ne ew w X X) ; / / C3 ‘‘contains’’ an X
C C3 3* p p2 2 = n ne ew w C C3 3(n ne ew w X XX X) ; / / C3 ‘‘contains’’ an XX
C C3 3* p p3 3 = n ne ew w C C3 3(n ne ew w X XX XX X) ; / / C3 ‘‘contains’’ an XXX
/ / ...

}

This could not be modeled by a derivation ofC C3 3 from X X or by C C3 3 having a member of typeX X,
because the exact type of a member needs to be used. This is important for classes with virtual
functions, such as a shape class (§2.6.2) or an abstract set class (§25.3).

References can be used to simplify classes based on pointer membership when only one object
is referred to during the life of the containing object. For example:

c cl la as ss s C C4 4 {
X X& r r;

p pu ub bl li ic c:
C C4 4(X X& q q) : r r(q q) { }
/ / ...

};

Pointer and reference members are also needed when an object needs to be shared:

X X* p p = n ne ew w X XX X;
C C4 4 o ob bj j1 1(* p p) ;
C C4 4 o ob bj j2 2(* p p) ; / / obj1 and obj2 now share the new XX

Naturally, management of shared objects requires extra care– especially in concurrent systems.

24.3.4 Containment and Inheritance [lang.cont.hier]

Given the importance of inheritance relationships, it is not surprising that they are frequently
overused and misunderstood. When a classD D is publicly derived from another classB B, it is often
said that aD D is aB B:

c cl la as ss s B B { /* ... */ };
c cl la as ss s D D : p pu ub bl li ic c B B { /* ... */ }; / / D is a kind of B

Alternatively, this is expressed by saying that inheritance is anis-a relationship or– somewhat
more precisely– that aD D is a kind of B B. In contrast, a classD D that has a member of another classB B
is often said tohaveaB B or containaB B. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.4 Containment and Inheritance 741

c cl la as ss s D D { / / a D contains a B
p pu ub bl li ic c:

B B b b;
/ / ...

};

Alternatively, this is expressed by saying that membership is ahas-arelationship.
For given classesB B andD D, how do we choose between inheritance and membership? Consider

an A Ai ir rp pl la an ne e and anE En ng gi in ne e. Novices often wonder if it might be a good idea to derive classA Ai ir r- -
p pl la an ne e from E En ng gi in ne e. This is a bad idea, though, because anA Ai ir rp pl la an ne e is not anE En ng gi in ne e; it hasan
E En ng gi in ne e. One way of seeing this is to consider if anA Ai ir rp pl la an ne e might have two or more engines.
Because that seems feasible (even if we are considering a program in which all of ourA Ai ir rp pl la an ne es
will be single-engine ones), we should use membership rather than inheritance. The question ‘‘can
it have two?’’ is useful in many cases when there is doubt. As usual, it is the intangible nature of
software that makes this discussion relevant. Had all classes been as easy to visualize asA Ai ir rp pl la an ne e
andE En ng gi in ne e, trivial mistakes like deriving anA Ai ir rp pl la an ne e from anE En ng gi in ne e would be easily avoided.
Such mistakes are, however, quite frequent– particularly among people who consider derivation as
simply another mechanism for combining programming-language-level constructs. Despite the
conveniences and shorthand notation that derivation provides, it should be used almost exclusively
to express relationships that are well defined in a design. Consider:

c cl la as ss s B B {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d f f() ;
v vo oi id d g g() ;

};

c cl la as ss s D D1 1 { / / a D1 contains a B
p pu ub bl li ic c:

B B b b;
v vo oi id d f f() ; / / does not override b.f()

};

v vo oi id d h h1 1(D D1 1* p pd d)
{

B B* p pb b = p pd d; / / error: no D1* to B* conversion
p pb b = &p pd d-> b b;
p pb b-> g g() ; / / calls B::g()
p pd d-> g g() ; / / error: D1 doesn’t have a member g()
p pd d-> b b. g g() ;
p pb b-> f f() ; / / calls B::f (not overridden by D1::f())
p pd d-> f f() ; / / calls D1::f()

}

Note that there is no implicit conversion from a class to one of its members and that a class contain-
ing a member of another class does not override the virtual functions of that member. This con-
trasts with the public derivation case:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

742 Design and Programming Chapter 24

c cl la as ss s D D2 2 : p pu ub bl li ic c B B { / / a D2 is a B
p pu ub bl li ic c:

v vo oi id d f f() ; / / overrides B::f()
};

v vo oi id d h h2 2(D D2 2* p pd d)
{

B B* p pb b = p pd d; / / ok: implicit D2* to B* conversion
p pb b-> g g() ; / / calls B::g()
p pd d-> g g() ; / / calls B::g()
p pb b-> f f() ; / / virtual call: invokes D2::f()
p pd d-> f f() ; / / invokes D2::f()

}

The notational convenience provided by theD D2 2 example compared to theD D1 1 example is a factor
that can lead to overuse. It should be remembered, though, that there is a cost of increased depen-
dency betweenB B andD D2 2 to be paid for that notational convenience (see §24.3.2.1). In particular, it
is easy to forget the implicit conversion fromD D2 2 to B B. Unless such conversions are an acceptable
part of the semantics of your classes,public derivation is to be avoided. When a class is used to
represent a concept and derivation is used to represent anis-a relationship, such conversions are
most often exactly what is desired.

There are cases in which you would like inheritance but cannot afford to have the conversion
happen. Consider writing a classC Cf fi ie el ld d (controlled field) that– in addition to whatever else it does
– provides run-time access control for another classF Fi ie el ld d. At first glance, definingC Cf fi ie el ld d by
deriving it fromF Fi ie el ld d seems just right:

c cl la as ss s C Cf fi ie el ld d : p pu ub bl li ic c F Fi ie el ld d { /* ... */ };

This expresses the notion that aC Cf fi ie el ld d really is a kind ofF Fi ie el ld d, allows notational convenience
when writing aC Cf fi ie el ld d function that uses a member of theF Fi ie el ld d part of theC Cf fi ie el ld d, and– most
importantly– allows aC Cf fi ie el ld d to overrideF Fi ie el ld d virtual functions. The snag is that theC Cf fi ie el ld d* to
F Fi ie el ld d* conversion implied in the declaration ofC Cf fi ie el ld d defeats all attempts to control access to the
F Fi ie el ld d:

v vo oi id d g g(C Cf fi ie el ld d* p p)
{

* p p = " a as sd df f"; / / access to Field controlled by Cfield’s assignment operator:
/ / p– >Cfield::operator=("asdf")

F Fi ie el ld d* q q = p p; / / implicit Cfield* to Field* conversion
* q q = " a as sd df f"; / / OOPS! no control

}

A solution would be to defineC Cf fi ie el ld d to have aF Fi ie el ld d as a member, but doing that precludesC Cf fi ie el ld d
from overridingF Fi ie el ld d virtual functions. A better solution would be to useprivatederivation:

c cl la as ss s C Cf fi ie el ld d : p pr ri iv va at te e F Fi ie el ld d { /* ... */ };

From a design perspective, private derivation is equivalent to containment, except for the (occa-
sionally essential) issue of overriding. An important use of this is the technique of deriving a class

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.4 Containment and Inheritance 743

publicly from an abstract base class that defines an interface and using private or protected deriva-
tion from a concrete class to provide an implementation (§2.5.4, §12.3, §25.3). Because the inheri-
tance implied inprivateandprotectedderivation is an implementation detail that is not reflected in
the type of the derived class, it is sometimes calledimplementation inheritanceand contrasted to
public derivation, whereby the interface of the base class is inherited and the implicit conversion to
the base type is allowed. The latter is sometimes referred to assubtyping, or interface inheritance.

Another way of stating this is to point out that an object of a derived class should be usable
wherever an object of its public base class is. This is sometimes called ‘‘the Liskov Substitution
Principle’’ (§23.6[Liskov,1987]). The public/protected/private distinction supports this directly for
polymorphic types manipulated through pointers and references.

24.3.4.1 Member/Hierarchy Tradeoffs [lang.mem]

To further examine the design choices involving containment and inheritance, consider how to rep-
resent a scrollbar in an interactive graphics system and how to attach a scrollbar to a window. We
need two kinds of scrollbars: horizontal and vertical. We can represent this either by two types–
H Ho or ri iz zo on nt ta al l_ _s sc cr ro ol ll lb ba ar r andV Ve er rt ti ic ca al l_ _s sc cr ro ol ll lb ba ar r – or by a singleS Sc cr ro ol ll lb ba ar r type that takes an argu-
ment that says whether its layout is horizontal or vertical. The former choice implies the need for a
third type, the plainS Sc cr ro ol ll lb ba ar r, as the base class of the two specific scollbar types. The latter choice
implies the need for an extra argument to the scrollbar type and the need to choose values to repre-
sent the two kinds of scrollbars. For example:

e en nu um m O Or ri ie en nt ta at ti io on n { h ho or ri iz zo on nt ta al l, v ve er rt ti ic ca al l };

Once a choice is made, it determines the kind of change needed to extend the system. In the scroll-
bar example, we might want to introduce a third type of scrollbar. We may originally have thought
that there could be only two kinds of scrollbars (‘‘after all, a window has only two dimensions’’).
However, in this case– as in most– there are possible extensions that surface as redesign issues.
For example, one might like to use a ‘‘navigation button’’ instead of two scrollbars. Such a button
would cause scrolling in different directions depending on where a user pressed it. Pressing the
middle of the top would cause ‘‘scrolling up,’’ pressing the middle left would cause ‘‘scrolling
left,’’ while pressing the top-left corner would cause ‘‘scrolling up and left.’’ Such buttons are not
uncommon. They can be seen as a refinement of the notion of a scrollbar that is particularly suited
to applications in which the information scrolled over isn’t plain text but rather more general sorts
of pictures.

Adding a navigation button to a program with a three-scrollbar class hierarchy involves adding
a new class, but it requires no changes to the old scrollbar code:

S Sc cr ro ol ll lb ba ar r

H Ho or ri iz zo on nt ta al l_ _s sc cr ro ol ll lb ba ar r V Ve er rt ti ic ca al l_ _s sc cr ro ol ll lb ba ar r N Na av vi ig ga at ti io on n_ _b bu ut tt to on n

..

This is the nice aspect of the ‘‘hierarchical’’ solution.
Passing the orientation of the scrollbar as an argument implies the presence of type fields in the

scrollbar objects and the use of switch statements in the code of the scrollbar member functions.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

744 Design and Programming Chapter 24

That is, we are facing a tradeoff between expressing this aspect of the structure of the system in
terms of declarations or in terms of code. The former increases the degree of static checking and
the amount of information on which tools have to work. The latter postpones decisions to run time
and allows changes to be made by modifying individual functions without affecting the overall
structure of the system as seen by the type checker and other tools. In most situations, I recom-
mend using a class hierarchy to directly model hierarchical relationships of the concepts.

The single scrollbar type solution makes it easy to store and pass information specifying a kind
of scrollbar:

v vo oi id d h he el lp pe er r(O Or ri ie en nt ta at ti io on n o oo o)
{

/ / ...
p p = n ne ew w S Sc cr ro ol ll lb ba ar r(o oo o) ;
/ / ...

}

v vo oi id d m me e()
{

h he el lp pe er r(h ho or ri iz zo on nt ta al l) ;
/ / ...

}

This representation would also make it easy to re-orient a scrollbar at run time. This is unlikely to
be of major importance in the case of scrollbars, but it can be important for equivalent examples.
The point here is that there are always tradeoffs, and the tradeoffs are often nontrivial.

24.3.4.2 Containment/Hierarchy Tradeoffs [lang.tradeoff]

Now consider how to attach a scrollbar to a window. If we consider aW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r as
something that is both aW Wi in nd do ow w and aS Sc cr ro ol ll lb ba ar r, we get something like:

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r : p pu ub bl li ic c W Wi in nd do ow w, p pu ub bl li ic c S Sc cr ro ol ll lb ba ar r {
/ / ...

};

This allows anyW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r to act like aS Sc cr ro ol ll lb ba ar r and like aW Wi in nd do ow w, but it con-
strains us to using the single scrollbar-type solution.

On the other hand, if we consider aW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r as aW Wi in nd do ow w that has aS Sc cr ro ol ll lb ba ar r,
we get something like:

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r : p pu ub bl li ic c W Wi in nd do ow w {
/ / ...
S Sc cr ro ol ll lb ba ar r* s sb b;

p pu ub bl li ic c:
W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r(S Sc cr ro ol ll lb ba ar r* p p, /* ... */) : W Wi in nd do ow w(/* ...*/) , s sb b(p p) { /* ... */ }
/ / ...

};

This allows us to use the scrollbar-hierarchy solution. Passing the scrollbar as an argument allows
the window to be oblivious to the exact type of its scrollbar. We could even pass aS Sc cr ro ol ll lb ba ar r

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.4.2 Containment/Hierarchy Tradeoffs 745

around the way we passed anO Or ri ie en nt ta at ti io on n (§24.3.4.1). If we need to haveW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r
act as a scrollbar, we can add a conversion operator:

W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r: : o op pe er ra at to or r S Sc cr ro ol ll lb ba ar r&()
{

r re et tu ur rn n * s sb b;
}

My preference is to have a window contain a scrollbar. I find it easier to think of a windowhaving
a scrollbar than of a windowbeinga scrollbar in addition to being a window. In fact, my favorite
design strategy involves a scrollbar being a special kind of window, which is then contained in a
window that needs scrollbar services. This strategy forces the decision in favor of the containment
solution. An alternative argument for the containment solution comes from the ‘‘can it have two?’’
rule of thumb (§24.3.4). Because there is no logical reason why a window shouldn’t have two
scrollbars (in fact, many windows do have both a horizontal and a vertical scrollbar),
W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r ought not be derived fromS Sc cr ro ol ll lb ba ar r.

Note that it is not possible to derive from an unknown class. The exact type of a base class
must be known at compile time (§12.2). On the other hand, if an attribute of a class is passed as an
argument to its constructor, then somewhere in the class there must be a member that represents it.
However, if that member is a pointer or a reference we can pass an object of a class derived from
the class specified for the member. For example, TheS Sc cr ro ol ll lb ba ar r* members sb b in the previous exam-
ple can point to aS Sc cr ro ol ll lb ba ar r of a type, such asN Na av vi ig ga at ti io on n_ _b bu ut tt to on n, that is unknown to users of the
S Sc cr ro ol ll lb ba ar r* .

24.3.5 Use Relationships [lang.use]

Knowledge of what other classes are used by a class and in which ways is often critical in order to
express and understand a design. Such dependencies are supported only implicitly by C++. A class
can use only names that have been declared (somewhere), but a list of names used is not provided
in the C++ source. Tools (or in the absence of suitable tools, careful reading) are necessary for
extracting such information. The ways a classX X can use another classY Y can be classified in several
ways. Here is one way:

– X X uses the nameY Y.
– X X usesY Y.

– X X calls aY Y member function.
– X X reads a member ofY Y.
– X X writes a member ofY Y.

– X X creates aY Y.
– X X allocates ana au ut to o or s st ta at ti ic c variable ofY Y.
– X X creates aY Y usingn ne ew w.

– X X takes the size of aY Y.
Taking the size of an object is classified separately because doing so requires knowledge of the
class declaration, but doesn’t depend on the constructors. NamingY Y is also classified as a separate
dependency because just doing that– for example, in declaring aY Y* or mentioningY Y in the decla-
ration of an external function– doesn’t require access to the declaration ofY Y at all (§5.7):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

746 Design and Programming Chapter 24

c cl la as ss s Y Y; / / Y is the name of a class
Y Y* p p;
e ex xt te er rn n Y Y f f(c co on ns st t Y Y&) ;

It is often important to distinguish between the dependencies of a class’ interface (the class declara-
tion) and the dependencies of the class implementation (the class member definitions). In a well-
designed system, the latter typically have many more dependencies, and those are far less interest-
ing to a user than are the dependencies of the class declaration (§24.4.2). Typically, a design aims
at minimizing the dependencies of an interface because they become dependencies of the class’
users (§8.2.4.1, §9.3.2, §12.4.1.1, §24.4) .

C++ doesn’t require the implementer of a class to specify in detail what other classes are used
and how. One reason for this is that most significant classes depend on so many other classes, that
an abbreviation of the list of those classes, such as an#i in nc cl lu ud de e directive, would be necessary for
readability. Another is that the classification and granularity of such dependencies doesn’t appear
to be a programming language issue. Rather, exactly howusesdependencies are viewed depends
on the purpose of the designer, programmer, or tool. Finally, which dependencies are interesting
may also depend on details of the language implementation.

24.3.6 Programmed-In Relationships [lang.prog]

A programming language cannot– and should not– directly support every concept from every
design method. Similarly, a design language should not support every feature of every program-
ming language. A design language should be richer and less concerned with details than a language
suitable for systems programming must be. Conversely, a programming language must be able to
support a variety of design philosophies, or it will fail for lack of adaptability.

When a programming language does not provide facilities for representing a concept from the
design directly, a conventional mapping between the design construct and the programming lan-
guage constructs should be used. For example, a design method may have a notion of delegation.
That is, the design can specify that every operation not defined for a classA A should be serviced by
an object of a classB B pointed to by a pointerp p. C++ cannot express this directly. However, the
expression of that idea in C++ is so stylized that one could easily imagine a program generating the
code. Consider:

c cl la as ss s B B {
/ / ...
v vo oi id d f f() ;
v vo oi id d g g() ;
v vo oi id d h h() ;

};

c cl la as ss s A A {
B B* p p;
/ / ...
v vo oi id d f f() ;
v vo oi id d f ff f() ;

};

A specification thatA A delegated toB B throughA A: : p p would result in code like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.6 Programmed-In Relationships 747

c cl la as ss s A A {
B B* p p; / / delegation through p
/ / ...
v vo oi id d f f() ;
v vo oi id d f ff f() ;
v vo oi id d g g() { p p-> g g() ; } / / delegate g()
v vo oi id d h h() { p p-> h h() ; } / / delegate h()

};

It is fairly obvious to a programmer what is going on here, but simulating a design concept in code
is clearly inferior to a one-to-one correspondence. Such ‘‘programmed-in’’ relationships are not as
well ‘‘understood’’ by the programming language and are therefore less amenable to manipulation
by tools. For example, standard tools would not recognize the ‘‘delegation’’ fromA A to B B through
A A: : p p as different from any other use of aB B* .

A one-to-one mapping between the design concepts and the programming language concepts
should be used wherever possible. A one-to-one mapping ensures simplicity and guarantees that
the design really is reflected in the program so that programmers and tools can take advantage of it.

Conversion operators provide a language mechanism for expressing a class of programmed-in
relationships. That is, a conversion operatorX X: : o op pe er ra at to or r Y Y() specifies that wherever aY Y is
acceptable, anX X can be used (§11.4.1). A constructorY Y: : Y Y(X X) expresses the same relationship.
Note that a conversion operator (and a constructor) produces a new object rather than changing the
type of an existing object. Declaring a conversion function toY Y is simply a way of requesting
implicit application of a function that returns aY Y. Because the implicit application of conversions
defined by constructors and conversion operators can be treacherous, it is sometimes useful to ana-
lyze them separately in a design.

It is important to ensure that the conversion graphs for a program do not contain cycles. If they
do, the resulting ambiguity errors will render the types involved in the cycles unusable in combina-
tion. For example:

c cl la as ss s R Ra at ti io on na al l;

c cl la as ss s B Bi ig g_ _i in nt t {
p pu ub bl li ic c:

f fr ri ie en nd d B Bi ig g_ _i in nt t o op pe er ra at to or r+(B Bi ig g_ _i in nt t, B Bi ig g_ _i in nt t) ;
o op pe er ra at to or r R Ra at ti io on na al l() ;
/ / ...

};

c cl la as ss s R Ra at ti io on na al l {
p pu ub bl li ic c:

f fr ri ie en nd d R Ra at ti io on na al l o op pe er ra at to or r+(R Ra at ti io on na al l, R Ra at ti io on na al l) ;
o op pe er ra at to or r B Bi ig g_ _i in nt t() ;
/ / ...

};

TheR Ra at ti io on na al l andB Bi ig g_ _i in nt t types will not interact as smoothly as one might have hoped:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

748 Design and Programming Chapter 24

v vo oi id d f f(R Ra at ti io on na al l r r, B Bi ig g_ _i in nt t i i)
{

g g(r r+i i) ; / / error, ambiguous: operator+(r,Rational(i)) or operator+(Big_int(r),i) ?
g g(r r+R Ra at ti io on na al l(i i)) ; / / one explicit resolution
g g(B Bi ig g_ _i in nt t(r r)+ i i) ; / / another explicit resolution

}

One can avoid such ‘‘mutual’’ conversions by making at least some of them explicit. For example,
the B Bi ig g_ _i in nt t to R Ra at ti io on na al l conversion might have been defined asm ma ak ke e_ _R Ra at ti io on na al l() instead of as a
conversion operator, and the addition would have been resolved tog g(B Bi ig g_ _i in nt t(r r) , i i) . Where
‘‘mutual’’ conversion operators cannot be avoided, one must resolve the resulting clashes either by
explicit conversions as shown or by defining many separate versions of binary operators, such as+.

24.3.7 Relationships within a Class [lang.within]

A class can conceal just about any implementation detail and just about any amount of dirt– and
sometimes it has to. However, the objects of most classes do themselves have a regular structure
and are manipulated in ways that are fairly easy to describe. An object of a class is a collection of
other sub-objects (often called members), and many of these are pointers and references to other
objects. Thus, an object can be seen as the root of a tree of objects and the objects involved can be
seen as constituting an ‘‘object hierarchy’’ that is complementary to the class hierarchy, as
described in §24.3.2.1. For example, consider a very simpleS St tr ri in ng g:

c cl la as ss s S St tr ri in ng g {
i in nt t s sz z;
c ch ha ar r* p p;

p pu ub bl li ic c:
S St tr ri in ng g(c co on ns st t c ch ha ar r* q q) ;
~S St tr ri in ng g() ;
/ / ...

};

A S St tr ri in ng g object can be represented graphically like this:

i in nt t s sz z;
c ch ha ar r* p p;

... elements ...\0
. .

24.3.7.1 Invariants [lang.invariant]

The values of the members and the objects referred to by members are collectively called thestate
of the object (or simply, itsvalue). A major concern of a class design is to get an object into a
well-defined state (initialization/construction), to maintain a well-defined state as operations are
performed, and finally to destroy the object gracefully. The property that makes the state of an
object well-defined is called itsinvariant.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.7.1 Invariants 749

Thus, the purpose of initialization is to put an object into a state for which the invariant holds.
Typically, this is done by a constructor. Each operation on a class can assume it will find the
invariant true on entry and must leave the invariant true on exit. The destructor finally invalidates
the invariant by destroying the object. For example, the constructorS St tr ri in ng g: : S St tr ri in ng g(c co on ns st t c ch ha ar r*)
ensures thatp p points to an array of at leasts sz z+1 1 elements, wheres sz z has a reasonable value and
p p[s sz z]== 0 0. Every string operation must leave that assertion true.

Much of the skill in class design involves making a class simple enough to make it possible to
implement it so that it has a useful invariant that can be expressed simply. It is easy enough to state
that every class needs an invariant. The hard part is to come up with a useful invariant that is easy
to comprehend and that doesn’t impose unacceptable constraints on the implementer or on the effi-
ciency of the operations. Note that ‘‘invariant’’ here is used to denote a piece of code that can
potentially be run to check the state of an object. A stricter and more mathematical notion is clearly
possible and, in some contexts, more appropriate. An invariant, as discussed here, is a practical–
and therefore typically economical and logically incomplete– check on an object’s state.

The notion of invariants has its origins in the work of Floyd, Naur, and Hoare on preconditions
and postconditions and is present in essentially all work on abstract data types and program verifi-
cation done over the last 30 years or so. It is also a staple of C debugging.

Typically, the invariant is not maintained during the execution of a member function. Functions
that may be called while the invariant is invalid should not be part of the public interface. Private
and protected functions can serve that purpose.

How can we express the notion of an invariant in a C++ program? A simple way is to define an
invariant-checking function and insert calls to it in the public operations. For example:

c cl la as ss s S St tr ri in ng g {
i in nt t s sz z;
c ch ha ar r* p p;

p pu ub bl li ic c:
c cl la as ss s R Ra an ng ge e {}; / / exception classes
c cl la as ss s I In nv va ar ri ia an nt t {};

e en nu um m { T TO OO O_ _L LA AR RG GE E = 1 16 60 00 00 0 }; / / length limit

v vo oi id d c ch he ec ck k() ; / / invariant check

S St tr ri in ng g(c co on ns st t c ch ha ar r* q q) ;
S St tr ri in ng g(c co on ns st t S St tr ri in ng g&) ;
~S St tr ri in ng g() ;

c ch ha ar r& o op pe er ra at to or r[](i in nt t i i) ;
i in nt t s si iz ze e() { r re et tu ur rn n s sz z; }

/ / ...
};

v vo oi id d S St tr ri in ng g: : c ch he ec ck k()
{

i if f (p p==0 0 || s sz z<0 0 || T TO OO O_ _L LA AR RG GE E<=s sz z || p p[s sz z- 1 1]) t th hr ro ow w I In nv va ar ri ia an nt t() ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

750 Design and Programming Chapter 24

c ch ha ar r& S St tr ri in ng g: : o op pe er ra at to or r[](i in nt t i i)
{

c ch he ec ck k() ; / / check on entry
i if f (i i<0 0 || s sz z<=i i) t th hr ro ow w R Ra an ng ge e() ; / / do work
c ch he ec ck k() ; / / check on exit
r re et tu ur rn n p p[i i] ;

}

This will work nicely and is hardly any work for the programmer. However, for a simple class like
S St tr ri in ng g the invariant checking will dominate the run time and maybe even the code size. Therefore,
programmers often execute the invariant checks only during debugging:

i in nl li in ne e v vo oi id d S St tr ri in ng g: : c ch he ec ck k()
{
#i if fn nd de ef f N ND DE EB BU UG G

i if f (p p==0 0 || s sz z<0 0 || T TO OO O_ _L LA AR RG GE E<=s sz z || p p[s sz z]) t th hr ro ow w I In nv va ar ri ia an nt t() ;
#e en nd di if f
}

Here, theN ND DE EB BU UG G macro is used in a way similar to the way it is used in the standard Ca as ss se er rt t()
macro. N ND DE EB BU UG G is conventionally set to indicate that debugging isnot being done.

The simple act of defining invariants and using them during debugging is an invaluable help in
getting the code right and– more importantly– in getting the concepts represented by the classes
well defined and regular. The point is that when you are designing invariants, a class will be con-
sidered from an alternative viewpoint and the code will contain redundancy. Both increase the like-
lihood of spotting mistakes, inconsistencies, and oversights.

24.3.7.2 Assertions [lang.assert]

An invariant is a special form of an assertion. An assertion is simply a statement that a given logi-
cal criterion must hold. The question is what to do when it doesn’t.

The C standard library– and by implication the C++ standard library– provides thea as ss se er rt t()
macro in<c ca as ss se er rt t> or <a as ss se er rt t. h h>. An a as ss se er rt t() evaluates its argument and callsa ab bo or rt t() if the
result is nonzero. For example:

v vo oi id d f f(i in nt t* p p)
{

a as ss se er rt t(p p!= 0 0) ; / / assert that p!=0; abort() if p is zero
/ / ...

}

Before aborting,a as ss se er rt t() outputs the name of its source file and the number of the line on which it
appears. This makesa as ss se er rt t() a useful debugging aid.N ND DE EB BU UG G is usually set by compiler
options on a per-compilation-unit basis. This implies thata as ss se er rt t() shouldn’t be used in inline
functions and template functions that are included in several translation units unless great care is
taken thatN ND DE EB BU UG G is set consistently (§9.2.3). Like all macro magic, this use ofN ND DE EB BU UG G is too
low-level, messy, and error-prone. Also, it is typically a good idea to leave at least some checks
active in even the best-checked program, andN ND DE EB BU UG G isn’t well suited for that. Furthermore,
callinga ab bo or rt t() is rarely acceptable in production code.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.7.2 Assertions 751

The alternative is to use anA As ss se er rt t() template that throws an exception rather than aborting so
that assertions can be left in production code when that is desirable. Unfortunately, the standard
library doesn’t provide anA As ss se er rt t() . However, it is trivially defined:

t te em mp pl la at te e<c cl la as ss s X X, c cl la as ss s A A> i in nl li in ne e v vo oi id d A As ss se er rt t(A A a as ss se er rt ti io on n)
{

i if f (! a as ss se er rt ti io on n) t th hr ro ow w X X() ;
}

A As ss se er rt t() throws the exceptionX X() if the a as ss se er rt ti io on n is false. For example:

c cl la as ss s B Ba ad d_ _a ar rg g { };

v vo oi id d f f(i in nt t* p p)
{

A As ss se er rt t<B Ba ad d_ _a ar rg g>(p p!= 0 0) ; / / assert p!=0; throw Bad_arg unless p!=0
/ / ...

}

This style of assertion has the condition explicit, so if we want to check only while debugging we
must say so. For example:

v vo oi id d f f2 2(i in nt t* p p)
{

A As ss se er rt t<B Ba ad d_ _a ar rg g>(N ND DE EB BU UG G || p p!= 0 0) ; / / either I’m not debugging or p!=0
/ / ...

}

The use of|| rather than&& in the assertion may appear surprising. However,A As ss se er rt t<E E>(a a|| b b)
tests!(a a|| b b) which is! a a&&! b b.

UsingN ND DE EB BU UG G in this way requires that we defineN ND DE EB BU UG G with a suitable value whether or
not we are debugging. A C++ implementation does not do this for us by default, so it is better to
use a value. For example:

#i if fd de ef f N ND DE EB BU UG G
c co on ns st t b bo oo ol l A AR RG G_ _C CH HE EC CK K = f fa al ls se e; / / we are not debugging: disable checks
#e el ls se e
c co on ns st t b bo oo ol l A AR RG G_ _C CH HE EC CK K = t tr ru ue e; / / we are debugging
#e en nd di if f

v vo oi id d f f3 3(i in nt t* p p)
{

A As ss se er rt t<B Ba ad d_ _a ar rg g>(! A AR RG G_ _C CH HE EC CK K || p p!= 0 0) ; / / either I’m not debugging or p!=0
/ / ...

}

If the exception associated with an assertion is not caught, a failedA As ss se er rt t() t te er rm mi in na at te e() s the pro-
gram much like an equivalenta as ss se er rt t() would a ab bo or rt t() . However, an exception handler may be
able to take some less drastic action.

In any realistically-sized program, I find myself turning assertions on and off in groups to suit
the need for testing. UsingN ND DE EB BU UG G is simply the crudest form of that technique. Early on in
development, most assertions are enabled, whereas only key sanity checks are left enabled in

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

752 Design and Programming Chapter 24

shipped code. This style of usage is most easily managed if the actual assertion is in two parts,
with the first being an enabling condition (such asA AR RG G_ _C CH HE EC CK K) and the second being the asser-
tion proper.

If the enabling condition is a constant expression, the whole assertion will be compiled away
when not enabled. However, the enabling condition can also be a variable so that it can be turned
on and off at run time as debugging needs dictate. For example:

b bo oo ol l s st tr ri in ng g_ _c ch he ec ck k = t tr ru ue e;

i in nl li in ne e v vo oi id d S St tr ri in ng g: : c ch he ec ck k()
{

A As ss se er rt t<I In nv va ar ri ia an nt t>(! s st tr ri in ng g_ _c ch he ec ck k || (p p && 0 0<=s sz z && s sz z<T TO OO O_ _L LA AR RG GE E && p p[s sz z]== 0 0)) ;
}

v vo oi id d f f()
{

S St tr ri in ng g s s = " w wo on nd de er r";
/ / strings are checked here
s st tr ri in ng g_ _c ch he ec ck k = f fa al ls se e;
/ / no checking of strings here

}

Naturally, code will be generated in such cases, so we must keep an eye out for code bloat if we use
such assertions extensively.

Saying

A As ss se er rt t<E E>(a a) ;

is simply another way of saying

i if f (! a a) t th hr ro ow w E E() ;

Then why bother withA As ss se er rt t() , rather than writing out the statement directly? UsingA As ss se er rt t()
makes the designer’s intent explicit. It says that this is an assertion of something that is supposed
to be always true. It is not an ordinary part of the program logic. This is valuable information to a
reader of the program. A more practical advantage is that it is easy to search fora as ss se er rt t() or
A As ss se er rt t() whereas searching for conditional statements that throw exceptions is nontrival.

A As ss se er rt t() can be generalized to throw exceptions taking arguments and variable exceptions:

t te em mp pl la at te e<c cl la as ss s A A, c cl la as ss s E E> i in nl li in ne e v vo oi id d A As ss se er rt t(A A a as ss se er rt ti io on n, E E e ex xc ce ep pt t)
{

i if f (! a as ss se er rt ti io on n) t th hr ro ow w e ex xc ce ep pt t;
}

s st tr ru uc ct t B Ba ad d_ _g g_ _a ar rg g {
i in nt t* p p;
B Ba ad d_ _g g_ _a ar rg g(i in nt t* p pp p) : p p(p pp p) { }

};

b bo oo ol l g g_ _c ch he ec ck k = t tr ru ue e;
i in nt t g g_ _m ma ax x = 1 10 00 0;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.7.2 Assertions 753

v vo oi id d g g(i in nt t* p p, e ex xc ce ep pt ti io on n e e)
{

A As ss se er rt t(! g g_ _c ch he ec ck k || p p!= 0 0, e e) ; / / pointer is valid
A As ss se er rt t(! g g_ _c ch he ec ck k || (0 0<* p p&&*p p<=g g_ _m ma ax x) , B Ba ad d_ _g g_ _a ar rg g(p p)) ; / / value is plausible
/ / ...

}

In many programs, it is crucial that no code is generated for anA As ss se er rt t() where the assertion can be
evaluated at compile time. Unfortunately, some compilers are unable to achieve this for the gener-
alizedA As ss se er rt t() . Consequently, the two-argumentA As ss se er rt t() should be used only when the excep-
tion is not of the formE E() and it is also acceptable for some code to be generated independently of
the value of the assertion.

In §23.4.3.5, it was mentioned that the two most common forms of class hierarchy reorganiza-
tions were to split a class into two and to factor out the common part of two classes into a base
class. In both cases, well-designed invariants can give a clue to the potential for reorganization.
Comparing the invariant with the code of operations will show most of the invariant checking to be
redundant in a class that is ripe for splitting. In such cases, subsets of the operations will access
only subsets of the object state. Conversely, classes that are ripe for merging will have similar
invariants even if their detailed implementations differ.

24.3.7.3 Preconditions and Postconditions [lang.pre]

One popular use of assertions is to express preconditions and postconditions of a function. That is,
checking that basic assumptions about input hold and verifying that the function leaves the world in
the expected state upon exit. Unfortunately, the assertions we would like to make are often at a
higher level than the programming language allows us to express conveniently and efficiently. For
example:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t)
{

A As ss se er rt t<B Ba ad d_ _s se eq qu ue en nc ce e>("[f fi ir rs st t, l la as st t) i is s a a v va al li id d s se eq qu ue en nc ce e") ; / / pseudo code

/ / ... sorting algorithm ...

A As ss se er rt t<F Fa ai il le ed d_ _s so or rt t>("[f fi ir rs st t, l la as st t) i is s i in n i in nc cr re ea as si in ng g o or rd de er r") ; / / pseudo code
}

This problem is fundamental. What we want to sayabout a program is best expressed in a
mathematically-based higher language, rather than in the algorithmic programming languagein
whichwe write the program.

As for invariants, a certain amount of cleverness is needed to translate the ideal of what we
would like to assert into something that is algorithmically feasible to check. For example:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t)
{

/ / [first,last) is a valid sequence: check plausibility:
A As ss se er rt t<B Ba ad d_ _s se eq qu ue en nc ce e>(N ND DE EB BU UG G || f fi ir rs st t<=l la as st t) ;

/ / ... sorting algorithm ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

754 Design and Programming Chapter 24

/ / [first,last) is in increasing order: check a sample:
A As ss se er rt t<F Fa ai il le ed d_ _s so or rt t>(N ND DE EB BU UG G ||

(l la as st t- f fi ir rs st t<2 2 || (* f fi ir rs st t<=l la as st t[- 1 1]
&& * f fi ir rs st t<=f fi ir rs st t[(l la as st t- f fi ir rs st t)/ 2 2] && f fi ir rs st t[(l la as st t- f fi ir rs st t)/ 2 2]<= l la as st t[- 1 1]))) ;

}

I often find writing ordinary code-checking arguments and results simpler than composing asser-
tions. However, it is important to try to express the real (ideal) preconditions and postconditions–
and at least document them as comments– before reducing them to something less abstract that
can be effectively expressed in a programming language.

Precondition checking can easily degenerate into simple checking of argument values. As an
argument is often passed through several functions, this checking can be repetitive and expensive.
However, simply asserting that every pointer argument is nonzero in every function is not particu-
larly helpful and can give a false sense of security– especially if the tests are done during debug-
ging only to prevent overhead. This is a major reason why I recommend a focus on invariants.

24.3.7.4 Encapsulation [lang.encapsulate]

Note that in C++, the class– not the individual object– is the unit of encapsulation. For example:

c cl la as ss s L Li is st t {
L Li is st t* n ne ex xt t;

p pu ub bl li ic c:
b bo oo ol l o on n(L Li is st t*) ;
/ / ...

};

b bo oo ol l L Li is st t: : o on n(L Li is st t* p p)
{

i if f (p p == 0 0) r re et tu ur rn n f fa al ls se e;
f fo or r(L Li is st t* q q = t th hi is s; q q; q q=q q-> n ne ex xt t) i if f (p p == q q) r re et tu ur rn n t tr ru ue e;
r re et tu ur rn n f fa al ls se e;

}

The chasing of the privateL Li is st t: : n ne ex xt t pointer is accepted becauseL Li is st t: : o on n() has access to every
object of classL Li is st t it can somehow reference. Where that is inconvenient, matters can be simpli-
fied by not taking advantage of the ability to access the representation of other objects from a mem-
ber function. For example:

b bo oo ol l L Li is st t: : o on n(L Li is st t* p p)
{

i if f (p p == 0 0) r re et tu ur rn n f fa al ls se e;
i if f (p p == t th hi is s) r re et tu ur rn n t tr ru ue e;
i if f (n ne ex xt t==0 0) r re et tu ur rn n f fa al ls se e;
r re et tu ur rn n n ne ex xt t-> o on n(p p) ;

}

However, this turns iteration into recursion, and doing that can cause a major performance hit when
a compiler isn’t able to optimize the recursion back into an iteration.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4 Components 755

24.4 Components[lang.component]

The unit of design is a collection of classes, functions, etc., rather than an individual class. Such a
collection, often called alibrary or a framework(§25.8), is also the unit of reuse (§23.5.1), mainte-
nance, etc. C++ provides three mechanisms for expressing the notion of a set of facilities united by
a logical criteria:

[1] A class– containing a collection of data, function, template, and type members
[2] A class hierarchy– containing a collection of classes
[3] A namespace– containing a collection of data, function, template, and type members

A class provides many facilities to make it convenient to create objects of the type it defines. How-
ever, many significant components are not best described by a mechanism for creating objects of a
single type. A class hierarchy expresses the notion of a set of related types. However, the individ-
ual members of a component are not always best expressed as classes and not all classes possess the
basic similarity required to fit into a meaningful class hierarchy (§24.2.5). Therefore, a namespace
is the most direct and the most general embodiment of the notion of a component in C++. A com-
ponent is sometimes referred to as a ‘‘class category.’’ However, not every element of a compo-
nent is or should be a class.

Ideally, a component is described by the set of interfaces it uses for its implementation plus the
set of interfaces it provides for its users. Everything else is ‘‘implementation detail’’ and hidden
from the rest of the system. This may indeed be the designer’s description of a component. To
make it real, the programmer needs to map it into declarations. Classes and class hierarchies pro-
vide the interfaces, and namespaces allow the programmer to group the interfaces and to separate
interfaces used from interfaces provided. Consider:

Used by X interface Used by X implementation

X interface

X implementation

Using the techniques described in §8.2.4.1, this becomes:

n na am me es sp pa ac ce e A A { / / some facilities used by X’s interface
/ / ...

}

n na am me es sp pa ac ce e X X { / / interface of component X

u us si in ng g n na am me es sp pa ac ce e A A; / / dependent on declarations from A
/ / ...
v vo oi id d f f() ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

756 Design and Programming Chapter 24

n na am me es sp pa ac ce e X X_ _i im mp pl l { / / facilities needed by X’s implementation
u us si in ng g n na am me es sp pa ac ce e X X;
/ / ...

}

v vo oi id d X X: : f f()
{

u us si in ng g n na am me es sp pa ac ce e X X_ _i im mp pl l; / / dependent on declarations from X_impl
/ / ...

}

The general interfaceX X should not depend on the implementation interfaceX X_ _i im mp pl l.
A component can have many classes that are not intended for general use. Such classes should

be ‘‘hidden’’ within implementation classes or namespaces:

n na am me es sp pa ac ce e X X_ _i im mp pl l { / / component X implementation details

c cl la as ss s W Wi id dg ge et t {
/ / ...

};

/ / ...
}

This ensures thatW Wi id dg ge et t isn’t used from other parts of the program. However, classes that repre-
sent coherent concepts are often candidates for reuse and should therefore be considered for inclu-
sion into the interface of the component. Consider:

c cl la as ss s C Ca ar r {
c cl la as ss s W Wh he ee el l {

/ / ...
};

W Wh he ee el l f fl lw w, f fr rw w, r rl lw w, r rr rw w;
/ / ...

p pu ub bl li ic c:
/ / ...

};

In most contexts, we need to have the actual wheels hidden to maintain the abstraction of a car
(when you use a car you cannot operate the wheels independently). However, theW Wh he ee el l class itself
seems a good candidate for wider use, so moving it outside classC Ca ar r might be better:

c cl la as ss s W Wh he ee el l {
/ / ...

};

c cl la as ss s C Ca ar r {
W Wh he ee el l f fl lw w, f fr rw w, r rl lw w, r rr rw w;
/ / ...

p pu ub bl li ic c:
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4 Components 757

The decision to nest or not depends on the aims of the design and the generality of the concepts
involved. Both nesting and ‘‘non-nesting’’ are widely applicable techniques for expressing a
design. The default should be to make a class as local as possible until a need to make it more gen-
erally available is demonstrated.

There is a nasty tendency for ‘‘interesting’’ functions and data to ‘‘bubble up’’ to the global
namespace, to widely-used namespaces, or to ultimate base classes in a hierarchy. This can easily
lead to unintentional exposure of implementation details and to the problems associated with global
data and global functions. This is most likely to happen in a single-rooted hierarchy, and in a pro-
gram where only very few namespaces are used. Virtual base classes (§15.2.4) can be used to com-
bat this phenomenon in the context of class hierarchies. Small ‘‘implementation’’ namespaces are
the main tool for avoiding the problem in the context of namespaces.

Note that header files provide a powerful mechanism for supplying different views of a compo-
nent to different users and for excluding classes that are considered part of the implementation from
the user’s view (§9.3.2).

24.4.1 Templates [lang.temp]

From a design perspective, templates serve two, weakly-related needs:
– Generic programming
– Policy parameterization

Early in a design effort, operations are just operations. Later, when it is time to specify the type of
operands templates become essential when using a statically-typed programming language, such as
C++. Without templates, function definitions would have to be replicated or checking would have
to be unnecessarily postponed to run time (§24.2.3). An operation that implements an algorithm for
a variety of operand types is a candidate to be implemented as a template. If all operands fit into a
single class hierarchy, and especially if there is a need to add new operand types at run time, the
operand type is best represented as a class– often as an abstract class. If the operand types do not
fit into a single hierarchy and especially if run-time performance is critical, the operation is best
implemented as a template. The standard containers and their supporting algorithms are an exam-
ple of when the need to take operands of a variety of unrelated types combined with a need for
run-time performance lead to the use of templates (§16.2).

To make the template/hierarchy tradeoff more concrete, consider how to generalize a simple
iteration:

v vo oi id d p pr ri in nt t_ _a al ll l(I It te er r_ _f fo or r_ _T T x x)
{

f fo or r (T T* p p = x x. f fi ir rs st t() ; p p; p p = x x. n ne ex xt t()) c co ou ut t << * p p;
}

Here, the assumption is thatI It te er r_ _f fo or r_ _T T provides operations that yieldT T* s.
We can make the iteratorI It te er r_ _f fo or r_ _T T a template parameter:

t te em mp pl la at te e<c cl la as ss s I It te er r_ _f fo or r_ _T T> p pr ri in nt t_ _a al ll l(I It te er r_ _f fo or r_ _T T x x)
{

f fo or r (T T* p p = x x. f fi ir rs st t() ; p p; p p = x x. n ne ex xt t()) c co ou ut t << * p p;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

758 Design and Programming Chapter 24

This allows us to use a variety of unrelated iterators as long as they all providef fi ir rs st t() andn ne ex xt t()
with the right meanings and as long as we know the type of iterator for each call ofp pr ri in nt t_ _a al ll l() at
compile time. The standard library containers and algorithms are based on this idea.

Alternatively, we can use the observation thatf fi ir rs st t() andn ne ex xt t() constitute an interface to iter-
ators. We can then define a class to represent that interface:

c cl la as ss s I It te er r {
p pu ub bl li ic c:

v vi ir rt tu ua al l T T* f fi ir rs st t() c co on ns st t = 0 0;
v vi ir rt tu ua al l T T* n ne ex xt t() = 0 0;

};

v vo oi id d p pr ri in nt t_ _a al ll l2 2(I It te er r& x x)
{

f fo or r (T T* p p = x x. f fi ir rs st t() ; p p; p p = x x. n ne ex xt t()) c co ou ut t << * p p;
}

We can now use every iterator derived fromI It te er r. The actual code doesn’t differ depending on
whether we use templates or a class hierarchy to represent the parameterization– only the run-time,
recompilation, etc., tradeoffs differ. In particular, classI It te er r is a candidate for use as an argument
for the template:

v vo oi id d f f(I It te er r& i i)
{

p pr ri in nt t_ _a al ll l(i i) ; / / use the template
p pr ri in nt t_ _a al ll l2 2(i i) ;

}

Consequently, the two approaches can be seen as complementary.
Often, a template needs to use functions and classes as part of its implementation. Many of

those must themselves be templates so as to maintain generality and efficiency. In that way, algo-
rithms become generic over a range of types. This style of template use is calledgeneric
programming(§2.7). When we calls st td d: : s so or rt t() on av ve ec ct to or r, the elements of the vector are the
operands of thes so or rt t() ; thus,s so or rt t() is generic for the element types. In addition, the standard sort
is generic for the container types because it is invoked on iterators for arbitrary, standard-
conforming containers (§16.3.1).

The s so or rt t() algorithm is also parameterized on the comparison criteria (§18.7.1). From a
design perspective, this is different from taking an operation and making it generic on its operand
type. Deciding to parameterize an algorithm on an object (or operation) in a way that controls the
way the algorithm operates is a much higher-level design decision. It is a decision to give the
designer/programmer control over some part of the policy governing the operation of the algorithm.
From a programming language point of view, however, there is no difference.

24.4.2 Interfaces and Implementations [lang.interface]

The ideal interface
– presents a complete and coherent set of concepts to a user,
– is consistent over all parts of a component,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4.2 Interfaces and Implementations 759

– does not reveal implementation details to a user,
– can be implemented in several ways,
– is statically typed,
– is expressed using application-level types, and
– depends in limited and well-defined ways on other interfaces.

Having noted the need for consistency across the classes that present the component’s interface to
the rest of the world (§24.4), we can simplify the discussion by looking at only a single class. Con-
sider:

c cl la as ss s Y Y { /* ... */ }; / / needed by X

c cl la as ss s Z Z { /* ... */ }; / / needed by X

c cl la as ss s X X { / / example of poor interface style
Y Y a a;
Z Z b b;

p pu ub bl li ic c:
v vo oi id d f f(c co on ns st t c ch ha ar r * ...) ;
v vo oi id d g g(i in nt t[] , i in nt t) ;
v vo oi id d s se et t_ _a a(Y Y&) ;
Y Y& g ge et t_ _a a() ;

};

This interface has several potential problems:
– The interface uses the typesY Y andZ Z in a way that requires the declarations ofY Y andZ Z to be

known to compile it.
– The functionX X: : f f() takes an arbitrary number of arguments of unknown types (probably

somehow controlled by a ‘‘format string’’ supplied as the first argument; §21.8).
– The functionX X: : g g() takes ani in nt t[] argument. This may be acceptable, but typically it is a

sign that the level of abstraction is too low. An array of integers is not self-describing, so it
is not obvious how many elements it is supposed to have.

– The s se et t_ _a a() and g ge et t_ _a a() functions most likely expose the representation of objects of
classX X by allowing direct access toX X: : a a.

These member functions provide an interface at a very low level of abstraction. Basically, classes
with interfaces at this level belong among the implementation details of a larger component– if
they belong anywhere at all. Ideally, an argument of an interface function carries enough informa-
tion to make it self-describing. A rule of thumb is that it should be possible to transmit the request
for service over a thin wire for service at a remote server.

C++ allows the programmer to expose the representation of a class as part of the interface. This
representation may be hidden (usingp pr ri iv va at te e or p pr ro ot te ec ct te ed d), but it is available to the compiler to
allow allocation of automatic variables, to allow inline substitution of functions, etc. The negative
effect of this is that use of class types in the representation of a class may introduce undesirable
dependencies. Whether the use of members of typesY Y andZ Z is a problem depends on what kind of
typesY Y andZ Z actually are. If they are simple types, such asl li is st t, c co om mp pl le ex x, ands st tr ri in ng g, their use is
most often quite appropriate. Such types can be considered stable, and the need to include their
class declarations is an acceptable burden on the compiler. However, ifY Y andZ Z themselves had
been interface classes of significant components, such as a graphics system or a bank account

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

760 Design and Programming Chapter 24

management system, it might be wise not to depend too directly on them. In such cases, using a
pointer or a reference member is often a better choice:

c cl la as ss s Y Y;
c cl la as ss s Z Z;

c cl la as ss s X X { / / X accesses Y and Z through pointers and references only
Y Y* a a;
Z Z& b b;
/ / ...

};

This decouples the definition ofX X from the definitions ofY Y and Z Z; that is, the definition ofX X
depends on the namesY Y andZ Z only. The implementation ofX X will, of course, still depend on the
definitions ofY Y andZ Z, but this will not adversely affect the users ofX X.

This illustrates an important point: an interface that hides significant amounts of information–
as a useful interface ought to– will have far fewer dependencies than the implementation it hides.
For example, the definition of classX X can be compiled without access to the definitions ofY Y andZ Z.
However, the definitions ofX X’s member functions that manipulate theY Y andZ Z objects will need
access to the definitions ofY Y and Z Z. When dependencies are analyzed, the dependencies of the
interface and the implementation must be considered separately. In both cases, the ideal is for the
dependency graphs of a system to be directed acyclic graphs to ease understanding and testing of
the system. However, this ideal is far more critical and far more often achievable for interfaces
than for implementations.

Note that a class can define three interfaces:

c cl la as ss s X X {
p pr ri iv va at te e:

/ / accessible to members and friends only
p pr ro ot te ec ct te ed d:

/ / accessible to members and friends and
/ / to members and friends of derived classes only

p pu ub bl li ic c:
/ / accessible to the general public

};

In addition, af fr ri ie en nd d is part of the public interface (§11.5).
A member should be part of the most restrictive interface possible. That is, a member should be

p pr ri iv va at te e unless there is a reason for it to be more accessible. If it needs to be more accessible, it
should bep pr ro ot te ec ct te ed d unless there is a reason for it to bep pu ub bl li ic c. It is almost always a bad idea to
make a data memberp pu ub bl li ic c or p pr ro ot te ec ct te ed d. The functions and classes that constitute the public inter-
face should present a view of the class that fits with its role as representing a concept.

Note that abstract classes can be used to provide a further level of representation hiding (§2.5.4,
§12.3, §25.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4.3 Fat Interfaces 761

24.4.3 Fat Interfaces [lang.fat]

Ideally, an interface should offer only operations that make sense and that can be implemented well
by every derived class implementing that interface. However, this is not always easy. Consider
lists, arrays, associative arrays, trees, etc. As shown in §16.2.2, it is tempting and sometimes useful
to provide a generalization of all of these types– usually called acontainer– that can be used as
the interface to every one of these. This (apparently) relieves the user of having to deal with the
details of all of these containers. However, defining the interface of a general container class is
nontrivial. Assume that we want to defineC Co on nt ta ai in ne er r as an abstract type. What operations do we
wantC Co on nt ta ai in ne er r to provide? We could provide only the operations that every container can support
– the intersection of the sets of operations– but that is a ridiculously narrow interface. In fact, in
many interesting cases that intersection is empty. Alternatively, we could provide the union of all
the sets of operations and give a run-time error if a ‘‘non-existent’’ operation is applied to an object
through this interface. An interface that is such a union of interfaces to a set of concepts is called a
fat interface. Consider a ‘‘general container’’ of objects of typeT T:

c cl la as ss s C Co on nt ta ai in ne er r {
p pu ub bl li ic c:

s st tr ru uc ct t B Ba ad d_ _o op pe er r { / / exception class
c co on ns st t c ch ha ar r* p p;
B Ba ad d_ _o op pe er r(c co on ns st t c ch ha ar r* p pp p) : p p(p pp p) { }

};

v vi ir rt tu ua al l v vo oi id d p pu ut t(c co on ns st t T T*) { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: : p pu ut t") ; }
v vi ir rt tu ua al l T T* g ge et t() { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: : g ge et t") ; }

v vi ir rt tu ua al l T T*& o op pe er ra at to or r[](i in nt t) { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: :[](i in nt t)") ; }
v vi ir rt tu ua al l T T*& o op pe er ra at to or r[](c co on ns st t c ch ha ar r*) { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: :[](c ch ha ar r*)") ; }
/ / ...

};

C Co on nt ta ai in ne er rs could then be declared like this:

c cl la as ss s L Li is st t_ _c co on nt ta ai in ne er r : p pu ub bl li ic c C Co on nt ta ai in ne er r, p pr ri iv va at te e l li is st t {
p pu ub bl li ic c:

v vo oi id d p pu ut t(c co on ns st t T T*) ;
T T* g ge et t() ;
/ / ... no operator[] ...

};

c cl la as ss s V Ve ec ct to or r_ _c co on nt ta ai in ne er r : p pu ub bl li ic c C Co on nt ta ai in ne er r, p pr ri iv va at te e v ve ec ct to or r {
p pu ub bl li ic c:

T T*& o op pe er ra at to or r[](i in nt t) ;
T T*& o op pe er ra at to or r[](c co on ns st t c ch ha ar r*) ;
/ / ... no put() or get() ...

};

As long as one is careful, all is well:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

762 Design and Programming Chapter 24

v vo oi id d f f()
{

L Li is st t_ _c co on nt ta ai in ne er r s sc c;
V Ve ec ct to or r_ _c co on nt ta ai in ne er r v vc c;
/ / ...
u us se er r(s sc c, v vc c) ;

}

v vo oi id d u us se er r(C Co on nt ta ai in ne er r& c c1 1, C Co on nt ta ai in ne er r& c c2 2)
{

T T* p p1 1 = c c1 1. g ge et t() ;
T T* p p2 2 = c c2 2[3 3] ;
/ / don’t use c2.get() or c1[3]
/ / ...

}

However, few data structures support both the subscripting and the list-style operations well. Con-
sequently, it is probably not a good idea to specify an interface that requires both. Doing so leads
to the use of run-time type-inquiry (§15.4) or exception handling (Chapter 14) to avoid run-time
errors. For example:

v vo oi id d u us se er r2 2(C Co on nt ta ai in ne er r& c c1 1, C Co on nt ta ai in ne er r& c c2 2) / / detection is easy, but recovery can be hard
{

t tr ry y {
T T* p p1 1 = c c1 1. g ge et t() ;
T T* p p2 2 = c c2 2[3 3] ;
/ / ...

}
c ca at tc ch h(C Co on nt ta ai in ne er r: : B Ba ad d_ _o op pe er r& b ba ad d) {

/ / Oops!
/ / Now what?

}
}

or

v vo oi id d u us se er r3 3(C Co on nt ta ai in ne er r& c c1 1, C Co on nt ta ai in ne er r& c c2 2) / / early detection is tedious; recovery can still be hard
{

i if f (d dy yn na am mi ic c_ _c ca as st t<L Li is st t_ _c co on nt ta ai in ne er r*>(& c c1 1) && d dy yn na am mi ic c_ _c ca as st t<V Ve ec ct to or r_ _c co on nt ta ai in ne er r*>(& c c2 2)) {
T T* p p1 1 = c c1 1. g ge et t() ;
T T* p p2 2 = c c2 2[3 3] ;
/ / ...

}
e el ls se e {

/ / Oops!
/ / Now what?

}
}

In both cases, run-time performance can suffer and the generated code can be surprisingly large.
As a result, people are tempted to ignore the potential errors and hope that they don’t actually occur

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4.3 Fat Interfaces 763

when the program is in the hands of users. The problem with this approach is that exhaustive test-
ing is also hard and expensive.

Consequently, fat interfaces are best avoided where run-time performance is at a premium,
where strong guarantees about the correctness of code are required, and in general wherever there is
a good alternative. The use of fat interfaces weakens the correspondence between concepts and
classes and thus opens the floodgates for the use of derivation as a mere implementation conve-
nience.

24.5 Advice[lang.advice]

[1] Evolve use towards data abstraction and object-oriented programming; §24.2.
[2] Use C++ features and techniques as needed (only); §24.2.
[3] Match design and programming styles; §24.2.1.
[4] Use classes/concepts as a primary focus for design rather than functions/processing; §24.2.1.
[5] Use classes to represent concepts; §24.2.1, §24.3.
[6] Use inheritance to represent hierarchical relationships between concepts (only); §24.2.2,

§24.2.5, §24.3.2.
[7] Express strong guarantees about interfaces in terms of application-level static types; §24.2.3.
[8] Use program generators and direct-manipulation tools to ease well-defined tasks; §24.2.4.
[9] Avoid program generators and direct-manipulation tools that do not interface cleanly with a

general-purpose programming language; §24.2.4.
[10] Keep distinct levels of abstraction distinct; §24.3.1.
[11] Focus on component design; §24.4.
[12] Make sure that a virtual function has a well-defined meaning and that every overriding func-

tion implements a version of that desired behavior; §24.3.4, §24.3.2.1.
[13] Use public inheritance to representis-a relationships; §24.3.4.
[14] Use membership to representhas-arelationships; §24.3.4.
[15] Prefer direct membership over a pointer to a separately-allocated object for expressing simple

containment; §24.3.3, §24.3.4.
[16] Make sure that theusesdependencies are understood, non-cyclic wherever possible, and mini-

mal; §24.3.5.
[17] Define invariants for all classes; §24.3.7.1.
[18] Explicitly express preconditions, postconditions, and other assertions as assertions (possibly

usingA As ss se er rt t()); §24.3.7.2.
[19] Define interfaces to reveal the minimal amount of information needed; §24.4.
[20] Minimize an interface’s dependencies on other interfaces; §24.4.2.
[21] Keep interfaces strongly typed; §24.4.2.
[22] Express interfaces in terms of application-level types; §24.4.2.
[23] Express an interface so that a request could be transmitted to a remote server; §24.4.2.
[24] Avoid fat interfaces; §24.4.3.
[25] Usep pr ri iv va at te edata and member functions wherever possible; §24.4.2.
[26] Use thep pu ub bl li ic c/ p pr ro ot te ec ct te ed d distinction to distinguish between the needs of designers of derived

classes and general users; §24.4.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

764 Design and Programming Chapter 24

[27] Use templates for generic programming; §24.4.1.
[28] Use templates to parameterize an algorithm by a policy; §24.4.1.
[29] Use templates where compile-time type resolution is needed; §24.4.1.
[30] Use class hierarchies where run-time type resolution is needed; §24.4.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

25
_ __ _______________________________________

Roles of Classes

Some things better change ...
but fundamental themes

should revel in persistence.
– Stephen J. Gould

Kinds of classes— concrete types— abstract types— nodes— changing interfaces—
object I/O— actions— interface classes— handles— use counts— application frame-
works— advice— exercises.

25.1 Kinds of Classes[role.intro]

The C++ class is a programming language construct that serves a variety of design needs. In fact, I
find that the solution to most knotty design problems involves the introduction of a new class to
represent some notion that had been left implicit in the previous draft design (and maybe the elimi-
nation of other classes). The great variety of roles that a class can play leads to a variety of kinds of
classes that are specialized to serve a particular need well. In this chapter, a few archetypical kinds
of classes are described, together with their inherent strengths and weaknesses:

§25.2 Concrete types
§25.3 Abstract types
§25.4 Nodes
§25.5 Operations
§25.6 Interfaces
§25.7 Handles
§25.8 Application frameworks

These ‘‘kinds of classes’’ are design notions and not language constructs. The unattained, and
probably unattainable, ideal is to have a minimal set of simple and orthogonal kinds of classes from
which all well-behaved and useful classes could be constructed. It is important to note that each of

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Administrator

Administrator

766 Roles of Classes Chapter 25

these kinds of classes has a place in design and none is inherently better than the others for all uses.
Much confusion in discussions of design and programming comes from people trying to use only
one or two kinds of classes exclusively. This is usually done in the name of simplicity, yet it leads
to contorted and unnatural uses of the favored kinds of classes.

The description here emphasizes the pure forms of these kinds of classes. Naturally, hybrid
forms can also be used. However, a hybrid ought to appear as the result of a design decision based
on an evaluation of the engineering tradeoffs and not a result of some misguided attempt to avoid
making decisions. ‘‘Delaying decisions’’ is too often a euphemism for ‘‘avoiding thinking.’’ Nov-
ice designers will usually do best by staying away from hybrids and also by following the style of
an existing component with properties that resemble the desired properties for the new component.
Only experienced programmers should attempt to write a general-purpose component or library,
and every library designer should be ‘‘condemned’’ to use, document, and support his or her cre-
ation for some years. Also, please note §23.5.1.

25.2 Concrete Types[role.concrete]

Classes such asv ve ec ct to or r (§16.3), l li is st t (§17.2.2), D Da at te e (§10.3), andc co om mp pl le ex x (§11.3, §22.5) are
concretein the sense that each is the representation of a relatively simple concept with all the oper-
ations essential for the support of that concept. Also, each has a one-to-one correspondence
between its interface and an implementation and none are intended as a base for derivation. Typi-
cally, concrete types are not fitted into a hierarchy of related classes. Each concrete type can be
understood in isolation with minimal reference to other classes. If a concrete type is implemented
well, programs using it are comparable in size and speed to programs a user would write using a
hand-crafted and specialized version of the concept. Similarly, if the implementation changes sig-
nificantly the interface is usually modified to reflect the change. In all of this, a concrete type
resembles a built-in type. Naturally, the built-in types are all concrete. User-defined concrete
types, such as complex numbers, matrices, error messages, and symbolic references, often provide
fundamental types for some application domain.

The exact nature of a class’ interface determines what implementation changes are significant in
this context; more abstract interfaces leave more scope for implementation changes but can com-
promise run-time efficiency. Furthermore, a good implementation does not depend on other classes
more than absolutely necessary so that the class can be used without compile-time or run-time over-
heads caused by the accommodation of other ‘‘similar’’ classes in a program.

To sum up, a class providing a concrete type aims:
[1] to be a close match to a particular concept and implementation strategy;
[2] to provide run-time and space efficiency comparable to ‘‘hand-crafted’’ code through the

use of inlining and of operations taking full advantage of the properties of the concept and
its implementation;

[3] to have only minimal dependency on other classes; and
[4] to be comprehensible and usable in isolation.

The result is a tight binding between user code and implementation code. If the implementation
changes in any way, user code will have to be recompiled because user code almost always con-
tains calls of inline functions or local variables of a concrete type.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.2 Concrete Types 767

The name ‘‘concrete type’’ was chosen to contrast with the common term ‘‘abstract type.’’ The
relationship between concrete and abstract types is discussed in §25.3.

Concrete types cannot directly express commonality. For example,l li is st t andv ve ec ct to or r provide sim-
ilar sets of operations and can be used interchangeably by some template functions. However, there
is no relationship between the typesl li is st t<i in nt t> and v ve ec ct to or r<i in nt t> or betweenl li is st t<S Sh ha ap pe e*> and
l li is st t<C Ci ir rc cl le e*> (§13.6.3), even thoughw we ecan discern their similarities.

For naively designed concrete types, this implies that code using them in similar ways will look
dissimilar. For example, iterating through aL Li is st t using an ne ex xt t() operation differs dramatically
from iterating through aV Ve ec ct to or r using subscripting:

v vo oi id d m my y(L Li is st t& s sl l)
{

f fo or r (T T* p p = s sl l. f fi ir rs st t() ; p p; p p = s sl l. n ne ex xt t()) { / / ‘‘natural’’ list iteration
/ / my stuff

}
/ / ...

}

v vo oi id d y yo ou ur r(V Ve ec ct to or r& v v)
{

f fo or r (i in nt t i i = 0 0; i i<v v. s si iz ze e() ; i i++) { / / ‘‘natural’’ vector iteration
/ / your stuff

}
/ / ...

}

The difference in iteration style is natural in the sense that a get-next-element operation is essential
to the notion of a list (but not that common for a vector) and subscripting is essential to the notion
of a vector (but not for a list). The availability of operations that are ‘‘natural’’ relative to a chosen
implementation strategy is often crucial for efficiency and important for ease of writing the code.

The obvious snag is that the code for fundamentally similar operations, such as the previous two
loops, can look dissimilar, and code that uses different concrete types for similar operations cannot
be used interchangeably. In realistic examples, it takes significant thought to find similarities and
significant redesign to provide ways of exploiting such similarities once found. The standard con-
tainers and algorithms are an example of a thorough rethinking that makes it possible to exploit
similarities between concrete types without losing their efficiency and elegance benefits (§16.2).

To take a concrete type as an argument, a function must specify that exact concrete type as an
argument type. There will be no inheritance relationships that can be used to make the argument
declaration less specific. Consequently, an attempt to exploit similarities between concrete types
will involve templates and generic programming as described in §3.8. When the standard library is
used, iteration becomes:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d o ou ur rs s(c co on ns st t C C& c c)
{

f fo or r (C C: : c co on ns st t_ _i it te er ra at to or r p p = c c. b be eg gi in n() ; p p!= c c. e en nd d() ; ++p p) { / / standard library iteration
/ / ...

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

768 Roles of Classes Chapter 25

The fundamental similarity between containers is exploited, and this in turn opens the possibility
for further exploitation as done by the standard algorithms (Chapter 18).

To use a concrete type well, the user must understand its particular details. There are (typically)
no general properties that hold for all concrete types in a library that can be relied on to save the
user the bother of knowing the individual classes. This is the price of run-time compactness and
efficiency. Sometimes that is a price well worth paying; sometimes it is not. It can also be the case
that an individual concrete class is easier to understand and use than is a more general (abstract)
class. This is often the case for classes that represent well-known data types such as arrays and
lists.

Note, however, that the ideal is still to hide as much of the implementation as is feasible without
seriously hurting performance. Inline functions can be a great win in this context. Exposing mem-
ber variables by making them public or by providing set and get functions that allow the user to
manipulate them directly is almost never a good idea (§24.4.2). Concrete types should still be
types and not just bags of bits with a few functions added for convenience.

25.2.1 Reuse of Concrete Types [role.reuse]

Concrete types are rarely useful as bases for further derivation. Each concrete type aims at provid-
ing a clean and efficient representation of a single concept. A class that does that well is rarely a
good candidate for the creation of different but related classes through public derivation. Such
classes are more often useful as members or private base classes. There, they can be used effec-
tively without having their interfaces and implementations mixed up with and compromised by
those of the new classes. Consider deriving a new class fromD Da at te e:

c cl la as ss s M My y_ _d da at te e : p pu ub bl li ic c D Da at te e {
/ / ...

};

Is it ever valid forM My y_ _d da at te e to be used as a plainD Da at te e? Well, that depends on whatM My y_ _d da at te e is,
but in my experience it is rare to find a concrete type that makes a good base class without modifi-
cation.

A concrete type is ‘‘reused’’ unmodified in the same way as built-in types such asi in nt t are
(§10.3.4). For example:

c cl la as ss s D Da at te e_ _a an nd d_ _t ti im me e {
p pr ri iv va at te e:

D Da at te e d d;
T Ti im me e t t;

p pu ub bl li ic c:
/ / ...

};

This form of use (reuse?) is usually simple, effective, and efficient.
Maybe it was a mistake not to designD Da at te e to be easy to modify through derivation? It is some-

times asserted thateveryclass should be open to modification by overriding and by access from
derived class member functions. This view leads to a variant ofD Da at te ealong these lines:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.2.1 Reuse of Concrete Types 769

c cl la as ss s D Da at te e2 2 {
p pu ub bl li ic c:

/ / public interface, consisting primarily of virtual functions
p pr ro ot te ec ct te ed d:

/ / other implementation details (possibly including some representation)
p pr ri iv va at te e:

/ / representation and other implementation details
};

To make writing overriding functions easy and efficient, the representation is declaredp pr ro ot te ec ct te ed d.
This achieves the objective of makingD Da at te e2 2 arbitrarily malleable by derivation, yet keeping its
user interface unchanged. However, there are costs:

[1] Less efficient basic operations. A C++ virtual function call is a fraction slower than an ordi-
nary function call, virtual functions cannot be inlined as often as non-virtual functions, and a
class with virtual functions typically incurs a one-word space overhead.

[2] The need to use free store. The aim ofD Da at te e2 2 is to allow objects of different classes derived
from D Da at te e2 2 to be used interchangeably. Because the sizes of these derived classes differ,
the obvious thing to do is to allocate them on the free store and access them through pointers
or references. Thus, the use of genuine local variables dramatically decreases.

[3] Inconvenience to users. To benefit from the polymorphism provided by the virtual func-
tions, accesses toD Da at te e2 2s must be through pointers or references.

[4] Weaker encapsulation. The virtual operations can be overridden and protected data can be
manipulated from derived classes (§12.4.1.1).

Naturally, these costs are not always significant, and the behavior of a class defined in this way is
often exactly what we want (§25.3, §25.4). However, for a simple concrete type, such asD Da at te e2 2,
the costs are unnecessary and can be significant.

Finally, a well-designed concrete type is often the ideal representation for a more malleable
type. For example:

c cl la as ss s D Da at te e3 3 {
p pu ub bl li ic c:

/ / public interface, consisting primarily of virtual functions
p pr ri iv va at te e:

D Da at te e d d;
};

This is the way to fit concrete types (including built-in types) into a class hierarchy when that is
needed. See also §25.10[1].

25.3 Abstract Types[role.abstract]

The simplest way of loosening the coupling between users of a class and its implementers and also
between code that creates objects and code that uses such objects is to introduce an abstract class
that represents the interface to a set of implementations of a common concept. Consider a naive
S Se et t:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

770 Roles of Classes Chapter 25

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Se et t {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d i in ns se er rt t(T T*) = 0 0;
v vi ir rt tu ua al l v vo oi id d r re em mo ov ve e(T T*) = 0 0;

v vi ir rt tu ua al l i in nt t i is s_ _m me em mb be er r(T T*) = 0 0;

v vi ir rt tu ua al l T T* f fi ir rs st t() = 0 0;
v vi ir rt tu ua al l T T* n ne ex xt t() = 0 0;

v vi ir rt tu ua al l ~S Se et t() { }
};

This defines an interface to a set with a built-in notion of iteration over its elements. The absence
of a constructor and the presence of a virtual destructor is typical (§12.4.2). Several implementa-
tions are possible (§16.2.1). For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t_ _s se et t : p pu ub bl li ic c S Se et t<T T>, p pr ri iv va at te e l li is st t<T T> {
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r_ _s se et t : p pu ub bl li ic c S Se et t<T T>, p pr ri iv va at te e v ve ec ct to or r<T T> {
/ / ...

};

The abstract class provides the common interface to the implementations. This means we can use a
S Se et t without knowing which kind of implementation is used. For example:

v vo oi id d f f(S Se et t<P Pl la an ne e*>& s s)
{

f fo or r (P Pl la an ne e** p p = s s. f fi ir rs st t() ; p p; p p = s s. n ne ex xt t()) {
/ / my stuff

}
/ / ...

}

L Li is st t_ _s se et t<P Pl la an ne e*> s sl l;
V Ve ec ct to or r_ _s se et t<P Pl la an ne e*> v v(1 10 00 0) ;

v vo oi id d g g()
{

f f(s sl l) ;
f f(v v) ;

}

For concrete types, we required a redesign of the implementation classes to express commonality
and used a template to exploit it. Here, we must design a common interface (in this caseS Se et t), but
no commonality beyond the ability to implement the interface is required of the classes used for
implementation.

Furthermore, users ofS Se et t need not know the declarations ofL Li is st t_ _s se et t andV Ve ec ct to or r_ _s se et t, so users
need not depend on these declarations and need not be recompiled or in any way changed if
L Li is st t_ _s se et t or V Ve ec ct to or r_ _s se et t changes or even if a new implementation ofS Se et t – say T Tr re ee e_ _s se et t – is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.3 Abstract Types 771

introduced. All dependencies are contained in functions that explicitly use a class derived fromS Se et t.
In particular, assuming the conventional use of header files the programmer writingf f(S Se et t&) needs
only includeS Se et t. h h and notL Li is st t_ _s se et t. h h or V Ve ec ct to or r_ _s se et t. h h. An ‘‘implementation header’’ is needed
only where aL Li is st t_ _s se et t or aV Ve ec ct to or r_ _s se et t, respectively, is created. An implementation can be further
insulated from the actual classes by introducing an abstract class that handles requests to create
objects (‘‘a factory;’’ §12.4.4).

This separation of the interface from the implementations implies the absence of access to oper-
ations that are ‘‘natural’’ to a particular implementation but not general enough to be part of the
interface. For example, because aS Se et t doesn’t have a notion of ordering we cannot support a sub-
scripting operator in theS Se et t interface even if we happen to be implementing a particularS Se et t using
an array. This implies a run-time cost due to missed hand optimizations. Furthermore, inlining
typically becomes infeasible (except in a local context, when the compiler knows the real type), and
all interesting operations on the interface become virtual function calls. As with concrete types,
sometimes the cost of an abstract type is worth it; sometimes it is not. To sum up, an abstract type
aims to:

[1] define a single concept in a way that allows several implementations of it to coexist in a pro-
gram;

[2] provide reasonable run-time and space efficiency through the use of virtual functions;
[3] let each implementation have only minimal dependency on other classes; and
[4] be comprehensible in isolation.

Abstract types are not better than concrete types, just different. There are difficult and important
tradeoffs for the user to make. The library provider can dodge the issue by providing both, thus
leaving the choice to the user. The important thing is to be clear about to which world a class
belongs. Limiting the generality of an abstract type in an attempt to compete in speed with a con-
crete type usually fails. It compromises the ability to use interchangeable implementations without
significant recompilation after changes. Similarly, attempting to provide ‘‘generality’’ in concrete
types to compete with the abstract type notion also usually fails. It compromises the efficiency and
appropriateness of a simple class. The two notions can coexist– indeed, theymustcoexist because
concrete classes provide the implementations for the abstract types– but they must not be muddled
together.

Abstract types are often not intended to be bases for further derivation beyond their immediate
implementation. Derivation is most often used just to supply implementation. However, a new
interface can be constructed from an abstract class by deriving a more extensive abstract class from
it. This new abstract class must then in turn be implemented through further derivation by a non-
abstract class (§15.2.5).

Why didn’t we deriveL Li is st t andV Ve ec ct to or r classes fromS Se et t in the first place to save the introduction
of L Li is st t_ _s se et t andV Ve ec ct to or r_ _s se et t classes? In other words, why have concrete types when we can have
abstract types?

[1] Efficiency. We want to have concrete types such asv ve ec ct to or r and l li is st t without the overheads
implied by decoupling the implementations from the interfaces (as implied by the abstract
type style).

[2] Reuse. We need a mechanism to fit types designed ‘‘elsewhere’’ (such asv ve ec ct to or r and l li is st t)
into a new library or application by giving them a new interface (rather than rewriting
them).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

772 Roles of Classes Chapter 25

[3] Multiple interfaces. Using a single common base for a variety of classes leads to fat inter-
faces (§24.4.3). Often, it is better to provide a new interface to a class used for new pur-
poses (such as aS Se et t interface for av ve ec ct to or r) rather than modify its interface to serve multiple
purposes.

Naturally, these points are related. They are discussed in some detail for theI Iv va al l_ _b bo ox x example
(§12.4.2, §15.2.5) and in the context of container design (§16.2). Using theS Se et t base class would
have resulted in a based-container solution relying on node classes (§25.4).

Section §25.7 describes a more flexible iterator in that the binding of the iterator to the imple-
mentation yielding the objects can be specified at the point of initialization and changed at run
time.

25.4 Node Classes[role.node]

A class hierarchy is built with a view of derivation different from the interface/implementer view
used for abstract types. Here, a class is viewed as a foundation on which to build. Even if it is an
abstract class, it usually has some representation and provides some services for its derived classes.
Examples of node classes areP Po ol ly yg go on n (§12.3), the initialI Iv va al l_ _s sl li id de er r (§12.4.1), andS Sa at te el ll li it te e
(§15.2).

Typically, a class in a hierarchy represents a general concept of which its derived classes can be
seen as specializations. The typical class designed as an integral part of a hierarchy, anode class,
relies on services from base classes to provide its own services. That is, it calls base class member
functions. A typical node class provides not just an implementation of the interface specified by its
base class (the way an implementation class does for an abstract type). It also adds new functions
itself, thus providing a wider interface. ConsiderC Ca ar r from the traffic-simulation example in
§24.3.2:

c cl la as ss s C Ca ar r : p pu ub bl li ic c V Ve eh hi ic cl le e {
p pu ub bl li ic c:

C Ca ar r(i in nt t p pa as ss se en ng ge er rs s, S Si iz ze e_ _c ca at te eg go or ry y s si iz ze e, i in nt t w we ei ig gh ht t, i in nt t f fc c)
: V Ve eh hi ic cl le e(p pa as ss se en ng ge er rs s, s si iz ze e, w we ei ig gh ht t) , f fu ue el l_ _c ca ap pa ac ci it ty y(f fc c) { /* ... */ }

/ / override relevant virtual functions from Vehicle:

v vo oi id d t tu ur rn n(D Di ir re ec ct ti io on n) ;
/ / ...

/ / add Car-specific functions:

v vi ir rt tu ua al l a ad dd d_ _f fu ue el l(i in nt t a am mo ou un nt t) ; / / a car needs fuel to run
/ / ...

};

The important functions are the constructor through which the programmer specifies the basic prop-
erties that are relevant to the simulation and the (virtual) functions that allow the simulation rou-
tines to manipulate aC Ca ar r without knowing its exact type. AC Ca ar r might be created and used like
this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.4 Node Classes 773

v vo oi id d u us se er r()
{

/ / ...
C Ca ar r* p p = n ne ew w C Ca ar r(3 3, e ec co on no om my y, 1 15 50 00 0, 6 60 0) ;
d dr ri iv ve e(p p, b bs s_ _h ho om me e, M MH H) ; / / enter into simulated traffic pattern
/ / ...

}

A node class usually needs constructors and often a nontrivial constructor. In this, node classes dif-
fer from abstract types, which rarely have constructors.

The operations onC Ca ar r will typically use operations from the base classV Ve eh hi ic cl le e in their imple-
mentations. In addition, the user of aC Ca ar r relies on services from its base classes. For example,
V Ve eh hi ic cl le eprovides the basic functions dealing with weight and size so thatC Ca ar r doesn’t have to:

b bo oo ol l B Br ri id dg ge e: : c ca an n_ _c cr ro os ss s(c co on ns st t V Ve eh hi ic cl le e& r r)
{

i if f (m ma ax x_ _w we ei ig gh ht t<r r. w we ei ig gh ht t()) r re et tu ur rn n f fa al ls se e;
/ / ...

}

This allows programmers to create new classes such asC Ca ar r andT Tr ru uc ck k from a node classV Ve eh hi ic cl le e
by specifying and implementing only what needs to differ fromV Ve eh hi ic cl le e. This is often referred to as
‘‘programming by difference’’ or ‘‘programming by extension.’’

Like many node classes, aC Ca ar r is itself a good candidate for further derivation. For example, an
A Am mb bu ul la an nc ce eneeds additional data and operations to deal with emergencies:

c cl la as ss s A Am mb bu ul la an nc ce e : p pu ub bl li ic c C Ca ar r, p pu ub bl li ic c E Em me er rg ge en nc cy y {
p pu ub bl li ic c:

A Am mb bu ul la an nc ce e() ;

/ / override relevant Car virtual functions:

v vo oi id d t tu ur rn n(D Di ir re ec ct ti io on n) ;
/ / ...

/ / override relevant Emergency virtual functions:

v vi ir rt tu ua al l d di is sp pa at tc ch h_ _t to o(c co on ns st t L Lo oc ca at ti io on n&) ;
/ / ...

/ / add Ambulance-specific functions:

v vi ir rt tu ua al l i in nt t p pa at ti ie en nt t_ _c ca ap pa ac ci it ty y() ; / / number of stretchers
/ / ...

};

To sum up, a node class
[1] relies on its base classes both for its implementation and for supplying services to its users;
[2] provides a wider interface (that is, an interface with more public member functions) to its

users than do its base classes;
[3] relies primarily (but not necessarily exclusively) on virtual functions in its public interface;
[4] depends on all of its (direct and indirect) base classes;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

774 Roles of Classes Chapter 25

[5] can be understood only in the context of its base classes;
[6] can be used as a base for further derivation; and
[7] can be used to create objects.

Not every node class will conform to all of points 1, 2, 6, and 7, but most do. A class that does not
conform to point 6 resembles a concrete type and could be called aconcrete node class. For exam-
ple, a concrete node class can be used to implement an abstract class (§12.4.2) and variables of such
a class can be allocated statically and on the stack. Such a class is sometimes called aleaf class.
However, any code operating on a pointer or reference to a class with virtual functions must take
into account the possibility of a further derived class (or assume without language support that fur-
ther derivation hasn’t happened). A class that does not conform to point 7 resembles an abstract
type and could be called anabstract node class. Because of unfortunate traditions, many node
classes have at least somep pr ro ot te ec ct te ed d members to provide a less restricted interface for derived
classes (§12.4.1.1).

Point 4 implies that to compile a node class, a programmer must include the declarations of all
of its direct and indirect base classes and all of the declarations that they, in turn, depend on. In
this, a node class again provides a contrast to an abstract type. A user of an abstract type does not
depend on the classes used to implement it and need not include them to compile.

25.4.1 Changing Interfaces [role.io]

By definition, a node class is part of a class hierarchy. Not every class in a hierarchy needs to offer
the same interface. In particular, a derived class can provide more member functions, and a sibling
class can provide a completely different set of functions. From a design perspective,d dy yn na am mi ic c_ _c ca as st t
(§15.4) can be seen as a mechanism for asking an object if it provides a given interface.

As an example, consider a simple object I/O system. Users want to read objects from a stream,
determine that they are of the expected types, and then use them. For example:

v vo oi id d u us se er r()
{

/ / ... open file assumed to hold shapes, and attach ss as an istream for that file ...

I Io o_ _o ob bj j* p p = g ge et t_ _o ob bj j(s ss s) ; / / read object from stream

i if f (S Sh ha ap pe e* s sp p = d dy yn na am mi ic c_ _c ca as st t<S Sh ha ap pe e*>(p p)) {
s sp p-> d dr ra aw w() ; / / use the Shape
/ / ...

}
e el ls se e {

/ / oops: non-shape in Shape file
}

}

The functionu us se er r() deals with shapes exclusively through the abstract classS Sh ha ap pe e and can there-
fore use every kind of shape. The use ofd dy yn na am mi ic c_ _c ca as st t is essential because the object I/O system
can deal with many other kinds of objects and the user may accidentally have opened a file contain-
ing perfectly good objects of classes that the user has never heard of.

This object I/O system assumes that every object read or written is of a class derived from
I Io o_ _o ob bj j. ClassI Io o_ _o ob bj j must be a polymorphic type to allow us to used dy yn na am mi ic c_ _c ca as st t. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.4.1 Changing Interfaces 775

c cl la as ss s I Io o_ _o ob bj j {
p pu ub bl li ic c:

v vi ir rt tu ua al l I Io o_ _o ob bj j* c cl lo on ne e() c co on ns st t =0 0; / / polymorphic
v vi ir rt tu ua al l ~I Io o_ _o ob bj j() {}

};

The critical function in the object I/O system isg ge et t_ _o ob bj j() , which reads data from ani is st tr re ea am m and
creates class objects based on that data. Assume that the data representing an object on an input
stream is prefixed by a string identifying the object’s class. The job ofg ge et t_ _o ob bj j() is to read that
string prefix and call a function capable of creating and initializing an object of the right class. For
example:

t ty yp pe ed de ef f I Io o_ _o ob bj j* (* P PF F)(i is st tr re ea am m&) ; / / pointer to function returning an Io_obj*

m ma ap p<s st tr ri in ng g, P PF F> i io o_ _m ma ap p; / / maps strings to creation functions

b bo oo ol l g ge et t_ _w wo or rd d(i is st tr re ea am m& i is s, s st tr ri in ng g& s s) ; / / read a word from is into s

I Io o_ _o ob bj j* g ge et t_ _o ob bj j(i is st tr re ea am m& s s)
{

s st tr ri in ng g s st tr r;
b bo oo ol l b b = g ge et t_ _w wo or rd d(s s, s st tr r) ; / / read initial word into str
i if f (b b == f fa al ls se e) t th hr ro ow w N No o_ _c cl la as ss s() ; / / io format problem

P PF F f f = i io o_ _m ma ap p[s st tr r] ; / / lookup ‘str’ to get function
i if f (f f == 0 0) t th hr ro ow w U Un nk kn no ow wn n_ _c cl la as ss s() ; / / no match for ‘str’

r re et tu ur rn n f f(s s) ; / / construct object from stream
}

Them ma ap p called i io o_ _m ma ap p holds pairs of name strings and functions that can construct objects of the
class with that name.

We could define classS Sh ha ap pe e in the usual way, except for deriving it fromI Io o_ _o ob bj j as required by
u us se er r() :

c cl la as ss s S Sh ha ap pe e : p pu ub bl li ic c I Io o_ _o ob bj j {
/ / ...

};

However, it would be more interesting (and in many cases more realistic) to use a definedS Sh ha ap pe e
(§2.6.2) unchanged:

c cl la as ss s I Io o_ _c ci ir rc cl le e : p pu ub bl li ic c C Ci ir rc cl le e, p pu ub bl li ic c I Io o_ _o ob bj j {
p pu ub bl li ic c:

I Io o_ _c ci ir rc cl le e* c cl lo on ne e() c co on ns st t { r re et tu ur rn n n ne ew w I Io o_ _c ci ir rc cl le e(* t th hi is s) ; } / / using copy constructor
I Io o_ _c ci ir rc cl le e(i is st tr re ea am m&) ; / / initialize from input stream
s st ta at ti ic c I Io o_ _o ob bj j* n ne ew w_ _c ci ir rc cl le e(i is st tr re ea am m& s s) { r re et tu ur rn n n ne ew w I Io o_ _c ci ir rc cl le e(s s) ; }
/ / ...

};

This is an example of how a class can be fitted into a hierarchy using an abstract class with less
foresight than would have been required to build it as a node class in the first place (§12.4.2,
§25.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

776 Roles of Classes Chapter 25

The I Io o_ _c ci ir rc cl le e(i is st tr re ea am m&) constructor initializes an object with data from itsi is st tr re ea am m argument.
The n ne ew w_ _c ci ir rc cl le e() function is the one put into thei io o_ _m ma ap p to make the class known to the object
I/O system. For example:

i io o_ _m ma ap p[" I Io o_ _c ci ir rc cl le e"]=& I Io o_ _c ci ir rc cl le e: : n ne ew w_ _c ci ir rc cl le e;

Other shapes are constructed in the same way:

c cl la as ss s I Io o_ _t tr ri ia an ng gl le e : p pu ub bl li ic c T Tr ri ia an ng gl le e, p pu ub bl li ic c I Io o_ _o ob bj j {
/ / ...

};

If the provision of the object I/O scaffolding becomes tedious, a template might help:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s I Io o : p pu ub bl li ic c T T, p pu ub bl li ic c I Io o_ _o ob bj j {
p pu ub bl li ic c:

I Io o* c cl lo on ne e() c co on ns st t { r re et tu ur rn n n ne ew w I Io o(* t th hi is s) ; } / / override Io_obj::clone()

I Io o(i is st tr re ea am m&) ; / / initialize from input stream

s st ta at ti ic c I Io o* n ne ew w_ _i io o(i is st tr re ea am m& s s) { r re et tu ur rn n n ne ew w I Io o(s s) ; }
/ / ...

};

Given this, we can defineI Io o_ _c ci ir rc cl le e:

t ty yp pe ed de ef f I Io o<C Ci ir rc cl le e> I Io o_ _c ci ir rc cl le e;

We still need to defineI Io o<C Ci ir rc cl le e>: : I Io o(i is st tr re ea am m&) explicitly, though, because it needs to know
about the details ofC Ci ir rc cl le e.

The I Io o template is an example of a way to fit concrete types into a class hierarchy by providing
a handle that is a node in that hierarchy. It derives from its template parameter to allow casting
from I Io o_ _o ob bj j. Unfortunately, this precludes usingI Io o for a built-in type:

t ty yp pe ed de ef f I Io o<D Da at te e> I Io o_ _d da at te e; / / wrap concrete type
t ty yp pe ed de ef f I Io o<i in nt t> I Io o_ _i in nt t; / / error: cannot derive from built-in type

This problem can be handled by providing a separate template for built-in types or by using a class
representing a built-in type (§25.10[1]).

This simple object I/O system may not do everything anyone ever wanted, but it almost fits on a
single page and the key mechanisms have many uses. In general, these techniques can be used to
invoke a function based on a string supplied by a user and to manipulate objects of unknown type
through interfaces discovered through run-time type identification.

25.5 Actions[role.action]

The simplest and most obvious way to specify an action in C++ is to write a function. However, if
an action has to be delayed, has to be transmitted ‘‘elsewhere’’ before being performed, requires its
own data, has to be combined with other actions (§25.10[18,19]), etc., then it often becomes attrac-
tive to provide the action in the form of a class that can execute the desired action and provide other
services as well. A function object used with the standard algorithms is an obvious example

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.5 Actions 777

(§18.4), and so are the manipulators used withi io os st tr re ea am ms (§21.4.6). In the former case, the actual
action is performed by the application operator, and in the latter case, by the<< or >> operators. In
the case ofF Fo or rm m (§21.4.6.3) andM Ma at tr ri ix x (§22.4.7), compositor classes were used to delay execu-
tion until sufficient information had been gathered for efficient execution.

A common form of action class is a simple class containing just one virtual function (typically
called something like ‘‘do_it’’):

c cl la as ss s A Ac ct ti io on n {
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t d do o_ _i it t(i in nt t) = 0 0;
v vi ir rt tu ua al l ~A Ac ct ti io on n() { }

};

Given this, we can write code– say a menu– that can store actions for later execution without
using pointers to functions, without knowing anything about the objects invoked, and without even
knowing the name of the operation it invokes. For example:

c cl la as ss s W Wr ri it te e_ _f fi il le e : p pu ub bl li ic c A Ac ct ti io on n {
F Fi il le e& f f;

p pu ub bl li ic c:
i in nt t d do o_ _i it t(i in nt t) { r re et tu ur rn n f f. w wr ri it te e(). s su uc cc ce ee ed d() ; }

};

c cl la as ss s E Er rr ro or r_ _r re es sp po on ns se e : p pu ub bl li ic c A Ac ct ti io on n {
s st tr ri in ng g m me es ss sa ag ge e;

p pu ub bl li ic c:
i in nt t d do o_ _i it t(i in nt t) ;

};

i in nt t E Er rr ro or r_ _r re es sp po on ns se e: : d do o_ _i it t(i in nt t)
{

R Re es sp po on ns se e_ _b bo ox x d db b(m me es ss sa ag ge e. c c_ _s st tr r() , " c co on nt ti in nu ue e"," c ca an nc ce el l"," r re et tr ry y") ;

s sw wi it tc ch h (d db b. g ge et t_ _r re es sp po on ns se e()) {
c ca as se e 0 0:

r re et tu ur rn n 0 0;
c ca as se e 1 1:

a ab bo or rt t() ;
c ca as se e 2 2:

c cu ur rr re en nt t_ _o op pe er ra at ti io on n. r re ed do o() ;
r re et tu ur rn n 1 1;

}
}

A Ac ct ti io on n* a ac ct ti io on ns s[] = {
n ne ew w W Wr ri it te e_ _f fi il le e(f f) ,
n ne ew w E Er rr ro or r_ _r re es sp po on ns se e(" y yo ou u b bl le ew w i it t a ag ga ai in n") ,
/ / ...

};

A user of A Ac ct ti io on n can be completely insulated from any knowledge of derived classes such as
W Wr ri it te e_ _f fi il le eandE Er rr ro or r_ _r re es sp po on ns se e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

778 Roles of Classes Chapter 25

This is a powerful technique that should be treated with some care by people with a background
in functional decomposition. If too many classes start looking likeA Ac ct ti io on n, the overall design of the
system may have deteriorated into something unduly functional.

Finally, a class can encode an operation for execution on a remote machine or for storage for
future use (§25.10[18]).

25.6 Interface Classes[role.interface]

One of the most important kinds of classes is the humble and mostly overlooked interface class.
An interface class doesn’t do much– if it did, it wouldn’t be an interface class. It simply adjusts
the appearance of some service to local needs. Because it is impossible in principle to serve all
needs equally well all the time, interface classes are essential to allow sharing without forcing all
users into a common straitjacket.

The purest form of an interface doesn’t even cause any code to be generated. Consider the
V Ve ec ct to or r specialization from §13.5:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r<T T*> : p pr ri iv va at te e V Ve ec ct to or r<v vo oi id d*> {
p pu ub bl li ic c:

t ty yp pe ed de ef f V Ve ec ct to or r<v vo oi id d*> B Ba as se e;

V Ve ec ct to or r() : B Ba as se e() {}
V Ve ec ct to or r(i in nt t i i) : B Ba as se e(i i) {}

T T*& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*&>(B Ba as se e: : o op pe er ra at to or r[](i i)) ; }

/ / ...
};

This (partial) specialization turns the unsafeV Ve ec ct to or r<v vo oi id d*> into a much more useful family of
type-safe vector classes. Inline functions are often essential for making interface classes affordable.
In cases such as this, when an inline forwarding function does only type adjustment, there is no
added overhead in time or space.

Naturally, an abstract base class representing an abstract type implemented by concrete types
(§25.2) is a form of interface class, as are the handles from §25.7. However, here we will focus on
classes that have no more specific function than adjusting an interface.

Consider the problem of merging two hierarchies using multiple inheritance. What can be done
if there is a name clash, that is, two classes have used the same name for virtual functions perform-
ing completely different operations? For example, consider a Wild-West videogame in which user
interactions are handled by a general window class:

c cl la as ss s W Wi in nd do ow w {
/ / ...
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() ; / / display image

};

c cl la as ss s C Co ow wb bo oy y {
/ / ...
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() ; / / pull gun from holster

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.6 Interface Classes 779

c cl la as ss s C Co ow wb bo oy y_ _w wi in nd do ow w : p pu ub bl li ic c C Co ow wb bo oy y, p pu ub bl li ic c W Wi in nd do ow w {
/ / ...

};

A C Co ow wb bo oy y_ _w wi in nd do ow w represents the animation of a cowboy in the game and handles the
user/player’s interactions with the cowboy character. We would prefer to use multiple inheritance,
rather than declaring either theW Wi in nd do ow w or theC Co ow wb bo oy y as members, because there will be many
service functions defined for bothW Wi in nd do ow ws and C Co ow wb bo oy ys. We would like to pass a
C Co ow wb bo oy y_ _w wi in nd do ow w to such functions without special actions required by the programmer. However,
this leads to a problem definingC Co ow wb bo oy y_ _w wi in nd do ow w versions of C Co ow wb bo oy y: : d dr ra aw w() and
W Wi in nd do ow w: : d dr ra aw w() .

There can be only one function defined inC Co ow wb bo oy y_ _w wi in nd do ow w calledd dr ra aw w() . Yet because ser-
vice functions manipulateW Wi in nd do ow ws and C Co ow wb bo oy ys without knowledge ofC Co ow wb bo oy y_ _w wi in nd do ow ws,
C Co ow wb bo oy y_ _w wi in nd do ow w must override bothC Co ow wb bo oy y’s d dr ra aw w() andW Wi in nd do ow w’s d dr ra aw w() . Overriding both
functions by a singled dr ra aw w() function would be wrong because, despite the common name, the
d dr ra aw w() functions are unrelated and cannot be redefined by a common function.

Finally, we would also likeC Co ow wb bo oy y_ _w wi in nd do ow w to have distinct, unambiguous names for the
inherited functionsC Co ow wb bo oy y: : d dr ra aw w() andW Wi in nd do ow w: : d dr ra aw w() .

To solve this problem, we need to introduce an extra class forC Co ow wb bo oy y and an extra class for
W Wi in nd do ow w. These classes introduce the two new names for thed dr ra aw w() functions and ensure that a
call of thed dr ra aw w() functions inC Co ow wb bo oy y andW Wi in nd do ow w calls the functions with the new names:

c cl la as ss s C CC Co ow wb bo oy y : p pu ub bl li ic c C Co ow wb bo oy y { / / interface to Cowboy renaming draw()
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t c co ow w_ _d dr ra aw w() = 0 0;
v vo oi id d d dr ra aw w() { c co ow w_ _d dr ra aw w() ; } / / override Cowboy::draw()

};

c cl la as ss s W WW Wi in nd do ow w : p pu ub bl li ic c W Wi in nd do ow w { / / interface to Window renaming draw()
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t w wi in n_ _d dr ra aw w() = 0 0;
v vo oi id d d dr ra aw w() { w wi in n_ _d dr ra aw w() ; } / / override Window::draw()

};

We can now compose aC Co ow wb bo oy y_ _w wi in nd do ow w from the interface classesC CC Co ow wb bo oy y andW WW Wi in nd do ow w and
overridec co ow w_ _d dr ra aw w() andw wi in n_ _d dr ra aw w() with the desired effect:

c cl la as ss s C Co ow wb bo oy y_ _w wi in nd do ow w : p pu ub bl li ic c C CC Co ow wb bo oy y, p pu ub bl li ic c W WW Wi in nd do ow w {
/ / ...
v vo oi id d c co ow w_ _d dr ra aw w() ;
v vo oi id d w wi in n_ _d dr ra aw w() ;

};

Note that this problem was serious only because the twod dr ra aw w() functions have the same argu-
ment type. If they have different argument types, the usual overloading resolution rules will ensure
that no problem manifests itself despite the unrelated functions having the same name.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

780 Roles of Classes Chapter 25

For each use of an interface class, one could imagine a special-purpose language extension that
could perform the desired adjustment a little bit more efficiently or a little more elegantly. How-
ever, each use of an interface class is infrequent and supporting them all with specialized language
constructs would impose a prohibitive burden of complexity. In particular, name clashes arising
from the merging of class hierarchies are not common (compared with how often a programmer
will write a class) and tend to arise from the merging of hierarchies generated from dissimilar cul-
tures– such as games and window systems. Merging such dissimilar hierarchies is not easy, and
resolving name clashes will more often than not be the least of the programmer’s problems. Other
problems include dissimilar error handling, dissimilar initialization, and dissimilar memory-
management strategies. The resolution of name clashes is discussed here because the technique of
introducing an interface class with a forwarding function has many other applications. It can be
used not only to change names, but also to change argument and return types, to introduce run-time
checking, etc.

Because the forwarding functionsC CC Co ow wb bo oy y: : d dr ra aw w() and W WW Wi in nd do ow w: : d dr ra aw w() are virtual
functions, they cannot be optimized away by simple inlining. It is, however, possible for a com-
piler to recognize them as simple forwarding functions and then optimize them out of the call
chains that go through them.

25.6.1 Adjusting Interfaces [role.range]

A major use of interface functions is to adjust an interface to match users’ expectations better, thus
moving code that would have been scattered throughout a user’s code into an interface. For exam-
ple, the standardv ve ec ct to or r is zero-based. Users who want ranges other than0 0 to s si iz ze e- 1 1 must adjust
their usage. For example:

v vo oi id d f f()
{

v ve ec ct to or r v v<i in nt t>(1 10 0) ; / / range [0:9]

/ / pretend v is in the range [1:10]:

f fo or r (i in nt t i i = 1 1; i i<=1 10 0; i i++) {
v v[i i- 1 1] = 7 7; / / remember to adjust index
/ / ...

}
}

A better way is to provide av ve ec ct to or r with arbitrary bounds:

c cl la as ss s V Ve ec ct to or r : p pu ub bl li ic c v ve ec ct to or r<i in nt t> {
i in nt t l lb b;

p pu ub bl li ic c:
V Ve ec ct to or r(i in nt t l lo ow w, i in nt t h hi ig gh h) : v ve ec ct to or r<i in nt t>(h hi ig gh h- l lo ow w+1 1) { l lb b=l lo ow w; }

i in nt t& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n v ve ec ct to or r<i in nt t>: : o op pe er ra at to or r[](i i- l lb b) ; }

i in nt t l lo ow w() { r re et tu ur rn n l lb b; }
i in nt t h hi ig gh h() { r re et tu ur rn n l lb b+s si iz ze e()- 1 1; }

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.6.1 Adjusting Interfaces 781

A V Ve ec ct to or r can be used like this:

v vo oi id d g g()
{

V Ve ec ct to or r v v(1 1, 1 10 0) ; / / range [1:10]

f fo or r (i in nt t i i = 1 1; i i<=1 10 0; i i++) {
v v[i i] = 7 7;
/ / ...

}
}

This imposes no overhead compared to the previous example. Clearly, theV Ve ec ct to or r version is easier
to read and write and is less error-prone.

Interface classes are usually rather small and (by definition) do rather little. However, they crop
up wherever software written according to different traditions needs to cooperate because then there
is a need to mediate between different conventions. For example, interface classes are often used to
provide C++ interfaces to non-C++ code and to insulate application code from the details of
libraries (to leave open the possibility of replacing the library with another).

Another important use of interface classes is to provide checked or restricted interfaces. For
example, it is not uncommon to have integer variables that are supposed to have values in a given
range only. This can be enforced (at run time) by a simple template:

t te em mp pl la at te e<i in nt t l lo ow w, i in nt t h hi ig gh h> c cl la as ss s R Ra an ng ge e {
i in nt t v va al l;

p pu ub bl li ic c:
c cl la as ss s E Er rr ro or r { }; / / exception class

R Ra an ng ge e(i in nt t i i) { A As ss se er rt t<E Er rr ro or r>(l lo ow w<=i i&&i i<h hi ig gh h) ; v va al l = i i; } / / see §24.3.7.2
R Ra an ng ge e o op pe er ra at to or r=(i in nt t i i) { r re et tu ur rn n * t th hi is s=R Ra an ng ge e(i i) ; }

o op pe er ra at to or r i in nt t() { r re et tu ur rn n v va al l; }
/ / ...

};

v vo oi id d f f(R Ra an ng ge e<2 2, 1 17 7>) ;
v vo oi id d g g(R Ra an ng ge e<- 1 10 0, 1 10 0>) ;

v vo oi id d h h(i in nt t x x)
{

R Ra an ng ge e<0 0, 2 20 00 01 1> i i = x x; / / might throw Range::Error
i in nt t i i1 1 = i i;

f f(3 3) ;
f f(1 17 7) ; / / throws Range::Error
g g(- 7 7) ;
g g(1 10 00 0) ; / / throws Range::Error

}

TheR Ra an ng ge e template is easily extended to handle ranges of arbitrary scalar types (§25.10[7]).
An interface class that controls access to another class or adjusts its interface is sometimes

called aw wr ra ap pp pe er r.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

782 Roles of Classes Chapter 25

25.7 Handle Classes[role.handle]

An abstract type provides an effective separation between an interface and its implementations.
However, as used in §25.3 the connection between an interface provided by an abstract type and its
implementation provided by a concrete type is permanent. For example, it is not possible to rebind
an abstract iterator from one source– say, a set– to another– say, a stream– once the original
source becomes exhausted.

Furthermore, unless one manipulates an object implementing an abstract class through pointers
or references, the benefits of virtual functions are lost. User code may become dependent on details
of the implementation classes because an abstract type cannot be allocated statically or on the stack
(including being accepted as a by-value argument) without its size being known. Using pointers
and references implies that the burden of memory management falls on the user.

Another limitation of the abstract class approach is that a class object is of fixed size. Classes,
however, are used to represent concepts that require varying amounts of storage to implement them.

A popular technique for dealing with these issues is to separate what is used as a single object
into two parts: a handle providing the user interface and a representation holding all or most of the
object’s state. The connection between the handle and the representation is typically a pointer in
the handle. Often, handles have a bit more data than the simple representation pointer, but not
much more. This implies that the layout of a handle is typically stable even when the representa-
tion changes and also that handles are small enough to move around relatively freely so that point-
ers and references need not be used by the user.

Handle Representation. .

The S St tr ri in ng g from §11.12 is a simple example of a handle. The handle provides an interface to,
access control for, and memory management for the representation. In this case, both the handle
and the representation are concrete types, but the representation class is often an abstract class.

Consider the abstract typeS Se et t from §25.3. How could one provide a handle for it, and what
benefits and cost would that involve? Given a set class, one might simply define a handle by over-
loading the-> operator:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Se et t_ _h ha an nd dl le e {
S Se et t<T T>* r re ep p;

p pu ub bl li ic c:
S Se et t<T T>* o op pe er ra at to or r->() { r re et tu ur rn n r re ep p; }

S Se et t_ _h ha an nd dl le e(S Se et t<T T>* p pp p) : r re ep p(p pp p) { }
};

This doesn’t significantly affect the wayS Se et ts are used; one simply passesS Se et t_ _h ha an nd dl le es around
instead ofS Se et t&s orS Se et t* s. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.7 Handle Classes 783

v vo oi id d f f(S Se et t_ _h ha an nd dl le e<i in nt t> s s)
{

f fo or r (i in nt t* p p = s s-> f fi ir rs st t() ; p p; p p = s s-> n ne ex xt t())
{

/ / ...
}

}

v vo oi id d u us se er r()
{

S Se et t_ _h ha an nd dl le e<i in nt t> s sl l(n ne ew w L Li is st t_ _s se et t<i in nt t>) ;
S Se et t_ _h ha an nd dl le e<i in nt t> v v(n ne ew w V Ve ec ct to or r_ _s se et t<i in nt t>(1 10 00 0)) ;

f f(s sl l) ;
f f(v v) ;

}

Often, we want a handle to do more than just provide access. For example, if theS Se et t class and the
S Se et t_ _h ha an nd dl le e class are designed together it is easy to do reference counting by including a use count
in eachS Se et t. In general, we do not want to design a handle together with what it is a handle to, so
we will have to store any information that needs to be shared by a handle in a separate object. In
other words, we would like to have non-intrusive handles in addition to the intrusive ones. For
example, here is a handle that removes an object when its last handle goes away:

t te em mp pl la at te e<c cl la as ss s X X> c cl la as ss s H Ha an nd dl le e {
X X* r re ep p;
i in nt t* p pc co ou un nt t;

p pu ub bl li ic c:
X X* o op pe er ra at to or r->() { r re et tu ur rn n r re ep p; }

H Ha an nd dl le e(X X* p pp p) : r re ep p(p pp p) , p pc co ou un nt t(n ne ew w i in nt t(1 1)) { }
H Ha an nd dl le e(c co on ns st t H Ha an nd dl le e& r r) : r re ep p(r r. r re ep p) , p pc co ou un nt t(r r. p pc co ou un nt t) { (* p pc co ou un nt t)++; }

H Ha an nd dl le e& o op pe er ra at to or r=(c co on ns st t H Ha an nd dl le e& r r)
{

i if f (r re ep p == r r. r re ep p) r re et tu ur rn n * t th hi is s;
i if f (--(* p pc co ou un nt t) == 0 0) {

d de el le et te e r re ep p;
d de el le et te e p pc co ou un nt t;

}
r re ep p = r r. r re ep p;
p pc co ou un nt t = r r. p pc co ou un nt t;
(* p pc co ou un nt t)++;
r re et tu ur rn n * t th hi is s;

}

~H Ha an nd dl le e() { i if f (--(* p pc co ou un nt t) == 0 0) { d de el le et te e r re ep p; d de el le et te e p pc co ou un nt t; } }

/ / ...
};

Such a handle can be passed around freely. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

784 Roles of Classes Chapter 25

v vo oi id d f f1 1(H Ha an nd dl le e<S Se et t>) ;

H Ha an nd dl le e<S Se et t> f f2 2()
{

H Ha an nd dl le e<S Se et t> h h(n ne ew w L Li is st t_ _s se et t<i in nt t>) ;
/ / ...
r re et tu ur rn n h h;

}

v vo oi id d g g()
{

H Ha an nd dl le e<S Se et t> h hh h = f f2 2() ;
f f1 1(h hh h) ;
/ / ...

}

Here, the set created inf f2 2() will be deleted upon exit fromg g() – unlessf f1 1() held on to a copy;
the programmer does not need to know.

Naturally, this convenience comes at a cost, but for many applications the cost of storing and
maintaining the use count is acceptable.

Sometimes, it is useful to extract the representation pointer from a handle and use it directly.
For example, this would be needed to pass an object to a function that does not know about han-
dles. This works nicely provided the called function does not destroy the object passed to it or
store a pointer to it for use after returning to its caller. An operation for rebinding a handle to a new
representation can also be useful:

t te em mp pl la at te e<c cl la as ss s X X> c cl la as ss s H Ha an nd dl le e {
/ / ...

X X* g ge et t_ _r re ep p() { r re et tu ur rn n r re ep p; }

v vo oi id d b bi in nd d(X X* p pp p)
{

i if f (p pp p != r re ep p) {
i if f (--* p pc co ou un nt t == 0 0) {

d de el le et te e r re ep p;
* p pc co ou un nt t = 1 1; / / recycle pcount

}
e el ls se e

p pc co ou un nt t = n ne ew w i in nt t(1 1) ; / / new pcount
r re ep p = p pp p;

}
}

};

Note that derivation of new classes fromH Ha an nd dl le e isn’t particularly useful. It is a concrete type
without virtual functions. The idea is to have one handle class for a family of classes defined by a
base class. Derivation from this base class can be a powerful technique. It applies to node classes
as well as to abstract types.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.7 Handle Classes 785

As written,H Ha an nd dl le e doesn’t deal with inheritance. To get a class that acts like a genuine use-
counted pointer,H Ha an nd dl le eneeds to be combined withP Pt tr r from §13.6.3.1 (see §25.10[2]).

A handle that provides an interface that is close to identical to the class for which it is a handle
is often called aproxy. This is particularly common for handles that refer to an object on a remote
machine.

25.7.1 Operations in Handles [role.handle.op]

Overloading-> enables a handle to gain control and do some work on each access to an object.
For example, one could collect statistics about the number of uses of the object accessed through a
handle:

t te em mp pl la at te e <c cl la as ss s T T> c cl la as ss s X Xh ha an nd dl le e {
T T* r re ep p;
i in nt t n no o_ _o of f_ _a ac cc ce es ss se es s;

p pu ub bl li ic c:
T T* o op pe er ra at to or r->() { n no o_ _o of f_ _a ac cc ce es ss se es s++; r re et tu ur rn n r re ep p; }

/ / ...
};

Handles for which work needs to be done both beforeandafter access require more elaborate pro-
gramming. For example, one might want a set with locking while an insertion or a removal is
being done. Essentially, the representation class’ interface needs to be replicated in the handle
class:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Se et t_ _c co on nt tr ro ol ll le er r {
S Se et t<T T>* r re ep p;
L Lo oc ck k l lo oc ck k;
/ / ...

p pu ub bl li ic c:
v vo oi id d i in ns se er rt t(T T* p p) { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; r re ep p-> i in ns se er rt t(p p) ; } / / see §14.4.1
v vo oi id d r re em mo ov ve e(T T* p p) { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; r re ep p-> r re em mo ov ve e(p p) ; }

i in nt t i is s_ _m me em mb be er r(T T* p p) { r re et tu ur rn n r re ep p-> i is s_ _m me em mb be er r(p p) ; }

T T g ge et t_ _f fi ir rs st t() { T T* p p = r re ep p-> f fi ir rs st t() ; r re et tu ur rn n p p ? * p p : T T() ; }
T T g ge et t_ _n ne ex xt t() { T T* p p = r re ep p-> n ne ex xt t() ; r re et tu ur rn n p p ? * p p : T T() ; }

T T f fi ir rs st t() { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; T T t tm mp p = * r re ep p-> f fi ir rs st t() ; r re et tu ur rn n t tm mp p; }
T T n ne ex xt t() { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; T T t tm mp p = * r re ep p-> n ne ex xt t() ; r re et tu ur rn n t tm mp p; }

/ / ...
};

Providing these forwarding functions is tedious (and therefore somewhat error-prone), although it is
neither difficult nor costly in run time.

Note that only some of thes se et t functions required locking. In my experience, it is typical that a
class needing pre- and post-actions requires them for only some member functions. In the case of
locking, locking on all operations– as is done for monitors in some systems– leads to excess lock-
ing and sometimes causes a noticeable decrease in concurrency.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

786 Roles of Classes Chapter 25

An advantage of the elaborate definition of all operations on the handle over the overloading of
-> style of handles is that it is possible to derive from classS Se et t_ _c co on nt tr ro ol ll le er r. Unfortunately, some
of the benefits of being a handle are compromised if data members are added in the derived class.
In particular, the amount of code shared (in the handled class) decreases compared to the amount of
code written in each handle.

25.8 Application Frameworks[role.framework]

Components built out of the kinds of classes described in §25.2– §25.7 support design and reuse of
code by supplying building blocks and ways of combining them; the application builder designs a
framework into which these common building blocks are fitted. An alternative, and sometimes
more ambitious, approach to the support of design and reuse is to provide code that establishes a
common framework into which the application builder fits application-specific code as building
blocks. Such an approach is often called anapplication framework. The classes establishing such
a framework often have such fat interfaces that they are hardly types in the traditional sense. They
approximate the ideal of being complete applications, except that they don’t do anything. The spe-
cific actions are supplied by the application programmer.

As an example, consider a filter, that is, a program that reads an input stream, (maybe) performs
some actions based on that input, (maybe) produces an output stream, and (maybe) produces a final
result. A naive framework for such programs would provide a set of operations that an application
programmer might supply:

c cl la as ss s F Fi il lt te er r {
p pu ub bl li ic c:

c cl la as ss s R Re et tr ry y {
p pu ub bl li ic c:

v vi ir rt tu ua al l c co on ns st t c ch ha ar r* m me es ss sa ag ge e() { r re et tu ur rn n 0 0; }
};

v vi ir rt tu ua al l v vo oi id d s st ta ar rt t() { }
v vi ir rt tu ua al l i in nt t r re ea ad d() = 0 0;
v vi ir rt tu ua al l v vo oi id d w wr ri it te e() { }
v vi ir rt tu ua al l v vo oi id d c co om mp pu ut te e() { }
v vi ir rt tu ua al l i in nt t r re es su ul lt t() = 0 0;

v vi ir rt tu ua al l i in nt t r re et tr ry y(R Re et tr ry y& m m) { c ce er rr r << m m. m me es ss sa ag ge e() << ´ \ \n n´; r re et tu ur rn n 2 2; }

v vi ir rt tu ua al l ~F Fi il lt te er r() { }
};

Functions that a derived class must supply are declared pure virtual; other functions are simply
defined to do nothing.

The framework also provides a main loop and a rudimentary error-handling mechanism:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.8 Application Frameworks 787

i in nt t m ma ai in n_ _l lo oo op p(F Fi il lt te er r* p p)
{

f fo or r(;;) {
t tr ry y {

p p-> s st ta ar rt t() ;
w wh hi il le e (p p-> r re ea ad d()) {

p p-> c co om mp pu ut te e() ;
p p-> w wr ri it te e() ;

}
r re et tu ur rn n p p-> r re es su ul lt t() ;

}

c ca at tc ch h (F Fi il lt te er r: : R Re et tr ry y& m m) {
i if f (i in nt t i i = p p-> r re et tr ry y(m m)) r re et tu ur rn n i i;

}

c ca at tc ch h (...) {
c ce er rr r << " F Fa at ta al l f fi il lt te er r e er rr ro or r\ \n n";
r re et tu ur rn n 1 1;

}
}

}

Finally, I could write my program like this:

c cl la as ss s M My y_ _f fi il lt te er r : p pu ub bl li ic c F Fi il lt te er r {
i is st tr re ea am m& i is s;
o os st tr re ea am m& o os s;
i in nt t n nc ch ha ar r;

p pu ub bl li ic c:
i in nt t r re ea ad d() { c ch ha ar r c c; i is s. g ge et t(c c) ; r re et tu ur rn n i is s. g go oo od d() ; }
v vo oi id d c co om mp pu ut te e() { n nc ch ha ar r++; }
i in nt t r re es su ul lt t() { o os s << n nc ch ha ar r << " c ch ha ar ra ac ct te er rs s r re ea ad d\ \n n"; r re et tu ur rn n 0 0; }

M My y_ _f fi il lt te er r(i is st tr re ea am m& i ii i, o os st tr re ea am m& o oo o) : i is s(i ii i) , o os s(o oo o) , n nc ch ha ar r(0 0) { }
};

and activate it like this:

i in nt t m ma ai in n()
{

M My y_ _f fi il lt te er r f f(c ci in n, c co ou ut t) ;
r re et tu ur rn n m ma ai in n_ _l lo oo op p(& f f) ;

}

Naturally, for a framework to be of significant use, it must provide more structure and many more
services than this simple example does. In particular, a framework is typically a hierarchy of node
classes. Having the application programmer supply leaf classes in a deeply nested hierarchy allows
commonality between applications and reuse of services provided by such a hierarchy. A frame-
work will also be supported by a library that provides classes that are useful for the application pro-
grammer when specifying the action classes.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

788 Roles of Classes Chapter 25

25.9 Advice[role.advice]

[1] Make conscious decisions about how a class is to be used (both as a designer and as a user);
§25.1.

[2] Be aware of the tradeoffs involved among the different kinds of classes; §25.1.
[3] Use concrete types to represent simple independent concepts; §25.2.
[4] Use concrete types to represent concepts where close-to-optimal efficiency is essential; §25.2.
[5] Don’t derive from a concrete class; §25.2.
[6] Use abstract classes to represent interfaces where the representation of objects might change;

§25.3.
[7] Use abstract classes to represent interfaces where different representations of objects need to

coexist; §25.3.
[8] Use abstract classes to represent new interfaces to existing types; §25.3.
[9] Use node classes where similar concepts share significant implementation details; §25.4.
[10] Use node classes to incrementally augment an implementation; §25.4.
[11] Use Run-time Type Identification to obtain interfaces from an object; §25.4.1.
[12] Use classes to represent actions with associated state; §25.5.
[13] Use classes to represent actions that need to be stored, transmitted, or delayed; §25.5.
[14] Use interface classes to adapt a class for a new kind of use (without modifying the class);

§25.6.
[15] Use interface classes to add checking; §25.6.1.
[16] Use handles to avoid direct use of pointers and references; §25.7.
[17] Use handles to manage shared representations; §25.7.
[18] Use an application framework where an application domain allows for the control structure to

be predefined; §25.8.

25.10 Exercises [role.exercises]

1. (∗1) TheI Io o template from §25.4.1 does not work for built-in types. Modify it so that it does.
2. (∗1.5) TheH Ha an nd dl le e template from §25.7 does not reflect inheritance relationships of the classes

for which it is a handle. Modify it so that it does. That is, you should be able to assign a
H Ha an nd dl le e<C Ci ir rc cl le e*> to aH Ha an nd dl le e<S Sh ha ap pe e*> but not the other way around.

3. (∗2.5) Given aS St tr ri in ng g class, define another string class using it as the representation and provid-
ing its operations as virtual functions. Compare the performance of the two classes. Try to find
a meaningful class that is best implemented by publicly deriving from the string with virtual
functions.

4. (∗4) Study two widely used libraries. Classify the library classes in terms of concrete types,
abstract types, node classes, handle classes, and interface classes. Are abstract node classes and
concrete node classes used? Is there a more appropriate classification for the classes in these
libraries? Are fat interfaces used? What facilities– if any – are provided for run-time type
information? What is the memory-management strategy?

5. (∗2) Use theF Fi il lt te er r framework (§25.8) to implement a program that removes adjacent duplicate
words from an input stream but otherwise copies the input to output.

6. (∗2) Use theF Fi il lt te er r framework to implement a program that counts the frequency of words on

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.10 Exercises 789

an input stream and produces a list of (word,count) pairs in frequency order as output.
7. (∗1.5) Write aR Ra an ng ge e template that takes both the range and the element type as template

parameters.
8. (∗1) Write aR Ra an ng ge e template that takes the range as constructor arguments.
9. (∗2) Write a simple string class that performs no error checking. Write another class that

checks access to the first. Discuss the pros and cons of separating basic function and checking
for errors.

10. (∗2.5) Implement the object I/O system from §25.4.1 for a few types, including at least integers,
strings, and a class hierarchy of your choice.

11. (∗2.5) Define a classS St to or ra ab bl le e as an abstract base class with virtual functionsw wr ri it te e_ _o ou ut t() and
r re ea ad d_ _i in n() . For simplicity, assume that a character string is sufficient to specify a permanent
storage location. Use classS St to or ra ab bl le e to provide a facility for writing objects of classes derived
from S St to or ra ab bl le e to disk, and for reading such objects from disk. Test it with a couple of classes
of your own choice.

12. (∗4) Define a base classP Pe er rs si is st te en nt t with operationss sa av ve e() and n no o_ _s sa av ve e() that control
whether an object is written to permanent storage by a destructor. In addition tos sa av ve e() and
n no o_ _s sa av ve e() , what operations couldP Pe er rs si is st te en nt t usefully provide? Test classP Pe er rs si is st te en nt t with a
couple of classes of your own choice. IsP Pe er rs si is st te en nt t a node class, a concrete type, or an abstract
type? Why?

13. (∗3) Write a classS St ta ac ck k for which it is possible to change implementation at run time. Hint:
‘‘Every problem is solved by yet another indirection.’’

14. (∗3.5) Define a classO Op pe er r that holds an identifier of typeI Id d (maybe as st tr ri in ng g or a C-style string)
and an operation (a pointer to function or some function object). Define a classC Ca at t_ _o ob bj je ec ct t that
holds a list ofO Op pe er rs and av vo oi id d* . ProvideC Ca at t_ _o ob bj je ec ct t with operationsa ad dd d_ _o op pe er r(O Op pe er r) ,
which adds anO Op pe er r to the list; r re em mo ov ve e_ _o op pe er r(I Id d) , which removes anO Op pe er r identified by I Id d
from the list; and ano op pe er ra at to or r()(I Id d, a ar rg g) , which invokes theO Op pe er r identified by I Id d. Imple-
ment a stack ofC Ca at ts by aC Ca at t_ _o ob bj je ec ct t. Write a small program to exercise these classes.

15. (∗3) Define a templateO Ob bj je ec ct t based on classC Ca at t_ _o ob bj je ec ct t. UseO Ob bj je ec ct t to implement a stack of
S St tr ri in ng gs. Write a small program to exercise this template.

16. (∗2.5) Define a variant of classO Ob bj je ec ct t calledC Cl la as ss s that ensures that objects with identical oper-
ations share a list of operations. Write a small program to exercise this template.

17. (∗2) Define aS St ta ac ck k template that provides a conventional and type-safe interface to a stack
implemented by theO Ob bj je ec ct t template. Compare this stack to the stack classes found in the pre-
vious exercises. Write a small program to exercise this template.

18. (∗3) Write a class for representing operations to be shipped to another computer to execute
there. Test it either by actually sending commands to another machine or by writing commands
to a file and then executing the commands read from the file.

19. (∗2) Write a class for composing operations represented as function objects. Given two func-
tion objectsf f andg g, C Co om mp po os se e(f f, g g) should make an object that can be invoked with an argu-
mentx x suitable forg g and returnf f(g g(x x)) , provided the return value ofg g() is an acceptable
argument type forf f() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

790 Roles of Classes Chapter 25

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Appendices and Index

These Appendices provide the C++ grammar, a discussion of compatibility issues that
arise between C++ and C and between Standard C++ and prestandard versions of C++,
and a variety of language-technical details. The index is extensive and considered an
integral part of the book.

Chapters

A Grammar
B Compatibility
C Technicalities
I Index

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

792 Appendices Appendices

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

Appendix A
_ __ _______________________________________

Grammar

There is no worse danger for a teacher
than to teach words instead of things.

– Marc Block

Introduction— keywords— lexical conventions— programs— expressions— state-
ments— declarations— declarators— classes— derived classes— special member
functions— overloading— templates— exception handling— preprocessing direc-
tives.

A.1 Introduction

This summary of C++ syntax is intended to be an aid to comprehension. It is not an exact statement
of the language. In particular, the grammar described here accepts a superset of valid C++ con-
structs. Disambiguation rules (§A.5, §A.7) must be applied to distinguish expressions from decla-
rations. Moreover, access control, ambiguity, and type rules must be used to weed out syntactically
valid but meaningless constructs.

The C and C++ standard grammars express very minor distinctions syntactically rather than
through constraints. That gives precision, but it doesn’t always improve readability.

A.2 Keywords

New context-dependent keywords are introduced into a program byt ty yp pe ed de ef f (§4.9.7), namespace
(§8.2), class (Chapter 10), enumeration (§4.8), andt te em mp pl la at te e (Chapter 13) declarations.

typedef-name:
identifier

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

794 Grammar Appendix A

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

Note that atypedef-namenaming a class is also aclass-name.
Unless an identifier is explicitly declared to name a type, it is assumed to name something that

is not a type (see §C.13.5).
The C++ keywords are:

_ ___
C++ Keywords_ __ ___

a an nd d a an nd d_ _e eq q a as sm m a au ut to o b bi it ta an nd d b bi it to or r
b bo oo ol l b br re ea ak k c ca as se e c ca at tc ch h c ch ha ar r c cl la as ss s
c co om mp pl l c co on ns st t c co on ns st t_ _c ca as st t c co on nt ti in nu ue e d de ef fa au ul lt t d de el le et te e
d do o d do ou ub bl le e d dy yn na am mi ic c_ _c ca as st t e el ls se e e en nu um m e ex xp pl li ic ci it t
e ex xp po or rt t e ex xt te er rn n f fa al ls se e f fl lo oa at t f fo or r f fr ri ie en nd d
g go ot to o i if f i in nl li in ne e i in nt t l lo on ng g m mu ut ta ab bl le e
n na am me es sp pa ac ce e n ne ew w n no ot t n no ot t_ _e eq q o op pe er ra at to or r o or r
o or r_ _e eq q p pr ri iv va at te e p pr ro ot te ec ct te ed d p pu ub bl li ic c r re eg gi is st te er r r re ei in nt te er rp pr re et t_ _c ca as st t
r re et tu ur rn n s sh ho or rt t s si ig gn ne ed d s si iz ze eo of f s st ta at ti ic c s st ta at ti ic c_ _c ca as st t
s st tr ru uc ct t s sw wi it tc ch h t te em mp pl la at te e t th hi is s t th hr ro ow w t tr ru ue e
t tr ry y t ty yp pe ed de ef f t ty yp pe ei id d t ty yp pe en na am me e u un ni io on n u un ns si ig gn ne ed d
u us si in ng g v vi ir rt tu ua al l v vo oi id d v vo ol la at ti il le e w wc ch ha ar r_ _t t w wh hi il le e
x xo or r x xo or r_ _e eq q_ ___ 




































A.3 Lexical Conventions

The standard C and C++ grammars present lexical conventions as grammar productions. This adds
precision but also makes for large grammars and doesn’t always increase readability:

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.3 Lexical Conventions 795

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

token:
identifier
keyword
literal
operator
punctuator

header-name:
<h-char-sequence>
" q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and>

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except new-line and"

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-numbere sign
pp-numberE sign
pp-number.

identifier:
nondigit
identifier nondigit
identifier digit

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

796 Grammar Appendix A

nondigit: one of
universal-character-name
_ a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

preprocessing-op-or-punc: one of
{ } [] # ## () <: :> <% %> %:%:
%: ; : ? :: . .* + - * / % ^
& | ~ ! = < > += -= *= /= %= ^=
&= |= <<= >>= << >> == != <= >= && || ++
-- , -> ->* ... new delete and and_eq bitand
bitor compl not or not_eq xor or_eq xor_eq

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.3 Lexical Conventions 797

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single-quote, backslash, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\’ \" \? \\ \a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

798 Grammar Appendix A

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except double-quote, backslash , or new-line
escape-sequence
universal-character-name

boolean-literal:
false
true

A.4 Programs

A program is a collection oftranslation-units combined through linking (§9.4). Atranslation-unit,
often called asource file, is a sequence ofdeclarations:

translation-unit:
declaration-seqopt

A.5 Expressions

See §6.2.

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.5 Expressions 799

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

qualified-id:
nested-name-specifiertemplate opt unqualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:: template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
typename :: opt nested-name-specifier identifier(expression-listopt)
typename :: opt nested-name-specifiertemplate opt template-id (expression-listopt)
postfix-expression. template opt :: opt id-expression
postfix-expression-> template opt :: opt id-expression
postfix-expression. pseudo-destructor-name
postfix-expression-> pseudo-destructor-name
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

pseudo-destructor-name:
:: opt nested-name-specifieropt type-name:: ~ type-name
:: opt nested-name-specifiertemplate template-id :: ~ type-name
:: opt nested-name-specifieropt ~ type-name

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

800 Grammar Appendix A

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.5 Expressions 801

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

and-expression:
equality-expression
and-expression& equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

802 Grammar Appendix A

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

Grammar ambiguities arise from the similarity between function style casts and declarations. For
example:

i in nt t x x;

v vo oi id d f f()
{

c ch ha ar r(x x) ; / / conversion of x to char or declaration of a char called x?
}

All such ambiguities are resolved to declarations. That is, ‘‘if it could possibly be interpreted as a
declaration, it is a declaration.’’ For example:

T T(a a)-> m m; / / expression statement
T T(a a)++; / / expression statement

T T(* e e)(i in nt t(3 3)) ; / / declaration
T T(f f)[4 4] ; / / declaration

T T(a a) ; / / declaration
T T(a a)= m m; / / declaration
T T(* b b)() ; / / declaration
T T(x x) , y y, z z=7 7; / / declaration

This disambiguation is purely syntactic. The only information used for a name is whether it is
known to be a name of a type or a name of a template. If that cannot be determined, the name is
assumed to name something that isn’t a template or a type.

The constructt te em mp pl la at te e unqualified-idis used to state that theunqualified-id is the name of a
template in a context in which that cannot be deduced (see §C.13.5).

A.6 Statements

See §6.3.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.6 Statements 803

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
block-declaration

A.7 Declarations

The structure of declarations is described in Chapter 4, enumerations in §4.8, pointers and arrays in
Chapter 5, functions in Chapter 7, namespaces in §8.2, linkage directives in §9.2.4, and storage
classes in §10.4.

declaration-seq:
declaration
declaration-seq declaration

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

804 Grammar Appendix A

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

storage-class-specifier:
auto
register
static
extern
mutable

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.7 Declarations 805

simple-type-specifier:
:: opt nested-name-specifieropt type-name
:: opt nested-name-specifiertemplate opt template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier
typename :: opt nested-name-specifier identifier
typename :: opt nested-name-specifiertemplate opt template-id

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

806 Grammar Appendix A

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt namespace-name

using-declaration:
using typename opt :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

asm-definition:
asm (string-literal) ;

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

The grammar allows for arbitrary nesting of declarations. However, some semantic restrictions
apply. For example, nested functions (functions defined local to other functions) are not allowed.

The list of specifiers that starts a declaration cannot be empty (there is no ‘‘impliciti in nt t;’’ §B.2)
and consists of the longest possible sequence of specifiers. For example:

t ty yp pe ed de ef f i in nt t I I;
v vo oi id d f f(u un ns si ig gn ne ed d I I) { /* ... */ }

Here,f f() takes an unnamedu un ns si ig gn ne ed d i in nt t.
An a as sm m() is an assembly code insert. Its meaning is implementation-defined, but the intent is

for the string to be a piece of assembly code that will be inserted into the generated code at the
place where it is specified.

Declaring a valiabler re eg gi is st te er r is a hint to the compiler to optimize for frequent access; doing so
is redundant with most modern compilers.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.7.1 Declarators 807

A.7.1 Declarators

See §4.9.1, Chapter 5 (pointers and arrays), §7.7 (pointers to functions), and §15.5 (pointers to
members).

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

&
:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
:: opt id-expression
:: opt nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

808 Grammar Appendix A

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

A v vo ol la at ti il le e specifier is a hint to a compiler that an object may change its value in ways not specified
by the language so that aggressive optimizations must be avoided. For example, a real time clock
might be declared:

e ex xt te er rn n c co on ns st t v vo ol la at ti il le e c cl lo oc ck k;

Two successive reads ofc cl lo oc ck k might give different results.

A.8 Classes

See Chapter 10.

class-name:
identifier
template-id

class-specifier:
class-head{ member-specificationopt }

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.8 Classes 809

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key nested-name-specifiertemplate template-id base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

:: opt nested-name-specifiertemplate opt unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer:
= constant-expression

To preserve C compatibility, a class and a non-class of the same name can be declared in the same
scope (§5.7). For example:

s st tr ru uc ct t s st ta at t { /* ... */ };
i in nt t s st ta at t(c ch ha ar r* n na am me e, s st tr ru uc ct t s st ta at t* b bu uf f) ;

In this case, the plain name (s st ta at t) is the name of the non-class. The class must be referred to using
aclass-keyprefix .

Constant expressions are defined in §C.5.

A.8.1 Derived Classes

See Chapter 12 and Chapter 15.

base-clause:
: base-specifier-list

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

810 Grammar Appendix A

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

A.8.2 Special Member Functions

See §11.4 (conversion operators), §10.4.6 (class member initialization), and §12.2.2 (base initial-
ization).

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

mem-initializer-id:
:: opt nested-name-specifieropt class-name
identifier

A.8.3 Overloading

See Chapter 11.

operator-function-id:
operator operator

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.8.3 Overloading 811

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~ ! = < >
+= -= *= /= %= ^= &= |= << >> >>= <<= ==
!= <= >= && || ++ -- , ->* -> () []

A.9 Templates

Templates are explained in Chapter 13 and §C.13.

template-declaration:
export opt template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list> class identifieropt

template < template-parameter-list> class identifieropt = template-name

template-id:
template-name< template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
template-name

explicit-instantiation:
template declaration

explicit-specialization:
template < > declaration

The explicit template argument specification opens up the possibility of an obscure syntactic ambi-
guity. Consider:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

812 Grammar Appendix A

v vo oi id d h h()
{

f f<1 1>(0 0) ; / / ambiguity: ((f)<1) > (0) or (f<1>)(0) ?
/ / resolution: f<1> is called with argument 0

}

The resolution is simple and effective: iff f is a template name,f f< is the beginning of a qualified
template name and the subsequent tokens must be interpreted based on that; otherwise,< means
less-than. Similarly, the first non-nested> terminates a template argument list. If a greater-than is
needed, parentheses must be used:

f f< a a>b b >(0 0) ; / / syntax error
f f< (a a>b b) >(0 0) ; / / ok

A similar lexical ambiguity can occur when terminating>s get too close. For example:

l li is st t<v ve ec ct to or r<i in nt t>> l lv v1 1; / / syntax error: unexpected>> (right shift)
l li is st t< v ve ec ct to or r<i in nt t> > l lv v2 2; / / correct: list of vectors

Note the space between the two>s; >> is the right-shift operator. That can be a real nuisance.

A.10 Exception Handling

See §8.3 and Chapter 14.

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt function-body handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section A.10 Exception Handling 813

A.11 Preprocessing Directives

The preprocessor is a relatively unsophisticated macro processor that works primarily on lexical
tokens rather than individual characters. In addition to the ability to define and use macros (§7.8),
the preprocessor provides mechanisms for including text files and standard headers (§9.2.1) and
conditional compilation based on macros (§9.3.3). For example:

#i if f O OP PT T==4 4
#i in nc cl lu ud de e " h he ea ad de er r4 4. h h"
#e el li if f 0 0<O OP PT T
#i in nc cl lu ud de e " s so om me eh he ea ad de er r. h h"
#e el ls se e
#i in nc cl lu ud de e<c cs st td dl li ib b>
#e en nd di if f

All preprocessor directives start with a#, which must be the first non-whitespace character on its
line.

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

814 Grammar Appendix A

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

Appendix B
_ __ _______________________________________

Compatibility

You go ahead and follow your customs,
and I´ll follow mine.

– C. Napier

C/C++ compatibility — silent differences between C and C++ — C code that is not C++
— deprecated features — C++ code that is not C — coping with older C++ implementa-
tions — headers — the standard library — namespaces — allocation errors — templates
— for-statement initializers — advice — exercises.

B.1 Introduction

This appendix discusses the incompatibilities between C and C++ and between Standard C++ (as
defined by ISO/IEC 14882) and earlier versions of C++. The purpose is to document differences
that can cause problems for the programmer and point to ways of dealing with such problems.
Most compatibility problems surface when people try to upgrade a C program to a C++ program,
try to port a C++ program from one pre-standard version of C++ to another, or try to compile C++
using modern features with an older compiler. The aim here is not to drown you in the details of
every compatibility problem that ever surfaced in an implementation, but rather to list the most fre-
quently occurring problems and present their standard solutions.

When you look at compatibility issues, a key question to consider is the range of implementa-
tions under which a program needs to work. For learning C++, it makes sense to use the most com-
plete and helpful implementation. For delivering a product, a more conservative strategy might be
in order to maximize the number of systems on which the product can run. In the past, this has
been a reason (and sometimes just an excuse) to avoid C++ features deemed novel. However,
implementations are converging, so the need for portability across platforms is less cause for
extreme caution than it was a couple of years ago.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

816 Compatibility Appendix B

B.2 C/C++ Compatibility

With minor exceptions, C++ is a superset of C (meaning C89, defined by ISO/IEC 9899:1990).
Most differences stem from C++’s greater emphasis on type checking. Well-written C programs
tend to be C++ programs as well. A compiler can diagnose every difference between C++ and C.

B.2.1 ‘‘Silent’’ Differences

With a few exceptions, programs that are both C++ and C have the same meaning in both lan-
guages. Fortunately, these ‘‘silent differences’’ are rather obscure:

In C, the size of a character constant and of an enumeration equals s si iz ze eo of f(i in nt t). In C++,
s si iz ze eo of f(´a a´) equals s si iz ze eo of f(c ch ha ar r), and a C++ implementation is allowed to choose whatever size is
most appropriate for an enumeration (§4.8).

C++ provides the / / comments; C does not (although many C implementations provide them as
an extension). This difference can be used to construct programs that behave differently in the two
languages. For example:

i in nt t f f(i in nt t a a, i in nt t b b)
{

r re et tu ur rn n a a / /* pretty unlikely */ b
; /* unrealistic: semicolon on separate line to avoid syntax error */

}

C99 (meaning C as defined by ISO/IEC 9899:1999(E)), also provides / /.
A structure name declared in an inner scope can hide the name of an object, function, enumera-

tor, or type in an outer scope. For example:

i in nt t x x[9 99 9] ;
v vo oi id d f f()
{

s st tr ru uc ct t x x { i in nt t a a; };
s si iz ze eo of f(x x) ; /* size of the array in C, size of the struct in C++ */

}

B.2.2 C Code That Is Not C++

The C/C++ incompatibilities that cause most real problems are not subtle. Most are easily caught
by compilers. This section gives examples of C code that is not C++. Most are deemed poor style
or even obsolete in modern C.

In C, most functions can be called without a previous declaration. For example:

m ma ai in n() /* poor style C. Not C++ */
{

d do ou ub bl le e s sq q2 2 = s sq qr rt t(2 2) ; /* call undeclared function */
p pr ri in nt tf f("t th he e s sq qu ua ar re e r ro oo ot t o of f 2 2 i is s %g g\ \n n",s sq q2 2) ; /* call undeclared function */

}

Complete and consistent use of function declarations (function prototypes) is generally recom-
mended for C. Where that sensible advice is followed, and especially where C compilers provide

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.2.2 C Code That Is Not C++ 817

options to enforce it, C code conforms to the C++ rule. Where undeclared functions are called, you
have to know the functions and the rules for C pretty well to know whether you have made a mis-
take or introduced a portability problem. For example, the previous m ma ai in n() contains at least two
errors as a C program.

In C, a function declared without specifying any argument types can take any number of argu-
ments of any type at all. Such use is deemed obsolescent in Standard C, but it is not uncommon:

v vo oi id d f f() ; /* argument types not mentioned */

v vo oi id d g g()
{

f f(2 2) ; /* poor style C. Not C++ */
}

In C, functions can be defined using a syntax that optionally specifies argument types after the list
of arguments:

v vo oi id d f f(a a,p p,c c) c ch ha ar r *p p; c ch ha ar r c c; { /* ... */ } /* C. Not C++ */

Such definitions must be rewritten:

v vo oi id d f f(i in nt t a a, c ch ha ar r* p p, c ch ha ar r c c) { /* ... */ }

In C and in pre-standard versions of C++, the type specifier defaults to i in nt t. For example:

c co on ns st t a a = 7 7; /* In C, type int assumed. Not C++ */

C99 disallows ‘‘implicit i in nt t,’’ just as in C++.
C allows the definition of s st tr ru uc ct ts in return type and argument type declarations. For example:

s st tr ru uc ct t S S { i in nt t x x,y y; } f f() ; /* C. Not C++ */
v vo oi id d g g(s st tr ru uc ct t S S { i in nt t x x,y y; } y y) ; /* C. Not C++ */

The C++ rules for defining types make such declarations useless, and they are not allowed.
In C, integers can be assigned to variables of enumeration type:

e en nu um m D Di ir re ec ct ti io on n { u up p, d do ow wn n };
e en nu um m D Di ir re ec ct ti io on n d d = 1 1; /* error: int assigned to Direction; ok in C */

C++ provides many more keywords than C does. If one of these appears as an identifier in a C pro-
gram, that program must be modified to make it a C++ program:

_ __
C++ Keywords That Are Not C Keywords_ ___ __

a an nd d a an nd d_ _e eq q a as sm m b bi it ta an nd d b bi it to or r b bo oo ol l
c ca at tc ch h c cl la as ss s c co om mp pl l c co on ns st t_ _c ca as st t d de el le et te e d dy yn na am mi ic c_ _c ca as st t
e ex xp pl li ic ci it t e ex xp po or rt t f fa al ls se e f fr ri ie en nd d i in nl li in ne e m mu ut ta ab bl le e
n na am me es sp pa ac ce e n ne ew w n no ot t n no ot t_ _e eq q o op pe er ra at to or r o or r
o or r_ _e eq q p pr ri iv va at te e p pr ro ot te ec ct te ed d p pu ub bl li ic c r re ei in nt te er rp pr re et t_ _c ca as st t s st ta at ti ic c_ _c ca as st t
t te em mp pl la at te e t th hi is s t th hr ro ow w t tr ru ue e t tr ry y t ty yp pe ei id d
t ty yp pe en na am me e u us si in ng g v vi ir rt tu ua al l w wc ch ha ar r_ _t t x xo or r x xo or r_ _e eq q_ __ 






















The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

818 Compatibility Appendix B

In C, some of the C++ keywords are macros defined in standard headers:
_ __

C++ Keywords That Are C Macros_ ___ __
a an nd d a an nd d_ _e eq q b bi it ta an nd d b bi it to or r b bo oo ol l c co om mp pl l f fa al ls se e
n no ot t n no ot t_ _e eq q o or r o or r_ _e eq q t tr ru ue e w wc ch ha ar r_ _t t x xo or r x xo or r_ _e eq q_ __ 










This implies that in C they can be tested using #i if fd de ef f, redefined, etc.
In C, a global data object may be declared several times in a single translation unit without

using the e ex xt te er rn n specifier. As long as at most one such declaration provides an initializer, the
object is considered defined only once. For example:

i in nt t i i; i in nt t i i; /* defines or declares a single integer ‘i’; not C++ */

In C++, an entity must be defined exactly once; §9.2.3.
In C++, a class may not have the same name as a t ty yp pe ed de ef f declared to refer to a different type in

the same scope; §5.7.
In C, a v vo oi id d* may be used as the right-hand operand of an assignment to or initialization of a

variable of any pointer type; in C++ it may not (§5.6). For example:

v vo oi id d f f(i in nt t n n)
{

i in nt t* p p = m ma al ll lo oc c(n n*s si iz ze eo of f(i in nt t)) ; /* not C++. In C++, allocate using ‘new’ */
}

C allows transfer of control to a labeled-statement (§A.6) to bypass an initialization; C++ does not.
In C, a global c co on ns st t by default has external linkage; in C++ it does not and must be initialized,

unless explicitly declared e ex xt te er rn n (§5.4).
In C, names of nested structures are placed in the same scope as the structure in which they are

nested. For example:

s st tr ru uc ct t S S {
s st tr ru uc ct t T T { /* ... */ };
/ / ...

};

s st tr ru uc ct t T T x x; /* ok in C meaning ‘S::T x;’. Not C++ */

In C, an array can be initialized by an initializer that has more elements than the array requires. For
example:

c ch ha ar r v v[5 5] = "O Os sc ca ar r"; /* ok in C, the terminating 0 is not used. Not C++ */

B.2.3 Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature would go
away. However, the committee does not have a mandate to remove a heavily used feature – how-
ever redundant or dangerous it may be. Thus, a deprecation is a strong hint to the users to avoid the
feature.

The keyword s st ta at ti ic c, which usually means ‘‘statically allocated,’’ can be used to indicate that a
function or an object is local to a translation unit. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.2.3 Deprecated Features 819

/ / file1:
s st ta at ti ic c i in nt t g gl lo ob b;

/ / file2:
s st ta at ti ic c i in nt t g gl lo ob b;

This program genuinely has two integers called g gl lo ob b. Each g gl lo ob b is used exclusively by functions
defined in its translation unit.

The use of s st ta at ti ic c to indicate ‘‘local to translation unit’’ is deprecated in C++. Use unnamed
namespaces instead (§8.2.5.1).

The implicit conversion of a string literal to a (non-c co on ns st t) c ch ha ar r* is deprecated. Use named
arrays of c ch ha ar r or avoid assignment of string literals to c ch ha ar r*s (§5.2.2).

C-style casts should have been deprecated when the new-style casts were introduced. Program-
mers should seriously consider banning C-style casts from their own programs. Where explicit
type conversion is necessary, s st ta at ti ic c_ _c ca as st t, r re ei in nt te er rp pr re et t_ _c ca as st t, c co on ns st t_ _c ca as st t, or a combination of these
can do what a C-style cast can. The new-style casts should be preferred because they are more
explicit and more visible (§6.2.7).

B.2.4 C++ Code That Is Not C

This section lists facilities offered by C++ but not by C. The features are sorted by purpose. How-
ever, many classifications are possible and most features serve multiple purposes, so this classifica-
tion should not be taken too seriously.

– Features primarily for notational convenience:
[1] / / comments (§2.3); added to C99
[2] Support for restricted character sets (§C.3.1); partially added to C99
[3] Support for extended character sets (§C.3.3); added to C99
[4] Non-constant initializers for objects in s st ta at ti ic c storage (§9.4.1)
[5] c co on ns st t in constant expressions (§5.4, §C.5)
[6] Declarations as statements (§6.3.1); added to C99
[7] Declarations in for-statement initializers (§6.3.3); added to C99
[8] Declarations in conditions (§6.3.2.1)
[9] Structure names need not be prefixed by s st tr ru uc ct t (§5.7)

– Features primarily for strengthening the type system:
[1] Function argument type checking (§7.1); later added to C (§B.2.2)
[2] Type-safe linkage (§9.2, §9.2.3)
[3] Free store management using n ne ew w and d de el le et te e (§6.2.6, §10.4.5, §15.6)
[4] c co on ns st t (§5.4, §5.4.1); later added to C
[5] The Boolean type b bo oo ol l (§4.2); partially added to C99
[6] New cast syntax (§6.2.7)

– Facilities for user-defined types:
[1] Classes (Chapter 10)
[2] Member functions (§10.2.1) and member classes (§11.12)
[3] Constructors and destructors (§10.2.3, §10.4.1)
[4] Derived classes (Chapter 12, Chapter 15)

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

820 Compatibility Appendix B

[5] v vi ir rt tu ua al l functions and abstract classes (§12.2.6, §12.3)
[6] Public/protected/private access control (§10.2.2, §15.3, §C.11)
[7] f fr ri ie en nd ds (§11.5)
[8] Pointers to members (§15.5, §C.12)
[9] s st ta at ti ic c members (§10.2.4)
[10] m mu ut ta ab bl le e members (§10.2.7.2)
[11] Operator overloading (Chapter 11)
[12] References (§5.5)

– Features primarily for program organization (in addition to classes):
[1] Templates (Chapter 13, §C.13)
[2] Inline functions (§7.1.1); added to C99
[3] Default arguments (§7.5)
[4] Function overloading (§7.4)
[5] Namespaces (§8.2)
[6] Explicit scope qualification (operator : :; §4.9.4)
[7] Exception handling (§8.3, Chapter 14)
[8] Run-time Type Identification (§15.4)

The keywords added by C++ (§B.2.2) can be used to spot most C++-specific facilities. However,
some facilities, such as function overloading and c co on ns st ts in constant expressions, are not identified
by a keyword. In addition to the features listed, the C++ library (§16.1.2) is mostly C++ specific.

The _ __ _c cp pl lu us sp pl lu us s macro can be used to determine whether a program is being processed by a C
or a C++ compiler (§9.2.4).

B.3 Coping with Older C++ Implementations

C++ has been in constant use since 1983 (§1.4). Since then, several versions have been defined and
many separately developed implementations have emerged. The fundamental aim of the standards
effort was to ensure that implementers and users would have a single definition of C++ to work
from. Until that definition becomes pervasive in the C++ community, however, we have to deal
with the fact that not every implementation provides every feature described in this book.

It is unfortunately not uncommon for people to take their first serious look at C++ using a five-
year-old implementation. The typical reason is that such implementations are widely available and
free. Given a choice, no self-respecting professional would touch such an antique. For a novice,
older implementations come with serious hidden costs. The lack of language features and library
support means that the novice must struggle with problems that have been eliminated in newer
implementations. Using a feature-poor older implementation also warps the novice’s programming
style and gives a biased view of what C++ is. The best subset of C++ to initially learn is not the set
of low-level facilities (and not the common C and C++ subset; §1.2). In particular, I recommend
relying on the standard library and on templates to ease learning and to get a good initial impres-
sion of what C++ programming can be.

The first commercial release of C++ was in late 1985. The language was defined by the first
edition of this book. At that point, C++ did not offer multiple inheritance, templates, run-time type
information, exceptions, or namespaces. Today, I see no reason to use an implementation that

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.3 Coping with Older C++ Implementations 821

doesn’t provide at least some of these features. I added multiple inheritance, templates, and excep-
tions to the definition of C++ in 1989. However, early support for templates and exceptions was
uneven and often poor. If you find problems with templates or exceptions in an older implementa-
tion, consider an immediate upgrade.

In general, it is wise to use an implementation that conforms to the standard wherever possible
and to minimize the reliance on implementation-defined and undefined aspects of the language.
Design as if the full language were available and then use whatever workarounds are needed. This
leads to better organized and more maintainable programs than designing for the lowest-common-
denominator subset of C++. Also, be careful to use implementation-specific language extensions
only when absolutely necessary.

B.3.1 Headers

Traditionally, every header file had a .h h suffix. Thus, C++ implementations provided headers such
as <m ma ap p.h h> and <i io os st tr re ea am m.h h>. For compatibility, most still do.

When the standards committee needed headers for redefined versions of standard libraries and
for newly added library facilities, naming those headers became a problem. Using the old .h h
names would have caused compatibility problems. The solution was to drop the .h h suffix in stan-
dard header names. The suffix is redundant anyway because the < > notation indicates that a stan-
dard header is being named.

Thus, the standard library provides non-suffixed headers, such as <i io os st tr re ea am m> and <m ma ap p>. The
declarations in those files are placed in namespace s st td d. Older headers place their declarations in the
global namespace and use a .h h suffix. Consider:

#i in nc cl lu ud de e<i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: :c co ou ut t << "H He el ll lo o, w wo or rl ld d!\ \n n";
}

If this fails to compile on an implementation, try the more traditional version:

#i in nc cl lu ud de e<i io os st tr re ea am m.h h>

i in nt t m ma ai in n()
{

c co ou ut t << "H He el ll lo o, w wo or rl ld d!\ \n n";
}

Some of the most serious portability problems occur because of incompatible headers. The stan-
dard headers are only a minor contributor to this. Often, a program depends on a large number of
headers that are not present on all systems, on a large number of declarations that don’t appear in
the same headers on all systems, and on declarations that appear to be standard (because they are
found in headers with standard names) but are not part of any standard.

There are no fully-satisfactory approaches to dealing with portability in the face of inconsistent
headers. A general idea is to avoid direct dependencies on inconsistent headers and localize the
remaining dependencies. That is, we try to achieve portability through indirection and localization.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

822 Compatibility Appendix B

For example, if declarations that we need are provided in different headers in different systems, we
may choose to #i in nc cl lu ud de e an application specific header that in turn #i in nc cl lu ud de es the appropriate
header(s) for each system. Similarly, if some functionality is provided in slightly different forms
on different systems, we may choose to access that functionality through application-specific inter-
face classes and functions.

B.3.2 The Standard Library

Naturally, pre-standard-C++ implementations may lack parts of the standard library. Most will
have iostreams, non-templated c co om mp pl le ex x, a different s st tr ri in ng g class, and the C standard library. How-
ever, some may lack m ma ap p, l li is st t, v va al la ar rr ra ay y, etc. In such cases, use the – typically proprietary –
libraries available in a way that will allow conversion when your implementation gets upgraded to
the standard. It is usually better to use a non-standard s st tr ri in ng g, l li is st t, and m ma ap p than to revert to C-style
programming in the absence of these standard library classes. Also, good implementations of the
STL part of the standard library (Chapter 16, Chapter 17, Chapter 18, Chapter 19) are available free
for downloading.

Early implementations of the standard library were incomplete. For example, some had con-
tainers that didn’t support allocators and others required allocators to be explicitly specified for
each class. Similar problems occurred for other ‘‘policy arguments,’’ such as comparison criteria.
For example:

l li is st t<i in nt t> l li i; / / ok, but some implementations require an allocator
l li is st t<i in nt t,a al ll lo oc ca at to or r<i in nt t> > l li i2 2; / / ok, but some implementations don’t implement allocators

m ma ap p<s st tr ri in ng g,R Re ec co or rd d> m m1 1; / / ok, but some implementations require a less-operation
m ma ap p<s st tr ri in ng g,R Re ec co or rd d,l le es ss s<s st tr ri in ng g> > m m2 2;

Use whichever version an implementation accepts. Eventually, the implementations will accept all.
Early C++ implementations provided i is st tr rs st tr re ea am m and o os st tr rs st tr re ea am m defined in <s st tr rs st tr re ea am m.h h>

instead of i is st tr ri in ng gs st tr re ea am m and o os st tr ri in ng gs st tr re ea am m defined in <s ss st tr re ea am m>. The s st tr rs st tr re ea am ms operated
directly on a c ch ha ar r[] (see §21.10[26]).

The streams in pre-standard-C++ implementations were not parameterized. In particular, the
templates with the b ba as si ic c_ _ prefix are new in the standard, and the b ba as si ic c_ _i io os s class used to be called
i io os s. Curiously enough, i io os st ta at te e used to be called i io o_ _s st ta at te e.

B.3.3 Namespaces

If your implementation does not support namespaces, use source files to express the logical struc-
ture of the program (Chapter 9). Similarly, use header files to express interfaces that you provide
for implementations or that are shared with C.

In the absence of namespaces, use s st ta at ti ic c to compensate for the lack of unnamed namespaces.
Also use an identifying prefix to global names to distinguish your names from those of other parts
of the code. For example:

/ / for use on pre-namespace implementations:

c cl la as ss s b bs s_ _s st tr ri in ng g { /* ... */ }; / / Bjarne’s string
t ty yp pe ed de ef f i in nt t b bs s_ _b bo oo ol l; / / Bjarne’s Boolean type

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.3.3 Namespaces 823

c cl la as ss s j jo oe e_ _s st tr ri in ng g; / / Joe’s string
e en nu um m j jo oe e_ _b bo oo ol l { j jo oe e_ _f fa al ls se e, j jo oe e_ _t tr ru ue e }; / / Joe’s bool

Be careful when choosing a prefix. Existing C and C++ libraries are littered with such prefixes.

B.3.4 Allocation Errors

In pre-exception-handling-C++, operator n ne ew w returned 0 0 to indicate allocation failure. Standard
C++’s n ne ew w throws b ba ad d_ _a al ll lo oc c by default.

In general, it is best to convert to the standard. In this case, this means modify the code to catch
b ba ad d_ _a al ll lo oc c rather than test for 0 0. In either case, coping with memory exhaustion beyond giving an
error message is hard on many systems.

However, when converting from testing 0 0 to catching b ba ad d_ _a al ll lo oc c is impractical, you can some-
times modify the program to revert to the pre-exception-handling behavior. If no _ _n ne ew w_ _h ha an nd dl le er r is
installed, using the n no ot th hr ro ow w allocator will cause a 0 0 to be returned in case of allocation failure:

X X* p p1 1 = n ne ew w X X; / / throws bad_alloc if no memory
X X* p p2 2 = n ne ew w(n no ot th hr ro ow w) X X; / / returns 0 if no memory

B.3.5 Templates

The standard introduced new template features and clarified the rules for several existing ones.
If your implementation doesn’t support partial specialization, use a separate name for the tem-

plate that would otherwise have been a specialization. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s p pl li is st t : p pr ri iv va at te e l li is st t<v vo oi id d*> { / / should have been list<T*>
/ / ...

};

If your implementation doesn’t support member templates, some techniques become infeasible. In
particular, member templates allow the programmer to specify construction and conversion with a
flexibility that cannot be matched without them (§13.6.2). Sometimes, providing a nonmember
function that constructs an object is an alternative. Consider:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X {
/ / ...
t te em mp pl la at te e<c cl la as ss s A A> X X(c co on ns st t A A& a a) ;

};

In the absence of member templates, we must restrict ourselves to specific types:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X {
/ / ...
X X(c co on ns st t A A1 1& a a) ;
X X(c co on ns st t A A2 2& a a) ;
/ / ...

};

Most early implementations generated definitions for all member functions defined within a tem-
plate class when that template class was instantiated. This could lead to errors in unused member

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

824 Compatibility Appendix B

functions (§C.13.9.1). The solution is to place the definition of the member functions after the
class declaration. For example, rather than

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Co on nt ta ai in ne er r {
/ / ...

p pu ub bl li ic c:
v vo oi id d s so or rt t() { /* use < */ } / / in-class definition

};

c cl la as ss s G Gl lo ob b { /* no < for Glob */ };

C Co on nt ta ai in ne er r<G Gl lo ob b> c cg g; / / some pre-standard implementations try to define Container<Glob>::sort()

use

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Co on nt ta ai in ne er r {
/ / ...

p pu ub bl li ic c:
v vo oi id d s so or rt t() ;

};

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d C Co on nt ta ai in ne er r<T T>: :s so or rt t() { /* use < */ } / / out-of-class definition

c cl la as ss s G Gl lo ob b { /* no < for Glob */ };

C Co on nt ta ai in ne er r<G Gl lo ob b> c cg g; / / no problem as long as cg.sort() isn’t called

Early implementations of C++ did not handle the use of members defined later in a class. For
example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r {
p pu ub bl li ic c:

T T& o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n v v[i i] ; } / / v declared below
/ / ...

p pr ri iv va at te e:
T T* v v; / / oops: not found!
s si iz ze e_ _t t s sz z;

};

In such cases, either sort the member declarations to avoid the problem or place the definition of
the member function after the class declaration.

Some pre-standard-C++ implementations do not accept default arguments for templates
(§13.4.1). In that case, every template parameter must be given an explicit argument. For example:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s L LT T = l le es ss s<T T> > c cl la as ss s m ma ap p {
/ / ...

};

m ma ap p<s st tr ri in ng g,i in nt t> m m; / / Oops: default template arguments not implemented
m ma ap p< s st tr ri in ng g,i in nt t,l le es ss s<s st tr ri in ng g> > m m2 2; / / workaround: be explicit

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.3.6 For-Statement Initializers 825

B.3.6 For-Statement Initializers

Consider:

v vo oi id d f f(v ve ec ct to or r<c ch ha ar r>& v v, i in nt t m m)
{

f fo or r (i in nt t i i= 0 0; i i<v v.s si iz ze e() && i i<=m m; ++i i) c co ou ut t << v v[i i] ;

i if f (i i == m m) { / / error: i referred to after end of for-statement
/ / ...

}
}

Such code used to work because in the original definition of C++, the scope of the controlled vari-
able extended to the end of the scope in which the for-statement appears. If you find such code,
simply declare the controlled variable before the for-statement:

v vo oi id d f f2 2(v ve ec ct to or r<c ch ha ar r>& v v, i in nt t m m)
{

i in nt t i i= 0 0; / / i needed after the loop
f fo or r (; i i<v v.s si iz ze e() && i i<=m m; ++i i) c co ou ut t << v v[i i] ;

i if f (i i == m m) {
/ / ...

}
}

B.4 Advice

[1] For learning C++, use the most up-to-date and complete implementation of Standard C++ that
you can get access to; §B.3.

[2] The common subset of C and C++ is not the best initial subset of C++ to learn; §1.6, §B.3.
[3] For production code, remember that not every C++ implementation is completely up-to-date.

Before using a major new feature in production code, try it out by writing small programs to
test the standards conformance and performance of the implementations you plan to use; for
example, see §8.5[6-7], §16.5[10], §B.5[7].

[4] Avoid deprecated features such as global s st ta at ti ic cs; also avoid C-style casts; §6.2.7, §B.2.3.
[5] ‘‘implicit i in nt t’’ has been banned, so explicitly specify the type of every function, variable,

c co on ns st t, etc.; §B.2.2.
[6] When converting a C program to C++, first make sure that function declarations (prototypes)

and standard headers are used consistently; §B.2.2.
[7] When converting a C program to C++, rename variables that are C++ keywords; §B.2.2.
[8] When converting a C program to C++, cast the result of m ma al ll lo oc c() to the proper type or change

all uses of m ma al ll lo oc c() to uses of n ne ew w; §B.2.2.
[9] When converting from m ma al ll lo oc c() and f fr re ee e() to n ne ew w and d de el le et te e, consider using v ve ec ct to or r,

p pu us sh h_ _b ba ac ck k() , and r re es se er rv ve e() instead of r re ea al ll lo oc c(); §3.8, §16.3.5.
[10] When converting a C program to C++, remember that there are no implicit conversions from

i in nt ts to enumerations; use explicit type conversion where necessary; §4.8.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

826 Compatibility Appendix B

[11] A facility defined in namespace s st td d is defined in a header without a suffix (e.g. s st td d: :c co ou ut t is
declared in <i io os st tr re ea am m>). Older implementations have standard library facilities in the global
namespace and declared in headers with a .h h suffix (e.g. : :c co ou ut t declared in <i io os st tr re ea am m.h h>);
§9.2.2, §B.3.1.

[12] If older code tests the result of n ne ew w against 0 0, it must be modified to catch b ba ad d_ _a al ll lo oc c or to use
n ne ew w(n no ot th hr ro ow w); §B.3.4.

[13] If your implementation doesn’t support default template arguments, provide arguments explic-
itly; t ty yp pe ed de ef fs can often be used to avoid repetition of template arguments (similar to the way
the typedef s st tr ri in ng g saves you from saying b ba as si ic c_ _s st tr ri in ng g< c ch ha ar r, c ch ha ar r_ _t tr ra ai it ts s<c ch ha ar r>,
a al ll lo oc ca at to or r<c ch ha ar r> >); §B.3.5.

[14] Use <s st tr ri in ng g> to get s st td d: :s st tr ri in ng g (<s st tr ri in ng g.h h> holds the C-style string functions); §9.2.2,
§B.3.1.

[15] For each standard C header <X X.h h> that places names in the global namespace, the header
<c cX X> places the names in namespace s st td d; §B.3.1.

[16] Many systems have a "S St tr ri in ng g.h h" header defining a string type. Note that such strings differ
from the standard library s st tr ri in ng g.

[17] Prefer standard facilities to non-standard ones; §20.1, §B.3, §C.2.
[18] Use e ex xt te er rn n "C C" when declaring C functions; §9.2.4.

B.5 Exercises

1. (∗2.5) Take a C program and convert it to a C++ program; list the kinds of non-C++ constructs
used and determine if they are valid ANSI C constructs. First convert the program to strict
ANSI C (adding prototypes, etc.), then to C++. Estimate the time it would take to convert a
100,000 line C program to C++.

2. (∗2.5) Write a program to help convert C programs to C++ by renaming variables that are C++
keywords, replacing calls of m ma al ll lo oc c() by uses of n ne ew w, etc. Hint: don’t try to do a perfect job.

3. (∗2) Replace all uses of m ma al ll lo oc c() in a C-style C++ program (maybe a recently converted C pro-
gram) to uses of n ne ew w. Hint: §B.4[8-9].

4. (∗2.5) Minimize the use of macros, global variables, uninitialized variables, and casts in a C-
style C++ program (maybe a recently converted C program).

5. (∗3) Take a C++ program that is the result of a crude conversion from C and critique it as a C++
program considering locality of information, abstraction, readability, extensibility, and potential
for reuse of parts. Make one significant change to the program based on that critique.

6. (∗2) Take a small (say, 500 line) C++ program and convert it to C. Compare the original with
the result for size and probable maintainability.

7. (∗3) Write a small set of test programs to determine whether a C++ implementation has ‘‘the
latest’’ standard features. For example, what is the scope of a variable defined in a f fo or r-
s st ta at te em me en nt t initializer? (§B.3.6), are default template arguments supported? (§B.3.5), are member
templates supported? (§13.6.2), and is argument-based lookup supported? (§8.2.6). Hint:
§B.2.4.

8. (∗2.5) Take a C++ program that use <X X.h h> headers and convert it to using <X X> and <c cX X>
headers. Minimize the use of using-directives.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

_ __ _______________________________________

Appendix C
_ __ _______________________________________

Technicalities

Deep in the fundamental
heart of mind and Universe,

there is a reason.
– Slartibartfast

What the standard promises— character sets— integer literals— constant expressions
— promotions and conversions— multidimensional arrays— fields and unions—
memory management— garbage collection— namespaces— access control— pointers
to data members— templates— s st ta at ti ic c members— f fr ri ie en nd ds s — templates as template
parameters— template argument deduction— t ty yp pe en na am me e andt te em mp pl la at te e qualification—
instantiation— name binding— templates and namespaces— explicit instantiation—
advice.

C.1 Introduction and Overview

This chapter presents technical details and examples that do not fit neatly into my presentation of
the main C++ language features and their uses. The details presented here can be important when
you are writing a program and essential when reading code written using them. However, I con-
sider them technical details that should not be allowed to distract from the student’s primary task of
learning to use C++ well or the programmer’s primary task of expressing ideas as clearly and as
directly as possible in C++.

C.2 The Standard

Contrary to common belief, strictly adhering to the C++ language and library standard doesn’t guar-
antee good code or even portable code. The standard doesn’t say whether a piece of code is good

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

828 Technicalities Appendix C

or bad; it simply says what a programmer can and cannot rely on from an implementation. One can
write perfectly awful standard-conforming programs, and most real-world programs rely on fea-
tures not covered by the standard.

Many important things are deemedimplementation-definedby the standard. This means that
each implementation must provide a specific, well-defined behavior for a construct and that behav-
ior must be documented. For example:

u un ns si ig gn ne ed d c ch ha ar r c c1 1 = 6 64 4; / / well-defined: a char has at least 8 bits and can always hold 64
u un ns si ig gn ne ed d c ch ha ar r c c2 2 = 1 12 25 56 6; / / implementation-defined: truncation if a char has only 8 bits

The initialization ofc c1 1 is well-defined because ac ch ha ar r must be at least 8 bits. However, the behav-
ior of the initialization ofc c2 2 is implementation-defined because the number of bits in ac ch ha ar r is
implementation-defined. If thec ch ha ar r has only 8 bits, the value1 12 25 56 6 will be truncated to2 23 32 2
(§C.6.2.1). Most implementation-defined features relate to differences in the hardware used to run
a program.

When writing real-world programs, it is usually necessary to rely on implementation-defined
behavior. Such behavior is the price we pay for the ability to operate effectively on a large range of
systems. For example, the language would have been much simpler if all characters had been 8 bits
and all integers 32 bits. However, 16-bit and 32-bit character sets are not uncommon– nor are
integers too large to fit in 32 bits. For example, many computers now have disks that hold more
that3 32 2G G bytes, so 48-bit or 64-bit integers can be useful for representing disk addresses.

To maximize portability, it is wise to be explicit about what implementation-defined features
we rely on and to isolate the more subtle examples in clearly marked sections of a program. A typi-
cal example of this practice is to present all dependencies on hardware sizes in the form of con-
stants and type definitions in some header file. To support such techniques, the standard library
providesn nu um me er ri ic c_ _l li im mi it ts s (§22.2).

Undefined behavior is nastier. A construct is deemedundefinedby the standard if no reason-
able behavior is required by an implementation. Typically, some obvious implementation tech-
nique will cause a program using an undefined feature to behave very badly. For example:

c co on ns st t i in nt t s si iz ze e = 4 4* 1 10 02 24 4;
c ch ha ar r p pa ag ge e[s si iz ze e] ;

v vo oi id d f f()
{

p pa ag ge e[s si iz ze e+s si iz ze e] = 7 7; / / undefined
}

Plausible outcomes of this code fragment include overwriting unrelated data and triggering a hard-
ware error/exception. An implementation is not required to choose among plausible outcomes.
Where powerful optimizers are used, the actual effects of undefined behavior can become quite
unpredictable. If a set of plausible and easily implementable alternatives exist, a feature is deemed
implementation-defined rather than undefined.

It is worth spending considerable time and effort to ensure that a program does not use some-
thing deemed undefined by the standard. In many cases, tools exist to help do this.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.3 Character Sets 829

C.3 Character Sets

The examples in this book are written using the U.S. variant of the international 7-bit character set
ISO 646-1983 called ASCII (ANSI3.4-1968). This can cause three problems for people who use
C++ in an environment with a different character set:

[1] ASCII contains punctuation characters and operator symbols– such as] , { , and! – that
are not available in some character sets.

[2] We need a notation for characters that do not have a convenient character representation
(e.g., newline and ‘‘the character with value 17’’).

[3] ASCII doesn’t contain characters, such as– ζ , æ , andΠ – that are used for writing lan-
guages other than English.

C.3.1 Restricted Character Sets

The ASCII special characters[,] , { , } , | , and \ \ occupy character set positions designated as
alphabetic by ISO. In most European national ISO-646 character sets, these positions are occupied
by letters not found in the English alphabet. For example, the Danish national character set uses
them for the vowelsÆÆ, ææ, ØØ, øø, ÅÅ, andåå. No significant amount of text can be written in Danish
without them.

A set of trigraphs is provided to allow national characters to be expressed in a portable way
using a truly standard minimal character set. This can be useful for interchange of programs, but it
doesn’t make it easier for people to read programs. Naturally, the long-term solution to this prob-
lem is for C++ programmers to get equipment that supports both their native language and C++
well. Unfortunately, this appears to be infeasible for some, and the introduction of new equipment
can be a frustratingly slow process. To help programmers stuck with incomplete character sets,
C++ provides alternatives:

_ ______________________________________
Keywords Digraphs Trigraphs_ _______________________________________ ______________________________________

a an nd d && <% { ??= #
a an nd d_ _e eq q &= %> } ??([
b bi it ta an nd d & <: [??< {
b bi it to or r | :>] ??/ \
c co om mp pl l ~ %: # ??)]
n no ot t ! %:%: ## ??> }
o or r || ??’ ^
o or r_ _e eq q |= ??! |
x xo or r ^ ??- ~
x xo or r_ _e eq q ^= ??? ?
n no ot t_ _e eq q !=_ ______________________________________ 
































































Programs using the keywords and digraphs are far more readable than the equivalent programs
written using trigraphs. However, if characters such as{ are not available, trigraphs are necessary
for putting ‘‘missing’’ characters into strings and character constants. For example,´{´ becomes
´??<´ .

Some people prefer the keywords such asa an nd d to their traditional operator notation.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

830 Technicalities Appendix C

C.3.2 Escape Characters

A few characters have standard names that use the backslash\ \ as an escape character:
_ _______________________________________

Name ASCII Name C++ Name_ __ _______________________________________
newline NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ ooo
hex number hhh \x hhh ..._ _______________________________________ 




































Despite their appearance, these are single characters.
It is possible to represent a character as a one-, two-, or three-digit octal number (\ \ followed by

octal digits) or as a hexadecimal number (\ \x x followed by hexadecimal digits). There is no limit to
the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. For
example:

_ ___
Octal Hexadecimal Decimal ASCII_ __ ___

’\6’ ’\x6’ 6 ACK
’\60’ ’\x30’ 48 ’0’
’\137’ ’\x05f’ 95 ’_’_ ___ 












This makes it possible to represent every character in the machine’s character set and, in particular,
to embed such characters in character strings (see §5.2.2). Using any numeric notation for charac-
ters makes a program nonportable across machines with different character sets.

It is possible to enclose more than one character in a character literal, for example´ a ab b´ . Such
uses are archaic, implementation-dependent, and best avoided.

When embedding a numeric constant in a string using the octal notation, it is wise always to use
three digits for the number. The notation is hard enough to read without having to worry about
whether or not the character after a constant is a digit. For hexadecimal constants, use two digits.
Consider these examples:

c ch ha ar r v v1 1[] = " a a\ \x xa ah h\ \1 12 29 9"; / / 6 chars: ’a’ ’\xa’ ’h’ ’\12’ ’9’ ’\0’
c ch ha ar r v v2 2[] = " a a\ \x xa ah h\ \1 12 27 7"; / / 5 chars: ’a’ ’\xa’ ’h’ ’\127’ ’\0’
c ch ha ar r v v3 3[] = " a a\ \x xa ad d\ \1 12 27 7"; / / 4 chars: ’a’ ’\xad’ ’\127’ ’\0’
c ch ha ar r v v4 4[] = " a a\ \x xa ad d\ \0 01 12 27 7"; / / 5 chars: ’a’ ’\xad’ ’\012’ ’7’ ’\0’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.3.3 Large Character Sets 831

C.3.3 Large Character Sets

A C++ program may be written and presented to the user in character sets that are much richer than
the 127 character ASCII set. Where an implementation supports larger character sets, identifiers,
comments, character constants, and strings may contain characters such as å , β, andΓ. However, to
be portable the implementation must map these characters into an encoding using only characters
available to every C++ user. In principle, this translation into the C++ basic source character set
(the set used in this book) occurs before the compiler does any other processing. Therefore, it does
not affect the semantics of the program.

The standard encoding of characters from large character sets into the smaller set supported
directly by C++ is presented as sequences of four or eight hexadecimal digits:

universal-character-name:
\U X X X X X X X X
\u X X X X

Here,X X represents a hexadecimal digit. For example,\ \u u1 1e e2 2b b. The shorter notation\ \u uX XX XX XX X is
equivalent to\ \U U0 00 00 00 0X XX XX XX X. A number of hexadecimal digits different from four or eight is a lexi-
cal error.

A programmer can use these character encodings directly. However, they are primarily meant
as a way for an implementation that internally uses a small character set to handle characters from a
large character set seen by the programmer.

If you rely on special environments to provide an extended character set for use in identifiers,
the program becomes less portable. A program is hard to read unless you understand the natural
language used for identifiers and comments. Consequently, for programs used internationally it is
usually best to stick to English and ASCII.

C.3.4 Signed and Unsigned Characters

It is implementation-defined whether a plainc ch ha ar r is considered signed or unsigned. This opens the
possibility for some nasty surprises and implementation dependencies. For example:

c ch ha ar r c c = 2 25 55 5; / / 255 is ‘‘all ones,’’ hexadecimal 0xFF
i in nt t i i = c c;

What will be the value ofi i? Unfortunately, the answer is undefined. On all implementations I
know of, the answer depends on the meaning of the ‘‘all ones’’c ch ha ar r bit pattern when extended into
an i in nt t. On a SGI Challenge machine, ac ch ha ar r is unsigned, so the answer is2 25 55 5. On a Sun SPARC
or an IBM PC, where ac ch ha ar r is signed, the answer is- 1 1. In this case, the compiler might warn
about the conversion of the literal2 25 55 5 to thec ch ha ar r value- 1 1. However, C++ does not offer a general
mechanism for detecting this kind of problem. One solution is to avoid plainc ch ha ar r and use the spe-
cific c ch ha ar r types only. Unfortunately, some standard library functions, such ass st tr rc cm mp p() , take plain
c ch ha ar rs only (§20.4.1).

A c ch ha ar r must behave identically to either as si ig gn ne ed d c ch ha ar r or anu un ns si ig gn ne ed d c ch ha ar r. However, the
threec ch ha ar r types are distinct, so you can’t mix pointers to differentc ch ha ar r types. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

832 Technicalities Appendix C

v vo oi id d f f(c ch ha ar r c c, s si ig gn ne ed d c ch ha ar r s sc c, u un ns si ig gn ne ed d c ch ha ar r u uc c)
{

c ch ha ar r* p pc c = &u uc c; / / error: no pointer conversion
s si ig gn ne ed d c ch ha ar r* p ps sc c = p pc c; / / error: no pointer conversion
u un ns si ig gn ne ed d c ch ha ar r* p pu uc c = p pc c; / / error: no pointer conversion
p ps sc c = p pu uc c; / / error: no pointer conversion

}

Variables of the threec ch ha ar r types can be freely assigned to each other. However, assigning a too-
large value to a signedc ch ha ar r (§C.6.2.1) is still undefined. For example:

v vo oi id d f f(c ch ha ar r c c, s si ig gn ne ed d c ch ha ar r s sc c, u un ns si ig gn ne ed d c ch ha ar r u uc c)
{

c c = 2 25 55 5; / / undefined if plain chars are signed and have 8 bits

c c = s sc c; / / ok
c c = u uc c; / / undefined if plain chars are signed and if uc’s value is too large
s sc c = u uc c; / / undefined if uc’s value is too large
u uc c = s sc c; / / ok: conversion to unsigned
s sc c = c c; / / undefined if plain chars are unsigned and if c’s value is too large
u uc c = c c; / / ok: conversion to unsigned

}

None of these potential problems occurs if you use plainc ch ha ar r throughout.

C.4 Types of Integer Literals

In general, the type of an integer literal depends on its form, value, and suffix:
– If it is decimal and has no suffix, it has the first of these types in which its value can be rep-

resented:i in nt t, l lo on ng g i in nt t, u un ns si ig gn ne ed d l lo on ng g i in nt t.
– If it is octal or hexadecimal and has no suffix, it has the first of these types in which its

value can be represented:i in nt t, u un ns si ig gn ne ed d i in nt t, l lo on ng g i in nt t, u un ns si ig gn ne ed d l lo on ng g i in nt t.
– If it is suffixed byu u or U U, its type is the first of these types in which its value can be repre-

sented:u un ns si ig gn ne ed d i in nt t, u un ns si ig gn ne ed d l lo on ng g i in nt t.
– If it is suffixed by l l or L L, its type is the first of these types in which its value can be repre-

sented:l lo on ng g i in nt t, u un ns si ig gn ne ed d l lo on ng g i in nt t.
– If it is suffixed byu ul l, l lu u, u uL L, L Lu u, U Ul l, l lU U, U UL L, orL LU U, its type isu un ns si ig gn ne ed d l lo on ng g i in nt t.

For example,1 10 00 00 00 00 0 is of typei in nt t on a machine with 32-biti in nt ts but of typel lo on ng g i in nt t on a machine
with 16-bit i in nt ts and 32-bitl lo on ng gs. Similarly,0 0X XA A0 00 00 0 is of typei in nt t on a machine with 32-biti in nt ts
but of typeu un ns si ig gn ne ed d i in nt t on a machine with 16-biti in nt ts. These implementation dependencies can be
avoided by using suffixes:1 10 00 00 00 00 0L L is of typel lo on ng g i in nt t on all machines and0 0X XA A0 00 00 0U U is of type
u un ns si ig gn ne ed d i in nt t on all machines.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.5 Constant Expressions 833

C.5 Constant Expressions

In places such as array bounds (§5.2), case labels (§6.3.2), and initializers for enumerators (§4.8),
C++ requires aconstant expression. A constant expression evaluates to an integral or enumeration
constant. Such an expression is composed of literals (§4.3.1, §4.4.1, §4.5.1), enumerators (§4.8),
and c co on ns st ts initialized by constant expressions. In a template, an integer template parameter can
also be used (§C.13.3). Floating literals (§4.5.1) can be used only if explicitly converted to an inte-
gral type. Functions, class objects, pointers, and references can be used as operands to thes si iz ze eo of f
operator (§6.2) only.

Intuitively, constant expressions are simple expressions that can be evaluated by the compiler
before the program is linked (§9.1) and starts to run.

C.6 Implicit Type Conversion

Integral and floating-point types (§4.1.1) can be mixed freely in assignments and expressions.
Wherever possible, values are converted so as not to lose information. Unfortunately, value-
destroying conversions are also performed implicitly. This section provides a description of con-
version rules, conversion problems, and their resolution.

C.6.1 Promotions

The implicit conversions that preserve values are commonly referred to aspromotions. Before an
arithmetic operation is performed,integral promotionis used to createi in nt ts out of shorter integer
types. Note that these promotions willnot promote tol lo on ng g (unless the operand is aw wc ch ha ar r_ _t t or an
enumeration that is already larger than ani in nt t). This reflects the original purpose of these promo-
tions in C: to bring operands to the ‘‘natural’’ size for arithmetic operations.

The integral promotions are:
– A c ch ha ar r, s si ig gn ne ed d c ch ha ar r, u un ns si ig gn ne ed d c ch ha ar r, s sh ho or rt t i in nt t, or u un ns si ig gn ne ed d s sh ho or rt t i in nt t is converted to ani in nt t

if i in nt t can represent all the values of the source type; otherwise, it is converted to an
u un ns si ig gn ne ed d i in nt t.

– A w wc ch ha ar r_ _t t (§4.3) or an enumeration type (§4.8) is converted to the first of the following
types that can represent all the values of its underlying type:i in nt t, u un ns si ig gn ne ed d i in nt t, l lo on ng g, or
u un ns si ig gn ne ed d l lo on ng g.

– A bit-field (§C.8.1) is converted to ani in nt t if i in nt t can represent all the values of the bit-field;
otherwise, it is converted tou un ns si ig gn ne ed d i in nt t if u un ns si ig gn ne ed d i in nt t can represent all the values of the
bit-field. Otherwise, no integral promotion applies to it.

– A b bo oo ol l is converted to ani in nt t; f fa al ls se ebecomes0 0 andt tr ru ue ebecomes1 1.
Promotions are used as part of the usual arithmetic conversions (§C.6.3).

C.6.2 Conversions

The fundamental types can be converted into each other in a bewildering number of ways. In my
opinion, too many conversions are allowed. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

834 Technicalities Appendix C

v vo oi id d f f(d do ou ub bl le e d d)
{

c ch ha ar r c c = d d; / / beware: double-precision floating-point to char conversion
}

When writing code, you should always aim to avoid undefined behavior and conversions that qui-
etly throw away information. A compiler can warn about many questionable conversions. Fortu-
nately, many compilers actually do.

C.6.2.1 Integral Conversions

An integer can be converted to another integer type. An enumeration value can be converted to an
integer type.

If the destination type isu un ns si ig gn ne ed d, the resulting value is simply as many bits from the source as
will fit in the destination (high-order bits are thrown away if necessary). More precisely, the result
is the least unsigned integer congruent to the source integer modulo2 2 to then nth, wheren is the
number of bits used to represent the unsigned type. For example:

u un ns si ig gn ne ed d c ch ha ar r u uc c = 1 10 02 23 3; / / binary 1111111111: uc becomes binary 11111111; that is, 255

If the destination type iss si ig gn ne ed d, the value is unchanged if it can be represented in the destination
type; otherwise, the value is implementation-defined:

s si ig gn ne ed d c ch ha ar r s sc c = 1 10 02 23 3; / / implementation-defined

Plausible results are2 25 55 5 and- 1 1 (§C.3.4).
A Boolean or enumeration value can be implicitly converted to its integer equivalent (§4.2,

§4.8).

C.6.2.2 Floating-Point Conversions

A floating-point value can be converted to another floating-point type. If the source value can be
exactly represented in the destination type, the result is the original numeric value. If the source
value is between two adjacent destination values, the result is one of those values. Otherwise, the
behavior is undefined. For example:

f fl lo oa at t f f = F FL LT T_ _M MA AX X; / / largest float value
d do ou ub bl le e d d = f f; / / ok: d == f
f fl lo oa at t f f2 2 = d d; / / ok: f2 == f
d do ou ub bl le e d d3 3 = D DB BL L_ _M MA AX X; / / largest double value
f fl lo oa at t f f3 3 = d d3 3; / / undefined if FLT_MAX<DBL_MAX

C.6.2.3 Pointer and Reference Conversions

Any pointer to an object type can be implicitly converted to av vo oi id d* (§5.6). A pointer (reference)
to a derived class can be implicitly converted to a pointer (reference) to an accessible and unam-
biguous base (§12.2). Note that a pointer to function or a pointer to member cannot be implicitly
converted to av vo oi id d* .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.6.2.3 Pointer and Reference Conversions 835

A constant expression (§C.5) that evaluates to0 0 can be implicitly converted to any pointer or
pointer to member type (§5.1.1). For example:

i in nt t* p p =
! ! ! ! ! !

! ! ! ! ! ! !
! ! ! ! ! ! !

! ! !!!!!! !!!!! !!!! 1 1;

A T T* can be implicitly converted to ac co on ns st t T T* (§5.4.1). Similarly, aT T& can be implicitly con-
verted to ac co on ns st t T T&.

C.6.2.4 Pointer-to-Member Conversions

Pointers and references to members can be implicitly converted as described in §15.5.1.

C.6.2.5 Boolean Conversions

Pointers, integral, and floating-point values can be implicitly converted tob bo oo ol l (§4.2). A nonzero
value converts tot tr ru ue e; a zero value converts tof fa al ls se e. For example:

v vo oi id d f f(i in nt t* p p, i in nt t i i)
{

b bo oo ol l i is s_ _n no ot t_ _z ze er ro o = p p; / / true if p!=0
b bo oo ol l b b2 2 = i i; / / true if i!=0

}

C.6.2.6 Floating-Integral Conversions

When a floating-point value is converted to an integer value, the fractional part is discarded. In
other words, conversion from a floating-point type to an integer type truncates. For example, the
value ofi in nt t(1 1. 6 6) is 1 1. The behavior is undefined if the truncated value cannot be represented in
the destination type. For example:

i in nt t i i = 2 2. 7 7; / / i becomes 2
c ch ha ar r b b = 2 20 00 00 0. 7 7; / / undefined for 8-bit chars: 2000 cannot be represented as an 8-bit char

Conversions from integer to floating types are as mathematically correct as the hardware allows.
Loss of precision occurs if an integral value cannot be represented exactly as a value of the floating
type. For example,

i in nt t i i = f fl lo oa at t(1 12 23 34 45 56 67 78 89 90 0) ;

left i i with the value1 12 23 34 45 56 67 79 93 36 6 on a machine, where bothi in nt ts andf fl lo oa at ts are represented using 32
bits.

Clearly, it is best to avoid potentially value-destroying implicit conversions. In fact, compilers
can detect and warn against some obviously dangerous conversions, such as floating to integral and
l lo on ng g i in nt t to c ch ha ar r. However, general compile-time detection is impractical, so the programmer must
be careful. When ‘‘being careful’’ isn’t enough, the programmer can insert explicit checks. For
example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

836 Technicalities Appendix C

c cl la as ss s c ch he ec ck k_ _f fa ai il le ed d { };

c ch ha ar r c ch he ec ck ke ed d(i in nt t i i)
{

c ch ha ar r c c = i i; / / warning: not portable (§C.6.2.1)
i if f (i i != c c) t th hr ro ow w c ch he ec ck k_ _f fa ai il le ed d() ;
r re et tu ur rn n c c;

}
v vo oi id d m my y_ _c co od de e(i in nt t i i)
{

c ch ha ar r c c = c ch he ec ck ke ed d(i i) ;
/ / ...

}

To truncate in a way that is guaranteed to be portable requires the use ofn nu um me er ri ic c_ _l li im mi it ts s (§22.2).

C.6.3 Usual Arithmetic Conversions

These conversions are performed on the operands of a binary operator to bring them to a common
type, which is then used as the type of the result:

[1] If either operand is of typel lo on ng g d do ou ub bl le e, the other is converted tol lo on ng g d do ou ub bl le e.
– Otherwise, if either operand isd do ou ub bl le e, the other is converted tod do ou ub bl le e.
– Otherwise, if either operand isf fl lo oa at t, the other is converted tof fl lo oa at t.
– Otherwise, integral promotions (§C.6.1) are performed on both operands.
[2] Then, if either operand isu un ns si ig gn ne ed d l lo on ng g, the other is converted tou un ns si ig gn ne ed d l lo on ng g.
– Otherwise, if one operand is al lo on ng g i in nt t and the other is anu un ns si ig gn ne ed d i in nt t, then if al lo on ng g i in nt t

can represent all the values of anu un ns si ig gn ne ed d i in nt t, theu un ns si ig gn ne ed d i in nt t is converted to al lo on ng g i in nt t;
otherwise, both operands are converted tou un ns si ig gn ne ed d l lo on ng g i in nt t.

– Otherwise, if either operand isl lo on ng g, the other is converted tol lo on ng g.
– Otherwise, if either operand isu un ns si ig gn ne ed d, the other is converted tou un ns si ig gn ne ed d.
– Otherwise, both operands arei in nt t.

C.7 Multidimensional Arrays

It is not uncommon to need a vector of vectors, a vector of vector of vectors, etc. The issue is how
to represent these multidimensional vectors in C++. Here, I first show how to use the standard
library v ve ec ct to or r class. Next, I present multidimensional arrays as they appear in C and C++ programs
using only built-in facilities.

C.7.1 Vectors

The standardv ve ec ct to or r (§16.3) provides a very general solution:

v ve ec ct to or r< v ve ec ct to or r<i in nt t> > m m;

This creates a vector of vectors of integers that initially contains no elements. We could initialize it
to a three-by-five matrix like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.7.1 Vectors 837

v vo oi id d i in ni it t_ _m m()
{

m m. r re es si iz ze e(3 3) ; / / m now holds 3 empty vectors
f fo or r (i in nt t i i = 0 0; i i<m m. s si iz ze e() ; i i++) {

m m[i i]. r re es si iz ze e(5 5) ; / / now each of m’s vectors holds 5 ints
f fo or r (i in nt t j j = 0 0; j j<m m[i i]. s si iz ze e() ; j j++) m m[i i][j j] = 1 10 0* i i+j j;

}
}

or graphically:

3 m:

5

5

5

m[0]:

m[1]:

m[2]:

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

Eachv ve ec ct to or r implementation holds a pointer to its elements plus the number of elements. The ele-
ments are typically held in an array. For illustration, I gave eachi in nt t an initial value representing its
coordinates.

It is not necessary for thev ve ec ct to or r<i in nt t>s in thev ve ec ct to or r< v ve ec ct to or r<i in nt t> > to have the same size.
Accessing an element is done by indexing twice. For example,m m[i i][j j] is the j jth element of

the i ith vector. We can printm m like this:

v vo oi id d p pr ri in nt t_ _m m()
{

f fo or r (i in nt t i i = 0 0; i i<m m. s si iz ze e() ; i i++) {
f fo or r (i in nt t j j = 0 0; j j<m m[i i]. s si iz ze e() ; j j++) c co ou ut t << m m[i i][j j] << ´ \ \t t´;
c co ou ut t << ´ \ \n n´;

}
}

which gives:

0 0 1 1 2 2 3 3 4 4
1 10 0 1 11 1 1 12 2 1 13 3 1 14 4
2 20 0 2 21 1 2 22 2 2 23 3 2 24 4

C.7.2 Arrays

The built-in arrays are a major source of errors– especially when they are used to build multidi-
mensional arrays. For novices, they are also a major source of confusion. Wherever possible, use
v ve ec ct to or r, l li is st t, v va al la ar rr ra ay y, s st tr ri in ng g, etc.

Multidimensional arrays are represented as arrays of arrays. A three-by-five array is declared
like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

838 Technicalities Appendix C

i in nt t m ma a[3 3][5 5] ; / / 3 arrays with 5 ints each

For arrays, the dimensions must be given as part of the definition. We can initializem ma a like this:

v vo oi id d i in ni it t_ _m ma a()
{

f fo or r (i in nt t i i = 0 0; i i<3 3; i i++) {
f fo or r (i in nt t j j = 0 0; j j<5 5; j j++) m ma a[i i][j j] = 1 10 0* i i+j j;

}
}

or graphically:

00 ma: 01 02 03 04 10 11 12 13 14 20 21 22 23 24

The arraym ma a is simply 15i in nt ts s that we access as if it were 3 arrays of 5i in nt ts. In particular, there is
no single object in memory that is the matrixm ma a – only the elements are stored. The dimensions3 3
and5 5 exist in the compiler source only. When we write code, it is our job to remember them some-
how and supply the dimensions where needed. For example, we might printm ma a like this:

v vo oi id d p pr ri in nt t_ _m ma a()
{

f fo or r (i in nt t i i = 0 0; i i<3 3; i i++) {
f fo or r (i in nt t j j = 0 0; j j<5 5; j j++) c co ou ut t << m ma a[i i][j j] << ´ \ \t t´;
c co ou ut t << ´ \ \n n´;

}
}

The comma notation used for array bounds in some languages cannot be used in C++ because the
comma (,) is a sequencing operator (§6.2.2). Fortunately, most mistakes are caught by the com-
piler. For example:

i in nt t b ba ad d[3 3, 5 5] ; / / error: comma not allowed in constant expression
i in nt t g go oo od d[3 3][5 5] ; / / 3 arrays with 5 ints each
i in nt t o ou uc ch h = g go oo od d[1 1, 4 4] ; / / error: int initialized by int* (good[1,4] means good[4], which is an int*)
i in nt t n ni ic ce e = g go oo od d[1 1][4 4] ;

C.7.3 Passing Multidimensional Arrays

Consider defining a function to manipulate a two-dimensional matrix. If the dimensions are known
at compile time, there is no problem:

v vo oi id d p pr ri in nt t_ _m m3 35 5(i in nt t m m[3 3][5 5])
{

f fo or r (i in nt t i i = 0 0; i i<3 3; i i++) {
f fo or r (i in nt t j j = 0 0; j j<5 5; j j++) c co ou ut t << m m[i i][j j] << ´ \ \t t´;
c co ou ut t << ´ \ \n n´;

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.7.3 Passing Multidimensional Arrays 839

A matrix represented as a multidimensional array is passed as a pointer (rather than copied; §5.3).
The first dimension of an array is irrelevant to the problem of finding the location of an element; it
simply states how many elements (here3 3) of the appropriate type (herei in nt t[5 5]) are present. For
example, look at the previous representation ofm ma a and note that by our knowing only that the sec-
ond dimension is5 5, we can locatem ma a[i i][5 5] for any i i. The first dimension can therefore be
passed as an argument:

v vo oi id d p pr ri in nt t_ _m mi i5 5(i in nt t m m[][5 5] , i in nt t d di im m1 1)
{

f fo or r (i in nt t i i = 0 0; i i<d di im m1 1; i i++) {
f fo or r (i in nt t j j = 0 0; j j<5 5; j j++) c co ou ut t << m m[i i][j j] << ´ \ \t t´;
c co ou ut t << ´ \ \n n´;

}
}

The difficult case is when both dimensions need to be passed. The ‘‘obvious solution’’ simply
does not work:

v vo oi id d p pr ri in nt t_ _m mi ij j(i in nt t m m[][] , i in nt t d di im m1 1, i in nt t d di im m2 2) / / doesn’t behave as most people would think
{

f fo or r (i in nt t i i = 0 0; i i<d di im m1 1; i i++) {
f fo or r (i in nt t j j = 0 0; j j<d di im m2 2; j j++) c co ou ut t << m m[i i][j j] << ´ \ \t t´; / / surprise!
c co ou ut t << ´ \ \n n´;

}
}

First, the argument declarationm m[][] is illegal because the second dimension of a multidimen-
sional array must be known in order to find the location of an element. Second, the expression
m m[i i][j j] is (correctly) interpreted as*(*(m m+i i)+ j j) , although that is unlikely to be what the pro-
grammer intended. A correct solution is:

v vo oi id d p pr ri in nt t_ _m mi ij j(i in nt t* m m, i in nt t d di im m1 1, i in nt t d di im m2 2)
{

f fo or r (i in nt t i i = 0 0; i i<d di im m1 1; i i++) {
f fo or r (i in nt t j j = 0 0; j j<d di im m2 2; j j++) c co ou ut t << m m[i i* d di im m2 2+j j] << ´ \ \t t´; / / obscure
c co ou ut t << ´ \ \n n´;

}
}

The expression used for accessing the members inp pr ri in nt t_ _m mi ij j() is equivalent to the one the com-
piler generates when it knows the last dimension.

To call this function, we pass a matrix as an ordinary pointer:

i in nt t m ma ai in n()
{

i in nt t v v[3 3][5 5] = { { 0 0, 1 1, 2 2, 3 3, 4 4}, { 1 10 0, 1 11 1, 1 12 2, 1 13 3, 1 14 4}, { 2 20 0, 2 21 1, 2 22 2, 2 23 3, 2 24 4} };

p pr ri in nt t_ _m m3 35 5(v v) ;
p pr ri in nt t_ _m mi i5 5(v v, 3 3) ;
p pr ri in nt t_ _m mi ij j(& v v[0 0][0 0] , 3 3, 5 5) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

840 Technicalities Appendix C

Note the use of&v v[0 0][0 0] for the last call;v v[0 0] would do because it is equivalent, butv v would be
a type error. This kind of subtle and messy code is best hidden. If you must deal directly with mul-
tidimensional arrays, consider encapsulating the code relying on it. In that way, you might ease the
task of the next programmer to touch the code. Providing a multidimensional array type with a
proper subscripting operator saves most users from having to worry about the layout of the data in
the array (§22.4.6).

The standardv ve ec ct to or r (§16.3) doesn’t suffer from these problems.

C.8 Saving Space

When programming nontrivial applications, there often comes a time when you want more memory
space than is available or affordable. There are two ways of squeezing more space out of what is
available:

[1] Put more than one small object into a byte.
[2] Use the same space to hold different objects at different times.

The former can be achieved by usingfields, and the latter by usingunions. These constructs are
described in the following sections. Many uses of fields and unions are pure optimizations, and
these optimizations are often based on nonportable assumptions about memory layouts. Conse-
quently, the programmer should think twice before using them. Often, a better approach is to
change the way data is managed, for example, to rely more on dynamically allocated store (§6.2.6)
and less on preallocated (static) storage.

C.8.1 Fields

It seems extravagant to use a whole byte (ac ch ha ar r or a b bo oo ol l) to represent a binary variable– for
example, an on/off switch– but ac ch ha ar r is the smallest object that can be independently allocated
and addressed in C++ (§5.1). It is possible, however, to bundle several such tiny variables together
as fields in a s st tr ru uc ct t. A member is defined to be a field by specifying the number of bits it is to
occupy. Unnamed fields are allowed. They do not affect the meaning of the named fields, but they
can be used to make the layout better in some machine-dependent way:

s st tr ru uc ct t P PP PN N { / / R6000 Physical Page Number
u un ns si ig gn ne ed d i in nt t P PF FN N : 2 22 2; / / Page Frame Number
i in nt t : 3 3; / / unused
u un ns si ig gn ne ed d i in nt t C CC CA A : 3 3; / / Cache Coherency Algorithm
b bo oo ol l n no on nr re ea ac ch ha ab bl le e : 1 1;
b bo oo ol l d di ir rt ty y : 1 1;
b bo oo ol l v va al li id d : 1 1;
b bo oo ol l g gl lo ob ba al l : 1 1;

};

This example also illustrates the other main use of fields: to name parts of an externally imposed
layout. A field must be of an integral or enumeration type (§4.1.1). It is not possible to take the
address of a field. Apart from that, however, it can be used exactly like other variables. Note that a
b bo oo ol l field really can be represented by a single bit. In an operating system kernel or in a debugger,
the typeP PP PN N might be used like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.8.1 Fields 841

v vo oi id d p pa ar rt t_ _o of f_ _V VM M_ _s sy ys st te em m(P PP PN N* p p)
{

/ / ...

i if f (p p-> d di ir rt ty y) { / / contents changed
/ / copy to disc
p p-> d di ir rt ty y = 0 0;

}

/ / ...
}

Surprisingly, using fields to pack several variables into a single byte does not necessarily save
space. It saves data space, but the size of the code needed to manipulate these variables increases
on most machines. Programs have been known to shrink significantly when binary variables were
converted from bit fields to characters! Furthermore, it is typically much faster to access ac ch ha ar r or
an i in nt t than to access a field. Fields are simply a convenient shorthand for using bitwise logical
operators (§6.2.4) to extract information from and insert information into part of a word.

C.8.2 Unions

A u un ni io on n is as st tr ru uc ct t in which all members are allocated at the same address so that theu un ni io on n occu-
pies only as much space as its largest member. Naturally, au un ni io on n can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value:

e en nu um m T Ty yp pe e { S S, I I };

s st tr ru uc ct t E En nt tr ry y {
c ch ha ar r* n na am me e;
T Ty yp pe e t t;
c ch ha ar r* s s; / / use s if t==S
i in nt t i i; / / use i if t==I

};

v vo oi id d f f(E En nt tr ry y* p p)
{

i if f (p p-> t t == S S) c co ou ut t << p p-> s s;
/ / ...

}

The memberss s andi i can never be used at the same time, so space is wasted. It can be easily recov-
ered by specifying that both should be members of au un ni io on n, like this:

u un ni io on n V Va al lu ue e {
c ch ha ar r* s s;
i in nt t i i;

};

The language doesn’t keep track of which kind of value is held by au un ni io on n, so the programmer must
still do that:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

842 Technicalities Appendix C

s st tr ru uc ct t E En nt tr ry y {
c ch ha ar r* n na am me e;
T Ty yp pe e t t;
V Va al lu ue e v v; / / use v.s if t==S; use v.i if t==I

};

v vo oi id d f f(E En nt tr ry y* p p)
{

i if f (p p-> t t == S S) c co ou ut t << p p-> v v. s s;
/ / ...

}

Unfortunately, the introduction of theu un ni io on n forced us to rewrite code to sayv v. s s instead of plains s.
This can be avoided by using ananonymous union, which is a union that doesn’t have a name and
consequently doesn’t define a type. Instead, it simply ensures that its members are allocated at the
same address:

s st tr ru uc ct t E En nt tr ry y {
c ch ha ar r* n na am me e;
T Ty yp pe e t t;
u un ni io on n {

c ch ha ar r* s s; / / use s if t==S
i in nt t i i; / / use i if t==I

};
};

v vo oi id d f f(E En nt tr ry y* p p)
{

i if f (p p-> t t == S S) c co ou ut t << p p-> s s;
/ / ...

}

This leaves all code using anE En nt tr ry y unchanged.
Using au un ni io on n so that its value is always read using the member through which it was written is

a pure optimization. However, it is not always easy to ensure that au un ni io on n is used in this way only,
and subtle errors can be introduced through misuse. To avoid errors, one can encapsulate au un ni io on n
so that the correspondence between a type field and access to theu un ni io on n members can be guaranteed
(§10.6[20]).

Unions are sometimes misused for ‘‘type conversion.’’ This misuse is practiced mainly by pro-
grammers trained in languages that do not have explicit type conversion facilities, where cheating is
necessary. For example, the following ‘‘converts’’ ani in nt t to an i in nt t* simply by assuming bitwise
equivalence:

u un ni io on n F Fu ud dg ge e {
i in nt t i i;
i in nt t* p p;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.8.2 Unions 843

i in nt t* c ch he ea at t(i in nt t i i)
{

F Fu ud dg ge e a a;
a a. i i = i i;
r re et tu ur rn n a a. p p; / / bad use

}

This is not really a conversion at all. On some machines, ani in nt t and ani in nt t* do not occupy the
same amount of space, while on others, no integer can have an odd address. Such use of au un ni io on n is
dangerous and nonportable, and there is an explicit and portable way of specifying type conversion
(§6.2.7).

Unions are occasionally used deliberately to avoid type conversion. One might, for example,
use aF Fu ud dg ge e to find the representation of the pointer0 0:

i in nt t m ma ai in n()
{

F Fu ud dg ge e f fo oo o;
f fo oo o. p p = 0 0;
c co ou ut t << " t th he e i in nt te eg ge er r v va al lu ue e o of f t th he e p po oi in nt te er r 0 0 i is s " << f fo oo o. i i << ´ \ \n n´;

}

C.8.3 Unions and Classes

Many nontrivialu un ni io on ns have some members that are much larger than the most frequently-used
members. Because the size of au un ni io on n is at least as large as its largest member, space is wasted.
This waste can often be eliminated by using a set of derived classes instead of au un ni io on n.

A class with a constructor, destructor, or copy operation cannot be the type of au un ni io on n member
(§10.4.12) because the compiler would not know which member to destroy.

C.9 Memory Management

There are three fundamental ways of using memory in C++:
Static memory, in which an object is allocated by the linker for the duration of the program.

Global and namespace variables,s st ta at ti ic c class members (§10.2.4), ands st ta at ti ic c variables in
functions (§7.1.2) are allocated in static memory. An object allocated in static memory is
constructed once and persists to the end of the program. It always has the same address.
Static objects can be a problem in programs using threads (shared-address space concur-
rency) because they are shared and require locking for proper access.

Automatic memory, in which function arguments and local variables are allocated. Each entry
into a function or a block gets its own copy. This kind of memory is automatically created
and destroyed; hence the name automatic memory. Automatic memory is also said ‘‘to be
on the stack.’’ If you absolutely must be explicit about this, C++ provides the redundant
keyworda au ut to o.

Free store, from which memory for objects is explicitly requested by the program and where a
program can free memory again once it is done with it (usingn ne ew w andd de el le et te e). When a pro-
gram needs more free store,n ne ew w requests it from the operating system. Typically, the free

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

844 Technicalities Appendix C

store (also calleddynamic memoryor the heap) grows throughout the lifetime of a program
because no memory is ever returned to the operating system for use by other programs.

As far as the programmer is concerned, automatic and static storage are used in simple, obvious,
and implicit ways. The interesting question is how to manage the free store. Allocation (using
n ne ew w) is simple, but unless we have a consistent policy for giving memory back to the free store
manager, memory will fill up– especially for long-running programs.

The simplest strategy is to use automatic objects to manage corresponding objects in free store.
Consequently, many containers are implemented as handles to elements stored in the free store
(§25.7). For example, an automaticS St tr ri in ng g (§11.12) manages a sequence of characters on the free
store and automatically frees that memory when it itself goes out of scope. All of the standard con-
tainers (§16.3, Chapter 17, Chapter 20, §22.4) can be conveniently implemented in this way.

C.9.1 Automatic Garbage Collection

When this regular approach isn’t sufficient, the programmer might use a memory manager that
finds unreferenced objects and reclaims their memory in which to store new objects. This is usu-
ally calledautomatic garbage collection, or simplygarbage collection. Naturally, such a memory
manager is called agarbage collector.

The fundamental idea of garbage collection is that an object that is no longer referred to in a
program will not be accessed again, so its memory can be safely reused for some new object. For
example:

v vo oi id d f f()
{

i in nt t* p p = n ne ew w i in nt t;
p p = 0 0;
c ch ha ar r* q q = n ne ew w c ch ha ar r;

}

Here, the assignmentp p=0 0 makes thei in nt t unreferenced so that its memory can be used for some
other new object. Thus, thec ch ha ar r might be allocated in the same memory as thei in nt t so thatq q holds
the value thatp p originally had.

The standard does not require that an implementation supply a garbage collector, but garbage
collectors are increasingly used for C++ in areas where their costs compare favorably to those of
manual management of free store. When comparing costs, consider the run time, memory usage,
reliability, portability, monetary cost of programming, monetary cost of a garbage collector, and
predictability of performance.

C.9.1.1 Disguised Pointers

What should it mean for an object to be unreferenced? Consider:

v vo oi id d f f()
{

i in nt t* p p = n ne ew w i in nt t;
l lo on ng g i i1 1 = r re ei in nt te er rp pr re et t_ _c ca as st t<l lo on ng g>(p p)& 0 0x xF FF FF FF F0 00 00 00 0;
l lo on ng g i i2 2 = r re ei in nt te er rp pr re et t_ _c ca as st t<l lo on ng g>(p p)& 0 0x x0 00 00 00 0F FF FF FF F;
p p = 0 0;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.9.1.1 Disguised Pointers 845

/ / point #1: no pointer to the int exists here

p p = r re ei in nt te er rp pr re et t_ _c ca as st t<i in nt t*>(i i1 1| i i2 2) ;
/ / now the int is referenced again

}

Often, pointers stored as non-pointers in a program are called ‘‘disguised pointers.’’ In particular,
the pointer originally held inp p is disguised in the integersi i1 1 andi i2 2. However, a garbage collector
need not be concerned about disguised pointers. If the garbage collector runs at point#1 1, the mem-
ory holding thei in nt t can be reclaimed. In fact, such programs are not guaranteed to work even if a
garbage collector is not used because the use ofr re ei in nt te er rp pr re et t_ _c ca as st t to convert between integers and
pointers is at best implementation-defined.

A u un ni io on n that can hold both pointers and non-pointers presents a garbage collector with a special
problem. In general, it is not possible to know whether such au un ni io on n contains a pointer. Consider:

u un ni io on n U U { / / union with both pointer and non-pointer members
i in nt t* p p;
i in nt t i i;

};

v vo oi id d f f(U U u u, U U u u2 2, U U u u3 3)
{

u u. p p = n ne ew w i in nt t;
u u2 2. i i = 9 99 99 99 99 99 9;
u u. i i = 8 8;
/ / ...

}

The safe assumption is that any value that appears in such au un ni io on n is a pointer value. A clever gar-
bage collector can do somewhat better. For example, it may notice that (for a given implementa-
tion) i in nt ts are not allocated with odd addresses and that no objects are allocated with an address as
low as8 8. Noticing this will save the garbage collector from having to assume that objects contain-
ing locations9 99 99 99 99 99 9 and8 8 are used byf f() .

C.9.1.2 Delete

If an implementation automatically collects garbage, thed de el le et te e and d de el le et te e[] operators are no
longer needed to free memory for potential reuse. Thus, a user relying on a garbage collector could
simply refrain from using these operators. However, in addition to freeing memory,d de el le et te e and
d de el le et te e[] invoke destructors.

In the presence of a garbage collector,

d de el le et te e p p;

invokes the destructor for the object pointed to byp p (if any). However, reuse of the memory can be
postponed until it is collected. Recycling lots of objects at once can help limit fragmentation
(§C.9.1.4). It also renders harmless the otherwise serious mistake of deleting an object twice in the
important case where the destructor simply deletes memory.

As always, access to an object after it has been deleted is undefined.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

846 Technicalities Appendix C

C.9.1.3 Destructors

When an object is about to be recycled by a garbage collector, two alternatives exist:
[1] Call the destructor (if any) for the object.
[2] Treat the object as raw memory (don’t call its destructor).

By default, a garbage collector should choose option (2) because objects created usingn ne ew w and
neverd de el le et te ed are never destroyed. Thus, one can see a garbage collector as a mechanism for simu-
lating an infinite memory.

It is possible to design a garbage collector to invoke the destructors for objects that have been
specifically ‘‘registered’’ with the collector. However, there is no standard way of ‘‘registering’’
objects. Note that it is always important to destroy objects in an order that ensures that the
destructor for one object doesn’t refer to an object that has been previously destroyed. Such order-
ing isn’t easily achieved by a garbage collector without help from the programmer.

C.9.1.4 Memory Fragmentation

When a lot of objects of varying sizes are allocated and freed, the memoryfragments. That is,
much of memory is consumed by pieces of memory that are too small to use effectively. The rea-
son is that a general allocator cannot always find a piece of memory of the exact right size for an
object. Using a slightly larger piece means that a smaller fragment of memory remains. After run-
ning a program for a while with a naive allocator, it is not uncommon to find half the available
memory taken up with fragments too small ever to get reused.

Several techniques exist for coping with fragmentation. The simplest is to request only larger
chunks of memory from the allocator and use each such chunk for objects of the same size (§15.3,
§19.4.2). Because most allocations and deallocations are of small objects of types such as tree
nodes, links, etc., this technique can be very effective. An allocator can sometimes apply similar
techniques automatically. In either case, fragmentation is further reduced if all of the larger
‘‘chunks’’ are of the same size (say, the size of a page) so that they themselves can be allocated and
reallocated without fragmentation.

There are two main styles of garbage collectors:
[1] A copying collectormoves objects in memory to compact fragmented space.
[2] A conservative collectorallocates objects to minimize fragmentation.

From a C++ point of view, conservative collectors are preferable because it is very hard (probably
impossible in real programs) to move an object and modify all pointers to it correctly. A conserva-
tive collector also allows C++ code fragments to coexist with code written in languages such as C.
Traditionally, copying collectors have been favored by people using languages (such as Lisp and
Smalltalk) that deal with objects only indirectly through unique pointers or references. However,
modern conservative collectors seem to be at least as efficient as copying collectors for larger pro-
grams, in which the amount of copying and the interaction between the allocator and a paging sys-
tem become important. For smaller programs, the ideal of simply never invoking the collector is
often achievable– especially in C++, where many objects are naturally automatic.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.10 Namespaces 847

C.10 Namespaces

This section presents minor points about namespaces that look like technicalities, yet frequently
surface in discussions and in real code.

C.10.1 Convenience vs. Safety

A using-declarationadds a name to a local scope. Ausing-directivedoes not; it simply renders
names accessible in the scope in which they were declared. For example:

n na am me es sp pa ac ce e X X {
i in nt t i i, j j, k k;

}

i in nt t k k;

v vo oi id d f f1 1()
{

i in nt t i i = 0 0;
u us si in ng g n na am me es sp pa ac ce e X X; / / make names from X accessible
i i++; / / local i
j j++; / / X::j
k k++; / / error: X::k or global k ?
: : k k++; / / the global k
X X: : k k++; / / X’s k

}

v vo oi id d f f2 2()
{

i in nt t i i = 0 0;
u us si in ng g X X: : i i; / / error: i declared twice in f2()
u us si in ng g X X: : j j;
u us si in ng g X X: : k k; / / hides global k

i i++;
j j++; / / X::j
k k++; / / X::k

}

A locally declared name (declared either by an ordinary declaration or by ausing-declaration)
hides nonlocal declarations of the same name, and any illegal overloadings of the name are detected
at the point of declaration.

Note the ambiguity error fork k++ in f f1 1() . Global names are not given preference over names
from namespaces made accessible in the global scope. This provides significant protection against
accidental name clashes, and– importantly – ensures that there are no advantages to be gained
from polluting the global namespace.

When libraries declaringmanynames are made accessible throughusing-directives, it is a sig-
nificant advantage that clashes of unused names are not considered errors.

The global scope is just another namespace. The global namespace is odd only in that you
don’t have to mention its name in an explicit qualification. That is,: : k k means ‘‘look fork k in the
global namespace and in namespaces mentioned inu us si in ng g- d di ir re ec ct ti iv ve es in the global namespace,’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

848 Technicalities Appendix C

whereasX X: : k k means ‘‘thek k declared in namespaceX X and namespaces mentioned inu us si in ng g-
d di ir re ec ct ti iv ve es inX X’’ (§8.2.8).

I hope to see a radical decrease in the use of global names in new programs using namespaces
compared to traditional C and C++ programs. The rules for namespaces were specifically crafted to
give no advantages to a ‘‘lazy’’ user of global names over someone who takes care not to pollute
the global scope.

C.10.2 Nesting of Namespaces

One obvious use of namespaces is to wrap a complete set of declarations and definitions in a sepa-
rate namespace:

n na am me es sp pa ac ce e X X {
/ / all my declarations

}

The list of declarations will, in general, contain namespaces. Thus, nested namespaces are allowed.
This is allowed for practical reasons, as well as for the simple reason that constructs ought to nest
unless there is a strong reason for them not to. For example:

v vo oi id d h h() ;

n na am me es sp pa ac ce e X X {
v vo oi id d g g() ;
/ / ...
n na am me es sp pa ac ce e Y Y {

v vo oi id d f f() ;
v vo oi id d f ff f() ;
/ / ...

}
}

The usual scope and qualification rules apply:

v vo oi id d X X: : Y Y: : f ff f()
{

f f() ; g g() ; h h() ;
}

v vo oi id d X X: : g g()
{

f f() ; / / error: no f() in X
Y Y: : f f() ; / / ok

}

v vo oi id d h h()
{

f f() ; / / error: no global f()
Y Y: : f f() ; / / error: no global Y
X X: : f f() ; / / error: no f() in X
X X: : Y Y: : f f() ; / / ok

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.10.2 Nesting of Namespaces 849

C.10.3 Namespaces and Classes

A namespace is a named scope. A class is a type defined by a named scope that describes how
objects of that type can be created and used. Thus, a namespace is a simpler concept than a class
and ideally a class would be defined as a namespace with a few extra facilities included. This is
almost the case. A namespace is open (§8.2.9.3), but a class is closed. This difference stems from
the observation that a class needs to define the layout of an object and that is best done in one place.
Furthermore,u us si in ng g- d de ec cl la ar ra at ti io on ns andu us si in ng g- d di ir re ec ct ti iv ve es can be applied to classes only in a very
restricted way (§15.2.2).

Namespaces are preferred over classes when all that is needed is encapsulation of names. In
this case, the class apparatus for type checking and for creating objects is not needed; the simpler
namespace concept suffices.

C.11 Access Control

This section presents a few technical examples illustrating access control to supplement those pre-
sented in §15.3.

C.11.1 Access to Members

Consider:

c cl la as ss s X X {
/ / private by default:

i in nt t p pr ri iv v;
p pr ro ot te ec ct te ed d:

i in nt t p pr ro ot t;
p pu ub bl li ic c:

i in nt t p pu ub bl l;
v vo oi id d m m() ;

};

The memberX X: : m m() has unrestricted access:

v vo oi id d X X: : m m()
{

p pr ri iv v = 1 1; / / ok
p pr ro ot t = 2 2; / / ok
p pu ub bl l = 3 3; / / ok

}

A member of a derived class has access to public and protected members (§15.3):

c cl la as ss s Y Y : p pu ub bl li ic c X X {
v vo oi id d m md de er ri iv ve ed d() ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

850 Technicalities Appendix C

v vo oi id d Y Y: : m md de er ri iv ve ed d()
{

p pr ri iv v = 1 1; / / error: priv is private
p pr ro ot t = 2 2; / / ok: prot is protected and mderived() is a member of the derived class Y
p pu ub bl l = 3 3; / / ok: publ is public

}

A global function can access only the public members:

v vo oi id d f f(Y Y* p p)
{

p p-> p pr ri iv v = 1 1; / / error: priv is private
p p-> p pr ro ot t = 2 2; / / error: prot is protected and f() is not a friend or a member of X or Y
p p-> p pu ub bl l = 3 3; / / ok: publ is public

}

C.11.2 Access to Base Classes

Like a member, a base class can be declaredp pr ri iv va at te e, p pr ro ot te ec ct te ed d, orp pu ub bl li ic c. Consider:

c cl la as ss s X X {
p pu ub bl li ic c:

i in nt t a a;
/ / ...

};

c cl la as ss s Y Y1 1 : p pu ub bl li ic c X X { };
c cl la as ss s Y Y2 2 : p pr ro ot te ec ct te ed d X X { };
c cl la as ss s Y Y3 3 : p pr ri iv va at te e X X { };

BecauseX X is a public base ofY Y1 1, any function can (implicitly) convert aY Y1 1* to an X X* where
needed just as it can access the public members of classX X. For example:

v vo oi id d f f(Y Y1 1* p py y1 1, Y Y2 2* p py y2 2, Y Y3 3* p py y3 3)
{

X X* p px x = p py y1 1; / / ok: X is a public base class of Y1
p py y1 1-> a a = 7 7; / / ok

p px x = p py y2 2; / / error: X is a protected base of Y2
p py y2 2-> a a = 7 7; / / error

p px x = p py y3 3; / / error: X is a private base of Y3
p py y3 3-> a a = 7 7; / / error

}

Consider:

c cl la as ss s Y Y2 2 : p pr ro ot te ec ct te ed d X X { };
c cl la as ss s Z Z2 2 : p pu ub bl li ic c Y Y2 2 { v vo oi id d f f(Y Y1 1*, Y Y2 2*, Y Y3 3*) ; };

BecauseX X is a protected base ofY Y2 2, only members and friends ofY Y2 2 and members and friends of
Y Y2 2’s derived classes (e.g.,Z Z2 2) can (implicitly) convert aY Y2 2* to anX X* where needed, just as they
can access the public and protected members of classX X. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.11.2 Access to Base Classes 851

v vo oi id d Z Z2 2: : f f(Y Y1 1* p py y1 1, Y Y2 2* p py y2 2, Y Y3 3* p py y3 3)
{

X X* p px x = p py y1 1; / / ok: X is a public base class of Y1
p py y1 1-> a a = 7 7; / / ok

p px x = p py y2 2; / / ok: X is a protected base of Y2, and Z2 is derived from Y2
p py y2 2-> a a = 7 7; / / ok

p px x = p py y3 3; / / error: X is a private base of Y3
p py y3 3-> a a = 7 7; / / error

}

Consider finally:

c cl la as ss s Y Y3 3 : p pr ri iv va at te e X X { v vo oi id d f f(Y Y1 1*, Y Y2 2*, Y Y3 3*) ; };

BecauseX X is a private base ofY Y3 3, only members and friends ofY Y3 3 can (implicitly) convert aY Y3 3* to
an X X* where needed, just as they can access the public and protected members of classX X. For
example:

v vo oi id d Y Y3 3: : f f(Y Y1 1* p py y1 1, Y Y2 2* p py y2 2, Y Y3 3* p py y3 3)
{

X X* p px x = p py y1 1; / / ok: X is a public base class of Y1
p py y1 1-> a a = 7 7; / / ok

p px x = p py y2 2; / / error: X is a protected base of Y2
p py y2 2-> a a = 7 7; / / error

p px x = p py y3 3; / / ok: X is a private base of Y3, and Y3::f() is a member of Y3
p py y3 3-> a a = 7 7; / / ok

}

C.11.3 Access to Member Class

The members of a member class have no special access to members of an enclosing class. Simi-
larly members of an enclosing class have no special access to members of a nested class; the usual
access rules (§10.2.2) shall be obeyed. For example:

c cl la as ss s O Ou ut te er r {
t ty yp pe ed de ef f i in nt t T T;
i in nt t i i;

p pu ub bl li ic c:
i in nt t i i2 2;
s st ta at ti ic c i in nt t s s;

c cl la as ss s I In nn ne er r {
i in nt t x x;
T T y y; / / error: Outer::T is private

p pu ub bl li ic c:
v vo oi id d f f(O Ou ut te er r* p p, i in nt t v v) ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

852 Technicalities Appendix C

i in nt t g g(I In nn ne er r* p p) ;
};

v vo oi id d O Ou ut te er r: : I In nn ne er r: : f f(O Ou ut te er r* p p, i in nt t v v)
{

p p-> i i = v v; / / error: Outer::i is private
p p-> i i2 2 = v v; / / ok: Outer::i2 is public

}

i in nt t O Ou ut te er r: : g g(I In nn ne er r* p p)
{

p p-> f f(t th hi is s, 2 2) ; / / ok: Inner::f() is public
r re et tu ur rn n p p-> x x; / / error: Inner::x is private

}

However, it is often useful to grant a member class access to its enclosing class. This can be done
by making the member af fr ri ie en nd d. For example:

c cl la as ss s O Ou ut te er r {
t ty yp pe ed de ef f i in nt t T T;
i in nt t i i;

p pu ub bl li ic c:
c cl la as ss s I In nn ne er r; / / forward declaration of member class
f fr ri ie en nd d c cl la as ss s I In nn ne er r; / / grant access to Outer::Inner

c cl la as ss s I In nn ne er r {
i in nt t x x;
T T y y; / / ok: Inner is a friend

p pu ub bl li ic c:
v vo oi id d f f(O Ou ut te er r* p p, i in nt t v v) ;

};
};

v vo oi id d O Ou ut te er r: : I In nn ne er r: : f f(O Ou ut te er r* p p, i in nt t v v)
{

p p-> i i = v v; / / ok: Inner is a friend
}

C.11.4 Friendship

Friendship is neither inherited nor transitive. For example:

c cl la as ss s A A {
f fr ri ie en nd d c cl la as ss s B B;
i in nt t a a;

};

c cl la as ss s B B {
f fr ri ie en nd d c cl la as ss s C C;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.11.4 Friendship 853

c cl la as ss s C C {
v vo oi id d f f(A A* p p)
{

p p-> a a++; / / error: C is not a friend of A, despite being a friend of a friend of A
}

};

c cl la as ss s D D : p pu ub bl li ic c B B {
v vo oi id d f f(A A* p p)
{

p p-> a a++; / / error: D is not a friend of A, despite being derived from a friend of A
}

};

C.12 Pointers to Data Members

Naturally, the notion of pointer to member (§15.5) applies to data members and to member func-
tions with arguments and return types. For example:

s st tr ru uc ct t C C {
c ch ha ar r* v va al l;
i in nt t i i;
v vo oi id d p pr ri in nt t(i in nt t x x) { c co ou ut t << v va al l << x x << ´ \ \n n´; }
v vo oi id d f f1 1() ;
i in nt t f f2 2() ;
C C(c ch ha ar r* v v) { v va al l = v v; }

};

t ty yp pe ed de ef f v vo oi id d (C C: :* P PM MF FI I)(i in nt t) ; / / pointer to member function of C taking an int
t ty yp pe ed de ef f c ch ha ar r* C C: :* P PM M; / / pointer to char* data member of C

v vo oi id d f f(C C& z z1 1, C C& z z2 2)
{

C C* p p = &z z2 2;
P PM MF FI I p pf f = &C C: : p pr ri in nt t;
P PM M p pm m = &C C: : v va al l;

z z1 1. p pr ri in nt t(1 1) ;
(z z1 1.* p pf f)(2 2) ;
z z1 1.* p pm m = " n nv v1 1 ";
p p->* p pm m = " n nv v2 2 ";
z z2 2. p pr ri in nt t(3 3) ;
(p p->* p pf f)(4 4) ;

p pf f = &C C: : f f1 1; / / error: return type mismatch
p pf f = &C C: : f f2 2; / / error: argument type mismatch
p pm m = &C C: : i i; / / error: type mismatch
p pm m = p pf f; / / error: type mismatch

}

The type of a pointer to function is checked just like any other type.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

854 Technicalities Appendix C

C.13 Templates

A class template specifies how a class can be generated given a suitable set of template arguments.
Similarly, a function template specifies how a function can be generated given a suitable set of tem-
plate arguments. Thus, a template can be used to generate types and executable code. With this
expressive power comes some complexity. Most of this complexity relates to the variety of con-
texts involved in the definition and use of templates.

C.13.1 Static Members

A class template can haves st ta at ti ic c members. Each class generated from the template has its own
copy of the static members. Static members must be separately defined and can be specialized. For
example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X {
/ / ...
s st ta at ti ic c T T d de ef f_ _v va al l;
s st ta at ti ic c T T* n ne ew w_ _X X(T T a a = d de ef f_ _v va al l) ;

};

t te em mp pl la at te e<c cl la as ss s T T> T T X X<T T>: : d de ef f_ _v va al l(0 0, 0 0) ;
t te em mp pl la at te e<c cl la as ss s T T> T T* X X<T T>: : n ne ew w_ _X X(T T a a) { /* ... */ }

t te em mp pl la at te e<> i in nt t X X<i in nt t>: : d de ef f_ _v va al l<i in nt t> = 0 0;
t te em mp pl la at te e<> i in nt t* X X<i in nt t>: : n ne ew w_ _X X<i in nt t>(i in nt t i i) { /* ... */ }

If you want to share an object or function among all members of every class generated from a tem-
plate, you can place it in a non-templatized base class. For example:

s st tr ru uc ct t B B {
s st ta at ti ic c B B* n ni il l; / / to be used as common null pointer for every class derived from B

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X : p pu ub bl li ic c B B {
/ / ...

};

B B* B B: : n ni il l = 0 0;

C.13.2 Friends

Like other classes, a template class can have friends. For example, comparison operators are typi-
cally friends, so we can rewrite classB Ba as si ic c_ _o op ps s from §13.6 like this:

t te em mp pl la at te e <c cl la as ss s C C> c cl la as ss s B Ba as si ic c_ _o op ps s { / / basic operators on containers
f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t C C&, c co on ns st t C C&) ; / / compare elements
f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t C C&, c co on ns st t C C&) ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.2 Friends 855

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s M Ma at th h_ _c co on nt ta ai in ne er r : p pu ub bl li ic c B Ba as si ic c_ _o op ps s< M Ma at th h_ _c co on nt ta ai in ne er r<T T> > {
/ / ...

};

Like a member, a friend declared within a template is itself a template and is defined using the tem-
plate parameters of its class. For example:

t te em mp pl la at te e <c cl la as ss s C C> b bo oo ol l o op pe er ra at to or r==(c co on ns st t C C& a a, c co on ns st t C C& b b)
{

i if f (a a. s si iz ze e() != b b. s si iz ze e()) r re et tu ur rn n f fa al ls se e;
f fo or r (i in nt t i i = 0 0; i i<a a. s si iz ze e() ; ++i i)

i if f (a a[i i] != b b[i i]) r re et tu ur rn n f fa al ls se e;
r re et tu ur rn n t tr ru ue e;

}

Friends do not affect the scope in which the template class is defined, nor do they affect the scope
in which the template is used. Instead, friend functions and operators are found using a lookup
based on their argument types (§11.2.4, §11.5.1). Like a member function, a friend function is
instantiated (§C.13.9.1) only if it is called.

C.13.3 Templates as Template Parameters

Sometimes it is useful to pass templates– rather than classes or objects– as template arguments.
For example:

t te em mp pl la at te e<c cl la as ss s T T, t te em mp pl la at te e<c cl la as ss s> c cl la as ss s C C> c cl la as ss s X Xr re ef fd d {
C C<T T> m me em ms s;
C C<T T*> r re ef fs s;
/ / ...

};

X Xr re ef fd d<E En nt tr ry y, v ve ec ct to or r> x x1 1; / / store cross references for Entries in a vector

X Xr re ef fd d<R Re ec co or rd d, s se et t> x x2 2; / / store cross references for Records in a set

To use a template as a template parameter, you specify its required arguments. The template
parameters of the template parameter need to be known in order to use the template parameter. The
point of using a template as a template parameter is usually that we want to instantiate it with a
variety of argument types (such asT T andT T* in the previous example). That is, we want to express
the member declarations of a template in terms of another template, but we want that other template
to be a parameter so that it can be specified by users.

The common case in which a template needs a container to hold elements of its own argument
type is often better handled by passing the container type (§13.6, §17.3.1).

Only class templates can be template arguments.

C.13.4 Deducing Function Template Arguments

A compiler can deduce a type template argument,T T or T TT T, and a non-type template argument,I I,
from a template function argument with a type composed of the following constructs:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

856 Technicalities Appendix C

T T c co on ns st t T T v vo ol la at ti il le e T T
T T* T T& T T[c co on ns st ta an nt t_ _e ex xp pr re es ss si io on n]
t ty yp pe e[I I] c cl la as ss s_ _t te em mp pl la at te e_ _n na am me e<T T> c cl la as ss s_ _t te em mp pl la at te e_ _n na am me e<I I>
T TT T<T T> T T<I I> T T<>
T T t ty yp pe e: :* T T T T: :* t ty yp pe e T T: :*
T T (*)(a ar rg gs s) t ty yp pe e (T T: :*)(a ar rg gs s) T T (t ty yp pe e: :*)(a ar rg gs s)
t ty yp pe e (t ty yp pe e: :*)(a ar rg gs s_ _T TI I) T T (T T: :*)(a ar rg gs s_ _T TI I) t ty yp pe e (T T: :*)(a ar rg gs s_ _T TI I)
T T (t ty yp pe e: :*)(a ar rg gs s_ _T TI I) t ty yp pe e (*)(a ar rg gs s_ _T TI I)

Here,a ar rg gs s_ _T TI I is a parameter list from which aT T or anI I can be determined by recursive application
of these rules anda ar rg gs s is a parameter list that does not allow deduction. If not all parameters can
be deduced in this way, a call is ambiguous. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s U U> v vo oi id d f f(c co on ns st t T T*, U U(*)(U U)) ;

i in nt t g g(i in nt t) ;

v vo oi id d h h(c co on ns st t c ch ha ar r* p p)
{

f f(p p, g g) ; / / T is char, U is int
f f(p p, h h) ; / / error: can’t deduce U

}

Looking at the arguments of the first call off f() , we easily deduce the template arguments. Look-
ing at the second call off f() , we see thath h() doesn’t match the patternU U(*)(U U) becauseh h() ’s
argument and return types differ.

If a template parameter can be deduced from more than one function argument, the same type
must be the result of each deduction. Otherwise, the call is an error. For example:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d f f(T T i i, T T* p p) ;

v vo oi id d g g(i in nt t i i)
{

f f(i i,& i i) ; / / ok
f f(i i," R Re em me em mb be er r!") ; / / error, ambiguous: T is int or T is char?

}

C.13.5 Typename and Template

To make generic programming easier and more general, the standard library containers provide a
set of standard functions and types (§16.3.1). For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f T T* i it te er ra at to or r;

i it te er ra at to or r b be eg gi in n() ;
i it te er ra at to or r e en nd d() ;

/ / ...
};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.5 Typename and Template 857

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s l li is st t {
c cl la as ss s l li in nk k {

/ / ...
};

p pu ub bl li ic c:
t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e;
t ty yp pe ed de ef f l li in nk k* i it te er ra at to or r;

i it te er ra at to or r b be eg gi in n() ;
i it te er ra at to or r e en nd d() ;

/ / ...
};

This allows us to write:

v vo oi id d f f1 1(v ve ec ct to or r<T T>& v v)
{

v ve ec ct to or r<T T>: : i it te er ra at to or r i i = v v. b be eg gi in n() ;
/ / ...

}

v vo oi id d f f2 2(l li is st t<T T>& v v)
{

l li is st t<T T>: : i it te er ra at to or r i i = v v. b be eg gi in n() ;
/ / ...

}

However, this does not allow us to write:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d f f4 4(C C& v v)
{

C C: : i it te er ra at to or r i i = v v. b be eg gi in n() ; / / error
/ / ...

}

Unfortunately, the compiler isn’t required to be psychic, so it doesn’t know thatC C: : i it te er ra at to or r is the
name of a type. In the previous example, the compiler could look at the declaration ofv ve ec ct to or r<> to
determine that thei it te er ra at to or r in v ve ec ct to or r<T T>: : i it te er ra at to or r was a type. That is not possible when the qual-
ifier is a type parameter. Naturally, a compiler could postpone all checking until instantiation time
where all information is available and could then accept such examples. However, that would be a
nonstandard language extension.

Consider an example stripped of clues as to its meaning:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d f f5 5(T T& v v)
{

T T: : x x(y y) ; / / error?
}

Is T T: : x x a function called with a nonlocal variabley y as its argument? Or, are we declaring a vari-
abley y with the typeT T: : x x perversely using redundant parentheses? We could imagine a context in
whichX X: : x x(y y) was a function call andY Y: : x x(y y) was a declaration.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

858 Technicalities Appendix C

The resolution is simple: unless otherwise stated, an identifier is assumed to refer to something
that is not a type or a template. If we want to state that something should be treated as a type, we
can do so using thet ty yp pe en na am me ekeyword:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d f f4 4(C C& v v)
{

t ty yp pe en na am me e C C: : i it te er ra at to or r i i = v v. b be eg gi in n() ;
/ / ...

}

The t ty yp pe en na am me e keyword can be placed in front of a qualified name to state that the entity named is a
type. In this, it resembless st tr ru uc ct t andc cl la as ss s.

The t ty yp pe en na am me e keyword can also be used as an alternative toc cl la as ss s in template declarations. For
example:

t te em mp pl la at te e<t ty yp pe en na am me e T T> v vo oi id d f f(T T) ;

Being an indifferent typist and always short of screen space, I prefer the shorter:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d f f(T T) ;

C.13.6 Template as a Qualifier

The need for thet ty yp pe en na am me e qualifier arises because we can refer both to members that are types and
to members that are non-types. We can also have members that are templates. In rare cases, the
need to distinguish the name of a template member from other member names can arise. Consider
a possible interface to a general memory manager:

c cl la as ss s M Me em mo or ry y { / / some Allocator
p pu ub bl li ic c:

t te em mp pl la at te e<c cl la as ss s T T> T T* g ge et t_ _n ne ew w() ;
t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d r re el le ea as se e(T T&) ;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s A Al ll lo oc ca at to or r> v vo oi id d f f(A Al ll lo oc ca at to or r& m m)
{

i in nt t* p p1 1 = m m. g ge et t_ _n ne ew w<i in nt t>() ; / / syntax error: int after less-than operator
i in nt t* p p2 2 = m m. t te em mp pl la at te e g ge et t_ _n ne ew w<i in nt t>() ; / / explicit qualification
/ / ...
m m. r re el le ea as se e(p p1 1) ; / / template argument deduced: no explicit qualification needed
m m. r re el le ea as se e(p p2 2) ;

}

Explicit qualification ofg ge et t_ _n ne ew w() is necessary because its template parameter cannot be deduced.
In this case, thet te em mp pl la at te e prefix must be used to inform the compiler (and the human reader) that
g ge et t_ _n ne ew w is a member template so that explicit qualification with the desired type of element is pos-
sible. Without the qualification witht te em mp pl la at te e, we would get a syntax error because the< would be
assumed to be a less-than operator. The need for qualification witht te em mp pl la at te e is rare because most
template parameters are deduced.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.7 Instantiation 859

C.13.7 Instantiation

Given a template definition and a use of that template, it is the implementation’s job to generate
correct code. From a class template and a set of template arguments, the compiler needs to gener-
ate the definition of a class and the definitions of those of its member functions that were used.
From a template function, a function needs to be generated. This process is commonly called
template instantiation.

The generated classes and functions are calledspecializations. When there is a need to distin-
guish between generated specializations and specializations explicitly written by the programmer
(§13.5), these are referred to asgenerated specializationsandexplicit specializations, respectively.
An explicit specialization is sometimes referred to as auser-defined specialization, or simply auser
specialization.

To use templates in nontrivial programs, a programmer must understand how names used in a
template definition are bound to declarations and how source code can be organized (§13.7).

By default, the compiler generates classes and functions from the templates used in accordance
with the name-binding rules (§C.13.8). That is, a programmer need not state explicitly which ver-
sions of which templates must be generated. This is important because it is not easy for a program-
mer to know exactly which versions of a template are needed. Often, templates that the program-
mer hasn’t even heard of are used in the implementation of libraries, and sometimes templates that
the programmer does know of are used with unknown template argument types. In general, the set
of generated functions needed can be known only by recursive examination of the templates used in
application code libraries. Computers are better suited than humans for doing such analysis.

However, it is sometimes important for a programmer to be able to state specifically where code
should be generated from a template (§C.13.10). By doing so, the programmer gains detailed con-
trol over the context of the instantiation. In most compilation environments, this also implies con-
trol over exactly when that instantiation is done. In particular, explicit instantiation can be used to
force compilation errors to occur at predictable times rather than occurring whenever an implemen-
tation determines the need to generate a specialization. A perfectly predictable build process is
essential to some users.

C.13.8 Name Binding

It is important to define template functions so that they have as few dependencies as possible on
nonlocal information. The reason is that a template will be used to generate functions and classes
based on unknown types and in unknown contexts. Every subtle context dependency is likely to
surface as a debugging problem for some programmer– and that programmer is unlikely to want to
know the implementation details of the template. The general rule of avoiding global names as far
as possible should be taken especially seriously in template code. Thus, we try to make template
definitions as self-contained as possible and to supply much of what would otherwise have been
global context in the form of template parameters (e.g., traits; §13.4, §20.2.1).

However, some nonlocal names must be used. In particular, it is more common to write a set of
cooperating template functions than to write just one self-contained function. Sometimes, such
functions can be class members, but not always. Sometimes, nonlocal functions are the best
choice. Typical examples of that ares so or rt t() ’s calls tos sw wa ap p() andl le es ss s() (§13.5.2). The standard
library algorithms provide a large-scale example (Chapter 18).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

860 Technicalities Appendix C

Operations with conventional names and semantics, such as+, * , [] , ands so or rt t() , are another
source of nonlocal name use in a template definition. Consider:

#i in nc cl lu ud de e<v ve ec ct to or r>

b bo oo ol l t tr ra ac ci in ng g;

/ / ...

t te em mp pl la at te e<c cl la as ss s T T> T T s su um m(s st td d: : v ve ec ct to or r<T T>& v v)
{

T T t t = 0 0;
i if f (t tr ra ac ci in ng g) c ce er rr r << " s su um m(" << &v v << ") \ \n n";
f fo or r (i in nt t i i = 0 0; i i<v v. s si iz ze e() ; i i++) t t = t t + v v[i i] ;
r re et tu ur rn n t t;

}

/ / ...

#i in nc cl lu ud de e<q qu ua ad d. h h>

v vo oi id d f f(s st td d: : v ve ec ct to or r<Q Qu ua ad d>& v v)
{

Q Qu ua ad d c c = s su um m(v v) ;
}

The innocent-looking template functions su um m() depends on the+ operator. In this example,+ is
defined in<q qu ua ad d. h h>:

Q Qu ua ad d o op pe er ra at to or r+(Q Qu ua ad d, Q Qu ua ad d) ;

Importantly, nothing related to complex numbers is in scope whens su um m() is defined and the writer
of s su um m() cannot be assumed to know about classQ Qu ua ad d. In particular, the+ may be defined later
thans su um m() in the program text, and even later in time.

The process of finding the declaration for each name explicitly or implicitly used in a template
is calledname binding. The general problem with template name binding is that three contexts are
involved in a template instantiation and they cannot be cleanly separated:

[1] The context of the template definition
[2] The context of the argument type declaration
[3] The context of the use of the template

C.13.8.1 Dependent Names

When defining a function template, we want to assure that enough context is available for the tem-
plate definition to make sense in terms of its actual arguments without picking up ‘‘accidental’’
stuff from the environment of a point of use. To help with this, the language separates names used
in a template definition into two categories:

[1] Names that depend on a template argument. Such names are bound at some point of instan-
tiation (§C.13.8.3). In thes su um m() example, the definition of+ can be found in the instantia-
tion context because it takes operands of the template argument type.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.8.1 Dependent Names 861

[2] Names that don’t depend on a template argument. Such names are bound at the point of
definition of the template (§C.13.8.2). In thes su um m() example, the templatev ve ec ct to or r is
defined in the standard header<v ve ec ct to or r> and the Booleant tr ra ac ci in ng g is in scope when the defi-
nition of s su um m() is encountered by the compiler.

The simplest definition of ‘‘N N depends on a template parameterT T’’ would be ‘‘N N is a member of
T T.’’ Unfortunately, this doesn’t quite suffice; addition ofQ Qu ua ad ds (§C.13.8) is a counter-example.
Consequently, a function call is said todepend ona template argument if and only if one of these
conditions hold:

[1] The type of the actual argument depends on a template parameterT T according to the type
deduction rules (§13.3.1). For example,f f(T T(1 1)) , f f(t t) , f f(g g(t t)) , andf f(& t t) , assuming that
t t is aT T.

[2] The function called has a formal parameter that depends onT T according to the type deduc-
tion rules (§13.3.1). For example,f f(T T) , f f(l li is st t<T T>&) , andf f(c co on ns st t T T*) .

Basically, the name of a function called is dependent if it is obviously dependent by looking at its
arguments or at its formal parameters.

A call that by coincidence has an argument that matches an actual template parameter type is
not dependent. For example:

t te em mp pl la at te e<c cl la as ss s T T> T T f f(T T a a)
{

r re et tu ur rn n g g(1 1) ; / / error: no g() in scope and g(1) doesn’t depend on T
}

v vo oi id d g g(i in nt t) ;

i in nt t z z = f f(2 2) ;

It doesn’t matter that for the callf f(2 2) , T T happens to bei in nt t andg g() ’s argument just happens to be
an i in nt t. Hadg g(1 1) been considered dependent, its meaning would have been most subtle and myste-
rious to the reader of the template definition. If a programmer wantsg g(i in nt t) to be called,g g(i in nt t) ’s
definition should be placed before the definition off f() so thatg g(i in nt t) is in scope whenf f() is ana-
lyzed. This is exactly the same rule as for non-template function definitions.

Note that only names of functions used in calls can be dependent names according to this defi-
nition. Names of variables, class members, types, etc., in a template definition must be declared
(possibly in terms of template parameters) before they are used.

C.13.8.2 Point of Definition Binding

When the compiler sees a template definition, it determines which names are dependent
(§C.13.8.1). If a name is dependent, looking for its declaration must be postponed until instantia-
tion time (§C.13.8.3).

Names that do not depend on a template argument must be in scope (§4.9.4) at the point of defi-
nition. For example:

i in nt t x x;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

862 Technicalities Appendix C

t te em mp pl la at te e<c cl la as ss s T T> T T f f(T T a a)
{

x x++; / / ok
y y++; / / error: no y in scope, and y doesn’t depend on T
r re et tu ur rn n a a;

}

i in nt t y y;

i in nt t z z = f f(2 2) ;

If a declaration is found, that declaration is used even if a ‘‘better’’ declaration might be found
later. For example:

v vo oi id d g g(d do ou ub bl le e) ;

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X : p pu ub bl li ic c T T {
p pu ub bl li ic c:

v vo oi id d f f() { g g(2 2) ; } / / call g(double);
/ / ...

};

v vo oi id d g g(i in nt t) ;

c cl la as ss s Z Z { };

v vo oi id d h h(X X<Z Z> x x)
{

x x. f f() ;
}

When a definition forX X<Z Z>: : f f() is generated,g g(i in nt t) is not considered because it is declared
after X X. It doesn’t matter thatX X is not used until after the declaration ofg g(i in nt t) . Also, a call that
isn’t dependent cannot be hijacked in a base class:

c cl la as ss s Y Y { p pu ub bl li ic c: v vo oi id d g g(i in nt t) ; };

v vo oi id d h h(X X<Y Y> x x)
{

x x. f f() ;
}

Again, X X<Y Y>: : f f() will call g g(d do ou ub bl le e) . If the programmer had wanted theg g() from the base
classT T to be called, the definition off f() should have said so:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X XX X : p pu ub bl li ic c T T {
v vo oi id d f f() { T T: : g g(2 2) ; } / / calls T::g()
/ / ...

};

This is, of course, an application of the rule of thumb that a template definition should be as self-
contained as possible.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.8.3 Point of Instantiation Binding 863

C.13.8.3 Point of Instantiation Binding

Each use of a template for a given set of template arguments defines a point of instantiation. That
point is in the nearest global or namespace scope enclosing its use, just before the declaration that
contains that use. For example:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d f f(T T a a) { g g(a a) ; }

v vo oi id d g g(i in nt t) ;

v vo oi id d h h()
{

e ex xt te er rn n g g(d do ou ub bl le e) ;
f f(2 2) ;

}

Here, the point of instantiation forf f<i in nt t>() is just beforeh h() , so theg g() called inf f() is the glo-
bal g g(i in nt t) rather than the localg g(d do ou ub bl le e) . The definition of ‘‘instantiation point’’ implies that a
template parameter can never be bound to a local name or a class member. For example:

v vo oi id d f f()
{

s st tr ru uc ct t X X { /* ... */ }; / / local structure
v ve ec ct to or r<X X> v v; / / error: cannot use local structure as template parameter
/ / ...

}

Nor can an unqualified name used in a template ever be bound to a local name. Finally, even if a
template is first used within a class, unqualified names used in the template will not be bound to
members of that class. Ignoring local names is essential to prevent a lot of nasty macro-like behav-
ior. For example:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(v ve ec ct to or r<T T>& v v)
{

s so or rt t(v v. b be eg gi in n() , v v. e en nd d()) ; / / use standard library sort()
}

c cl la as ss s C Co on nt ta ai in ne er r {
v ve ec ct to or r<i in nt t> v v; / / elements
/ / ...

p pu ub bl li ic c:
v vo oi id d s so or rt t() / / sort elements
{

s so or rt t(v v) ; / / invokes sort(vector<int>&) rather than Container::sort()
}
/ / ...

};

If the point of instantiation for a template defined in a namespace is in another namespace, names
from both namespaces are available for name binding. As always, overload resolution is used to
choose between names from different namespaces (§8.2.9.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

864 Technicalities Appendix C

Note that a template used several times with the same set of template arguments has several
points of instantiation. If the bindings of independent names differ, the program is illegal. How-
ever, this is a difficult error for an implementation to detect, especially if the points of instantiation
are in different translation units. It is best to avoid subtleties in name binding by minimizing the
use of nonlocal names in templates and by using header files to keep use contexts consistent.

C.13.8.4 Templates and Namespaces

When a function is called, its declaration can be found even if it is not in scope, provided it is
declared in the same namespace as one of its arguments (§8.2.6). This is very important for func-
tions called in template definitions because it is the mechanism by which dependent functions are
found during instantiation.

A template specialization may be generated at any point of instantiation (§C.13.8.3), any point
subsequent to that in a translation unit, or in a translation unit specifically created for generating
specializations. This reflects three obvious strategies an implementation can use for generating
specializations:

[1] Generate a specialization the first time a call is seen.
[2] At the end of a translation unit, generate all specializations needed for that translation unit.
[3] Once every translation unit of a program has been seen, generate all specializations needed

for the program.
All three strategies have strengths and weaknesses, and combinations of these strategies are also
possible.

In any case, the binding of independent names is done at a point of template definition. The
binding of dependent names is done by looking at

[1] the names in scope at the point where the template is defined, plus
[2] the names in the namespace of an argument of a dependent call (global functions are consid-

ered in the namespace of built-in types).
For example:

n na am me es sp pa ac ce e N N {
c cl la as ss s A A { /* ... */ };

c ch ha ar r f f(A A) ;
}

c ch ha ar r f f(i in nt t) ;

t te em mp pl la at te e<c cl la as ss s T T> c ch ha ar r g g(T T t t) { r re et tu ur rn n f f(t t) ; }

c ch ha ar r c c = g g(N N: : A A()) ; / / causes N::f(N::A) to be called

Here,f f(t t) is clearly dependent, so we can’t bindf f to f f(N N: : A A) or f f(i in nt t) at the point of definition.
To generate a specialization forg g<N N: : A A>(N N: : A A) , the implementation looks in namespaceN N for
functions calledf f() and findsN N: : f f(N N: : A A) .

A program is illegal, if it is possible to construct two different meanings by choosing different
points of instantiation or different contents of namespaces at different possible contexts for generat-
ing the specialization. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.8.4 Templates and Namespaces 865

n na am me es sp pa ac ce e N N {
c cl la as ss s A A { /* ... */ };

c ch ha ar r f f(A A, i in nt t) ;
}

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s T T2 2> c ch ha ar r g g(T T t t, T T2 2 t t2 2) { r re et tu ur rn n f f(t t, t t2 2) ; }

c ch ha ar r c c = g g(N N: : A A() ,´ a a´) ; / / error (alternative resolutions of f(t) possible)

n na am me es sp pa ac ce e N N { / / add to namespace N (§8.2.9.3)
v vo oi id d f f(A A, c ch ha ar r) ;

}

We could generate the specialization at the point of instantiation and getf f(N N: : A A, i in nt t) called.
Alternatively, we could wait and generate the specialization at the end of the translation unit and
getf f(N N: : A A, c ch ha ar r) called. Consequently, the callg g(N N: : A A() ,´ a a´) is an error.

It is sloppy programming to call an overloaded function in between two of its declarations.
Looking at a large program, a programmer would have no reason to suspect a problem. In this par-
ticular case, a compiler could catch the ambiguity. However, similar problems can occur in sepa-
rate translation units, and then detection becomes much harder. An implementation is not obliged
to catch problems of this kind.

Most problems with alternative resolutions of function calls involve built-in types. Conse-
quently, most remedies rely on more-careful use of arguments of built-in types.

As usual, use of global functions can make matters worse. The global namespace is considered
the namespace associated with built-in types, so global functions can be used to resolve dependent
calls that take built-in types. For example:

i in nt t f f(i in nt t) ;

t te em mp pl la at te e<c cl la as ss s T T> T T g g(T T t t) { r re et tu ur rn n f f(t t) ; }

c ch ha ar r c c = g g(´ a a´) ; / / error: alternative resolutions of f(t) are possible

c ch ha ar r f f(c ch ha ar r) ;

We could generate the specializationg g<c ch ha ar r>(c ch ha ar r) at the point of instantiation and getf f(i in nt t)
called. Alternatively, we could wait and generate the specialization at the end of the translation
unit and getf f(c ch ha ar r) called. Consequently, the callg g(´ a a´) is an error.

C.13.9 When Is a Specialization Needed?

It is necessary to generate a specialization of a class template only if the class’ definition is needed.
In particular, to declare a pointer to some class, the actual definition of a class is not needed. For
example:

c cl la as ss s X X;
X X* p p; / / ok: no definition of X needed
X X a a; / / error: definition of X needed

When defining template classes, this distinction can be crucial. A template class isnot instantiated
unless its definition is actually needed. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

866 Technicalities Appendix C

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li in nk k {
L Li in nk k* s su uc c; / / ok: no definition of Link needed (yet)
/ / ...

};

L Li in nk k<i in nt t>* p pl l; / / no instantiation of Link<int> needed

L Li in nk k<i in nt t> l ln nk k; / / now we need to instantiate Link<int>

The point of instantiation is where a definition is first needed.

C.13.9.1 Template Function Instantiation

An implementation instantiates a template function only if that function has been used. In particu-
lar, instantiation of a class template does not imply the instantiation of all of its members or even of
all of the members defined in the template class declaration. This allows the programmer an impor-
tant degree of flexibility when defining a template class. Consider:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t {
/ / ...
v vo oi id d s so or rt t() ;

};

c cl la as ss s G Gl lo ob b { /* no comparison operators*/ };

v vo oi id d f f(L Li is st t<G Gl lo ob b>& l lb b, L Li is st t<s st tr ri in ng g>& l ls s)
{

l ls s. s so or rt t() ;
/ / use operations on lb, but not lb.sort()

}

Here,L Li is st t<s st tr ri in ng g>: : s so or rt t() is instantiated, butL Li is st t<G Gl lo ob b>: : s so or rt t() isn’t. This both reduces the
amount of code generated and saves us from having to redesign the program. Had
L Li is st t<G Gl lo ob b>: : s so or rt t() been generated, we would have had to either add the operations needed by
v ve ec ct to or r: : s so or rt t() to G Gl lo ob b, redefines so or rt t() so that it wasn’t a member ofL Li is st t, or use some other
container forG Gl lo ob bs.

C.13.10 Explicit Instantiation

An explicit instantiation request is a declaration of a specialization prefixed by the keywordt te em m- -
p pl la at te e (not followed by<):

t te em mp pl la at te e c cl la as ss s v ve ec ct to or r<i in nt t>; / / class
t te em mp pl la at te e i in nt t& v ve ec ct to or r<i in nt t>: : o op pe er ra at to or r[](i in nt t) ; / / member
t te em mp pl la at te e i in nt t c co on nv ve er rt t<i in nt t, d do ou ub bl le e>(d do ou ub bl le e) ; / / function

A template declaration starts witht te em mp pl la at te e<, whereas plaint te em mp pl la at te e starts an instantiation request.
Note thatt te em mp pl la at te eprefixes a complete declaration; just stating a name is not sufficient:

t te em mp pl la at te e v ve ec ct to or r<i in nt t>: : o op pe er ra at to or r[] ; / / syntax error
t te em mp pl la at te e c co on nv ve er rt t<i in nt t, d do ou ub bl le e>; / / syntax error

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.10 Explicit Instantiation 867

As in template function calls, the template arguments that can be deduced from the function argu-
ments can be omitted (§13.3.1). For example:

t te em mp pl la at te e i in nt t c co on nv ve er rt t<i in nt t, d do ou ub bl le e>(d do ou ub bl le e) ; / / ok (redundant)
t te em mp pl la at te e i in nt t c co on nv ve er rt t<i in nt t>(d do ou ub bl le e) ; / / ok

When a class template is explicitly instantiated, every member function is also instantiated.
Note that an explicit instantiation can be used as a constraints check (§13.6.2). For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Ca al ll ls s_ _f fo oo o {
v vo oi id d c co on ns st tr ra ai in nt ts s(T T t t) { f fo oo o(t t) ; } / / call from every constructor
/ / ...

};

t te em mp pl la at te e c cl la as ss s C Ca al ll ls s_ _f fo oo o<i in nt t>; / / error: foo(int) undefined
t te em mp pl la at te e C Ca al ll ls s_ _f fo oo o<S Sh ha ap pe e*>: : c co on ns st tr ra ai in nt ts s() ; / / error: foo(Shape*) undefined

The link-time and recompilation efficiency impact of instantiation requests can be significant. I
have seen examples in which bundling most template instantiations into a single compilation unit
cut the compile time from a number of hours to the equivalent number of minutes.

It is an error to have two definitions for the same specialization. It does not matter if such mul-
tiple specializations are user-defined (§13.5), implicitly generated (§C.13.7), or explicitly
requested. However, a compiler is not required to diagnose multiple instantiations in separate com-
pilation units. This allows a smart implementation to ignore redundant instantiations and thereby
avoid problems related to composition of programs from libraries using explicit instantiation
(§C.13.7). However, implementations are not required to be smart. Users of ‘‘less smart’’ imple-
mentations must avoid multiple instantiations. However, the worst that will happen if they don’t is
that their program won’t load; there will be no silent changes of meaning.

The language does not require that a user request explicit instantiation. Explicit instantiation is
an optional mechanism for optimization and manual control of the compile-and-link process
(§C.13.7).

C.14 Advice

[1] Focus on software development rather than technicalities; §C.1.
[2] Adherence to the standard does not guarantee portability; §C.2.
[3] Avoid undefined behavior (including proprietary extensions); §C.2.
[4] Localize implementation-defined behavior; §C.2.
[5] Use keywords and digraphs to represent programs on systems where{ } [] | are missing

and trigraphs if\ \ or ! are missing; §C.3.1.
[6] To ease communication, use the ANSI characters to represent programs; §C.3.3.
[7] Prefer symbolic escape characters to numeric representation of characters; §C.3.2.
[8] Do not rely on signedness or unsignedness ofc ch ha ar r; §C.3.4.
[9] If in doubt about the type of an integer literal, use a suffix; §C.4.
[10] Avoid value-destroying implicit conversions; §C.6.
[11] Preferv ve ec ct to or r over array; §C.7.
[12] Avoid u un ni io on ns; §C.8.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

868 Technicalities Appendix C

[13] Use fields to represent externally-imposed layouts; §C.8.1.
[14] Be aware of the tradeoffs between different styles of memory management; §C.9.
[15] Don’t pollute the global namespace; §C.10.1.
[16] Where a scope (module) rather than a type is needed, prefer an na am me es sp pa ac ce e over a c cl la as ss s;

§C.10.3.
[17] Remember to defines st ta at ti ic c class template members; §C.13.1.
[18] Uset ty yp pe en na am me e to disambiguate type members of a template parameter; §C.13.5.
[19] Where explicit qualification by template arguments is necessary, uset te em mp pl la at te e to disambiguate

template class members; §C.13.6.
[20] Write template definitions with minimal dependence on their instantiation context; §C.13.8.
[21] If template instantiation takes too long, consider explicit instantiation; §C.13.10.
[22] If the order of compilation needs to be perfectly predictable, consider explicit instantiation;

§C.13.10.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

_ __ _______________________________________

Appendix D
_ __ _______________________________________

Locales

When in Rome,
do as the Romans do.

– proverb

Handling cultural differences — class l lo oc ca al le e — named locales — constructing locales
— copying and comparing locales — the g gl lo ob ba al l() and c cl la as ss si ic c() locales — comparing
strings — class f fa ac ce et t — accessing facets in a locale — a simple user-defined facet —
standard facets — string comparison — numeric I/O — money I/O — date and time I/O
— low-level time operations — a D Da at te e class — character classification — character
code conversion — message catalogs — advice — exercises.

D.1 Handling Cultural Differences

A l lo oc ca al le e is an object that represents a set of cultural preferences, such as how strings are compared,
the way numbers appear as human-readable output, and the way characters are represented in exter-
nal storage. The notion of a locale is extensible so that a programmer can add new f fa ac ce et ts to a
l lo oc ca al le e representing locale-specific entities not directly supported by the standard library, such as
postal codes (zip codes) and phone numbers. The primary use of l lo oc ca al le es in the standard library is
to control the appearance of information put to an o os st tr re ea am m and the format accepted by an i is st tr re ea am m.

Section §21.7 describes how to change l lo oc ca al le e for a stream; this appendix describes how a
l lo oc ca al le e is constructed out of f fa ac ce et ts and explains the mechanisms through which a l lo oc ca al le e affects its
stream. This appendix also describes how f fa ac ce et ts are defined, lists the standard f fa ac ce et ts that define
specific properties of a stream, and presents techniques for implementing and using l lo oc ca al le es and
f fa ac ce et ts. The standard library facilities for representing data and time are discussed as part of the
presentation of date I/O.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

870 Locales Appendix D

The discussion of locales and facets is organized like this:
§D.1 introduces the basic ideas for representing cultural differences using locales.
§D.2 presents the l lo oc ca al le e class.
§D.3 presents the f fa ac ce et t class.
§D.4 gives an overview of the standard f fa ac ce et ts and presents details of each:

§D.4.1 String comparison
§D.4.2 Input and output of numeric values
§D.4.3 Input and output of monetary values
§D.4.4 Input and output of dates and time
§D.4.5 Character classification
§D.4.6 Character code conversions
§D.4.7 Message catalogs

The notion of a locale is not primarily a C++ notion. Most operating systems and application envi-
ronments have a notion of locale. Such a notion is – in principle – shared among all programs on a
system, independently of which programming language they are written in. Thus, the C++ standard
library notion of a locale can be seen as a standard and portable way for C++ programs to access
information that has very different representations on different systems. Among other things, a
C++ l lo oc ca al le e is a common interface to system information that is represented in incompatible ways
on different systems.

D.1.1 Programming Cultural Differences

Consider writing a program that needs to be used in several countries. Writing a program in a style
that allows that is often called ‘‘internationalization’’ (emphasizing the use of a program in many
countries) or ‘‘localization’’ (emphasizing the adaptation of a program to local conditions). Many
of the entities that a program manipulates will conventionally be displayed differently in those
countries. We can handle this by writing our I/O routines to take this into account. For example:

v vo oi id d p pr ri in nt t_ _d da at te e(c co on ns st t D Da at te e& d d) / / print in the appropriate format
{

s sw wi it tc ch h(w wh he er re e_ _a am m_ _I I) { / / user-defined style indicator
c ca as se e D DK K: / / e.g., 7. marts 1999

c co ou ut t << d d.d da ay y() << ". " << d dk k_ _m mo on nt th h[d d.m mo on nt th h()] << " " << d d.y ye ea ar r() ;
b br re ea ak k;

c ca as se e U UK K: / / e.g., 7 / 3 / 1999
c co ou ut t << d d.d da ay y() << " / " << d d.m mo on nt th h() << " / " << d d.y ye ea ar r() ;
b br re ea ak k;

c ca as se e U US S: / / e.g., 3/7/1999
c co ou ut t << d d.m mo on nt th h() << "/" << d d.d da ay y() << "/" << d d.y ye ea ar r() ;
b br re ea ak k;

/ / ...
}

}

This style of code does the job. However, it’s rather ugly, and we have to use this style consistently
to ensure that all output is properly adjusted to local conventions. Worse, if we want to add a new
way of writing a date, we must modify the code. We could imagine handling this problem by

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.1.1 Programming Cultural Differences 871

creating a class hierarchy (§12.2.4). However, the information in a D Da at te e is independent of the way
we want to look at it. Consequently, we don’t want a hierarchy of D Da at te e types: for example,
U US S_ _d da at te e, U UK K_ _d da at te e, and J JP P_ _d da at te e. Instead, we want a variety of ways of displaying D Da at te es: for
example, US-style output, UK-style output, and Japanese-style output; see §D.4.4.5.

Other problems arise with the ‘‘let the user write I/O functions that take care of cultural differ-
ences’’ approach:

[1] An application programmer cannot easily, portably, and efficiently change the appearance of
built-in types without the help of the standard library.

[2] Finding every I/O operation (and every operation that prepares data for I/O in a locale-
sensitive manner) in a large program is not always feasible.

[3] Sometimes, we cannot rewrite a program to take care of a new convention – and even if we
could, we’d prefer a solution that didn’t involve a rewrite.

[4] Having each user design and implement a solution to the problems of different cultural con-
vention is wasteful.

[5] Different programmers will handle low-level cultural preferences in different ways, so pro-
grams dealing with the same information will differ for non-fundamental reasons. Thus,
programmers maintaining code from a number of sources will have to learn a variety of pro-
gramming conventions. This is tedious and error prone.

Consequently, the standard library provides an extensible way of handling cultural conventions.
The iostreams library (§21.7) relies on this framework to handle both built-in and user-defined
types. For example, consider a simple loop copying (D Da at te e,d do ou ub bl le e) pairs that might represent a
series of measurements or a set of transactions:

v vo oi id d c cp py y(i is st tr re ea am m& i is s, o os st tr re ea am m& o os s) / / copy (Date,double) stream
{

D Da at te e d d;
d do ou ub bl le e v vo ol lu um me e;

w wh hi il le e (i is s >> d d >> v vo ol lu um me e) o os s << d d << ́ ́ << v vo ol lu um me e << ́ \ \n n´;
}

Naturally, a real program would do something with the records, and ideally also be a bit more care-
ful about error handling.

How would we make this program read a file that conformed to French conventions (where
comma is the character used to represent the decimal point in a floating-point number; for example,
1 12 2,5 5 means twelve and a half) and write it according to American conventions? We can define
l lo oc ca al le es and I/O operations so that c cp py y() can be used to convert between conventions:

v vo oi id d f f(i is st tr re ea am m& f fi in n, o os st tr re ea am m& f fo ou ut t, i is st tr re ea am m& f fi in n2 2, o os st tr re ea am m& f fo ou ut t2 2)
{

f fi in n.i im mb bu ue e(l lo oc ca al le e("e en n_ _U US S")) ; / / American English
f fo ou ut t.i im mb bu ue e(l lo oc ca al le e("f fr r")) ; / / French
c cp py y(f fi in n,f fo ou ut t) ; / / read American English, write French

f fi in n2 2.i im mb bu ue e(l lo oc ca al le e("f fr r")) ; / / French
f fo ou ut t2 2.i im mb bu ue e(l lo oc ca al le e("e en n_ _U US S")) ; / / American English
c cp py y(f fi in n2 2,f fo ou ut t2 2) ; / / read French, write American English

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

872 Locales Appendix D

Given streams,

A Ap pr r 1 12 2, 1 19 99 99 9 1 10 00 00 0.3 3
A Ap pr r 1 13 3, 1 19 99 99 9 3 34 45 5.4 45 5
A Ap pr r 1 14 4, 1 19 99 99 9 9 96 68 88 8.3 32 21 1
...

3 3 j ju ui il ll le et t 1 19 95 50 0 1 10 0,3 3
3 3 j ju ui il ll le et t 1 19 95 51 1 1 13 34 4,4 45 5
3 3 j ju ui il ll le et t 1 19 95 52 2 6 67 7,9 9
...

this program would produce:

1 12 2 a av vr ri il l 1 19 99 99 9 1 10 00 00 0,3 3
1 13 3 a av vr ri il l 1 19 99 99 9 3 34 45 5,4 45 5
1 14 4 a av vr ri il l 1 19 99 99 9 9 96 68 88 8,3 32 21 1
...

J Ju ul ly y 3 3, 1 19 95 50 0 1 10 0.3 3
J Ju ul ly y 3 3, 1 19 95 51 1 1 13 34 4.4 45 5
J Ju ul ly y 3 3, 1 19 95 52 2 6 67 7.9 9
...

Much of the rest of this appendix is devoted to describing the mechanisms that make this possible
and explaining how to use them. Please note that most programmers will have little reason to deal
with the details of l lo oc ca al le es. Many programmers will never explicitly manipulate a l lo oc ca al le e, and most
who do will just retrieve a standard locale and imbue a stream with it (§21.7). However, the mech-
anisms provided to compose those l lo oc ca al le es and to make them trivial to use constitute a little pro-
gramming language of their own.

If a program or a system is successful, it will be used by people with needs and preferences that
the original designers and programmers didn’t anticipate. Most successful programs will be run in
countries where (natural) languages and character sets differ from those familiar to the original
designers and programmers. Wide use of a program is a sign of success, so designing and program-
ming for portability across linguistic and cultural borders is to prepare for success.

The concept of localization (internationalization) is simple. However, practical constraints
make the design and implementation of l lo oc ca al le e quite intricate:

[1] A l lo oc ca al le e encapsulates cultural conventions, such as the appearance of a date. Such conven-
tions vary in many subtle and unsystematic ways. These conventions have nothing to do
with programming languages, so a programming language cannot standardize them.

[2] The concept of a l lo oc ca al le e must be extensible, because it is not possible to enumerate every
cultural convention that is important to every C++ user.

[3] A l lo oc ca al le e is used in I/O operations from which people demand run-time efficiency.
[4] A l lo oc ca al le e must be invisible to the majority of programmers who want to benefit from stream

I/O ‘‘doing the right thing’’ without having to know exactly what that is or how it is
achieved.

[5] A l lo oc ca al le e must be available to designers of facilities that deal with cultural-sensitive infor-
mation beyond the scope of the stream I/O library.

Designing a program doing I/O requires a choice between controlling formatting through ‘‘ordinary

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.1.1 Programming Cultural Differences 873

code’’ and the use of l lo oc ca al le es. The former (traditional) approach is feasible where we can ensure
that every input operation can be easily converted from one convention to another. However, if the
appearance of built-in types needs to vary, if different character sets are needed, or if we need to
choose among an extensible set of I/O conventions, the l lo oc ca al le e mechanism begins to look attractive.

A l lo oc ca al le e is composed of f fa ac ce et ts that control individual aspects, such as the character used for
punctuation in the output of a floating-point value (d de ec ci im ma al l_ _p po oi in nt t(); §D.4.2) and the format used
to read a monetary value (m mo on ne ey yp pu un nc ct t; §D.4.3). A f fa ac ce et t is an object of a class derived from class
l lo oc ca al le e: :f fa ac ce et t (§D.3). We can think of a l lo oc ca al le e as a container of f fa ac ce et ts (§D.2, §D.3.1).

D.2 The l lo oc ca al le e Class

The l lo oc ca al le e class and its associated facilities are presented in <l lo oc ca al le e>:

c cl la as ss s s st td d: :l lo oc ca al le e {
p pu ub bl li ic c:

c cl la as ss s f fa ac ce et t; / / type used to represent aspects of a locale; §D.3
c cl la as ss s i id d; / / type used to identify a locale; §D.3
t ty yp pe ed de ef f i in nt t c ca at te eg go or ry y; / / type used to group/categorize facets

s st ta at ti ic c c co on ns st t c ca at te eg go or ry y / / the actual values are implementation defined
n no on ne e = 0 0,
c co ol ll la at te e = 1 1,
c ct ty yp pe e = 1 1<<1 1,
m mo on ne et ta ar ry y = 1 1<<2 2,
n nu um me er ri ic c = 1 1<<3 3,
t ti im me e = 1 1<<4 4,
m me es ss sa ag ge es s = 1 1<<5 5,
a al ll l = c co ol ll la at te e | c ct ty yp pe e | m mo on ne et ta ar ry y | n nu um me er ri ic c | t ti im me e | m me es ss sa ag ge es s;

l lo oc ca al le e() t th hr ro ow w() ; / / copy of global locale (§D.2.1)
l lo oc ca al le e(c co on ns st t l lo oc ca al le e& x x) t th hr ro ow w() ; / / copy of x
e ex xp pl li ic ci it t l lo oc ca al le e(c co on ns st t c ch ha ar r* p p) ; / / copy of locale named p (§D.2.1)

˜l lo oc ca al le e() t th hr ro ow w() ;

l lo oc ca al le e(c co on ns st t l lo oc ca al le e& x x, c co on ns st t c ch ha ar r* p p, c ca at te eg go or ry y c c) ; / / copy of x plus facets from p’s c
l lo oc ca al le e(c co on ns st t l lo oc ca al le e& x x, c co on ns st t l lo oc ca al le e& y y, c ca at te eg go or ry y c c) ; / / copy of x plus facets from y’s c

t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> l lo oc ca al le e(c co on ns st t l lo oc ca al le e& x x, F Fa ac ce et t* f f) ; / / copy of x plus facet f
t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> l lo oc ca al le e c co om mb bi in ne e(c co on ns st t l lo oc ca al le e& x x) ; / / copy of *this plus Facet from x

c co on ns st t l lo oc ca al le e& o op pe er ra at to or r=(c co on ns st t l lo oc ca al le e& x x) t th hr ro ow w() ;

b bo oo ol l o op pe er ra at to or r==(c co on ns st t l lo oc ca al le e&) c co on ns st t; / / compare locales
b bo oo ol l o op pe er ra at to or r!=(c co on ns st t l lo oc ca al le e&) c co on ns st t;

s st tr ri in ng g n na am me e() c co on ns st t; / / name of this locale (§D.2.1)

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s T Tr r, c cl la as ss s A A> / / compare strings using this locale
b bo oo ol l o op pe er ra at to or r()(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>&, c co on ns st t b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>&) c co on ns st t;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

874 Locales Appendix D

s st ta at ti ic c l lo oc ca al le e g gl lo ob ba al l(c co on ns st t l lo oc ca al le e&) ; / / set global locale and return old global locale
s st ta at ti ic c c co on ns st t l lo oc ca al le e& c cl la as ss si ic c() ; / / get ‘‘classic’’ C-style locale

p pr ri iv va at te e:
/ / representation

};

A l lo oc ca al le e can be thought of as an interface to a m ma ap p<i id d,f fa ac ce et t*>; that is, something that allows us
to use a l lo oc ca al le e: :i id d to find a corresponding object of a class derived from l lo oc ca al le e: :f fa ac ce et t. A real
implementation of l lo oc ca al le e is an efficient variant of this idea. The layout will be something like this:

l lo oc ca al le e: : . . c co om mp pa ar re e()
h ha as sh h()
...

c co ol ll la at te e< <c ch ha ar r> >: :

. .
d de ec ci im ma al l_ _p po oi in nt t()

t tr ru ue en na am me e()
...

n nu um mp pu un nc ct t< <c ch ha ar r> >: :

Here, c co ol ll la at te e<c ch ha ar r> and n nu um mp pu un nc ct t<c ch ha ar r> are standard library facets (§D.4). As all facets, they
are derived from l lo oc ca al le e: :f fa ac ce et t.

A l lo oc ca al le e is meant to be copied freely and cheaply. Consequently, a l lo oc ca al le e is almost certainly
implemented as a handle to the specialized m ma ap p<i id d,f fa ac ce et t*> that constitutes the main part of its
implementation. The f fa ac ce et ts must be quickly accessible in a l lo oc ca al le e. Consequently, the specialized
m ma ap p<i id d,f fa ac ce et t*> will be optimized to provide array-like fast access. The f fa ac ce et ts of a l lo oc ca al le e are
accessed by using the u us se e_ _f fa ac ce et t<F Fa ac ce et t>(l lo oc c) notation; see §D.3.1.

The standard library provides a rich set of f fa ac ce et ts. To help the programmer manipulate f fa ac ce et ts in
logical groups, the standard f fa ac ce et ts are grouped into categories, such as n nu um me er ri ic c and c co ol ll la at te e (§D.4).

A programmer can replace f fa ac ce et ts from existing categories (§D.4, §D.4.2.1). However, it is not
possible to add new categories; there is no way for a programmer to define a new category. The
notion of ‘‘category’’ applies to standard library facets only, and it is not extensible. Thus, a facet
need not belong to any category, and many user-defined facets do not.

By far the dominant use of l lo oc ca al le es is implicitly, in stream I/O. Each i is st tr re ea am m and o os st tr re ea am m has
its own l lo oc ca al le e. The l lo oc ca al le e of a stream is by default the global l lo oc ca al le e (§D.2.1) at the time of the
stream’s creation. The l lo oc ca al le e of a stream can be set by the i im mb bu ue e() operation and we can extract a
copy of a stream’s l lo oc ca al le e using g ge et tl lo oc c() (§21.6.3).

D.2.1 Named Locales

A l lo oc ca al le e is constructed from another l lo oc ca al le e and from f fa ac ce et ts. The simplest way of making a locale
is to copy an existing one. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.2.1 Named Locales 875

l lo oc ca al le e l lo oc c0 0; / / copy of the current global locale (§D.2.3)

l lo oc ca al le e l lo oc c1 1 = l lo oc ca al le e() ; / / copy of the current global locale (§D.2.3)
l lo oc ca al le e l lo oc c2 2("") ; / / copy of ‘‘the user’s preferred locale’’

l lo oc ca al le e l lo oc c3 3("C C") ; / / copy of the "C" locale
l lo oc ca al le e l lo oc c4 4 = l lo oc ca al le e: :c cl la as ss si ic c() ; / / copy of the "C" locale

l lo oc ca al le e l lo oc c5 5("P PO OS SI IX X") ; / / copy of the implementation-defined "POSIX" locale

The meaning of l lo oc ca al le e("C C") is defined by the standard to be the ‘‘classic’’ C locale; this is the
locale that has been used throughout this book. Other l lo oc ca al le e names are implementation defined.

The l lo oc ca al le e("") is deemed to be ‘‘the user’s preferred locale.’’ This locale is set by extralin-
guistic means in a program’s execution environment.

Most operating systems have ways of setting a locale for a program. Often, a locale suitable to
the person using a system is chosen when that person first encounters a system. For example, I
would expect a person who configures a system to use Argentine Spanish as its default setting will
find l lo oc ca al le e("") to mean l lo oc ca al le e("e es s_ _A AR R"). A quick check on one of my systems revealed 51
locales with mnemonic names, such as P PO OS SI IX X, d de e, e en n_ _U UK K, e en n_ _U US S, e es s, e es s_ _A AR R, f fr r, s sv v, d da a, p pl l, and
i is so o_ _8 88 85 59 9_ _1 1. POSIX recommends a format of a lowercase language name, optionally followed by
an uppercase country name, optionally followed by an encoding specifier; for example, j jp p_ _J JP P.j ji it t.
However, these names are not standardized across platforms. On another system, among many
other locale names, I found g g, u uk k, u us s, s s, f fr r, s sw w, and d da a. The C++ standard does not define the mean-
ing of a l lo oc ca al le e for a given country or language, though there may be platform-specific standards.
Consequently, to use named l lo oc ca al le es on a given system, a programmer must refer to system docu-
mentation and experiment.

It is generally a good idea to avoid embedding l lo oc ca al le e name strings in the program text. Men-
tioning a file name or a system constant in the program text limits the portability of a program and
often forces a programmer who wants to adapt a program to a new environment to find and change
such values. Mentioning a locale name string has similar unpleasant consequences. Instead,
locales can be picked up from the program’s execution environment (for example, using
l lo oc ca al le e("")), or the program can request an expert user to specify alternative locales by entering a
string. For example:

v vo oi id d u us se er r_ _s se et t_ _l lo oc ca al le e(c co on ns st t s st tr ri in ng g& q qu ue es st ti io on n_ _s st tr ri in ng g)
{

c co ou ut t << q qu ue es st ti io on n_ _s st tr ri in ng g; / / e.g., "If you want to use a different locale, please enter its name"
s st tr ri in ng g s s;
c ci in n >> s s;
l lo oc ca al le e: :g gl lo ob ba al l(l lo oc ca al le e(s s.c c_ _s st tr r())) ; / / set global locale as specified by user

}

It is usually better to let a non-expert user pick from a list of alternatives. A routine for doing this
would need to know where and how a system kept its locales.

If the string argument doesn’t refer to a defined l lo oc ca al le e, the constructor throws the
r ru un nt ti im me e_ _e er rr ro or r exception (§14.10). For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

876 Locales Appendix D

v vo oi id d s se et t_ _l lo oc c(l lo oc ca al le e& l lo oc c, c co on ns st t c ch ha ar r* n na am me e)
t tr ry y
{

l lo oc c = l lo oc ca al le e(n na am me e) ;
}
c ca at tc ch h (r ru un nt ti im me e_ _e er rr ro or r) {

c ce er rr r << "l lo oc ca al le e \ \"" << n na am me e << "\ \" i is sn n´t t d de ef fi in ne ed d\ \n n";
/ / ...

}

If a l lo oc ca al le e has a name string, n na am me e() will return it. If not, n na am me e() will return s st tr ri in ng g("*"). A
name string is primarily a way to refer to a l lo oc ca al le e stored in the execution environment. Secondar-
ily, a name string can be used as a debugging aid. For example:

v vo oi id d p pr ri in nt t_ _l lo oc ca al le e_ _n na am me es s(c co on ns st t l lo oc ca al le e& m my y_ _l lo oc c)
{

c co ou ut t << "n na am me e o of f c cu ur rr re en nt t g gl lo ob ba al l l lo oc ca al le e: " << l lo oc ca al le e().n na am me e() << "\ \n n";
c co ou ut t << "n na am me e o of f c cl la as ss si ic c C C l lo oc ca al le e: " << l lo oc ca al le e: :c cl la as ss si ic c().n na am me e() << "\ \n n";
c co ou ut t << "n na am me e o of f ‘‘u us se er r´s s p pr re ef fe er rr re ed d l lo oc ca al le e´´: " << l lo oc ca al le e("").n na am me e() << "\ \n n";
c co ou ut t << "n na am me e o of f m my y l lo oc ca al le e: " << m my y_ _l lo oc c.n na am me e() << "\ \n n";

}

Locales with identical name strings different from the default s st tr ri in ng g("*") compare equal. How-
ever, == or != provide more direct ways of comparing locales.

The copy of a l lo oc ca al le e with a name string gets the same name as that l lo oc ca al le e (if it has one), so
many l lo oc ca al le es can have the same name string. That’s logical because l lo oc ca al le es are immutable, so all
of these objects define the same set of cultural conventions.

A call l lo oc ca al le e(l lo oc c,"F Fo oo o",c ca at t) makes a locale that is like l lo oc c except that it takes the facets
from the category c ca at t of l lo oc ca al le e("F Fo oo o"). The resulting locale has a name string if and only if l lo oc c
has one. The standard doesn’t specify exactly which name string the new locale gets, but it is sup-
posed to be different from l lo oc c’s. One obvious implementation would be to compose the new string
out of l lo oc c’s name string and "F Fo oo o". For example, if l lo oc c’s name string is e en n_ _U UK K, the new locale
may have "e en n_ _U UK K:F Fo oo o" as its name string.

The name strings for a newly created l lo oc ca al le e can be summarized like this:
_ ___

Locale Name String_ ___
l lo oc ca al le e((" "F Fo oo o" ")) "Foo"
l lo oc ca al le e((l lo oc c)) l lo oc c. .n na am me e()
l lo oc ca al le e((l lo oc c, ," "F Fo oo o" ", ,c ca at t)) New name string if l lo oc c has a name string; otherwise, s st tr ri in ng g("*")
l lo oc ca al le e((l lo oc c, ,l lo oc c2 2, ,c ca at t)) New name string if l lo oc c and l lo oc c2 2 have strings; otherwise, s st tr ri in ng g("*")
l lo oc ca al le e((l lo oc c, ,F Fa ac ce et t)) s st tr ri in ng g("*")
l lo oc c. .c co om mb bi in ne e((l lo oc c2 2)) s st tr ri in ng g("*")_ ___ 




















There are no facilities for a programmer to specify a C-style string as a name for a newly created
l lo oc ca al le e in a program. Name strings are either defined in the program’s execution environment or
created as combinations of such names by l lo oc ca al le e constructors.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.2.1.1 Constructing New Locales 877

D.2.1.1 Constructing New Locales

A new locale is made by taking an existing l lo oc ca al le e and adding or replacing f fa ac ce et ts. Typically, a new
l lo oc ca al le e is a minor variation on an existing one. For example:

v vo oi id d f f(c co on ns st t l lo oc ca al le e& l lo oc c, c co on ns st t M My y_ _m mo on ne ey y_ _i io o* m mi io o) / / My_money_io defined in §D.4.3.1
{

l lo oc ca al le e l lo oc c1 1(l lo oc ca al le e("P PO OS SI IX X") ,l lo oc c,l lo oc ca al le e: :m mo on ne et ta ar ry y) ; / / use monetary facets from loc
l lo oc ca al le e l lo oc c2 2 = l lo oc ca al le e(l lo oc ca al le e: :c cl la as ss si ic c() , m mi io o) ; / / classic plus mio
/ / ...

}

Here, l lo oc c1 1 is a copy of the P PO OS SI IX X locale modified to use l lo oc c’s monetary facets (§D.4.3). Simi-
larly, l lo oc c2 2 is a copy of the C C locale modified to use a M My y_ _m mo on ne ey y_ _i io o (§D.4.3.1). If a F Fa ac ce et t* argu-
ment (here, M My y_ _m mo on ne ey y_ _i io o) is 0 0, the resulting l lo oc ca al le e is simply a copy of the l lo oc ca al le e argument.

When using

l lo oc ca al le e(c co on ns st t l lo oc ca al le e& x x, F Fa ac ce et t* f f) ;

the f f argument must identify a specific facet type. A plain f fa ac ce et t* is not sufficient. For example:

v vo oi id d g g(c co on ns st t l lo oc ca al le e: :f fa ac ce et t* m mi io o1 1, c co on ns st t M My y_ _m mo on ne ey y_ _i io o* m mi io o2 2)
{

l lo oc ca al le e l lo oc c3 3 = l lo oc ca al le e(l lo oc ca al le e: :c cl la as ss si ic c() , m mi io o1 1) ; / / error: type of facet not known
l lo oc ca al le e l lo oc c4 4 = l lo oc ca al le e(l lo oc ca al le e: :c cl la as ss si ic c() , m mi io o2 2) ; / / ok: type of facet known
/ / ...

}

The reason is that the l lo oc ca al le e uses the type of the F Fa ac ce et t* argument to determine the type of the
facet at compile time. Specifically, the implementation of l lo oc ca al le e uses a facet’s identifying type,
f fa ac ce et t: :i id d (§D.3), to find that facet in the locale (§D.3.1).

Note that the

t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> l lo oc ca al le e(c co on ns st t l lo oc ca al le e& x x, F Fa ac ce et t* f f) ;

constructor is the only mechanism offered within the language for the programmer to supply a f fa ac ce et t
to be used through a l lo oc ca al le e. Other l lo oc ca al le es are supplied by implementers as named locales
(§D.2.1). These named locales can be retrieved from the program’s execution environment. A pro-
grammer who understands the implementation-specific mechanism used for that might be able to
add new l lo oc ca al le es that way (§D.6[11,12]).

The set of constructors for l lo oc ca al le e is designed so that the type of every f fa ac ce et t is known either
from type deduction (of the F Fa ac ce et t template parameter) or because it came from another l lo oc ca al le e (that
knew its type). Specifying a c ca at te eg go or ry y argument specifies the type of f fa ac ce et ts indirectly, because the
l lo oc ca al le e knows the type of the f fa ac ce et ts in the categories. This implies that the l lo oc ca al le e class can (and
does) keep track of the types of f fa ac ce et t types so that it can manipulate them with minimal overhead.

The l lo oc ca al le e: :i id d member type is used by l lo oc ca al le e to identify f fa ac ce et t types (§D.3).
It is sometimes useful to construct a l lo oc ca al le e that is a copy of another except for a f fa ac ce et t copied

from yet another l lo oc ca al le e. The c co om mb bi in ne e() template member function does that. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

878 Locales Appendix D

v vo oi id d f f(c co on ns st t l lo oc ca al le e& l lo oc c, c co on ns st t l lo oc ca al le e& l lo oc c2 2)
{

l lo oc ca al le e l lo oc c3 3 = l lo oc c.c co om mb bi in ne e< M My y_ _m mo on ne ey y_ _i io o >(l lo oc c2 2) ;
/ / ...

}

The resulting l lo oc c3 3 behaves like l lo oc c except that it uses a copy of M My y_ _m mo on ne ey y_ _i io o (§D.4.3.1) from
l lo oc c2 2 to format monetary I/O. If l lo oc c2 2 doesn’t have a M My y_ _m mo on ne ey y_ _i io o to give to the new l lo oc ca al le e, c co om m- -
b bi in ne e() will throw a r ru un nt ti im me e_ _e er rr ro or r (§14.10). The result of c co om mb bi in ne e() has no name string.

D.2.2 Copying and Comparing Locales

A l lo oc ca al le e can be copied by initialization and by assignment. For example:

v vo oi id d s sw wa ap p(l lo oc ca al le e& x x, l lo oc ca al le e& y y) / / just like std::swap()
{

l lo oc ca al le e t te em mp p = x x;
x x = y y;
y y = t te em mp p;

}

The copy of a l lo oc ca al le e compares equal to the original, but the copy is an independent and separate
object. For example:

v vo oi id d f f(l lo oc ca al le e* m my y_ _l lo oc ca al le e)
{

l lo oc ca al le e l lo oc c = l lo oc ca al le e: :c cl la as ss si ic c() ; / / "C" locale

i if f (l lo oc c != l lo oc ca al le e: :c cl la as ss si ic c()) {
c ce er rr r << "i im mp pl le em me en nt ta at ti io on n e er rr ro or r: s se en nd d b bu ug g r re ep po or rt t t to o v ve en nd do or r\ \n n";
e ex xi it t(1 1) ;

}

i if f (&l lo oc c != &l lo oc ca al le e: :c cl la as ss si ic c()) c co ou ut t << "n no o s su ur rp pr ri is se e: a ad dd dr re es ss se es s d di if ff fe er r\ \n n";

l lo oc ca al le e l lo oc c2 2 = l lo oc ca al le e(l lo oc c,m my y_ _l lo oc ca al le e,l lo oc ca al le e: :n nu um me er ri ic c) ;

i if f (l lo oc c == l lo oc c2 2) {
c co ou ut t << "m my y n nu um me er ri ic c f fa ac ce et ts s a ar re e t th he e s sa am me e a as s c cl la as ss si ic c()´s s n nu um me er ri ic c f fa ac ce et ts s\ \n n";
/ / ...

}

/ / ...
}

If m my y_ _l lo oc ca al le e has a numeric punctuation facet, m my y_ _n nu um mp pu un nc ct t<c ch ha ar r>, that is different from
c cl la as ss si ic c()’s standard n nu um mp pu un nc ct t<c ch ha ar r>, the resulting l lo oc ca al le es can be represented like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.2.2 Copying and Comparing Locales 879

l lo oc c: : . . c co om mp pa ar re e()
h ha as sh h()
...

c co ol ll la at te e< <c ch ha ar r> >: :

. .
d de ec ci im ma al l_ _p po oi in nt t()
c cu ur rr r_ _s sy ym mb bo ol l()

...

n nu um mp pu un nc ct t< <c ch ha ar r> >: :

. .
d de ec ci im ma al l_ _p po oi in nt t()
c cu ur rr r_ _s sy ym mb bo ol l()

...

m my y_ _n nu um mp pu un nc ct t< <c ch ha ar r> >: :

l lo oc c2 2: :
..

There is no way of modifying a l lo oc ca al le e. Instead, the l lo oc ca al le e operations provide ways of making new
l lo oc ca al le es s from existing ones. The fact that a l lo oc ca al le e is immutable after it has been created is essential
for run-time efficiency. This allows someone using a l lo oc ca al le e to call virtual functions of a f fa ac ce et t and
to cache the values returned. For example, an i is st tr re ea am m can know what character is used to represent
the decimal point and how t tr ru ue e is represented, without calling d de ec ci im ma al l_ _p po oi in nt t() each time it reads
a number and t tr ru ue en na am me e() each time it reads to a b bo oo ol l (§D.4.2). Only a call of i im mb bu ue e() for the
stream (§21.6.3) can cause such calls to return a different value.

D.2.3 The g gl lo ob ba al l(()) and the c cl la as ss si ic c(()) Locales

The notion of a current locale for a program is provided by l lo oc ca al le e(), which yields a copy of the
current locale, and l lo oc ca al le e: :g gl lo ob ba al l(x x), which sets the current locale to x x. The current locale is
commonly referred to as the ‘‘global locale,’’ reflecting its probable implementation as a global (or
s st ta at ti ic c) object.

The global locale is implicitly used when a stream is initialized. That is, every new stream is
imbued (§21.1, §21.6.3) with a copy of l lo oc ca al le e(). Initially, the global locale is the standard C
locale, l lo oc ca al le e: :c cl la as ss si ic c().

The l lo oc ca al le e: :g gl lo ob ba al l() static member function allows a programmer to specify a locale to be
used as the global locale. A copy of the previous global locale is returned by g gl lo ob ba al l(). This
allows a user to restore the global locale. For example:

v vo oi id d f f(c co on ns st t l lo oc ca al le e& m my y_ _l lo oc c)
{

i if fs st tr re ea am m f fi in n1 1(s so om me e_ _n na am me e) ; / / fin1 is imbued with the global locale
l lo oc ca al le e& o ol ld d_ _g gl lo ob ba al l = l lo oc ca al le e: :g gl lo ob ba al l(m my y_ _l lo oc c) ; / / set new global locale
i if fs st tr re ea am m f fi in n2 2(s so om me e_ _o ot th he er r_ _n na am me e) ; / / fin2 is imbued with my_loc
/ / ...
l lo oc ca al le e: :g gl lo ob ba al l(o ol ld d_ _g gl lo ob ba al l) ; / / restore old global locale

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

880 Locales Appendix D

If a locale x x has a name string, l lo oc ca al le e: :g gl lo ob ba al l(x x) also sets the C global locale. This implies that
if a C++ program calls a locale-sensitive function from the C standard library, the treatment of
locale will be consistent throughout a mixed C and C++ program.

If a locale x x does not have a name string, it is undefined whether l lo oc ca al le e: :g gl lo ob ba al l(x x) affects the
C global locale. This implies that a C++ program cannot reliably and portably set the C locale to a
locale that wasn’t retrieved from the execution environment. There is no standard way for a C pro-
gram to set the C++ global locale (except by calling a C++ function to do so). In a mixed C and
C++ program, having the C global locale differ from g gl lo ob ba al l() is error prone.

Setting the global locale does not affect existing I/O streams; those still use the locales that they
were imbued with before the global locale was reset. For example, f fi in n1 1 is unaffected by the manip-
ulation of the global locale that caused f fi in n2 2 to be imbued with m my y_ _l lo oc c.

Changing the global locale suffers the same problems as all other techniques relying on chang-
ing global data: It is essentially impossible to know what is affected by a change. It is therefore
best to reduce use of g gl lo ob ba al l() to a minimum and to localize those changes in a few sections of
code that obey a simple strategy for the changes. The ability to imbue (§21.6.3) individual streams
with specific l lo oc ca al le es makes that easier. However, too many explicit uses of l lo oc ca al le es and f fa ac ce et ts
scattered throughout a program will also become a maintenance problem.

D.2.4 Comparing Strings

Comparing two strings according to a l lo oc ca al le e is possibly the most common explicit use of a l lo oc ca al le e.
Consequently, this operation is provided directly by l lo oc ca al le e so that users don’t have to build their
own comparison function from the c co ol ll la at te e facet (§D.4.1). To be directly useful as a predicate
(§18.4.2), this comparison function is defined as l lo oc ca al le e’s o op pe er ra at to or r()(). For example:

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& v v, c co on ns st t l lo oc ca al le e& m my y_ _l lo oc ca al le e)
{

s so or rt t(v v.b be eg gi in n() ,v v.e en nd d()) ; / / sort using < to compare elements
/ / ...
s so or rt t(v v.b be eg gi in n() ,v v.e en nd d() ,m my y_ _l lo oc ca al le e) ; / / sort according to the rules of my_locale
/ / ...

}

By default, the standard library s so or rt t() uses < for the numerical value of the implementation char-
acter set to determine collation order (§18.7, §18.6.3.1).

Note that l lo oc ca al le es compare b ba as si ic c_ _s st tr ri in ng gs rather than C-style strings.

D.3 Facets

A f fa ac ce et t is an object of a class derived from l lo oc ca al le e’s member class f fa ac ce et t:

c cl la as ss s s st td d: :l lo oc ca al le e: :f fa ac ce et t {
p pr ro ot te ec ct te ed d:

e ex xp pl li ic ci it t f fa ac ce et t(s si iz ze e_ _t t r r = 0 0) ; / / "r==0": the locale controls the lifetime of this facet
v vi ir rt tu ua al l ˜f fa ac ce et t() ; / / note: protected destructor

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.3 Facets 881

p pr ri iv va at te e:
f fa ac ce et t(c co on ns st t f fa ac ce et t&) ; / / not defined
v vo oi id d o op pe er ra at to or r=(c co on ns st t f fa ac ce et t&) ; / / not defined

/ / representation
};

The copy operations are p pr ri iv va at te e and are left undefined to prevent copying (§11.2.2).
The f fa ac ce et t class is designed to be a base class and has no public functions. Its constructor is

p pr ro ot te ec ct te ed d to prevent the creation of ‘‘plain f fa ac ce et t’’ objects, and its destructor is virtual to ensure
proper destruction of derived-class objects.

A f fa ac ce et t is intended to be managed through pointers by l lo oc ca al le es. A 0 0 argument to the f fa ac ce et t con-
structor means that l lo oc ca al le e should delete the f fa ac ce et t when the last reference to it goes away. Con-
versely, a nonzero constructor argument ensures that l lo oc ca al le e never deletes the f fa ac ce et t. A nonzero
argument is meant for the rare case in which the lifetime of a facet is controlled directly by the pro-
grammer rather than indirectly through a locale. For example, we could try to create objects of the
standard facet type c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> (§D.4.1.1) like this:

v vo oi id d f f(c co on ns st t s st tr ri in ng g& s s1 1, c co on ns st t s st tr ri in ng g& s s2 2)
{

/ / normal case: (default) argument 0 means that locale is responsible for deletion:
c co ol ll la at te e<c ch ha ar r>* p p = n ne ew w c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r>("p pl l") ;
l lo oc ca al le e l lo oc c(l lo oc ca al le e() ,p p) ;

/ / rare case: argument 1 means that user is responsible for deletion:
c co ol ll la at te e<c ch ha ar r>* q q = n ne ew w c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r>("g ge e",1 1) ;

c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> b bu ug g1 1("s sw w") ; / / error: cannot destroy local variable
c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> b bu ug g2 2("n no o",1 1) ; / / error: cannot destroy local variable

/ / ...

/ / q cannot be deleted: collate_byname<char>’s destructor is protected
/ / no delete p; locale manages deletion of *p

}

That is, standard facets are useful when managed by locales, as base classes, and only rarely in
other ways.

A _ _b by yn na am me e() facet is a facet from a named locale in the the execution environment (§D.2.1).
For a f fa ac ce et t to be found in a l lo oc ca al le e by h ha as s_ _f fa ac ce et t() and u us se e_ _f fa ac ce et t() (§D.3.1), each kind of

facet must have an i id d:

c cl la as ss s s st td d: :l lo oc ca al le e: :i id d {
p pu ub bl li ic c:

i id d() ;
p pr ri iv va at te e:

i id d(c co on ns st t i id d&) ; / / not defined
v vo oi id d o op pe er ra at to or r=(c co on ns st t i id d&) ; / / not defined

/ / representation
};

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

882 Locales Appendix D

The copy operations are declared private and are left undefined to prevent copying (§11.2.2).
The intended use of i id d is for the user to define a s st ta at ti ic c member of type i id d of each class supply-

ing a new f fa ac ce et t interface (for example, see §D.4.1). The l lo oc ca al le e mechanisms use i id ds to identify
facets (§D.2, §D.3.1). In the obvious implementation of a l lo oc ca al le e, an i id d is used as an index into a
vector of pointers to facets, thereby implementing an efficient m ma ap p<i id d,f fa ac ce et t*>.

Data used to define a (derived) f fa ac ce et t is defined in the derived class rather than in the base class
f fa ac ce et t itself. This implies that the programmer defining a f fa ac ce et t has full control over the data and
that arbitrary amounts of data can be used to implement the concept represented by a f fa ac ce et t.

Note that all member functions of a user-defined f fa ac ce et t should be c co on ns st t members. Generally, a
facet is intended to be immutable (§D.2.2).

D.3.1 Accessing Facets in a Locale

The facets of a l lo oc ca al le e are accessed through the template function u us se e_ _f fa ac ce et t, and we can inquire
whether a l lo oc ca al le e has a specific f fa ac ce et t, using the template function h ha as s_ _f fa ac ce et t:

t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> b bo oo ol l h ha as s_ _f fa ac ce et t(c co on ns st t l lo oc ca al le e&) t th hr ro ow w() ;
t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> c co on ns st t F Fa ac ce et t& u us se e_ _f fa ac ce et t(c co on ns st t l lo oc ca al le e&) ; / / may throw bad_cast

Think of these template functions as doing a lookup in their l lo oc ca al le e argument for their template
parameter F Fa ac ce et t. Alternatively, think of u us se e_ _f fa ac ce et t as a kind of explicit type conversion (cast) of a
l lo oc ca al le e to a specific f fa ac ce et t. This is feasible because a l lo oc ca al le e can have only one f fa ac ce et t of a given type.
For example:

v vo oi id d f f(c co on ns st t l lo oc ca al le e& m my y_ _l lo oc ca al le e)
{

c ch ha ar r c c = u us se e_ _f fa ac ce et t< n nu um mp pu un nc ct t<c ch ha ar r> >(m my y_ _l lo oc ca al le e).d de ec ci im ma al l_ _p po oi in nt t() / / use standard facet
/ / ...

i if f (h ha as s_ _f fa ac ce et t<E En nc cr ry yp pt t>(m my y_ _l lo oc ca al le e)) { / / does my_locale contain an Encrypt facet?
c co on ns st t E En nc cr ry yp pt t& f f = u us se e_ _f fa ac ce et t<E En nc cr ry yp pt t>(m my y_ _l lo oc ca al le e) ; / / retrieve Encrypt facet
c co on ns st t C Cr ry yp pt to o c c = f f.g ge et t_ _c cr ry yp pt to o() ; / / use Encrypt facet
/ / ...

}
/ / ...

}

Note that u us se e_ _f fa ac ce et t returns a reference to a c co on ns st t facet, so we cannot assign the result of u us se e_ _f fa ac ce et t
to a non-c co on ns st t. This makes sense because a facet is meant to be immutable and to have only c co on ns st t
members.

If we try u us se e_ _f fa ac ce et t<X X>(l lo oc c) and l lo oc c doesn’t have an X X facet, u us se e_ _f fa ac ce et t() throws b ba ad d_ _c ca as st t
(§14.10). The standard f fa ac ce et ts are guaranteed to be available for all locales (§D.4), so we don’t
need to use h ha as s_ _f fa ac ce et t for standard facets. For standard facets, u us se e_ _f fa ac ce et t will not throw b ba ad d_ _c ca as st t.

How might u us se e_ _f fa ac ce et t and h ha as s_ _f fa ac ce et t be implemented? Remember that we can think of a l lo oc ca al le e
as a m ma ap p<i id d,f fa ac ce et t*> (§D.2). Given a f fa ac ce et t type as the F Fa ac ce et t template argument, the implementa-
tion of h ha as s_ _f fa ac ce et t or u us se e_ _f fa ac ce et t can refer to F Fa ac ce et t: :i id d and use that to find the corresponding facet.
A very naive implementation of h ha as s_ _f fa ac ce et t and u us se e_ _f fa ac ce et t might look like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.3.1 Accessing Facets in a Locale 883

/ / pseudoimplementation: imagine that a locale has a map<id,facet*> called facet_map

t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> b bo oo ol l h ha as s_ _f fa ac ce et t(c co on ns st t l lo oc ca al le e& l lo oc c) t th hr ro ow w()
{

c co on ns st t l lo oc ca al le e: :f fa ac ce et t* f f = l lo oc c.f fa ac ce et t_ _m ma ap p[F Fa ac ce et t: :i id d] ;
r re et tu ur rn n f f ? t tr ru ue e : f fa al ls se e;

}

t te em mp pl la at te e <c cl la as ss s F Fa ac ce et t> c co on ns st t F Fa ac ce et t& u us se e_ _f fa ac ce et t(c co on ns st t l lo oc ca al le e& l lo oc c)
{

c co on ns st t l lo oc ca al le e: :f fa ac ce et t* f f = l lo oc c.f fa ac ce et t_ _m ma ap p[F Fa ac ce et t: :i id d] ;
i if f (f f) r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<c co on ns st t F Fa ac ce et t&>(*f f) ;
t th hr ro ow w b ba ad d_ _c ca as st t() ;

}

Another way of looking at the f fa ac ce et t: :i id d mechanism is as an implementation of a form of compile-
time polymorphism. A d dy yn na am mi ic c_ _c ca as st t can be used to get very similar results to what u us se e_ _f fa ac ce et t pro-
duces. However, the specialized u us se e_ _f fa ac ce et t can be implemented more efficiently than the more
general d dy yn na am mi ic c_ _c ca as st t.

An i id d really identifies an interface and a behavior rather than a class. That is, if two facet
classes have exactly the same interface and implement the same semantics (as far as a l lo oc ca al le e is
concerned), they should be identified by the same i id d. For example, c co ol ll la at te e<c ch ha ar r> and
c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> are interchangeable in a l lo oc ca al le e, so both are identified by
c co ol ll la at te e<c ch ha ar r>: :i id d (§D.4.1).

If we define a f fa ac ce et t with a new interface – such as E En nc cr ry yp pt t in f f()– we must define a corre-
sponding i id d to identify it (see §D.3.2 and §D.4.1).

D.3.2 A Simple User-Defined Facet

The standard library provides standard facets for the most critical areas of cultural differences, such
as character sets and I/O of numbers. To examine the facet mechanism in isolation from the com-
plexities of widely used types and the efficiency concerns that accompany them, let me first present
a f fa ac ce et t for a trivial user-defined type:

e en nu um m S Se ea as so on n { s sp pr ri in ng g, s su um mm me er r, f fa al ll l, w wi in nt te er r };

This was just about the simplest user-defined type I could think of. The style of I/O outlined here
can be used with little variation for most simple user-defined types.

c cl la as ss s S Se ea as so on n_ _i io o : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

S Se ea as so on n_ _i io o(i in nt t i i = 0 0) : l lo oc ca al le e: :f fa ac ce et t(i i) { }

˜S Se ea as so on n_ _i io o() { } / / to make it possible to destroy Season_io objects (§D.3)

v vi ir rt tu ua al l c co on ns st t s st tr ri in ng g& t to o_ _s st tr r(S Se ea as so on n x x) c co on ns st t = 0 0; / / string representation of x

/ / place Season corresponding to s in x:
v vi ir rt tu ua al l b bo oo ol l f fr ro om m_ _s st tr r(c co on ns st t s st tr ri in ng g& s s, S Se ea as so on n& x x) c co on ns st t = 0 0;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

884 Locales Appendix D

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)
};

l lo oc ca al le e: :i id d S Se ea as so on n_ _i io o: :i id d; / / define the identifier object

For simplicity, this f fa ac ce et t is limited to representations using c ch ha ar r.
The S Se ea as so on n_ _i io o class provides a general and abstract interface for all S Se ea as so on n_ _i io o facets. To

define the I/O representation of a S Se ea as so on n for a particular locale, we derive a class from S Se ea as so on n_ _i io o,
defining t to o_ _s st tr r() and f fr ro om m_ _s st tr r() appropriately.

Output of a S Se ea as so on n is easy. If the stream has a S Se ea as so on n_ _i io o facet, we can use that to convert the
value into a string. If not, we can output the i in nt t value of the S Se ea as so on n:

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m& s s, S Se ea as so on n x x)
{

c co on ns st t l lo oc ca al le e& l lo oc c = s s.g ge et tl lo oc c() ; / / extract the stream’s locale (§21.7.1)
i if f (h ha as s_ _f fa ac ce et t<S Se ea as so on n_ _i io o>(l lo oc c)) r re et tu ur rn n s s << u us se e_ _f fa ac ce et t<S Se ea as so on n_ _i io o>(l lo oc c).t to o_ _s st tr r(x x) ;
r re et tu ur rn n s s << i in nt t(x x) ;

}

Note that this << operator is implemented by invoking << for other types. This way, we benefit
from the simplicity of using << compared to accessing the o os st tr re ea am m’s stream buffers directly, from
the locale sensitivity of those << operators, and from the error handling provided for those <<
operators. Standard f fa ac ce et ts tend to operate directly on stream buffers (§D.4.2.2, §D.4.2.3) for maxi-
mum efficiency and flexibility, but for many simple user-defined types, there is no need to drop to
the s st tr re ea am mb bu uf f level of abstraction.

As is typical, input is a bit more complicated than output:

i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m& s s, S Se ea as so on n& x x)
{

c co on ns st t l lo oc ca al le e& l lo oc c = s s.g ge et tl lo oc c() ; / / extract the stream’s locale (§21.7.1)

i if f (h ha as s_ _f fa ac ce et t<S Se ea as so on n_ _i io o>(l lo oc c)) { / / read alphabetic representation
c co on ns st t S Se ea as so on n_ _i io o& f f = u us se e_ _f fa ac ce et t<S Se ea as so on n_ _i io o>(l lo oc c) ;
s st tr ri in ng g b bu uf f;
i if f (!(s s>>b bu uf f && f f.f fr ro om m_ _s st tr r(b bu uf f,x x))) s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :f fa ai il lb bi it t) ;
r re et tu ur rn n s s;

}

i in nt t i i; / / read numeric representation
s s >> i i;
x x = S Se ea as so on n(i i) ;
r re et tu ur rn n s s;

}

The error handling is simple and follows the error-handling style for built-in types. That is, if the
input string didn’t represent a S Se ea as so on n in the chosen locale, the stream is put into the f fa ai il l state. If
exceptions are enabled, this implies that an i io os s_ _b ba as se e: :f fa ai il lu ur re e exception is thrown (§21.3.6).

Here is a trivial test program:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.3.2 A Simple User-Defined Facet 885

i in nt t m ma ai in n() / / trivial test
{

S Se ea as so on n x x;

/ / Use default locale (no Season_io facet) implies integer I/O:
c ci in n >> x x;
c co ou ut t << x x << e en nd dl l;

l lo oc ca al le e l lo oc c(l lo oc ca al le e() ,n ne ew w U US S_ _s se ea as so on n_ _i io o) ;
c co ou ut t.i im mb bu ue e(l lo oc c) ; / / Use locale with Season_io facet
c ci in n.i im mb bu ue e(l lo oc c) ; / / Use locale with Season_io facet

c ci in n >> x x;
c co ou ut t << x x << e en nd dl l;

}

Given the input

2 2
s su um mm me er r

this program responded:

2 2
s su um mm me er r

To get this, we must define U US S_ _s se ea as so on n_ _i io o to define the string representation of the seasons and
override the S Se ea as so on n_ _i io o functions that convert between string representations and the enumerators:

c cl la as ss s U US S_ _s se ea as so on n_ _i io o : p pu ub bl li ic c S Se ea as so on n_ _i io o {
s st ta at ti ic c c co on ns st t s st tr ri in ng g s se ea as so on ns s[] ;

p pu ub bl li ic c:
c co on ns st t s st tr ri in ng g& t to o_ _s st tr r(S Se ea as so on n) c co on ns st t;
b bo oo ol l f fr ro om m_ _s st tr r(c co on ns st t s st tr ri in ng g&, S Se ea as so on n&) c co on ns st t;

/ / note: no US_season_io::id
};

c co on ns st t s st tr ri in ng g U US S_ _s se ea as so on n_ _i io o: :s se ea as so on ns s[] = { "s sp pr ri in ng g", "s su um mm me er r", "f fa al ll l", "w wi in nt te er r" };

c co on ns st t s st tr ri in ng g& U US S_ _s se ea as so on n_ _i io o: :t to o_ _s st tr r(S Se ea as so on n x x) c co on ns st t
{

i if f (x x<s sp pr ri in ng g || w wi in nt te er r<x x) {
s st ta at ti ic c c co on ns st t s st tr ri in ng g s ss s = "n no o-s su uc ch h-s se ea as so on n";
r re et tu ur rn n s ss s;

}
r re et tu ur rn n s se ea as so on ns s[x x] ;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

886 Locales Appendix D

b bo oo ol l U US S_ _s se ea as so on n_ _i io o: :f fr ro om m_ _s st tr r(c co on ns st t s st tr ri in ng g& s s, S Se ea as so on n& x x) c co on ns st t
{

c co on ns st t s st tr ri in ng g* b be eg g = &s se ea as so on ns s[s sp pr ri in ng g] ;
c co on ns st t s st tr ri in ng g* e en nd d = &s se ea as so on ns s[w wi in nt te er r]+1 1;
c co on ns st t s st tr ri in ng g* p p = f fi in nd d(b be eg g,e en nd d,s s) ; / / §3.8.1, §18.5.2
i if f (p p==e en nd d) r re et tu ur rn n f fa al ls se e;
x x = S Se ea as so on n(p p-b be eg g) ;
r re et tu ur rn n t tr ru ue e;

}

Note that because U US S_ _s se ea as so on n_ _i io o is simply an implementation of the S Se ea as so on n_ _i io o interface, I did not
define an i id d for U US S_ _s se ea as so on n_ _i io o. In fact, if we want U US S_ _s se ea as so on n_ _i io o to be used as a S Se ea as so on n_ _i io o, we
must not give U US S_ _s se ea as so on n_ _i io o its own i id d. Operations on l lo oc ca al le es, such as h ha as s_ _f fa ac ce et t (§D.3.1), rely
on facets implementing the same concepts being identified by the same i id d (§D.3).

The only interesting implementation question was what to do if asked to output an invalid S Se ea a- -
s so on n. Naturally, that shouldn’t happen. However, it is not uncommon to find an invalid value for a
simple user-defined type, so it is realistic to take that possibility into account. I could have thrown
an exception, but when dealing with simple output intended for humans to read, it is often helpful
to produce an ‘‘out of range’’ representation for an out-of-range value. Note that for input, the
error-handling policy is left to the >> operator, whereas for output, the facet function t to o_ _s st tr r()
implements an error-handling policy. This was done to illustrate the design alternatives. In a ‘‘pro-
duction design,’’ the f fa ac ce et t functions would either implement error handling for both input and out-
put or just report errors for >> and << to handle.

This S Se ea as so on n_ _i io o design relied on derived classes to supply the locale-specific strings. An alter-
native design would have S Se ea as so on n_ _i io o itself retrieve those strings from a locale-specific repository
(see §D.4.7). The possibility of having a single S Se ea as so on n_ _i io o class to which the season strings are
passed as constructor arguments is left as an exercise (§D.6[2]).

D.3.3 Uses of Locales and Facets

The primary use of l lo oc ca al le es within the standard library is in I/O streams. However, the l lo oc ca al le e
mechanism is a general and extensible mechanism for representing culture-sensitive information.
The m me es ss sa ag ge es s facet (§D.4.7) is an example of a facet that has nothing to do with I/O streams.
Extensions to the iostreams library and even I/O facilities that are not based on streams might take
advantage of locales. Also, a user may use l lo oc ca al le es as a convenient way of organizing arbitrary
culture-sensitive information.

Because of the generality of the l lo oc ca al le e/f fa ac ce et t mechanism, the possibilities for user-defined
f fa ac ce et ts are unlimited. Plausible candidates for representation as f fa ac ce et ts are dates, time zones, phone
numbers, social security numbers (personal identification numbers), product codes, temperatures,
general (unit,value) pairs, postal codes (zip codes), clothe sizes, and ISBN numbers.

As with every other powerful mechanism, f fa ac ce et ts should be used with care. That something can
be represented as a f fa ac ce et t doesn’t mean that it is best represented that way. The key issues to con-
sider when selecting a representation for cultural dependencies are – as ever – how the various deci-
sions affect the difficulty of writing code, the ease of reading the resulting code, the maintainability
of the resulting program, and the efficiency in time and space of the resulting I/O operations.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4 Standard Facets 887

D.4 Standard Facets

In <l lo oc ca al le e>, the standard library provides these f fa ac ce et ts for the c cl la as ss si ic c() locale:
_ ___

Standard Facets (in the c cl la as ss si ic c(()) locale)_ __ ___
Category Purpose Facets_ __ ___

§D.4.1 c co ol ll la at te e String comparison c co ol ll la at te e< <C Ch h> >_ ___
§D.4.2 n nu um me er ri ic c Numeric I/O n nu um mp pu un nc ct t< <C Ch h> >

n nu um m_ _g ge et t< <C Ch h> >
n nu um m_ _p pu ut t< <C Ch h> >_ ___

§D.4.3 m mo on ne et ta ar ry y Money I/O m mo on ne ey yp pu un nc ct t< <C Ch h> >
m mo on ne ey yp pu un nc ct t< <C Ch h, ,t tr ru ue e> >
m mo on ne ey y_ _g ge et t< <C Ch h> >
m mo on ne ey y_ _p pu ut t< <C Ch h> >_ ___

§D.4.4 t ti im me e Time I/O t ti im me e_ _g ge et t< <C Ch h> >
t ti im me e_ _p pu ut t< <C Ch h> >_ ___

§D.4.5 c ct ty yp pe e Character classification c ct ty yp pe e< <C Ch h> >
c co od de ec cv vt t< <C Ch h, ,c ch ha ar r, ,m mb bs st ta at te e_ _t t> >_ ___

§D.4.7 m me es ss sa ag ge es s Message retrieval m me es ss sa ag ge es s< <C Ch h> >_ ___ 







































In this table, C Ch h is as shorthand for c ch ha ar r or w wc ch ha ar r_ _t t. A user who needs standard I/O to deal with
another character type X X must provide suitable versions of facets for X X. For example,
c co od de ec cv vt t<X X,c ch ha ar r,m mb bs st ta at te e_ _t t> (§D.4.6) might be needed to control conversions between X X and
c ch ha ar r. The m mb bs st ta at te e_ _t t type is used to represent the shift states of a multibyte character representa-
tion (§D.4.6); m mb bs st ta at te e_ _t t is defined in <c cw wc ch ha ar r> and <w wc ch ha ar r.h h>. The equivalent to m mb bs st ta at te e_ _t t for
an arbitrary character type X X is c ch ha ar r_ _t tr ra ai it ts s<X X>: :s st ta at te e_ _t ty yp pe e.

In addition, the standard library provides these f fa ac ce et ts in <l lo oc ca al le e>:
_ __

Standard Facets_ ___ __
Category Purpose Facets_ ___ __

§D.4.1 c co ol ll la at te e String comparison c co ol ll la at te e_ _b by yn na am me e< <C Ch h> >_ __
§D.4.2 n nu um me er ri ic c Numeric I/O n nu um mp pu un nc ct t_ _b by yn na am me e< <C Ch h> >

n nu um m_ _g ge et t< <C C, ,I In n> >
n nu um m_ _p pu ut t< <C C, ,O Ou ut t> >_ __

§D.4.3 m mo on ne et ta ar ry y Money I/O m mo on ne ey yp pu un nc ct t_ _b by yn na am me e< <C Ch h, ,I In nt te er rn na at ti io on na al l> >
m mo on ne ey y_ _g ge et t< <C C, ,I In n> >
m mo on ne ey y_ _p pu ut t< <C C, ,O Ou ut t> >_ __

§D.4.4 t ti im me e Time I/O t ti im me e_ _p pu ut t_ _b by yn na am me e< <C Ch h, ,O Ou ut t> >_ __
§D.4.5 c ct ty yp pe e Character classification c ct ty yp pe e_ _b by yn na am me e< <C Ch h> >_ __
§D.4.7 m me es ss sa ag ge es s Message retrieval m me es ss sa ag ge es s_ _b by yn na am me e< <C Ch h> >_ __ 


































When instantiating a facet from this table, C Ch h can be c ch ha ar r or w wc ch ha ar r_ _t t; C C can be any character type
(§20.1). I In nt te er rn na at ti io on na al l can be t tr ru ue e or f fa al ls se e; t tr ru ue e means that a four-character ‘‘international’’

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

888 Locales Appendix D

representation of a currency symbol is used (§D.4.3.1). The m mb bs st ta at te e_ _t t type is used to represent the
shift states of a multibyte character representation (§D.4.6); m mb bs st ta at te e_ _t t is defined in <c cw wc ch ha ar r> and
<w wc ch ha ar r.h h>.

I In n and O Ou ut t are input iterators and output iterators, respectively (§19.1, §19.2.1). Providing the
_ _p pu ut t and _ _g ge et t facets with these template arguments allows a programmer to provide facets that
access nonstandard buffers (§D.4.2.2). Buffers associated with iostreams are stream buffers, so the
iterators provided for those are o os st tr re ea am mb bu uf f_ _i it te er ra at to or rs (§19.2.6.1, §D.4.2.2). Consequently, the
function f fa ai il le ed d() (§19.2.6.1) is available for error handling.

An F F_ _b by yn na am me e facet is derived from the facet F F. F F_ _b by yn na am me e provides the identical interface to
F F, except that it adds a constructor taking a string argument naming a l lo oc ca al le e (see §D.4.1). The
F F_ _b by yn na am me e(n na am me e) provides the appropriate semantics for F F defined in l lo oc ca al le e(n na am me e). The idea is
to pick a version of a standard facet from a named l lo oc ca al le e (§D.2.1) in the program’s execution envi-
ronment. For example:

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& v v, c co on ns st t l lo oc ca al le e& l lo oc c)
{

l lo oc ca al le e d d1 1(l lo oc c,n ne ew w c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r>("d da a")) ; / / use Danish string comparison
l lo oc ca al le e d dk k(d d1 1,n ne ew w c ct ty yp pe e_ _b by yn na am me e<c ch ha ar r>("d da a")) ; / / use Danish character classification
s so or rt t(v v.b be eg gi in n() ,v v.e en nd d() ,d dk k) ;
/ / ...

}

This new d dk k locale will use Danish-style strings but will retain the default conventions for numbers.
Note that because f fa ac ce et t’s second argument is by default 0 0, the l lo oc ca al le e manages the lifetime of a
f fa ac ce et t created using operator n ne ew w (§D.3).

Like the l lo oc ca al le e constructors that take string arguments, the _ _b by yn na am me e constructors access the
program’s execution environment. This implies that they are very slow compared to constructors
that do not need to consult the environment. It is almost always faster to construct a locale and then
to access its facets than it is to use _ _b by yn na am me e facets in many places in a program. Thus, reading a
facet from the environment once and then using the copy in main memory repeatedly is usually a
good idea. For example:

l lo oc ca al le e d dk k("d da a") ; / / read the Danish locale (incl. all of its facets) once
/ / then use the dk locale and its facets as needed

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& v v, c co on ns st t l lo oc ca al le e& l lo oc c)
{

c co on ns st t c co ol ll la at te e<c ch ha ar r>& c co ol l = u us se e_ _f fa ac ce et t< c co ol ll la at te e<c ch ha ar r> >(d dk k) ;
c co on ns st t c co ol ll la at te e<c ch ha ar r>& c ct ty yp p = u us se e_ _f fa ac ce et t< c ct ty yp pe e<c ch ha ar r> >(d dk k) ;

l lo oc ca al le e d d1 1(l lo oc c,c co ol l) ; / / use Danish string comparison
l lo oc ca al le e d d2 2(d d1 1,c ct ty yp p) ; / / use Danish character classification and Danish string comparison

s so or rt t(v v.b be eg gi in n() ,v v.e en nd d() ,d d2 2) ;
/ / ...

}

The notion of categories gives a simpler way of manipulating standard facets in locales. For exam-
ple, given the d dk k locale, we can construct a l lo oc ca al le e that reads and compares strings according to the

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4 Standard Facets 889

rules of Danish (that give three extra vowels compared to English) but that retains the syntax of
numbers used in C++:

l lo oc ca al le e d dk k_ _u us s(l lo oc ca al le e: :c cl la as ss si ic c() ,d dk k,c co ol ll la at te e|c ct ty yp pe e) ; / / Danish letters, American numbers

The presentations of individual standard f fa ac ce et ts contains more examples of f fa ac ce et t use. In particular,
the discussion of c co ol ll la at te e (§D.4.1) brings out many of the common structural aspects of f fa ac ce et ts.

Note that the standard f fa ac ce et ts often depend on each other. For example, n nu um m_ _p pu ut t depends on
n nu um mp pu un nc ct t. Only if you have a detailed knowledge of individual f fa ac ce et ts can you successfully mix
and match facets or add new versions of the standard facets. In other words, beyond the simple
operations mentioned in §21.7, the l lo oc ca al le e mechanisms are not meant to be directly used by novices.

The design of an individual facet is often messy. The reason is partially that facets have to
reflect messy cultural conventions outside the control of the library designer, and partially that the
C++ standard library facilities have to remain largely compatible with what is offered by the C stan-
dard library and various platform-specific standards. For example, POSIX provides locale facilities
that it would be unwise for a library designer to ignore.

On the other hand, the framework provided by locales and facets is very general and flexible. A
facet can be designed to hold any data, and the facet’s operations can provide any desired operation
based on that data. If the behavior of a new facet isn’t overconstrained by convention, its design
can be simple and clean (§D.3.2).

D.4.1 String Comparison

The standard c co ol ll la at te e facet provides ways of comparing arrays of characters of type C Ch h:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :c co ol ll la at te e : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t c co ol ll la at te e(s si iz ze e_ _t t r r = 0 0) ;

i in nt t c co om mp pa ar re e(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e, c co on ns st t C Ch h* b b2 2, c co on ns st t C Ch h* e e2 2) c co on ns st t
{ r re et tu ur rn n d do o_ _c co om mp pa ar re e(b b,e e,b b2 2,e e2 2) ; }

l lo on ng g h ha as sh h(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t { r re et tu ur rn n d do o_ _h ha as sh h(b b,e e) ; }
s st tr ri in ng g_ _t ty yp pe e t tr ra an ns sf fo or rm m(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t { r re et tu ur rn n d do o_ _t tr ra an ns sf fo or rm m(b b,e e) ; }

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜c co ol ll la at te e() ; / / note: protected destructor

v vi ir rt tu ua al l i in nt t d do o_ _c co om mp pa ar re e(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e, c co on ns st t C Ch h* b b2 2, c co on ns st t C Ch h* e e2 2) c co on ns st t;
v vi ir rt tu ua al l s st tr ri in ng g_ _t ty yp pe e d do o_ _t tr ra an ns sf fo or rm m(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t;
v vi ir rt tu ua al l l lo on ng g d do o_ _h ha as sh h(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t;

};

Like all facets, c co ol ll la at te e is publically derived from f fa ac ce et t and provides a constructor that takes an
argument that tells whether class l lo oc ca al le e controls the lifetime of the facet (§D.3).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

890 Locales Appendix D

Note that the destructor is protected. The c co ol ll la at te e facet isn’t meant to be used directly. Rather,
it is intended as a base class for all (derived) collation classes and for l lo oc ca al le e to manage (§D.3).
Application programmers, implementation providers, and library vendors will write the string com-
parison facets to be used through the interface provided by c co ol ll la at te e.

The c co om mp pa ar re e() function does the basic string comparison according to the rules defined for a
particular c co ol ll la at te e; it returns 1 1 if the first string is lexicographically greater than the second, 0 0 if the
strings are identical, and -1 1 if the second string is greater than the first. For example:

v vo oi id d f f(c co on ns st t s st tr ri in ng g& s s1 1, c co on ns st t s st tr ri in ng g& s s2 2, c co ol ll la at te e<c ch ha ar r>& c cm mp p)
{

c co on ns st t c ch ha ar r* c cs s1 1 = s s1 1.d da at ta a() ; / / because compare() operates on char[]s
c co on ns st t c ch ha ar r* c cs s2 2 = s s2 2.d da at ta a() ;
s sw wi it tc ch h (c cm mp p.c co om mp pa ar re e(c cs s1 1,c cs s1 1+s s1 1.s si iz ze e() ,c cs s2 2,c cs s2 2+s s2 2.s si iz ze e()) {
c ca as se e 0 0: / / identical strings according to cmp

/ / ...
b br re ea ak k;

c ca as se e -1 1: / / s1 < s2
/ / ...
b br re ea ak k;

c ca as se e 1 1: / / s1 > s2
/ / ...
b br re ea ak k;

}
}

Note that the c co ol ll la at te e member functions compare arrays of C Ch h rather than b ba as si ic c_ _s st tr ri in ng gs or zero-
terminated C-style strings. In particular, a C Ch h with the numeric value 0 0 is treated as an ordinary
character rather than as a terminator. Also, c co om mp pa ar re e() differs from s st tr rc cm mp p(), returning exactly
the values -1 1, 0 0, and 1 1 rather than simply 0 0 and (arbitrary) negative and positive values (§20.4.1).

The standard library s st tr ri in ng g is not l lo oc ca al le e sensitive. That is, it compares strings according to the
rules of the implementation’s character set (§C.2). Furthermore, the standard s st tr ri in ng g does not pro-
vide a direct way of specifying comparison criteria (Chapter 20). To do a l lo oc ca al le e-sensitive compari-
son, we can use a c co ol ll la at te e’s c co om mp pa ar re e(). Notationally, it can be more convenient to use c co ol ll la at te e’s
c co om mp pa ar re e() indirectly through a l lo oc ca al le e’s o op pe er ra at to or r() (§D.2.4). For example:

v vo oi id d f f(c co on ns st t s st tr ri in ng g& s s1 1, c co on ns st t s st tr ri in ng g& s s2 2, c co on ns st t c ch ha ar r* n n)
{

b bo oo ol l b b = s s1 1 == s s2 2; / / compare using implementation’s character set values

c co on ns st t c ch ha ar r* c cs s1 1 = s s1 1.d da at ta a() ; / / because compare() operates on char[]s
c co on ns st t c ch ha ar r* c cs s2 2 = s s2 2.d da at ta a() ;

t ty yp pe ed de ef f c co ol ll la at te e<c ch ha ar r> C Co ol l;

c co on ns st t C Co ol l& g gl lo ob b = u us se e_ _f fa ac ce et t<C Co ol l>(l lo oc ca al le e()) ; / / from the current global locale
i in nt t i i0 0 = g gl lo ob b.c co om mp pa ar re e(c cs s1 1,c cs s1 1+s s1 1.s si iz ze e() ,c cs s2 2,c cs s2 2+s s2 2.s si iz ze e()) ;

c co on ns st t C Co ol l& m my y_ _c co ol ll l = u us se e_ _f fa ac ce et t<C Co ol l>(l lo oc ca al le e("")) ; / / from my preferred locale
i in nt t i i1 1 = m my y_ _c co ol ll l.c co om mp pa ar re e(c cs s1 1,c cs s1 1+s s1 1.s si iz ze e() ,c cs s2 2,c cs s2 2+s s2 2.s si iz ze e()) ;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.1 String Comparison 891

c co on ns st t C Co ol l& c co ol ll l = u us se e_ _f fa ac ce et t<C Co ol l>(l lo oc ca al le e(n n)) ; / / from locale named n
i in nt t i i2 2 = c co ol ll l.c co om mp pa ar re e(c cs s1 1,c cs s1 1+s s1 1.s si iz ze e() ,c cs s2 2,c cs s2 2+s s2 2.s si iz ze e()) ;

i in nt t i i3 3 = l lo oc ca al le e()(s s1 1,s s2 2) ; / / compare using the current global locale
i in nt t i i4 4 = l lo oc ca al le e("")(s s1 1,s s2 2) ; / / compare using my preferred locale
i in nt t i i5 5 = l lo oc ca al le e(n n)(s s1 1,s s2 2) ; / / compare using the locale named n

/ / ...
}

Here, i i0 0==i i3 3, i i1 1==i i4 4, and i i2 2==i i5 5. It is not difficult to imagine cases in which i i2 2, i i3 3, and i i4 4 differ.
Consider this sequence of words from a German dictionary:

D Di ia al le ek kt t, D Di i
. .
a at t, d di ic ch h, d di ic ch ht te en n, D Di ic ch ht tu un ng g

According to convention, nouns (only) are capitalized, but the ordering is not case sensitive.
A case-sensitive German sort would place all words starting with D D before d d:

D Di ia al le ek kt t, D Di i
. .
a at t, D Di ic ch ht tu un ng g, d di ic ch h, d di ic ch ht te en n

The
. .
a a (umlaut a a) is treated as ‘‘a kind of a a,’’ so it comes before c c. However, in most common

character sets, the numeric value of
. .
a a is larger than the numeric value of c c. Consequently,

i in nt t(´c c´)<i in nt t(´
. .
a a´), and the simple default sort based on numeric values gives:

D Di ia al le ek kt t, D Di ic ch ht tu un ng g, D Di i
. .
a at t, d di ic ch h, d di ic ch ht te en n

Writing a compare function that orders this sequence correctly according to the dictionary is an
interesting exercise (§D.6[3]).

The h ha as sh h() function calculates a hash value (§17.6.2.3). Obviously, this can be useful for
building hash tables.

The t tr ra an ns sf fo or rm m() function produces a string that, when compared to other strings, gives the
same result as would a comparison to the argument string. The purpose of t tr ra an ns sf fo or rm m() is to allow
optimization of code in which one string is compared to many others. This is useful when imple-
menting a search for one or more strings among a set of strings.

The public c co om mp pa ar re e(), h ha as sh h(), and t tr ra an ns sf fo or rm m() functions are implemented by calls to the
protected virtual functions d do o_ _c co om mp pa ar re e(), d do o_ _h ha as sh h(), and d do o_ _t tr ra an ns sf fo or rm m(), respectively. These
‘‘d do o_ _ functions’’ can be overridden in derived classes. This two-function strategy allows the
library implementer who writes the non-virtual functions to provide some common functionality for
all calls independently of what the user-supplied d do o_ _ function might do.

The use of virtual functions preserves the polymorphic nature of the f fa ac ce et t but could be costly.
To avoid excess function calls, a l lo oc ca al le e can determine the exact f fa ac ce et t used and cache any values it
might need for efficient execution (§D.2.2).

The static member i id d of type l lo oc ca al le e: :i id d is used to identify a f fa ac ce et t (§D.3). The standard func-
tions h ha as s_ _f fa ac ce et t and u us se e_ _f fa ac ce et t depend on the correspondence between i id ds and f fa ac ce et ts (§D.3.1).
Two f fa ac ce et ts providing exactly the same interface and semantics to l lo oc ca al le e should have the same i id d.
For example, c co ol ll la at te e<c ch ha ar r> and c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> (§D.4.1.1) have the same i id d. Con-
versely, two f fa ac ce et ts performing different functions (as far as l lo oc ca al le e is concerned) must have differ-
ent i id ds. For example, n nu um mp pu un nc ct t<c ch ha ar r> and n nu um m_ _p pu ut t<c ch ha ar r> have different i id ds (§D.4.2).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

892 Locales Appendix D

D.4.1.1 Named Collate

A c co ol ll la at te e_ _b by yn na am me e is a facet that provides a version of c co ol ll la at te e for a particular locale named by a
constructor string argument:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :c co ol ll la at te e_ _b by yn na am me e : p pu ub bl li ic c c co ol ll la at te e<C Ch h> {
p pu ub bl li ic c:

t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t c co ol ll la at te e_ _b by yn na am me e(c co on ns st t c ch ha ar r*, s si iz ze e_ _t t r r = 0 0) ; / / construct from named locale

/ / note: no id and no new functions

p pr ro ot te ec ct te ed d:
˜c co ol ll la at te e_ _b by yn na am me e() ; / / note: protected destructor

/ / override collate<Ch>’s virtual functions:

i in nt t d do o_ _c co om mp pa ar re e(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e, c co on ns st t C Ch h* b b2 2, c co on ns st t C Ch h* e e2 2) c co on ns st t;
s st tr ri in ng g_ _t ty yp pe e d do o_ _t tr ra an ns sf fo or rm m(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t;
l lo on ng g d do o_ _h ha as sh h(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t;

};

Thus, a c co ol ll la at te e_ _b by yn na am me e can be used to pick out a c co ol ll la at te e from a locale named in the program’s
execution environment (§D.4). One obvious way of storing facets in an execution environment
would be as data in a file. A less flexible alternative would be to represent a facet as program text
and data in a _ _b by yn na am me e facet.

The c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> class is an example of a f fa ac ce et t that doesn’t have its own i id d (§D.3).
In a l lo oc ca al le e, c co ol ll la at te e_ _b by yn na am me e<C Ch h> is interchangeable with c co ol ll la at te e<C Ch h>. A c co ol ll la at te e and a
c co ol ll la at te e_ _b by yn na am me e for the same locale differ only in the extra constructor offered by the
c co ol ll la at te e_ _b by yn na am me e and in the semantics provided by the c co ol ll la at te e_ _b by yn na am me e.

Note that the _ _b by yn na am me e destructor is p pr ro ot te ec ct te ed d. This implies that you cannot have a _ _b by yn na am me e
facet as a local variable. For example:

v vo oi id d f f()
{

c co ol ll la at te e_ _b by yn na am me e<c ch ha ar r> m my y_ _c co ol ll l("") ; / / error: cannot destroy my_coll
/ / ...

}

This reflects the view that using locales and facets is something that is best done at a fairly high
level in a program to affect large bodies of code. An example is setting the global locale (§D.2.3)
or imbuing a stream (§21.6.3, §D.1). If necessary, we could derive a class with a public destructor
from a _ _b by yn na am me e class and create local variables of that class.

D.4.2 Numeric Input and Output

Numeric output is done by a n nu um m_ _p pu ut t facet writing into a stream buffer (§21.6.4). Conversely,
numeric input is done by a n nu um m_ _g ge et t facet reading from a stream buffer. The format used by
n nu um m_ _p pu ut t and n nu um m_ _g ge et t is defined by a ‘‘numerical punctuation’’ facet, n nu um mp pu un nc ct t.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.2.1 Numeric Punctuation 893

D.4.2.1 Numeric Punctuation

The n nu um mp pu un nc ct t facet defines the I/O format of built-in types, such as b bo oo ol l, i in nt t, and d do ou ub bl le e:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :n nu um mp pu un nc ct t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t n nu um mp pu un nc ct t(s si iz ze e_ _t t r r = 0 0) ;

C Ch h d de ec ci im ma al l_ _p po oi in nt t() c co on ns st t; / / ’.’ in classic()
C Ch h t th ho ou us sa an nd ds s_ _s se ep p() c co on ns st t; / / ’,’ in classic()
s st tr ri in ng g g gr ro ou up pi in ng g() c co on ns st t; / / "" in classic(), meaning no grouping

s st tr ri in ng g_ _t ty yp pe e t tr ru ue en na am me e() c co on ns st t; / / "true" in classic()
s st tr ri in ng g_ _t ty yp pe e f fa al ls se en na am me e() c co on ns st t; / / "false" in classic()

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜n nu um mp pu un nc ct t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

The characters of the string returned by g gr ro ou up pi in ng g() are read as a sequence of small integer values.
Each number specifies a number of digits for a group. Character 0 specifies the rightmost group
(the least-significant digits), character 1 the group to the left of that, etc. Thus, "\ \0 00 04 4\ \0 00 02 2\ \0 00 03 3"
describes a number, such as 1 12 23 3-4 45 5-6 67 78 89 9 (provided you use ´-´ as the separation character). If
necessary, the last number in a grouping pattern is used repeatedly, so "\ \0 00 03 3" is equivalent to
"\ \0 00 03 3\ \0 00 03 3\ \0 00 03 3". As the name of the separation character, t th ho ou us sa an nd ds s_ _s se ep p(), indicates, the most
common use of grouping is to make large integers more readable. The g gr ro ou up pi in ng g() and
t th ho ou us sa an nd ds s_ _s se ep p() functions define a format for both input and output of integers. They are not
used for standard floating-point number I/O. Thus, we can not get 1 12 23 34 45 56 67 7.8 89 9 printed as
1 1,2 23 34 4,5 56 67 7.8 89 9 simply by defining g gr ro ou up pi in ng g() and t th ho ou us sa an nd ds s_ _s se ep p().

We can define a new punctuation style by deriving from n nu um mp pu un nc ct t. For example, I could
define facet M My y_ _p pu un nc ct t to write integer values using spaces to group the digits by threes and
floating-point values, using a European-style comma as the ‘‘decimal point:’’

c cl la as ss s M My y_ _p pu un nc ct t : p pu ub bl li ic c s st td d: :n nu um mp pu un nc ct t<c ch ha ar r> {
p pu ub bl li ic c:

t ty yp pe ed de ef f c ch ha ar r c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f s st tr ri in ng g s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t M My y_ _p pu un nc ct t(s si iz ze e_ _t t r r = 0 0) : s st td d: :n nu um mp pu un nc ct t<c ch ha ar r>(r r) { }

p pr ro ot te ec ct te ed d:
c ch ha ar r d do o_ _d de ec ci im ma al l_ _p po oi in nt t() c co on ns st t { r re et tu ur rn n ´,´; } / / comma
c ch ha ar r d do o_ _t th ho ou us sa an nd ds s_ _s se ep p() c co on ns st t { r re et tu ur rn n ´ ́ ; } / / space
s st tr ri in ng g d do o_ _g gr ro ou up pi in ng g() c co on ns st t { r re et tu ur rn n "\ \0 00 03 3"; } / / 3-digit groups

};

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

894 Locales Appendix D

v vo oi id d f f()
{

c co ou ut t << "s st ty yl le e A A: " << 1 12 23 34 45 56 67 78 8 << " *** "<< 1 12 23 34 45 56 67 7.8 8 << ́ \ \n n´;

l lo oc ca al le e l lo oc c(l lo oc ca al le e() ,n ne ew w M My y_ _p pu un nc ct t) ;
c co ou ut t.i im mb bu ue e(l lo oc c) ;
c co ou ut t << "s st ty yl le e B B: " << 1 12 23 34 45 56 67 78 8 << " *** "<< 1 12 23 34 45 56 67 7.8 8 << ́ \ \n n´;

}

This produced:

s st ty yl le e A A: 1 12 23 34 45 56 67 78 8 *** 1 1.2 23 34 45 57 7e e+0 06 6
s st ty yl le e B B: 1 12 2 3 34 45 5 6 67 78 8 *** 1 1,2 23 34 45 57 7e e+0 06 6

Note that i im mb bu ue e() stores a copy of its argument in its stream. Consequently, a stream can rely on
an imbued locale even after the original copy of that locale has been destroyed. If an iostream has
its b bo oo ol la al lp ph ha a flag set (§21.2.2, §21.4.1), the strings returned by t tr ru ue en na am me e() and f fa al ls se en na am me e() are
used to represent t tr ru ue e and f fa al ls se e, respectively; otherwise, 1 1 and 0 0 are used.

A _ _b by yn na am me e version (§D.4, §D.4.1) of n nu um mp pu un nc ct t is provided:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :n nu um mp pu un nc ct t_ _b by yn na am me e : p pu ub bl li ic c n nu um mp pu un nc ct t<C Ch h> { /* ... */ };

D.4.2.2 Numeric Output

When writing to a stream buffer (§21.6.4), an o os st tr re ea am m relies on the n nu um m_ _p pu ut t facet:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s O Ou ut t = o os st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :n nu um m_ _p pu ut t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f O Ou ut t i it te er r_ _t ty yp pe e;

e ex xp pl li ic ci it t n nu um m_ _p pu ut t(s si iz ze e_ _t t r r = 0 0) ;

/ / put value "v" to buffer position "b" in stream "s":
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, b bo oo ol l v v) c co on ns st t;
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, l lo on ng g v v) c co on ns st t;
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, u un ns si ig gn ne ed d l lo on ng g v v) c co on ns st t;
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, d do ou ub bl le e v v) c co on ns st t;
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, l lo on ng g d do ou ub bl le e v v) c co on ns st t;
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, c co on ns st t v vo oi id d* v v) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜n nu um m_ _p pu ut t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

The output iterator (§19.1, §19.2.1) argument, O Ou ut t, identifies where in an o os st tr re ea am m’s stream buffer
(§21.6.4) p pu ut t() places characters representing the numeric value on output. The value of p pu ut t() is

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.2.2 Numeric Output 895

that iterator positioned one past the last character position written.
Note that the default specialization of n nu um m_ _p pu ut t (the one where the iterator used to access char-

acters is of type o os st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h>) is part of the standard locales (§D.4). If you want to
use another specialization, you’ll have to make it yourself. For example:

t te em mp pl la at te e<c cl la as ss s C Ch h>
c cl la as ss s S St tr ri in ng g_ _n nu um mp pu ut t : p pu ub bl li ic c s st td d: :n nu um m_ _p pu ut t<C Ch h,t ty yp pe en na am me e b ba as si ic c_ _s st tr ri in ng g<C Ch h>: :i it te er ra at to or r> {
p pu ub bl li ic c:

S St tr ri in ng g_ _n nu um mp pu ut t() : s st td d: :n nu um m_ _p pu ut t<C Ch h,t ty yp pe en na am me e b ba as si ic c_ _s st tr ri in ng g<C Ch h>: :i it te er ra at to or r>(1 1) { }
};

v vo oi id d f f(i in nt t i i, s st tr ri in ng g& s s, i in nt t p po os s) / / format i into s starting at pos
{

S St tr ri in ng g_ _n nu um mp pu ut t<c ch ha ar r> f f;
i io os s_ _b ba as se e& x xx xx x = c co ou ut t; / / use cout’s formatting rules
f f.p pu ut t(s s.b be eg gi in n()+p po os s,x xx xx x,´ ́ ,i i) ; / / format i into s

}

The i io os s_ _b ba as se e argument is used to get information about formatting state and locale. For example,
if padding is needed, the f fi il ll l character is used as required by the i io os s_ _b ba as se e argument. Typically, the
stream buffer written to through b b is the buffer associated with an o os st tr re ea am m for which s s is the base.
Note that an i io os s_ _b ba as se e is not a simple object to construct. In particular, it controls many aspects of
formatting that must be consistent to achieve acceptable output. Consequently, i io os s_ _b ba as se e has no
public constructor (§21.3.3).

A p pu ut t() function also uses its i io os s_ _b ba as se e argument to get the stream’s l lo oc ca al le e(). That l lo oc ca al le e is
used to determine punctuation (§D.4.2.1), the alphabetic representation of Booleans, and the con-
version to C Ch h. For example, assuming that s s is p pu ut t()’s i io os s_ _b ba as se e argument, we might find code
like this in a p pu ut t() function:

c co on ns st t l lo oc ca al le e& l lo oc c = s s.g ge et tl lo oc c() ;
/ / ...
w wc ch ha ar r_ _t t w w = u us se e_ _f fa ac ce et t< c ct ty yp pe e<c ch ha ar r> >(l lo oc c).w wi id de en n(c c) ; / / char to Ch conversion
/ / ...
s st tr ri in ng g p pn nt t = u us se e_ _f fa ac ce et t< n nu um mp pu un nc ct t<c ch ha ar r> >(l lo oc c).d de ec ci im ma al l_ _p po oi in nt t() ; / / default: ’.’
/ / ...
s st tr ri in ng g f fl ls se e = u us se e_ _f fa ac ce et t< n nu um mp pu un nc ct t<c ch ha ar r> >(l lo oc c).f fa al ls se en na am me e() ; / / default: "false"

A standard facet, such as n nu um m_ _p pu ut t<c ch ha ar r>, is typically used implicitly through a standard I/O
stream function. Consequently, most programmers need not know about it. However, the use of
such facets by standard library functions is interesting because they show how I/O streams work
and how facets can be used. As ever, the standard library provides examples of interesting pro-
gramming techniques.

Using n nu um m_ _p pu ut t, the implementer of o os st tr re ea am m might write:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
o os st tr re ea am m& s st td d: :b ba as si ic c_ _o os st tr re ea am m<C Ch h,T Tr r>: :o op pe er ra at to or r<<(d do ou ub bl le e d d)
{

s se en nt tr ry y g gu ua ar rd d(*t th hi is s) ; / / see §21.3.8
i if f (!g gu ua ar rd d) r re et tu ur rn n *t th hi is s;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

896 Locales Appendix D

t tr ry y {
i if f (u us se e_ _f fa ac ce et t< n nu um m_ _p pu ut t<C Ch h> >(g ge et tl lo oc c()).p pu ut t(*t th hi is s,*t th hi is s,t th hi is s->f fi il ll l() ,d d).f fa ai il le ed d())

s se et ts st ta at te e(b ba ad db bi it t) ;
}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(*t th hi is s) ;
}
r re et tu ur rn n *t th hi is s;

}

A lot is going on here. The sentry ensures that all prefix and suffix operations are performed
(§21.3.8). We get the o os st tr re ea am m’s l lo oc ca al le e by calling its member function g ge et tl lo oc c() (§21.7). We
extract n nu um m_ _p pu ut t from that l lo oc ca al le e using u us se e_ _f fa ac ce et t (§D.3.1). That done, we call the appropriate
p pu ut t() function to do the real work. An o os st tr re ea am mb bu uf f_ _i it te er ra at to or r can be constructed from an o os st tr re ea am m
(§19.2.6), and an o os st tr re ea am m can be implicitly converted to its base class i io os s_ _b ba as se e (§21.2.1), so the
two first arguments to p pu ut t() are easily supplied.

A call of p pu ut t() returns its output iterator argument. This output iterator is obtained from a
b ba as si ic c_ _o os st tr re ea am m, so it is an o os st tr re ea am mb bu uf f_ _i it te er ra at to or r. Consequently, f fa ai il le ed d() (§19.2.6.1) is available to
test for failure and to allow us to set the stream state appropriately.

I did not use h ha as s_ _f fa ac ce et t, because the standard facets (§D.4) are guaranteed to be present in every
locale. If that guarantee is violated, b ba ad d_ _c ca as st t is thrown (§D.3.1).

The p pu ut t() function calls the virtual d do o_ _p pu ut t(). Consequently, user-defined code may be exe-
cuted, and o op pe er ra at to or r<<() must be prepared to handle an exception thrown by the overriding
d do o_ _p pu ut t(). Also, n nu um m_ _p pu ut t may not exist for some character types, so u us se e_ _f fa ac ce et t() might throw
s st td d: :b ba ad d_ _c ca as st t (§D.3.1). The behavior of a << for a built-in type, such as d do ou ub bl le e, is defined by the
C++ standard. Consequently, the question is not what h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n() should do but rather
how it should do what the standard prescribes. If b ba ad db bi it t is set in this o os st tr re ea am m’s exception state
(§21.3.6), the exception is simply rethrown. Otherwise, an exception is handled by setting the
stream state and continuing. In either case, b ba ad db bi it t must be set in the stream state (§21.3.3):

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
v vo oi id d h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s st td d: :b ba as si ic c_ _o os st tr re ea am m<C Ch h,T Tr r>& s s) / / called from catch clause
{

i if f (s s.e ex xc ce ep pt ti io on ns s()&i io os s_ _b ba as se e: :b ba ad db bi it t) {
t tr ry y {

s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :b ba ad db bi it t) ; / / might throw basic_ios::failure
} c ca at tc ch h(...) { }
t th hr ro ow w; / / rethrow

}
s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :b ba ad db bi it t) ;

}

The try-block is needed because s se et ts st ta at te e() might throw b ba as si ic c_ _i io os s: :f fa ai il lu ur re e (§21.3.3, §21.3.6).
However, if b ba ad db bi it t is set in the exception state, o op pe er ra at to or r<<() must rethrow the exception that
caused h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n() to be called (rather than simply throwing b ba as si ic c_ _i io os s: :f fa ai il lu ur re e).

The << for a built-in type, such as d do ou ub bl le e, must be implemented by writing directly to a stream
buffer. When writing a << for a user-defined type, we can often avoid the resulting complexity by
expressing the output of the user-defined type in terms of output of existing types (§D.3.2).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.2.3 Numeric Input 897

D.4.2.3 Numeric Input

When reading from a stream buffer (§21.6.4), an i is st tr re ea am m relies on the n nu um m_ _g ge et t facet:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s I In n = i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :n nu um m_ _g ge et t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f I In n i it te er r_ _t ty yp pe e;

e ex xp pl li ic ci it t n nu um m_ _g ge et t(s si iz ze e_ _t t r r = 0 0) ;

/ / read [b:e) into v, using formatting rules from s, reporting errors by setting r:
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, b bo oo ol l& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, l lo on ng g& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, u un ns si ig gn ne ed d s sh ho or rt t& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, u un ns si ig gn ne ed d i in nt t& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, u un ns si ig gn ne ed d l lo on ng g& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, f fl lo oa at t& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, d do ou ub bl le e& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, l lo on ng g d do ou ub bl le e& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, v vo oi id d*& v v) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜n nu um m_ _g ge et t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

Basically, n nu um m_ _g ge et t is organized like n nu um m_ _p pu ut t (§D.4.2.2). Since it reads rather than writes, g ge et t()
needs a pair of input iterators, and the argument designating the target of the read is a reference.

The i io os st ta at te e variable r r is set to reflect the state of the stream. If a value of the desired type could
not be read, f fa ai il lb bi it t is set in r r; if the end of input was reached, e eo of fb bi it t is set in r r. An input operator
will use r r to determine how to set the state of its stream. If no error was encountered, the value
read is assigned though v v; otherwise, v v is left unchanged.

A sentry is used to ensure that the stream’s prefix and suffix operations are performed (§21.3.8).
In particular, the sentry is used to ensure that we try to read only if the stream is in a good state to
start with.

The implementer of i is st tr re ea am m might write:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
i is st tr re ea am m& s st td d: :b ba as si ic c_ _i is st tr re ea am m<C Ch h,T Tr r>: :o op pe er ra at to or r>>(d do ou ub bl le e& d d)
{

s se en nt tr ry y g gu ua ar rd d(*t th hi is s) ; / / see §21.3.8
i if f (!g gu ua ar rd d) r re et tu ur rn n *t th hi is s;

i io os st ta at te e s st ta at te e = 0 0; / / good
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> e eo os s;
d do ou ub bl le e d dd d;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

898 Locales Appendix D

t tr ry y {
u us se e_ _f fa ac ce et t< n nu um m_ _g ge et t<C Ch h> >(g ge et tl lo oc c()).g ge et t(*t th hi is s,e eo os s,*t th hi is s,s st ta at te e,d dd d) ;
i if f (s st ta at te e==0 0 || s st ta at te e==e eo of fb bi it t) d d = d dd d; / / set value only if get() succeeded
s se et ts st ta at te e(s st ta at te e) ;

}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(*t th hi is s) ; / / see §D.4.2.2
}
r re et tu ur rn n *t th hi is s;

}

Exceptions enabled for the i is st tr re ea am m will be thrown by s se et ts st ta at te e() in case of error (§21.3.6).
By defining a n nu um mp pu un nc ct t, such as M My y_ _p pu un nc ct t from §D.4.2, we can read using nonstandard punc-

tuation. For example:

v vo oi id d f f()
{

c co ou ut t << "s st ty yl le e A A: "
i in nt t i i1 1;
d do ou ub bl le e d d1 1;
c ci in n >> i i1 1 >> d d1 1; / / read using standard ‘‘12345678’’ format

l lo oc ca al le e l lo oc c(l lo oc ca al le e: :c cl la as ss si ic c() ,n ne ew w M My y_ _p pu un nc ct t) ;
c ci in n.i im mb bu ue e(l lo oc c) ;
c co ou ut t << "s st ty yl le e B B: "
i in nt t i i2 2;
d do ou ub bl le e d d2 2;
c ci in n >> i i1 1 >> d d2 2; / / read using the ‘‘12 345 678’’ format

}

If we want to read really unusual numeric formats, we have to override d do o_ _g ge et t(). For example,
we might define a n nu um m_ _g ge et t that read Roman numerals, such as X XX XI I and M MM M (§D.6[15]).

D.4.3 Input and Output of Monetary Values

The formatting of monetary amounts is technically similar to the formatting of ‘‘plain’’ numbers
(§D.4.2). However, the presentation of monetary amounts is even more sensitive to cultural differ-
ences. For example, a negative amount (a loss, a debit), such as -1 1.2 25 5, should in some contexts be
presented as a (positive) number in parentheses: (1 1.2 25 5). Similarly, color is in some contexts used
to ease the recognition of negative amounts.

There is no standard ‘‘money type.’’ Instead, the money facets are meant to be used explicitly
for numeric values that the programmer knows to represent monetary amounts. For example:

c cl la as ss s M Mo on ne ey y { / / simple type to hold a monetary amount
l lo on ng g i in nt t a am mo ou un nt t;

p pu ub bl li ic c:
M Mo on ne ey y(l lo on ng g i in nt t i i) : a am mo ou un nt t(i i) { }
o op pe er ra at to or r l lo on ng g i in nt t() c co on ns st t { r re et tu ur rn n a am mo ou un nt t; }

};

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.3 Input and Output of Monetary Values 899

/ / ...

v vo oi id d f f(l lo on ng g i in nt t i i)
{

c co ou ut t << "v va al lu ue e= " << i i << " a am mo ou un nt t= " << M Mo on ne ey y(i i) << e en nd dl l;
}

The task of the monetary facets is to make it reasonably easy to write an output operator for M Mo on ne ey y
so that the amount is printed according to local convention (see §D.4.3.2). The output would vary
depending on c co ou ut t’s locale. Possible outputs are:

v va al lu ue e= 1 12 23 34 45 56 67 7 a am mo ou un nt t= $1 12 23 34 45 5.6 67 7
v va al lu ue e= 1 12 23 34 45 56 67 7 a am mo ou un nt t= 1 12 23 34 45 5,6 67 7 D DK KK K
v va al lu ue e= -1 12 23 34 45 56 67 7 a am mo ou un nt t= $-1 12 23 34 45 5.6 67 7
v va al lu ue e= -1 12 23 34 45 56 67 7 a am mo ou un nt t= -$1 12 23 34 45 5.6 67 7
v va al lu ue e= -1 12 23 34 45 56 67 7 a am mo ou un nt t= (C CH HF F1 12 23 34 45 5,6 67 7)

For money, accuracy to the smallest currency unit is usually considered essential. Consequently, I
adopted the common convention of having the integer value represent the number of cents (pence,
ø re, fils, cents, etc.) rather than the number of dollars (pounds, kroner, dinar, euro, etc.). This con-
vention is supported by m mo on ne ey yp pu un nc ct t’s f fr ra ac c_ _d di ig gi it ts s() function (§D.4.3.1). Similarly, the appear-
ance of the ‘‘decimal point’’ is defined by d de ec ci im ma al l_ _p po oi in nt t().

The facets m mo on ne ey y_ _g ge et t and m mo on ne ey y_ _p pu ut t provide functions that perform I/O based on the format
defined by the m mo on ne ey y_ _b ba as se e facet.

A simple M Mo on ne ey y type can be used simply to control I/O formats or to hold monetary values. In
the former case, we cast values of (other) types used to hold monetary amounts to M Mo on ne ey y before
writing, and we read into M Mo on ne ey y variables before converting them to other types. It is less error
prone to consistently hold monetary amounts in a M Mo on ne ey y type; that way, we cannot forget to cast a
value to M Mo on ne ey y before writing it, and we don’t get input errors by trying to read monetary values in
locale-insensitive ways. However, it may be infeasible to introduce a M Mo on ne ey y type into a system
that wasn’t designed for that. In such cases, applying M Mo on ne ey y conversions (casts) to read and write
operations is necessary.

D.4.3.1 Money Punctuation

The facet controlling the presentation of monetary amounts, m mo on ne ey yp pu un nc ct t, naturally resembles the
facet for controlling plain numbers, n nu um mp pu un nc ct t (§D.4.2.1):

c cl la as ss s s st td d: :m mo on ne ey y_ _b ba as se e {
p pu ub bl li ic c:

e en nu um m p pa ar rt t { n no on ne e, s sp pa ac ce e, s sy ym mb bo ol l, s si ig gn n, v va al lu ue e }; / / parts of value layout
s st tr ru uc ct t p pa at tt te er rn n { c ch ha ar r f fi ie el ld d[4 4] ; }; / / layout specification

};

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

900 Locales Appendix D

t te em mp pl la at te e <c cl la as ss s C Ch h, b bo oo ol l I In nt te er rn na at ti io on na al l = f fa al ls se e>
c cl la as ss s s st td d: :m mo on ne ey yp pu un nc ct t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t, p pu ub bl li ic c m mo on ne ey y_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t m mo on ne ey yp pu un nc ct t(s si iz ze e_ _t t r r = 0 0) ;

C Ch h d de ec ci im ma al l_ _p po oi in nt t() c co on ns st t; / / ’.’ in classic()
C Ch h t th ho ou us sa an nd ds s_ _s se ep p() c co on ns st t; / / ’,’ in classic()
s st tr ri in ng g g gr ro ou up pi in ng g() c co on ns st t; / / "" in classic(), meaning "no grouping"

s st tr ri in ng g_ _t ty yp pe e c cu ur rr r_ _s sy ym mb bo ol l() c co on ns st t; / / "$" in classic()
s st tr ri in ng g_ _t ty yp pe e p po os si it ti iv ve e_ _s si ig gn n() c co on ns st t; / / "" in classic()
s st tr ri in ng g_ _t ty yp pe e n ne eg ga at ti iv ve e_ _s si ig gn n() c co on ns st t; / / "-" in classic()

i in nt t f fr ra ac c_ _d di ig gi it ts s() c co on ns st t; / / number of digits after the decimal point; 2 in classic()
p pa at tt te er rn n p po os s_ _f fo or rm ma at t() c co on ns st t; / / { symbol, sign, none, value } in classic()
p pa at tt te er rn n n ne eg g_ _f fo or rm ma at t() c co on ns st t; / / { symbol, sign, none, value } in classic()

s st ta at ti ic c c co on ns st t b bo oo ol l i in nt tl l = I In nt te er rn na at ti io on na al l; / / use international monetary formats

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜m mo on ne ey yp pu un nc ct t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

The facilities offered by m mo on ne ey yp pu un nc ct t are intended primarily for use by implementers of m mo on ne ey y_ _p pu ut t
and m mo on ne ey y_ _g ge et t facets (§D.4.3.2, §D.4.3.3).

The d de ec ci im ma al l_ _p po oi in nt t(), t th ho ou us sa an nd ds s_ _s se ep p(), and g gr ro ou up pi in ng g() members behave as their equiva-
lents in n nu um mp pu un nc ct t.

The c cu ur rr r_ _s sy ym mb bo ol l(), p po os si it ti iv ve e_ _s si ig gn n(), and n ne eg ga at ti iv ve e_ _s si ig gn n() members return the string to be
used to represent the currency symbol (for example, $, ¥¥, F FR RF F, D DK KK K), the plus sign, and the minus
sign, respectively. If the I In nt te er rn na at ti io on na al l template argument was t tr ru ue e, the i in nt tl l member will also be
t tr ru ue e, and ‘‘international’’ representations of the currency symbols will be used. Such an ‘‘interna-
tional’’ representation is a four-character string. For example:

"U US SD D "
"D DK KK K "
"E EU UR R "

The last character is a terminating zero. The three-letter currency identifier is defined by the ISO-
4217 standard. When I In nt te er rn na at ti io on na al l is f fa al ls se e, a ‘‘local’’ currency symbol, such as $, £ , and ¥, can
be used.

A p pa at tt te er rn n returned by p po os s_ _f fo or rm ma at t() or n ne eg g_ _f fo or rm ma at t() is four p pa ar rt ts defining the sequence in
which the numeric value, the currency symbol, the sign symbol, and whitespace occur. Most com-
mon formats are trivially represented using this simple notion of a pattern. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.3.1 Money Punctuation 901

+$ 1 12 23 3.4 45 5 / / { sign, symbol, space, value } where positive_sign() returns "+"
$+1 12 23 3.4 45 5 / / { symbol, sign, value, none } where positive_sign() returns "+"
$1 12 23 3.4 45 5 / / { symbol, sign, value, none } where positive_sign() returns ""
$1 12 23 3.4 45 5- / / { symbol, value, sign, none }
-1 12 23 3.4 45 5 D DK KK K / / { sign, value, space, symbol }
($1 12 23 3.4 45 5) / / { sign, symbol, value, none } where negative_sign() returns "()"
(1 12 23 3.4 45 5D DK KK K) / / { sign, value, symbol, none } where negative_sign() returns "()"

Representing a negative number using parentheses is achieved by having n ne eg ga at ti iv ve e_ _s si ig gn n() return a
string containing the two characters (). The first character of a sign string is placed where s si ig gn n is
found in the pattern, and the rest of the sign string is placed after all other parts of the pattern. The
most common use of this facility is to represent the financial community’s convention of using
parentheses for negative amounts, but other uses are possible. For example:

-$1 12 23 3.4 45 5 / / { sign, symbol, value, none } where negative_sign() returns "–"
$1 12 23 3.4 45 5 s si il ll ly y / / { sign, symbol, value, none } where negative_sign() returns " silly"

The values s si ig gn n, v va al lu ue e, and s sy ym mb bo ol l must each appear exactly once in a pattern. The remaining
value can be either s sp pa ac ce e or n no on ne e. Where s sp pa ac ce e appears, at least one and possibly more white-
space characters may appear in the representation. Where n no on ne e appears, except at the end of a pat-
tern, zero or more whitespace characters may appear in the representation.

Note that these strict rules ban some apparently reasonable patterns:

p pa at tt te er rn n p pa at t = { s si ig gn n, v va al lu ue e, n no on ne e, n no on ne e }; / / error: no symbol

The f fr ra ac c_ _d di ig gi it ts s() function indicates where the d de ec ci im ma al l_ _p po oi in nt t() is placed. Often, monetary
amounts are represented in the smallest currency unit (§D.4.3). This unit is typically one hundredth
of the major unit (for example, a ¢ is one hundredth of a $), so f fr ra ac c_ _d di ig gi it ts s() is often 2 2.

Here is a simple format defined as a facet:

c cl la as ss s M My y_ _m mo on ne ey y_ _i io o : p pu ub bl li ic c m mo on ne ey yp pu un nc ct t<c ch ha ar r,t tr ru ue e> {
p pu ub bl li ic c:

e ex xp pl li ic ci it t M My y_ _m mo on ne ey y_ _i io o(s si iz ze e_ _t t r r = 0 0) :m mo on ne ey yp pu un nc ct t<c ch ha ar r,t tr ru ue e>(r r) { }

c ch ha ar r_ _t ty yp pe e d do o_ _d de ec ci im ma al l_ _p po oi in nt t() c co on ns st t { r re et tu ur rn n ´.´; }
c ch ha ar r_ _t ty yp pe e d do o_ _t th ho ou us sa an nd ds s_ _s se ep p() c co on ns st t { r re et tu ur rn n ´,´; }
s st tr ri in ng g d do o_ _g gr ro ou up pi in ng g() c co on ns st t { r re et tu ur rn n "\ \0 00 03 3\ \0 00 03 3\ \0 00 03 3"; }

s st tr ri in ng g_ _t ty yp pe e d do o_ _c cu ur rr r_ _s sy ym mb bo ol l() c co on ns st t { r re et tu ur rn n "U US SD D "; }
s st tr ri in ng g_ _t ty yp pe e d do o_ _p po os si it ti iv ve e_ _s si ig gn n() c co on ns st t { r re et tu ur rn n ""; }
s st tr ri in ng g_ _t ty yp pe e d do o_ _n ne eg ga at ti iv ve e_ _s si ig gn n() c co on ns st t { r re et tu ur rn n "()"; }

i in nt t d do o_ _f fr ra ac c_ _d di ig gi it ts s() c co on ns st t { r re et tu ur rn n 2 2; } / / two digits after decimal point

p pa at tt te er rn n d do o_ _p po os s_ _f fo or rm ma at t() c co on ns st t
{

s st ta at ti ic c p pa at tt te er rn n p pa at t = { s si ig gn n, s sy ym mb bo ol l, v va al lu ue e, n no on ne e };
r re et tu ur rn n p pa at t;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

902 Locales Appendix D

p pa at tt te er rn n d do o_ _n ne eg g_ _f fo or rm ma at t() c co on ns st t
{

s st ta at ti ic c p pa at tt te er rn n p pa at t = { s si ig gn n, s sy ym mb bo ol l, v va al lu ue e, n no on ne e };
r re et tu ur rn n p pa at t;

}

};

This facet is used in the M Mo on ne ey y input and output operations defined in §D.4.3.2 and §D.4.3.3.
A _ _b by yn na am me e version (§D.4, §D.4.1) of m mo on ne ey yp pu un nc ct t is provided:

t te em mp pl la at te e <c cl la as ss s C Ch h, b bo oo ol l I In nt tl l = f fa al ls se e>
c cl la as ss s s st td d: :m mo on ne ey yp pu un nc ct t_ _b by yn na am me e : p pu ub bl li ic c m mo on ne ey yp pu un nc ct t<C Ch h, I In nt tl l> { /* ... */ };

D.4.3.2 Money Output

The m mo on ne ey y_ _p pu ut t facet writes monetary amounts according to the format specified by m mo on ne ey yp pu un nc ct t.
Specifically, m mo on ne ey y_ _p pu ut t provides p pu ut t() functions that place a suitably formatted character repre-
sentation into the stream buffer of a stream:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s O Ou ut t = o os st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :m mo on ne ey y_ _p pu ut t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f O Ou ut t i it te er r_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t m mo on ne ey y_ _p pu ut t(s si iz ze e_ _t t r r = 0 0) ;

/ / put value "v" into buffer position "b":
O Ou ut t p pu ut t(O Ou ut t b b, b bo oo ol l i in nt tl l, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, l lo on ng g d do ou ub bl le e v v) c co on ns st t;
O Ou ut t p pu ut t(O Ou ut t b b, b bo oo ol l i in nt tl l, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, c co on ns st t s st tr ri in ng g_ _t ty yp pe e& v v) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜m mo on ne ey y_ _p pu ut t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

The b b, s s, f fi il ll l, and v v arguments are used as for n nu um m_ _p pu ut t’s p pu ut t() functions (§D.4.2.2). The i in nt tl l
argument indicates whether a standard four-character ‘‘international’’ currency symbol or a
‘‘local’’ symbol is used (§D.4.3.1).

Given m mo on ne ey y_ _p pu ut t, we can define an output operator for M Mo on ne ey y (§D.4.3):

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m& s s, M Mo on ne ey y m m)
{

o os st tr re ea am m: :s se en nt tr ry y g gu ua ar rd d(s s) ; / / see §21.3.8
i if f (!g gu ua ar rd d) r re et tu ur rn n s s;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.3.2 Money Output 903

t tr ry y {
c co on ns st t m mo on ne ey y_ _p pu ut t<c ch ha ar r>& f f = u us se e_ _f fa ac ce et t< m mo on ne ey y_ _p pu ut t<c ch ha ar r> >(s s.g ge et tl lo oc c()) ;
i if f (m m==s st ta at ti ic c_ _c ca as st t<l lo on ng g d do ou ub bl le e>(m m)) { / / m can be represented as a long double

i if f (f f.p pu ut t(s s,t tr ru ue e,s s,s s.f fi il ll l() ,m m).f fa ai il le ed d()) s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :b ba ad db bi it t) ;
}
e el ls se e {

o os st tr ri in ng gs st tr re ea am m v v;
v v << m m; / / convert to string representation
i if f (f f.p pu ut t(s s,t tr ru ue e,s s,s s.f fi il ll l() ,v v.s st tr r()).f fa ai il le ed d()) s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :b ba ad db bi it t) ;

}
}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s s) ; / / see §D.4.2.2
}
r re et tu ur rn n s s;

}

If a l lo on ng g d do ou ub bl le e doesn’t have sufficient precision to represent the monetary value exactly, I convert
the value to its string representation and output that using the p pu ut t() that takes a s st tr ri in ng g.

D.4.3.3 Money Input

The m mo on ne ey y_ _g ge et t facet reads monetary amounts according to the format specified by m mo on ne ey yp pu un nc ct t.
Specifically, m mo on ne ey y_ _g ge et t provides g ge et t() functions that extract a suitably formatted character repre-
sentation from the stream buffer of a stream:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s I In n = i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :m mo on ne ey y_ _g ge et t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f I In n i it te er r_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t m mo on ne ey y_ _g ge et t(s si iz ze e_ _t t r r = 0 0) ;

/ / read [b:e) into v, using formatting rules from s, reporting errors by setting r:
I In n g ge et t(I In n b b, I In n e e, b bo oo ol l i in nt tl l, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, l lo on ng g d do ou ub bl le e& v v) c co on ns st t;
I In n g ge et t(I In n b b, I In n e e, b bo oo ol l i in nt tl l, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, s st tr ri in ng g_ _t ty yp pe e& v v) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)
p pr ro ot te ec ct te ed d:

˜m mo on ne ey y_ _g ge et t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

The b b, e e, s s, f fi il ll l, and v v arguments are used as for n nu um m_ _g ge et t’s g ge et t() functions (§D.4.2.3). The i in nt tl l
argument indicates whether a standard four-character ‘‘international’’ currency symbol or a
‘‘local’’ symbol is used (§D.4.3.1).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

904 Locales Appendix D

A well-defined pair of m mo on ne ey y_ _g ge et t and m mo on ne ey y_ _p pu ut t facets will provide output in a form that can
be read back in without errors or loss of information. For example:

i in nt t m ma ai in n()
{

M Mo on ne ey y m m;
w wh hi il le e (c ci in n>>m m) c co ou ut t << m m << "\ \n n";

}

The output of this simple program should be acceptable as its input. Furthermore, the output pro-
duced by a second run given the output from a first run should be identical to its input.

A plausible input operator for M Mo on ne ey y would be:

i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m& s s, M Mo on ne ey y& m m)
{

i is st tr re ea am m: :s se en nt tr ry y g gu ua ar rd d(s s) ; / / see §21.3.8
i if f (g gu ua ar rd d) t tr ry y {

i io os s_ _b ba as se e: :i io os st ta at te e s st ta at te e = 0 0; / / good
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<c ch ha ar r> e eo os s;
s st tr ri in ng g s st tr r;

u us se e_ _f fa ac ce et t< m mo on ne ey y_ _g ge et t<c ch ha ar r> >(s s.g ge et tl lo oc c()).g ge et t(s s,e eo os s,t tr ru ue e,s st ta at te e,s st tr r) ;

i if f (s st ta at te e==0 0 || s st ta at te e==i io os s_ _b ba as se e: :e eo of fb bi it t) { / / set value only if get() succeeded
l lo on ng g i in nt t i i = s st tr rt to ol l(s st tr r.c c_ _s st tr r() ,0 0,0 0) ; / / for strtol(), see §20.4.1
i if f (e er rr rn no o==E ER RA AN NG GE E)

s st ta at te e |= i io os s_ _b ba as se e: :f fa ai il lb bi it t;
e el ls se e

m m = i i; / / set value only if conversion to long int succeeded
s s.s se et ts st ta at te e(s st ta at te e) ;

}
}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s s) ; / / see §D.4.2.2
}
r re et tu ur rn n s s;

}

I use the g ge et t() that reads into a s st tr ri in ng g because reading into a d do ou ub bl le e and then converting to a l lo on ng g
i in nt t could lead to loss of precision.

D.4.4 Date and Time Input and Output

Unfortunately, the C++ standard library does not provide a proper d da at te e type. However, from the C
standard library, it inherits low-level facilities for dealing with dates and time intervals. These C
facilities are the basis for C++’s facilities for dealing with time in a system-independent manner.

The following sections demonstrate how the presentation of date and time-of-day information
can be made l lo oc ca al le e sensitive. In addition, they provide an example of how a user-defined type
(D Da at te e) can fit into the framework provided by i io os st tr re ea am m (Chapter 21) and l lo oc ca al le e (§D.2). The
implementation of D Da at te e shows techniques that are useful for dealing with time if you don’t have a
D Da at te e type available.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.1 Clocks and Timers 905

D.4.4.1 Clocks and Timers

At the lowest level, most systems have a fine-grained timer. The standard library provides a func-
tion c cl lo oc ck k() that returns an implementation-defined arithmetic type c cl lo oc ck k_ _t t. The result of
c cl lo oc ck k() can be calibrated by using the C CL LO OC CK KS S_ _P PE ER R_ _S SE EC C macro. If you don’t have access to a
reliable timing utility, you might measure a loop like this:

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) / / §6.1.7
{

i in nt t n n = a at to oi i(a ar rg gv v[1 1]) ; / / §20.4.1

c cl lo oc ck k_ _t t t t1 1 = c cl lo oc ck k() ;
i if f (t t1 1 == c cl lo oc ck k_ _t t(-1 1)) { / / clock_t(-1) means "clock() didn’t work"

c ce er rr r << "s so or rr ry y, n no o c cl lo oc ck k\ \n n";
e ex xi it t(1 1) ;

}

f fo or r (i in nt t i i = 0 0; i i<n n; i i++) d do o_ _s so om me et th hi in ng g() ; / / timing loop

c cl lo oc ck k_ _t t t t2 2 = c cl lo oc ck k() ;
i if f (t t2 2 == c cl lo oc ck k_ _t t(-1 1)) {

c ce er rr r << "s so or rr ry y, c cl lo oc ck k o ov ve er rf fl lo ow w\ \n n";
e ex xi it t(2 2) ;

}
c co ou ut t << "d do o_ _s so om me et th hi in ng g() " << n n << " t ti im me es s t to oo ok k "

<< d do ou ub bl le e(t t2 2-t t1 1)/C CL LO OC CK KS S_ _P PE ER R_ _S SE EC C << " s se ec co on nd ds s"
<< " (m me ea as su ur re em me en nt t g gr ra an nu ul la ar ri it ty y: " << C CL LO OC CK KS S_ _P PE ER R_ _S SE EC C << " o of f a a s se ec co on nd d)\ \n n";

}

The explicit conversion d do ou ub bl le e(t t2 2-t t1 1) before dividing is necessary because c cl lo oc ck k_ _t t might be an
integer. Exactly when the c cl lo oc ck k() starts running is implementation defined; c cl lo oc ck k() is meant to
measure time intervals within a single run of a program. For values t t1 1 and t t2 2 returned by c cl lo oc ck k(),
d do ou ub bl le e(t t2 2-t t1 1)/C CL LO OC CK KS S_ _P PE ER R_ _S SE EC C is the system’s best approximation of the time in seconds
between the two calls.

If c cl lo oc ck k() isn’t provided for a processor or if a time interval was too long to measure, c cl lo oc ck k()
returns c cl lo oc ck k_ _t t(-1 1).

The c cl lo oc ck k() function is meant to measure intervals from a fraction of a second to a few sec-
onds. For example, if c cl lo oc ck k_ _t t is a 32-bit signed i in nt t and C CL LO OC CK KS S_ _P PE ER R_ _S SE EC C is 1,000,000 , we can
use c cl lo oc ck k() to measure from 0 to just over 2,000 seconds (about half an hour) in microseconds.

Please note that getting meaningful measurements of a program can be tricky. Other programs
running on a machine may severely affect the time used by a run, cache and pipelining effects are
difficult to predict, and algorithms may have surprising dependencies on data. If you try to time
something, make several runs and reject the results as flawed if the run times vary significantly.

To cope with longer time intervals and with calendar time, the standard library provides t ti im me e_ _t t
for representing a point in time and a structure t tm m for separating a point in time into its conven-
tional parts:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

906 Locales Appendix D

t ty yp pe ed de ef f i im mp pl le em me en nt ta at ti io on n_ _d de ef fi in ne ed d t ti im me e_ _t t; / / implementation-defined arithmetic type (§4.1.1)
/ / capable of representing a period of time,
/ / often, a 32-bit integer

s st tr ru uc ct t t tm m {
i in nt t t tm m_ _s se ec c; / / second of minute [0,61]; 60 and 61 to represent leap seconds
i in nt t t tm m_ _m mi in n; / / minute of hour [0,59]
i in nt t t tm m_ _h ho ou ur r; / / hour of day [0,23]
i in nt t t tm m_ _m md da ay y; / / day of month [1,31]
i in nt t t tm m_ _m mo on n; / / month of year [0,11]; 0 means January (note: not [1:12])
i in nt t t tm m_ _y ye ea ar r; / / year since 1900; 0 means year 1900, and 102 means 2002
i in nt t t tm m_ _w wd da ay y; / / days since Sunday [0,6]; 0 means Sunday
i in nt t t tm m_ _y yd da ay y; / / days since January 1 [0,365]; 0 means January 1
i in nt t t tm m_ _i is sd ds st t; / / hours of daylight savings time

};

Note that the standard guarantees only that t tm m has the i in nt t members mentioned here. The standard
does not guarantee that the members appear in this order or that there are no other fields.

The t ti im me e_ _t t and t tm m types and the basic facilities for using them are presented in <c ct ti im me e> and
<t ti im me e.h h>. For example::

c cl lo oc ck k_ _t t c cl lo oc ck k() ; / / number of clock ticks since the start of the program

t ti im me e_ _t t t ti im me e(t ti im me e_ _t t* p pt t) ; / / current calendar time
d do ou ub bl le e d di if ff ft ti im me e(t ti im me e_ _t t t t2 2, t ti im me e_ _t t t t1 1) ; / / t2–t1 in seconds

t tm m* l lo oc ca al lt ti im me e(c co on ns st t t ti im me e_ _t t* p pt t) ; / / local time for the *pt
t tm m* g gm mt ti im me e(c co on ns st t t ti im me e_ _t t* p pt t) ; / / Grenwich Mean Time (GMT) tm for *pt, or 0

/ / (officially called Coordinated Universal Time, UTC)

t ti im me e_ _t t m mk kt ti im me e(t tm m* p pt tm m) ; / / time_t for *ptm, or time_t(-1)

c ch ha ar r* a as sc ct ti im me e(c co on ns st t t tm m* p pt tm m) ; / / C-style string representation for *ptm
/ / for example, "Sun Sep 16 01:03:52 1973\n"

c ch ha ar r* c ct ti im me e(c co on ns st t t ti im me e_ _t t* t t) { r re et tu ur rn n a as sc ct ti im me e(l lo oc ca al lt ti im me e(t t)) ; }

Beware: both l lo oc ca al lt ti im me e() and g gm mt ti im me e() return a t tm m* to a statically allocated object; a subsequent
call of that function will change the value of that object. Either use such a return value immedi-
ately, or copy the t tm m into storage that you control. Similarly, a as sc ct ti im me e() returns a pointer to a stati-
cally allocated character array.

A t tm m can represent dates in a range of at least tens of thousands of years (about [-32000,32000]
for a minimally sized i in nt t). However, t ti im me e_ _t t is most often a (signed) 32-bit l lo on ng g i in nt t. Counting sec-
onds, this makes t ti im me e_ _t t capable of representing a range just over 68 years on each side of a base
year. This base year is most commonly 1970, with the exact base time being 0:00 of January 1
GMT (UTC). If t ti im me e_ _t t is a 32-bit signed integer, we’ll run out of ‘‘time’’ in 2038 unless we
upgrade t ti im me e_ _t t to a larger integer type, as is already done on some systems.

The t ti im me e_ _t t mechanism is meant primarily for representing ‘‘near current time.’’ Thus, we
should not expect t ti im me e_ _t t to be able to represent dates outside the [1902,2038] range. Worse, not all
implementations of the functions dealing with time handle negative values in the same way. For
portability, a value that needs to be represented as both a t tm m and a t ti im me e_ _t t should be in the

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.1 Clocks and Timers 907

[1970,2038] range. People who want to represent dates outside the 1970 to 2038 time frame must
devise some additional mechanism to do so.

One consequence of this is that m mk kt ti im me e() can fail. If the argument for m mk kt ti im me e() cannot be
represented as a t ti im me e_ _t t, the error indicator t ti im me e_ _t t(-1 1) is returned.

If we have a long-running program, we might time it like this:

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) / / §6.1.7
{

t ti im me e_ _t t t t1 1 = t ti im me e(0 0) ;
d do o_ _a a_ _l lo ot t(a ar rg gc c,a ar rg gv v) ;
t ti im me e_ _t t t t2 2 = t ti im me e(0 0) ;
d do ou ub bl le e d d = d di if ff ft ti im me e(t t2 2,t t1 1) ;
c co ou ut t << "d do o_ _a a_ _l lo ot t() t to oo ok k" << d d << " s se ec co on nd ds s\ \n n";

}

If the argument to t ti im me e() is not 0 0, the resulting time is also assigned to the t ti im me e_ _t t pointed to. If
the calendar time is not available (say, on a specialized processor), the value t ti im me e_ _t t(-1 1) is
returned. We could cautiously try to find today’s date like this:

i in nt t m ma ai in n()
{

t ti im me e_ _t t t t;

i if f (t ti im me e(&t t) == t ti im me e_ _t t(-1 1)) { / / time_t(–1) means ‘‘time() didn’t work’’
c ce er rr r << "B Ba ad d t ti im me e\ \n n";
e ex xi it t(1 1) ;

}

t tm m* g gt t = g gm mt ti im me e(&t t) ;
c co ou ut t << g gt t->t tm m_ _m mo on n+1 1 << ́ /´ << g gt t->t tm m_ _m md da ay y << ́ /´ << 1 19 90 00 0+g gt t->t tm m_ _y ye ea ar r << e en nd dl l;

}

D.4.4.2 A Date Class

As mentioned in §10.3, it is unlikely that a single D Da at te e type can serve all purposes. The uses of
date information dictate a variety of representations, and calendar information before the 19th cen-
tury is very dependent on historical vagaries. However, as an example, we could define a D Da at te e
type along the lines from §10.3, using t ti im me e_ _t t as the implementation:

c cl la as ss s D Da at te e {
p pu ub bl li ic c:

e en nu um m M Mo on nt th h { j ja an n=1 1, f fe eb b, m ma ar r, a ap pr r, m ma ay y, j ju un n, j ju ul l, a au ug g, s se ep p, o oc ct t, n no ov v, d de ec c };

c cl la as ss s B Ba ad d_ _d da at te e {};

D Da at te e(i in nt t d dd d, M Mo on nt th h m mm m, i in nt t y yy y) ;
D Da at te e() ;

f fr ri ie en nd d o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m& s s, c co on ns st t D Da at te e& d d) ;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

908 Locales Appendix D

/ / ...
p pr ri iv va at te e:

t ti im me e_ _t t d d; / / standard date and time representation
};

D Da at te e: :D Da at te e(i in nt t d dd d, M Mo on nt th h m mm m, i in nt t y yy y)
{

t tm m x x = { 0 0 };
i if f (d dd d<0 0 || 3 31 1<d dd d) t th hr ro ow w B Ba ad d_ _d da at te e() ; / / oversimplified: see §10.3.1
x x.t tm m_ _m md da ay y = d dd d;
i if f (m mm m<j ja an n || d de ec c<m mm m) t th hr ro ow w B Ba ad d_ _d da at te e() ;
x x.t tm m_ _m mo on n = m mm m-1 1; / / tm_mon is zero based
x x.t tm m_ _y ye ea ar r = y yy y-1 19 90 00 0; / / tm_year is 1900 based
d d = m mk kt ti im me e(&x x) ;

}

D Da at te e: :D Da at te e()
{

d d = t ti im me e(0 0) ; / / default Date: today
i if f (d d == t ti im me e_ _t t(-1 1)) t th hr ro ow w B Ba ad d_ _d da at te e() ;

}

The task here is to define locale-sensitive implementations for D Da at te e << and >>.

D.4.4.3 Date and Time Output

Like n nu um m_ _p pu ut t (§D.4.2), t ti im me e_ _p pu ut t provides p pu ut t() functions for writing to buffers through iterators:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s O Ou ut t = o os st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :t ti im me e_ _p pu ut t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f O Ou ut t i it te er r_ _t ty yp pe e;

e ex xp pl li ic ci it t t ti im me e_ _p pu ut t(s si iz ze e_ _t t r r = 0 0) ;

/ / put t into s’s stream buffer through b, using format fmt:
O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, c co on ns st t t tm m* t t,

c co on ns st t C Ch h* f fm mt t_ _b b, c co on ns st t C Ch h* f fm mt t_ _e e) c co on ns st t;

O Ou ut t p pu ut t(O Ou ut t b b, i io os s_ _b ba as se e& s s, C Ch h f fi il ll l, c co on ns st t t tm m* t t, c ch ha ar r f fm mt t, c ch ha ar r m mo od d = 0 0) c co on ns st t
{ r re et tu ur rn n d do o_ _p pu ut t(b b,s s,f fi il ll l,t t,f fm mt t,m mo od d) ; }

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜t ti im me e_ _p pu ut t() ;

v vi ir rt tu ua al l O Ou ut t d do o_ _p pu ut t(O Ou ut t, i io os s_ _b ba as se e&, C Ch h, c co on ns st t t tm m*, c ch ha ar r, c ch ha ar r) c co on ns st t;
};

A call p pu ut t(b b,s s,f fi il ll l,t t,f fm mt t_ _b b,f fm mt t_ _e e) places the date information from t t into s s’s stream buffer
through b b. The f fi il ll l character is used where needed for padding. The output format is specified by a
p pr ri in nt tf f()-like format string [f fm mt t_ _b b,f fm mt t_ _e e). The p pr ri in nt tf f-like (§21.8) format is used to produce an

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.3 Date and Time Output 909

actual output and may contain the following special-purpose format specifiers:

% %a a abbreviated weekday name (e.g., Sat)
% %A A full weekday name (e.g., Saturday)
% %b b abbreviated month name (e.g., Feb)
% %B B full month name (e.g., February)
% %c c date and time (e.g., Sat Feb 06 21:46:05 1999)
% %d d day of month [01,31] (e.g., 06)
% %H H 24-hour clock hour [00,23] (e.g., 21)
% %I I 12-hour clock hour [01,12] (e.g., 09)
% %j j day of year [001,366] (e.g., 037)
% %m m month of year [01,12] (e.g., 02)
% %M M minute of hour [00,59] (e.g., 48)
% %p p a.m./p.m. indicator for 12-hour clock (e.g., PM)
% %S S second of minute [00,61] (e.g., 40)
% %U U week of year [00,53] starting with Sunday (e.g., 05); the first Sunday starts week 1
% %w w day of week [0,6]; 0 means Sunday (e.g., 6)
% %W W week of year [00,53] starting with Monday (e.g., 05); the first Monday starts week 1
% %x x date (e.g., 02/06/99)
% %X X time (e.g., 21:48:40)
% %y y year without century [00,99] (e.g., 99)
% %Y Y year (e.g., 1999)
% %Z Z time zone indicator (e.g., EST) if the time zone is known

This long list of very specialized formatting rules could be used as an argument for the use of
extensible I/O systems. However, as with most specialized notations, it is adequate for its task and
often even convenient.

In addition to these formatting directives, most implementations support ‘‘modifiers,’’ such as
an integer specifying a field width (§21.8), %1 10 0X X. Modifiers for the time-and-date formats are not
part of the C++ standard, but some platform standards, such as POSIX, require them. Conse-
quently, modifiers can be difficult to avoid even if their use isn’t perfectly portable.

The s sp pr ri in nt tf f-like (§21.8) function s st tr rf ft ti im me e() from <c ct ti im me e> or <t ti im me e.h h> produces output using
the time and date format directives:

s si iz ze e_ _t t s st tr rf ft ti im me e(c ch ha ar r* s s, s si iz ze e_ _t t m ma ax x, c co on ns st t c ch ha ar r* f fo or rm ma at t, c co on ns st t t tm m* t tm mp p) ;

This function places a maximum of m ma ax x characters from *t tm mp p and the f fo or rm ma at t into *s s according the
f fo or rm ma at t. For example:

i in nt t m ma ai in n()
{

c co on ns st t i in nt t m ma ax x = 2 20 0; / / sloppy: hope strftime() will never produce more than 20 characters
c ch ha ar r b bu uf f[m ma ax x] ;
t ti im me e_ _t t t t = t ti im me e(0 0) ;
s st tr rf ft ti im me e(b bu uf f,m ma ax x,"%A A\ \n n",l lo oc ca al lt ti im me e(&t t)) ;
c co ou ut t << b bu uf f;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

910 Locales Appendix D

On a Wednesday, this will print W We ed dn ne es sd da ay y in the default c cl la as ss si ic c() locale (§D.2.3) and o on ns sd da ag g in
a Danish locale.

Characters that are not part of a format specified, such as the newline in the example, are simply
copied into the first argument (s s).

When p pu ut t() identifies a format character f f (and optional modifier character m m), it calls the vir-
tual d do o_ _p pu ut t() to do the actual formatting: d do o_ _p pu ut t(b b,s s,f fi il ll l,t t,f f,m m).

A call p pu ut t(b b,s s,f fi il ll l,t t,f f,m m) is a simplified form of p pu ut t(), where a format character (f f) and a
modifier character (m m) are explicitly provided. Thus,

c co on ns st t c ch ha ar r f fm mt t[] = "%1 10 0X X";
p pu ut t(b b,s s,f fi il ll l,t t,f fm mt t,f fm mt t+s si iz ze eo of f(f fm mt t)) ;

can be abbreviated to

p pu ut t(b b,s s,f fi il ll l,t t,´X X´,1 10 0) ;

If a format contains multibyte characters, it must both begin and end in the default state (§D.4.6).
We can use p pu ut t() to implement a l lo oc ca al le e-sensitive output operator for D Da at te e:

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m& s s, c co on ns st t D Da at te e& d d)
{

o os st tr re ea am m: :s se en nt tr ry y g gu ua ar rd d(s s) ; / / see §21.3.8
i if f (!g gu ua ar rd d) r re et tu ur rn n s s;

t tm m* t tm mp p = l lo oc ca al lt ti im me e(&d d.d d) ;
t tr ry y {

i if f (u us se e_ _f fa ac ce et t< t ti im me e_ _p pu ut t<c ch ha ar r> >(s s.g ge et tl lo oc c()).p pu ut t(s s,s s,s s.f fi il ll l() ,t tm mp p,´x x´).f fa ai il le ed d())
s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :f fa ai il lb bi it t) ;

}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s s) ; / / see §D.4.2.2
}
r re et tu ur rn n s s;

}

Since there is no standard D Da at te e type, there is no default layout for date I/O. Here, I specified the
%x x format by passing the character ´x x´ as the format character. Because the %x x format is the
default for g ge et t_ _t ti im me e() (§D.4.4.4), that is probably as close to a standard as one can get. See
§D.4.4.5 for an example of how to use alternative formats.

A _ _b by yn na am me e version (§D.4, §D.4.1) of t ti im me e_ _p pu ut t is also provided:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s O Ou ut t = o os st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :t ti im me e_ _p pu ut t_ _b by yn na am me e : p pu ub bl li ic c t ti im me e_ _p pu ut t<C Ch h,O Ou ut t> { /* ... */ };

D.4.4.4 Date and Time Input

As ever, input is trickier than output. When we write code to output a value, we often have a
choice among different formats. In addition, when we write input code, we must deal with errors
and sometimes the possibility of several alternative formats.

The t ti im me e_ _g ge et t facet implements input of time and date. The idea is that t ti im me e_ _g ge et t of a l lo oc ca al le e can

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.4 Date and Time Input 911

read the times and dates produced by the l lo oc ca al le e’s t ti im me e_ _p pu ut t. However, there are no standard d da at te e
and t ti im me e classes, so a programmer can use a locale to produce output according to a variety of for-
mats. For example, the following representations could all be produced by using a single output
statement, using t ti im me e_ _p pu ut t (§D.4.4.5) from different locales:

J Ja an nu ua ar ry y 1 15 5t th h 1 19 99 99 9
T Th hu ur rs sd da ay y 1 15 5t th h J Ja an nu ua ar ry y 1 19 99 99 9
1 15 5 J Ja an n 1 19 99 99 9A AD D
T Th hu ur rs s 1 15 5/1 1/9 99 9

The C++ standard encourages implementers of t ti im me e_ _g ge et t to accept dates and time formats as speci-
fied by POSIX and other standards. The problem is that it is difficult to standardize the intent to
read dates and times in whatever format is conventional in a given culture. It is wise to experiment
to see what a given locale provides (§D.6[8]). If a format isn’t accepted, a programmer can provide
a suitable alternative t ti im me e_ _g ge et t facet.

The standard time input f fa ac ce et t, t ti im me e_ _g ge et t, is derived from t ti im me e_ _b ba as se e:

s st tr ru uc ct t s st td d: :t ti im me e_ _b ba as se e {
e en nu um m d da at te eo or rd de er r {

n no o_ _o or rd de er r, / / no order, possibly more elements (such as day of week)
d dm my y, / / day before month before year
m md dy y, / / month before day before year
y ym md d, / / year before month before day
y yd dm m / / year before day before month

};
};

An implementer can use this enumeration to simplify the parsing on date formats.
Like n nu um m_ _g ge et t, t ti im me e_ _g ge et t accesses its buffer through a pair of input iterators:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s I In n = i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s t ti im me e_ _g ge et t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t, p pu ub bl li ic c t ti im me e_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f I In n i it te er r_ _t ty yp pe e;

e ex xp pl li ic ci it t t ti im me e_ _g ge et t(s si iz ze e_ _t t r r = 0 0) ;

d da at te eo or rd de er r d da at te e_ _o or rd de er r() c co on ns st t { r re et tu ur rn n d do o_ _d da at te e_ _o or rd de er r() ; }

/ / read [b,e) into d, using formatting rules from s, reporting errors by setting r:
I In n g ge et t_ _t ti im me e(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* d d) c co on ns st t;
I In n g ge et t_ _d da at te e(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* d d) c co on ns st t;
I In n g ge et t_ _y ye ea ar r(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* d d) c co on ns st t;
I In n g ge et t_ _w we ee ek kd da ay y(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* d d) c co on ns st t;
I In n g ge et t_ _m mo on nt th hn na am me e(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* d d) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)
p pr ro ot te ec ct te ed d:

˜t ti im me e_ _g ge et t() ;
/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)

};

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

912 Locales Appendix D

The g ge et t_ _t ti im me e() function calls d do o_ _g ge et t_ _t ti im me e(). The default g ge et t_ _t ti im me e() reads time as produced by
the l lo oc ca al le e’s t ti im me e_ _p pu ut t: :p pu ut t(), using the %X X format (§D.4.4). Similarly, the g ge et t_ _d da at te e() function
calls d do o_ _g ge et t_ _d da at te e(). The default g ge et t_ _d da at te e() reads a date as produced by the l lo oc ca al le e’s
t ti im me e_ _p pu ut t: :p pu ut t(), using the %x x format (§D.4.4).

Thus, the simplest input operator for D Da at te es is something like this:

i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m& s s, D Da at te e& d d)
{

i is st tr re ea am m: :s se en nt tr ry y g gu ua ar rd d(s s) ; / / see §21.3.8
i if f (!g gu ua ar rd d) r re et tu ur rn n s s;

i io os s_ _b ba as se e: :i io os st ta at te e r re es s = 0 0;
t tm m x x = { 0 0 };
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<c ch ha ar r,c ch ha ar r_ _t tr ra ai it ts s<c ch ha ar r> > e en nd d;
t tr ry y {

u us se e_ _f fa ac ce et t< t ti im me e_ _g ge et t<c ch ha ar r> >(s s.g ge et tl lo oc c()).g ge et t_ _d da at te e(s s,e en nd d,s s,r re es s,&x x) ;
i if f (r re es s==0 0 || r re es s==i io os s_ _b ba as se e: :e eo of fb bi it t)

d d = D Da at te e(x x.t tm m_ _m md da ay y,D Da at te e: :M Mo on nt th h(x x.t tm m_ _m mo on n+1 1) ,x x.t tm m_ _y ye ea ar r+1 19 90 00 0) ;
e el ls se e

s s.s se et ts st ta at te e(r re es s) ;
}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s s) ; / / see §D.4.2.2
}

r re et tu ur rn n s s;
}

The call g ge et t_ _d da at te e(s s,e en nd d,s s,r re es s,&x x) relies on two implicit conversions from i is st tr re ea am m: As the first
argument, s s is used to construct an i is st tr re ea am mb bu uf f_ _i it te er ra at to or r. As third argument, s s is converted to the
i is st tr re ea am m base class i io os s_ _b ba as se e.

This input operator will work correctly for dates in the range that can be represented by t ti im me e_ _t t.
A trivial test case would be:

i in nt t m ma ai in n()
t tr ry y {

D Da at te e t to od da ay y;
c co ou ut t << t to od da ay y << e en nd dl l; / / write using %x format
D Da at te e d d(1 12 2, D Da at te e: :m ma ay y, 1 19 99 98 8) ;

c co ou ut t << d d << e en nd dl l;
D Da at te e d dd d;
w wh hi il le e (c ci in n >> d dd d) c co ou ut t << d dd d << e en nd dl l; / / read dates produced by %x format

}
c ca at tc ch h (D Da at te e: :B Ba ad d_ _d da at te e) {

c co ou ut t << "e ex xi it t: b ba ad d d da at te e c ca au ug gh ht t\ \n n";
}

A _ _b by yn na am me e version (§D.4, §D.4.1) of t ti im me e_ _g ge et t is also provided:

t te em mp pl la at te e <c cl la as ss s C Ch h, c cl la as ss s I In n = i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s s st td d: :t ti im me e_ _g ge et t_ _b by yn na am me e : p pu ub bl li ic c t ti im me e_ _g ge et t<C Ch h,I In n> { /* ... */ };

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.4 Date and Time Input 913

D.4.4.5 A More Flexible Date Class

If you tried to use the D Da at te e class from §D.4.4.2 with the I/O from §D.4.4.3 and §D.4.4.4, you’d
soon find it restrictive:

[1] It can handle only dates that can be represented by a t ti im me e_ _t t; that typically means in the
[1970,2038] range.

[2] It accepts dates only in the standard format – whatever that might be.
[3] Its reporting of input errors is unacceptable.
[4] It supports only streams of c ch ha ar r – not streams of arbitrary character types.

A more interesting and more useful input operator would accept a wider range of dates, recognize a
few common formats, and reliably report errors in a useful form. To do this, we must depart from
the t ti im me e_ _t t representation:

c cl la as ss s D Da at te e {
p pu ub bl li ic c:

e en nu um m M Mo on nt th h { j ja an n=1 1, f fe eb b, m ma ar r, a ap pr r, m ma ay y, j ju un n, j ju ul l, a au ug g, s se ep p, o oc ct t, n no ov v, d de ec c };

s st tr ru uc ct t B Ba ad d_ _d da at te e {
c co on ns st t c ch ha ar r* w wh hy y;
B Ba ad d_ _d da at te e(c co on ns st t c ch ha ar r* p p) : w wh hy y(p p) { }

};

D Da at te e(i in nt t d dd d, M Mo on nt th h m mm m, i in nt t y yy y, i in nt t d da ay y_ _o of f_ _w we ee ek k = 0 0) ;
D Da at te e() ;

v vo oi id d m ma ak ke e_ _t tm m(t tm m* t t) c co on ns st t; / / place tm representation of Date in *t
t ti im me e_ _t t m ma ak ke e_ _t ti im me e_ _t t() c co on ns st t; / / return time_t representation of Date

i in nt t y ye ea ar r() c co on ns st t { r re et tu ur rn n y y; }
M Mo on nt th h m mo on nt th h() c co on ns st t { r re et tu ur rn n m m; }
i in nt t d da ay y() c co on ns st t { r re et tu ur rn n d d; }

/ / ...
p pr ri iv va at te e:

c ch ha ar r d d;
M Mo on nt th h m m;
i in nt t y y;

};

For simplicity, I reverted to the (d d,m m,y y) representation (§10.2).
The constructor might be defined like this:

D Da at te e: :D Da at te e(i in nt t d dd d, M Mo on nt th h m mm m, i in nt t y yy y, i in nt t d da ay y_ _o of f_ _w we ee ek k)
:d d(d dd d) , m m(m mm m) , y y(y yy y)

{
i if f (d d==0 0 && m m==M Mo on nt th h(0 0) && y y==0 0) r re et tu ur rn n; / / Date(0,0,0) is the "null date"
i if f (m mm m<j ja an n || d de ec c<m mm m) t th hr ro ow w B Ba ad d_ _d da at te e("b ba ad d m mo on nt th h") ;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

914 Locales Appendix D

i if f (d dd d<1 1 || 3 31 1<d dd d) / / oversimplified; see §10.3.1
t th hr ro ow w B Ba ad d_ _d da at te e("b ba ad d d da ay y o of f m mo on nt th h") ;

i if f (d da ay y_ _o of f_ _w we ee ek k && d da ay y_ _i in n_ _w we ee ek k(y yy y,m mm m,d dd d)!=d da ay y_ _o of f_ _w we ee ek k)
t th hr ro ow w B Ba ad d_ _d da at te e("b ba ad d d da ay y o of f w we ee ek k") ;

}

D Da at te e: :D Da at te e() :d d(0 0) , m m(0 0) , y y(0 0) { } / / a "null date"

The d da ay y_ _i in n_ _w we ee ek k() calculation is nontrivial and immaterial to the l lo oc ca al le e mechanisms, so I have
left it out. If you need one, your system will have one somewhere.

Comparison operations are always useful for types such as D Da at te e:

b bo oo ol l o op pe er ra at to or r==(c co on ns st t D Da at te e& x x, c co on ns st t D Da at te e& y y)
{

r re et tu ur rn n x x.y ye ea ar r()==y y.y ye ea ar r() && x x.m mo on nt th h()==y y.m mo on nt th h() && x x.d da ay y()==y y.d da ay y() ;
}

b bo oo ol l o op pe er ra at to or r!=(c co on ns st t D Da at te e& x x, c co on ns st t D Da at te e& y y)
{

r re et tu ur rn n !(x x==y y) ;
}

Having departed from the standard t tm m and t ti im me e_ _t t formats, we need conversion functions to cooper-
ate with software that expects those types:

v vo oi id d D Da at te e: :m ma ak ke e_ _t tm m(t tm m* p p) c co on ns st t / / put date into *p
{

t tm m x x = { 0 0 };
*p p = x x;
p p->t tm m_ _y ye ea ar r = y y-1 19 90 00 0;
p p->t tm m_ _m md da ay y = d d;
p p->t tm m_ _m mo on n = m m-1 1;

}

t ti im me e_ _t t D Da at te e: :m ma ak ke e_ _t ti im me e_ _t t() c co on ns st t
{

i if f (y y<1 19 97 70 0 || 2 20 03 38 8<y y) / / oversimplified
t th hr ro ow w B Ba ad d_ _d da at te e("d da at te e o ou ut t o of f r ra an ng ge e f fo or r t ti im me e_ _t t") ;

t tm m x x;
m ma ak ke e_ _t tm m(&x x) ;
r re et tu ur rn n m mk kt ti im me e(&x x) ;

}

D.4.4.6 Specifying a D Da at te e Format

C++ doesn’t define a standard output format for dates (%x x is as close as we get; §D.4.4.3). How-
ever, even if a standard format existed, we would probably want to be able to use alternatives. This
could be done by providing a ‘‘default format’’ and a way of changing it. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.6 Specifying a D Da at te e Format 915

c cl la as ss s D Da at te e_ _f fo or rm ma at t {
s st ta at ti ic c c ch ha ar r f fm mt t[] ; / / default format
c co on ns st t c ch ha ar r* c cu ur rr r; / / current format
c co on ns st t c ch ha ar r* c cu ur rr r_ _e en nd d;

p pu ub bl li ic c:
D Da at te e_ _f fo or rm ma at t() :c cu ur rr r(f fm mt t) , c cu ur rr r_ _e en nd d(f fm mt t+s st tr rl le en n(f fm mt t)) { }

c co on ns st t c ch ha ar r* b be eg gi in n() c co on ns st t { r re et tu ur rn n c cu ur rr r; }
c co on ns st t c ch ha ar r* e en nd d() c co on ns st t { r re et tu ur rn n c cu ur rr r_ _e en nd d; }

v vo oi id d s se et t(c co on ns st t c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) { c cu ur rr r=p p; c cu ur rr r_ _e en nd d=q q; }
v vo oi id d s se et t(c co on ns st t c ch ha ar r* p p) { c cu ur rr r=p p; c cu ur rr r_ _e en nd d=c cu ur rr r+s st tr rl le en n(p p) ; }

s st ta at ti ic c c co on ns st t c ch ha ar r* d de ef fa au ul lt t_ _f fm mt t() { r re et tu ur rn n f fm mt t; }
};

c co on ns st t c ch ha ar r D Da at te e_ _f fo or rm ma at t: :f fm mt t[] = "%A A, %B B %d d, %Y Y"; / / e.g., Friday, February 5, 1999

D Da at te e_ _f fo or rm ma at t d da at te e_ _f fm mt t;

To be able to use that s st tr rf ft ti im me e() format (§D.4.4.3), I have refrained from parameterizing the
D Da at te e_ _f fo or rm ma at t class on the character type used. This implies that this solution allows only date nota-
tions for which the format can be expressed as a c ch ha ar r[]. I also used a global format object
(d da at te e_ _f fm mt t) to provide a default D Da at te e format. Since the value of d da at te e_ _f fm mt t can be changed, this pro-
vides a crude way of controlling D Da at te e formatting, similar to the way g gl lo ob ba al l() (§D.2.3) can be
used to control formatting.

A more general solution is to add D Da at te e_ _i in n and D Da at te e_ _o ou ut t facets to control reading and writing
from a stream. That approach is presented in §D.4.4.7.

Given D Da at te e_ _f fo or rm ma at t, D Da at te e: :o op pe er ra at to or r<<() can be written like this:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
b ba as si ic c_ _o os st tr re ea am m<C Ch h,T Tr r>& o op pe er ra at to or r<<(b ba as si ic c_ _o os st tr re ea am m<C Ch h,T Tr r>& s s, c co on ns st t D Da at te e& d d)
/ / write according to user-specified format
{

t ty yp pe en na am me e b ba as si ic c_ _o os st tr re ea am m<C Ch h,T Tr r>: :s se en nt tr ry y g gu ua ar rd d(s s) ; / / see §21.3.8
i if f (!g gu ua ar rd d) r re et tu ur rn n s s;

t tm m t t;
d d.m ma ak ke e_ _t tm m(&t t) ;
t tr ry y {

c co on ns st t t ti im me e_ _p pu ut t<C Ch h>& f f = u us se e_ _f fa ac ce et t< t ti im me e_ _p pu ut t<C Ch h> >(s s.g ge et tl lo oc c()) ;
i if f (f f.p pu ut t(s s,s s,s s.f fi il ll l() ,&t t,d da at te e_ _f fm mt t.b be eg gi in n() ,d da at te e_ _f fm mt t.e en nd d()).f fa ai il le ed d())

s s.s se et ts st ta at te e(i io os s_ _b ba as se e: :f fa ai il lb bi it t) ;
}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s s) ; / / see §D.4.2.2
}
r re et tu ur rn n s s;

}

I could have used h ha as s_ _f fa ac ce et t to verify that s s’s locale had a t ti im me e_ _p pu ut t<C Ch h> facet. However, here it
seemed simpler to handle that problem by catching any exception thrown by u us se e_ _f fa ac ce et t.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

916 Locales Appendix D

Here is a simple test program that controls the output format through d da at te e_ _f fm mt t:

i in nt t m ma ai in n()
t tr ry y {

w wh hi il le e (c ci in n >> d dd d && d dd d != D Da at te e()) c co ou ut t << d dd d << e en nd dl l; / / write using default date_fmt

d da at te e_ _f fm mt t.s se et t("%Y Y/%m m/%d d") ;

w wh hi il le e (c ci in n >> d dd d && d dd d != D Da at te e()) c co ou ut t << d dd d << e en nd dl l; / / write using "%Y/%m/%d"
}
c ca at tc ch h (D Da at te e: :B Ba ad d_ _d da at te e e e) {

c co ou ut t << "b ba ad d d da at te e c ca au ug gh ht t: " << e e.w wh hy y << e en nd dl l;
}

D.4.4.7 A D Da at te e Input Facet

As ever, input is a bit more difficult than output. However, because the interface to low-level input
is fixed by g ge et t_ _d da at te e() and because the o op pe er ra at to or r>>() defined for D Da at te e in §D.4.4.4 didn’t directly
access the representation of a D Da at te e, we could use that o op pe er ra at to or r>>() unchanged. Here is a templa-
tized version to match the o op pe er ra at to or r<<() from §D.4.4.6:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s T Tr r>
i is st tr re ea am m<C Ch h,T Tr r>& o op pe er ra at to or r>>(i is st tr re ea am m<C Ch h,T Tr r>& s s, D Da at te e& d d)
{

t ty yp pe en na am me e i is st tr re ea am m<C Ch h,T Tr r>: :s se en nt tr ry y g gu ua ar rd d(s s) ;
i if f (g gu ua ar rd d) t tr ry y {

i io os s_ _b ba as se e: :i io os st ta at te e r re es s = 0 0;
t tm m x x = { 0 0 };
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h,T Tr r> e en nd d;

u us se e_ _f fa ac ce et t< t ti im me e_ _g ge et t<C Ch h> >(s s.g ge et tl lo oc c()).g ge et t_ _d da at te e(s s,e en nd d,s s,r re es s,&x x) ;

i if f (r re es s==0 0 || r re es s==i io os s_ _b ba as se e: :e eo of fb bi it t)
d d = D Da at te e(x x.t tm m_ _m md da ay y,D Da at te e: :M Mo on nt th h(x x.t tm m_ _m mo on n+1 1) ,x x.t tm m_ _y ye ea ar r+1 19 90 00 0,x x.t tm m_ _w wd da ay y) ;

e el ls se e
s s.s se et ts st ta at te e(r re es s) ;

}
c ca at tc ch h (...) {

h ha an nd dl le e_ _i io oe ex xc ce ep pt ti io on n(s s) ; / / see §D.4.2.2
}
r re et tu ur rn n s s;

}

This D Da at te e input operator calls g ge et t_ _d da at te e() from the i is st tr re ea am m’s t ti im me e_ _g ge et t facet (§D.4.4.4). There-
fore, we can provide a different and more flexible form of input by defining a new facet derived
from t ti im me e_ _g ge et t:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s I In n = i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> >
c cl la as ss s D Da at te e_ _i in n : p pu ub bl li ic c s st td d: :t ti im me e_ _g ge et t<C Ch h,I In n> {
p pu ub bl li ic c:

D Da at te e_ _i in n(s si iz ze e_ _t t r r = 0 0) : s st td d: :t ti im me e_ _g ge et t<C Ch h>(r r) { }

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.7 A D Da at te e Input Facet 917

p pr ro ot te ec ct te ed d:
I In n d do o_ _g ge et t_ _d da at te e(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* t tm mp p) c co on ns st t;

p pr ri iv va at te e:
e en nu um m V Vt ty yp pe e { n no ov va al lu ue e, u un nk kn no ow wn n, d da ay yo of fw we ee ek k, m mo on nt th h };
I In n g ge et tv va al l(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, i in nt t* v v, V Vt ty yp pe e* r re es s) c co on ns st t;

};

The g ge et tv va al l() needs to read a year, a month, a day of the month, and optionally a day of the week
and compose the result into a t tm m.

The names of the months and the names of the days of the week are locale specific. Conse-
quently, we can’t mention them directly in our input function. Instead, we recognize months and
days by calling the functions that t ti im me e_ _g ge et t provides for that: g ge et t_ _m mo on nt th hn na am me e() and
g ge et t_ _w we ee ek kd da ay y() (§D.4.4.4).

The year, the day of the month, and possibly the month are represented as integers. Unfortu-
nately, a number does not indicate whether it denotes a day or a month, or whatever. For example,
7 7 could denote July, day 7 of a month, or even the year 2007. The real purpose of t ti im me e_ _g ge et t’s
d da at te e_ _o or rd de er r() is to resolve such ambiguities.

The strategy of D Da at te e_ _i in n is to read values, classify them, and then use d da at te e_ _o or rd de er r() to see
whether (or how) the values entered make sense. The private g ge et tv va al l() function does the actual
reading from the stream buffer and the initial classification:

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s I In n>
I In n D Da at te e_ _i in n<C Ch h,I In n>: :g ge et tv va al l(I In n b b, I In n e e,

i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, i in nt t* v v, V Vt ty yp pe e* r re es s) c co on ns st t
/ / read part of Date: number, day_of_week, or month. Skip whitespace and punctuation.

{
c co on ns st t c ct ty yp pe e<C Ch h>& c ct t = u us se e_ _f fa ac ce et t< c ct ty yp pe e<C Ch h> >(s s.g ge et tl lo oc c()) ; / / ctype is defined in §D.4.5
C Ch h c c;

*r re es s = n no ov va al lu ue e; / / no value found

f fo or r (;;) {/ / skip whitespace and punctuation
i if f (b b == e e) r re et tu ur rn n e e;
c c = *b b;
i if f (!(c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :s sp pa ac ce e,c c) || c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :p pu un nc ct t,c c))) b br re ea ak k;
++b b;

}

i if f (c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :d di ig gi it t,c c)) { / / read integer without regard for numpunct
i in nt t i i = 0 0;

d do o { / / turn digit from arbitrary character set into decimal value:
s st ta at ti ic c c ch ha ar r c co on ns st t d di ig gi it ts s[] = "0 01 12 23 34 45 56 67 78 89 9";
i i = i i*1 10 0 + f fi in nd d(d di ig gi it ts s,d di ig gi it ts s+1 10 0,c ct t.n na ar rr ro ow w(c c,´ ́))-d di ig gi it ts s;
c c = *++b b;

} w wh hi il le e (c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :d di ig gi it t,c c)) ;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

918 Locales Appendix D

*v v = i i;
*r re es s = u un nk kn no ow wn n; / / an integer, but we don’t know what it represents
r re et tu ur rn n b b;

}

i if f (c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :a al lp ph ha a,c c)) { / / look for name of month or day of week
b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr r;
w wh hi il le e (c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :a al lp ph ha a,c c)) { / / read characters into string

s st tr r += c c;
i if f (++b b == e e) b br re ea ak k;
c c = *b b;

}

t tm m t t;
b ba as si ic c_ _s st tr ri in ng gs st tr re ea am m<C Ch h> s ss s(s st tr r) ;
t ty yp pe ed de ef f i is st tr re ea am mb bu uf f_ _i it te er ra at to or r<C Ch h> S SI I; / / iterator type for ss’ buffer
g ge et t_ _m mo on nt th hn na am me e(s ss s.r rd db bu uf f() ,S SI I() ,s s,r r,&t t) ; / / read from in-memory stream buffer

i if f ((r r&(i io os s_ _b ba as se e: :b ba ad db bi it t|i io os s_ _b ba as se e: :f fa ai il lb bi it t))==0 0) {
*v v= t t.t tm m_ _m mo on n;
*r re es s = m mo on nt th h;
r re et tu ur rn n b b;

}

r r = 0 0; / / clear state before trying to read a second time
g ge et t_ _w we ee ek kd da ay y(s ss s.r rd db bu uf f() ,S SI I() ,s s,r r,&t t) ; / / read from in-memory stream buffer

i if f ((r r&(i io os s_ _b ba as se e: :b ba ad db bi it t|i io os s_ _b ba as se e: :f fa ai il lb bi it t))==0 0) {
*v v = t t.t tm m_ _w wd da ay y;
*r re es s = d da ay yo of fw we ee ek k;
r re et tu ur rn n b b;

}
}

r r |= i io os s_ _b ba as se e: :f fa ai il lb bi it t;
r re et tu ur rn n b b;

}

The tricky part here is to distinguish months from weekdays. We read through input iterators, so
we cannot read [b b,e e) twice, looking first for a month and then for a day. On the other hand, we
cannot look at one character at a time and decide, because only g ge et t_ _m mo on nt th hn na am me e() and
g ge et t_ _w we ee ek kd da ay y() know which character sequences make up the names of the months and the names
of the days of the week in a given locale. The solution I chose was to read strings of alphabetic
characters into a s st tr ri in ng g, make a s st tr ri in ng gs st tr re ea am m from that string, and then repeatedly read from that
stream’s s st tr re ea am mb bu uf f.

The error recording uses the state bits, such as i io os s_ _b ba as se e: :b ba ad db bi it t, directly. This is necessary
because the more convenient functions for manipulating stream state, such as c cl le ea ar r() and s se et t- -
s st ta at te e(), are defined in b ba as si ic c_ _i io os s rather than in its base i io os s_ _b ba as se e (§21.3.3). If necessary, the >>
operator then uses the error results reported by g ge et t_ _d da at te e() to reset the state of the input stream.

Given g ge et tv va al l(), we can read values first and then try to see whether they make sense later. The
d da at te e_ _o or rd de er r() can be crucial:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.7 A D Da at te e Input Facet 919

t te em mp pl la at te e<c cl la as ss s C Ch h, c cl la as ss s I In n>
I In n D Da at te e_ _i in n<C Ch h,I In n>: :d do o_ _g ge et t_ _d da at te e(I In n b b, I In n e e, i io os s_ _b ba as se e& s s, i io os s_ _b ba as se e: :i io os st ta at te e& r r, t tm m* t tm mp p) c co on ns st t
/ / optional day of week followed by ymd, dmy, mdy, or ydm
{

i in nt t v va al l[3 3] ; / / for day, month, and year values in some order
V Vt ty yp pe e r re es s[3 3] = { n no ov va al lu ue e }; / / for value classifications

f fo or r (i in nt t i i=0 0; b b!=e e && i i<3 3; ++i i) { / / read day, month, and year
b b = g ge et tv va al l(b b,e e,s s,r r,&v va al l[i i] ,&r re es s[i i]) ;
i if f (r r) r re et tu ur rn n b b; / / oops: error
i if f (r re es s[i i]==n no ov va al lu ue e) { / / couldn’t complete date

r r |= i io os s_ _b ba as se e: :b ba ad db bi it t;
r re et tu ur rn n b b;

}
i if f (r re es s[i i]==d da ay yo of fw we ee ek k) {

t tm mp p->t tm m_ _w wd da ay y = v va al l[i i] ;
--i i; / / oops: not a day, month, or year

}
}

t ti im me e_ _b ba as se e: :d da at te eo or rd de er r o or rd de er r = d da at te e_ _o or rd de er r() ; / / now try to make sense of the values read

i if f (r re es s[0 0] == m mo on nt th h) { / / mdy or error
/ / ...

}
e el ls se e i if f (r re es s[1 1] == m mo on nt th h) { / / dmy or ymd or error

t tm mp p->t tm m_ _m mo on n = v va al l[1 1] ;
s sw wi it tc ch h (o or rd de er r) {
c ca as se e d dm my y:

t tm mp p->t tm m_ _m md da ay y = v va al l[0 0] ;
t tm mp p->t tm m_ _y ye ea ar r = v va al l[2 2] ;
b br re ea ak k;

c ca as se e y ym md d:
t tm mp p->t tm m_ _y ye ea ar r = v va al l[0 0] ;
t tm mp p->t tm m_ _m md da ay y = v va al l[2 2] ;
b br re ea ak k;

d de ef fa au ul lt t:
r r |= i io os s_ _b ba as se e: :b ba ad db bi it t;
r re et tu ur rn n b b;

}
}
e el ls se e i if f (r re es s[2 2] == m mo on nt th h) { / / ydm or error

/ / ...
}
e el ls se e { / / rely on dateorder or error

/ / ...
}

t tm mp p->t tm m_ _y ye ea ar r -= 1 19 90 00 0; / / adjust base year to suit tm convention
r re et tu ur rn n b b;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

920 Locales Appendix D

I have omitted bits of code that do not add to the understanding of locales, dates, or the handling of
input. Writing better and more general date input functions are left as exercises (§D.6[9-10]).

Here is a simple test program:

i in nt t m ma ai in n()
t tr ry y {

c ci in n.i im mb bu ue e(l lo oc c(l lo oc ca al le e() ,n ne ew w D Da at te e_ _i in n)) ; / / read Dates using Date_in

w wh hi il le e (c ci in n >> d dd d && d dd d != D Da at te e()) c co ou ut t << d dd d << e en nd dl l;
}
c ca at tc ch h (D Da at te e: :B Ba ad d_ _d da at te e e e) {

c co ou ut t << "b ba ad d d da at te e c ca au ug gh ht t: " << e e.w wh hy y << e en nd dl l;
}

Note that d do o_ _g ge et t_ _d da at te e() will accept meaningless dates, such as

T Th hu ur rs sd da ay y O Oc ct to ob be er r 7 7, 1 19 99 98 8

and

1 19 99 99 9/F Fe eb b/3 31 1

The checks for consistency of the year, month, day, and optional day of the week are done in
D Da at te e’s constructor. It is the D Da at te e class’ job to know what constitutes a correct date, and it is not
necessary for D Da at te e_ _i in n to share that knowledge.

It would be possible to have g ge et tv va al l() or d do o_ _g ge et t_ _d da at te e() guess about the meaning of numeric
values. For example,

1 12 2 M Ma ay y 1 19 92 22 2

is clearly not the day 1922 of year 12. That is, we could ‘‘guess’’ that a numeric value that
couldn’t be a day of the specified month must be a year. Such ‘‘guessing’’ can be useful in specific
constrained context. However, it in not a good idea in more general contexts. For example,

1 12 2 M Ma ay y 1 15 5

could be a date in the year 12, 15, 1912, 1915, 2012, or 2015. Sometimes, a better approach is to
augment the notation with clues that disambiguate years and days. For example, 1 1s st t and 1 15 5t th h are
clearly days of a month. Similarly, 7 75 51 1B BC C and 1 14 45 53 3A AD D are explicitly identified as years.

D.4.5 Character Classification

When reading characters from input, it is often necessary to classify them to make sense of what is
being read. For example, to read a number, an input routine needs to know which letters are digits.
Similarly, §6.1.2 showed a use of standard character classification functions for parsing input.

Naturally, classification of characters depends on the alphabet used. Consequently, a facet
c ct ty yp pe e is provided to represent character classification in a locale.

The character classes as described by an enumeration called m ma as sk k:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.5 Character Classification 921

c cl la as ss s s st td d: :c ct ty yp pe e_ _b ba as se e {
p pu ub bl li ic c:

e en nu um m m ma as sk k { / / the actual values are implementation defined
s sp pa ac ce e = 1 1, / / whitespace (in "C" locale: ’ ’, ’\n’, ’\t’, ...)
p pr ri in nt t = 1 1<<1 1, / / printing characters
c cn nt tr rl l = 1 1<<2 2, / / control characters
u up pp pe er r = 1 1<<3 3, / / uppercase characters
l lo ow we er r = 1 1<<4 4, / / lowercase characters
a al lp ph ha a = 1 1<<5 5, / / alphabetic characters
d di ig gi it t = 1 1<<6 6, / / decimal digits
p pu un nc ct t = 1 1<<7 7, / / punctuation characters
x xd di ig gi it t = 1 1<<8 8, / / hexadecimal digits
a al ln nu um m=a al lp ph ha a|d di ig gi it t, / / alphanumeric characters
g gr ra ap ph h=a al ln nu um m|p pu un nc ct t

};
};

This m ma as sk k doesn’t depend on a particular character type. Consequently, this enumeration is placed
in a (non-template) base class.

Clearly, m ma as sk k reflects the traditional C and C++ classification (§20.4.1). However, for different
character sets, different character values fall into different classes. For example, for the ASCII
character set, the integer value 1 12 25 5 represents the character ´}´, which is a punctuation character
(p pu un nc ct t). However, in the Danish national character set, 1 12 25 5 represents the vowel ´a å̊´, which in a
Danish locale must be classified as an a al lp ph ha a.

The classification is called a ‘‘mask’’ because the traditional efficient implementation of char-
acter classification for small character sets is a table in which each entry holds bits representing the
classification. For example:

t ta ab bl le e[´a a´] == l lo ow we er r|a al lp ph ha a|x xd di ig gi it t
t ta ab bl le e[´1 1´] == d di ig gi it t
t ta ab bl le e[´ ́] == s sp pa ac ce e

Given that implementation, t ta ab bl le e[c c]&m m is nonzero if the character c c is an m m and 0 0 otherwise.
The c ct ty yp pe e facet is defined like this:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :c ct ty yp pe e : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t, p pu ub bl li ic c c ct ty yp pe e_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
e ex xp pl li ic ci it t c ct ty yp pe e(s si iz ze e_ _t t r r = 0 0) ;

b bo oo ol l i is s(m ma as sk k m m, C Ch h c c) c co on ns st t; / / is "c" an "m"?

/ / place classification for each Ch in [b:e) into v:
c co on ns st t C Ch h* i is s(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e, m ma as sk k* v v) c co on ns st t;

c co on ns st t C Ch h* s sc ca an n_ _i is s(m ma as sk k m m, c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t; / / find an m
c co on ns st t C Ch h* s sc ca an n_ _n no ot t(m ma as sk k m m, c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t; / / find a non-m

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

922 Locales Appendix D

C Ch h t to ou up pp pe er r(C Ch h c c) c co on ns st t;
c co on ns st t C Ch h* t to ou up pp pe er r(C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t; / / convert [b:e)
C Ch h t to ol lo ow we er r(C Ch h c c) c co on ns st t;
c co on ns st t C Ch h* t to ol lo ow we er r(C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t;

C Ch h w wi id de en n(c ch ha ar r c c) c co on ns st t;
c co on ns st t c ch ha ar r* w wi id de en n(c co on ns st t c ch ha ar r* b b, c co on ns st t c ch ha ar r* e e, C Ch h* b b2 2) c co on ns st t;
c ch ha ar r n na ar rr ro ow w(C Ch h c c, c ch ha ar r d de ef f) c co on ns st t;
c co on ns st t C Ch h* n na ar rr ro ow w(c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e, c ch ha ar r d de ef f, c ch ha ar r* b b2 2) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜c ct ty yp pe e() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

A call i is s(m m,c c) tests whether the character c c belongs to the classification m m. For example:

i in nt t c co ou un nt t_ _s sp pa ac ce es s(c co on ns st t s st tr ri in ng g& s s, c co on ns st t l lo oc ca al le e& l lo oc c)
{

c co on ns st t c ct ty yp pe e<c ch ha ar r>& c ct t = u us se e_ _f fa ac ce et t< c ct ty yp pe e<c ch ha ar r> >(l lo oc c) ;
i in nt t i i = 0 0;
f fo or r(s st tr ri in ng g: :c co on ns st t_ _i it te er ra at to or r p p = s s.b be eg gi in n() ; p p != s s.e en nd d() ; ++p p)

i if f (c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :s sp pa ac ce e,*p p)) ++i i; / / whitespace as defined by ct
r re et tu ur rn n i i;

}

Note that it is also possible to use i is s() to check whether a character belongs to one of a number of
classifications. For example:

c ct t.i is s(c ct ty yp pe e_ _b ba as se e: :s sp pa ac ce e|c ct ty yp pe e_ _b ba as se e: :p pu un nc ct t,c c) ; / / is c whitespace or punctuation in ct?

A call i is s(b b,e e,v v) determines the classification of each character in [b b,e e) and places it in the cor-
responding position in the array v v.

A call s sc ca an n_ _i is s(m m,b b,e e) returns a pointer to the first character in [b b,e e) that is an m m. If no
character is classified as an m m, e e is returned. As ever for standard facets, the public member func-
tion is implemented by a call to its ‘‘d do o_ _’’ virtual function. A simple implementation might be:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c co on ns st t C Ch h* s st td d: :c ct ty yp pe e<C Ch h>: :d do o_ _s sc ca an n_ _i is s(m ma as sk k m m, c co on ns st t C Ch h* b b, c co on ns st t C Ch h* e e) c co on ns st t
{

w wh hi il le e (b b!=e e && !i is s(m m,*b b)) ++b b;
r re et tu ur rn n b b;

}

A call s sc ca an n_ _n no ot t(m m,b b,e e) returns a pointer to the first character in [b b,e e) that is not an m m. If all
characters are classified as m m, e e is returned.

A call t to ou up pp pe er r(c c) returns the uppercase version of c c if such a version exists in the character set
used and c c itself otherwise.

A call t to ou up pp pe er r(b b,e e) converts each character in the range [b b,e e) to uppercase and returns e e. A
simple implementation might be:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.5 Character Classification 923

t te em mp pl la at te e <c cl la as ss s C Ch h>
c co on ns st t C Ch h* s st td d: :c ct ty yp pe e<C Ch h>: :t to o_ _u up pp pe er r(C Ch h* b b, c co on ns st t C Ch h* e e)
{

f fo or r (; b b!=e e; ++b b) *b b = t to ou up pp pe er r(*b b) ;
r re et tu ur rn n e e;

}

The t to ol lo ow we er r() functions are similar to t to ou up pp pe er r() except that they convert to lowercase.
A call w wi id de en n(c c) transforms the character c c into its corresponding C Ch h value. If C Ch h’s character

set provides several characters corresponding to c c, the standard specifies that ‘‘the simplest reason-
able transformation’’ be used. For example,

w wc co ou ut t << u us se e_ _f fa ac ce et t< c ct ty yp pe e<w wc ch ha ar r_ _t t> >(w wc co ou ut t.g ge et tl lo oc c()).w wi id de en n(´e e´) ;

will output a reasonable equivalent to the character e e in w wc co ou ut t’s locale.
Translation between unrelated character representations, such as ASCII and EBCDIC, can also

be done by using w wi id de en n(). For example, assume that an e eb bc cd di ic c locale exists:

c ch ha ar r E EB BC CD DI IC C_ _e e = u us se e_ _f fa ac ce et t< c ct ty yp pe e<c ch ha ar r> >(e eb bc cd di ic c).w wi id de en n(´e e´) ;

A call w wi id de en n(b b,e e,v v) takes each character in the range [b b,e e) and places a widened version in the
corresponding position in the array v v.

A call n na ar rr ro ow w(c ch h,d de ef f) produces a c ch ha ar r value corresponding to the character c ch h from the C Ch h
type. Again, ‘‘the simplest reasonable transformation’’ is to be used. If no such corresponding
c ch ha ar r exist, d de ef f is returned.

A call n na ar rr ro ow w(b b,e e,d de ef f,v v) takes each character in the range [b b,e e) and places a narrowed
version in the corresponding position in the array v v.

The general idea is that n na ar rr ro ow w() converts from a larger character set to a smaller one and that
w wi id de en n() performs the inverse operation. For a character c c from the smaller character set, we
expect:

c c == n na ar rr ro ow w(w wi id de en n(c c) ,0 0) / / not guaranteed

This is true provided that the character represented by c c has only one representation in ‘‘the smaller
character set.’’ However, that is not guaranteed. If the characters represented by a c ch ha ar r are not a
subset of those represented by the larger character set (C Ch h), we should expect anomalies and poten-
tial problems with code treating characters generically.

Similarly, for a character c ch h from the larger character set, we might expect:

w wi id de en n(n na ar rr ro ow w(c ch h,d de ef f)) == c ch h || w wi id de en n(n na ar rr ro ow w(c ch h,d de ef f)) == w wi id de en n(d de ef f) / / not guaranteed

However, even though this is often the case, it cannot be guaranteed for a character that is repre-
sented by several values in the larger character set but only once in the smaller character set. For
example, a digit, such as 7 7, often has several separate representations in a large character set. The
reason for that is typically that a large character set has several conventional character sets as sub-
sets and that the characters from the smaller sets are replicated for ease of conversion.

For every character in the basic source character set (§C.3.3), it is guaranteed that

w wi id de en n(n na ar rr ro ow w(c ch h_ _l li it t,0 0)) == c ch h_ _l li it t

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

924 Locales Appendix D

For example:

w wi id de en n(n na ar rr ro ow w(´x x´) ,0 0) == ́ x x´

The n na ar rr ro ow w() and w wi id de en n() functions respect character classifications wherever possible. For
example, if i is s(a al lp ph ha a,c c), then i is s(a al lp ph ha a,n na ar rr ro ow w(c c,´a a´)) and i is s(a al lp ph ha a,w wi id de en n(c c)) wherever
a al lp ph ha a is a valid mask for the locale used.

A major reason for using a c ct ty yp pe e facet in general and for using n na ar rr ro ow w() and w wi id de en n() func-
tions in particular is to be able to write code that does I/O and string manipulation for any character
set; that is, to make such code generic with respect to character sets. This implies that i io os st tr re ea am m
implementations depend critically on these facilities. By relying on <i io os st tr re ea am m> and <s st tr ri in ng g>, a
user can avoid most direct uses of the c ct ty yp pe e facet.

A _ _b by yn na am me e version (§D.4, §D.4.1) of c ct ty yp pe e is provided:

t te em mp pl la at te e <c cl la as ss s C Ch h> c cl la as ss s s st td d: :c ct ty yp pe e_ _b by yn na am me e : p pu ub bl li ic c c ct ty yp pe e<C Ch h> { /* ... */ };

D.4.5.1 Convenience Interfaces

The most common use of the c ct ty yp pe e facet is to inquire whether a character belongs to a given classi-
fication. Consequently, a set of functions is provided for that:

t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is ss sp pa ac ce e(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sp pr ri in nt t(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sc cn nt tr rl l(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is su up pp pe er r(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sl lo ow we er r(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sa al lp ph ha a(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sd di ig gi it t(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sp pu un nc ct t(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sx xd di ig gi it t(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sa al ln nu um m(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;
t te em mp pl la at te e <c cl la as ss s C Ch h> b bo oo ol l i is sg gr ra ap ph h(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c) ;

These functions are trivially implemented by using u us se e_ _f fa ac ce et t. For example:

t te em mp pl la at te e <c cl la as ss s C Ch h>
i in nl li in ne e b bo oo ol l i is ss sp pa ac ce e(C Ch h c c, c co on ns st t l lo oc ca al le e& l lo oc c)
{

r re et tu ur rn n u us se e_ _f fa ac ce et t< c ct ty yp pe e<C Ch h> >(l lo oc c).i is s(s sp pa ac ce e,c c) ;
}

The one-argument versions of these functions, presented in §20.4.2, are simply these functions for
the current C global locale (not the global C++ locale, l lo oc ca al le e()). Except for the rare cases in which
the C global locale and the C++ global locale differ (§D.2.3), we can think of a one-argument ver-
sion as the two-argument version applied to l lo oc ca al le e(). For example:

i in nl li in ne e i in nt t i is ss sp pa ac ce e(i in nt t i i)
{

r re et tu ur rn n i is ss sp pa ac ce e(i i,l lo oc ca al le e()) ; / / almost
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.5.1 Convenience Interfaces 925

D.4.6 Character Code Conversion

Sometimes, the representation of characters stored in a file differs from the desired representation
of those same characters in main memory. For example, Japanese characters are often stored in
files in which indicators (‘‘shifts’’) tell to which of the four common character sets (kanji, kata-
kana, hiragana, and romaji) a given sequence of characters belongs. This is a bit unwieldy because
the meaning of each byte depends on its ‘‘shift state,’’ but it can save memory because only a kanji
requires more than one byte for its representation. In main memory, these characters are easier to
manipulate when represented in a multi-byte character set where every character has the same size.
Such characters (for example, Unicode characters) are typically placed in wide characters
(w wc ch ha ar r_ _t t; §4.3). Consequently, the c co od de ec cv vt t facet provides a mechanism for converting characters
from one representation to another as they are read or written. For example:

Disk representation: JIS

Main memory representation: Unicode

I/O conversions controlled by c co od de ec cv vt t

This code-conversion mechanism is general enough to provide arbitrary conversions of character
representations. It allows us to write a program to use a suitable internal character representation
(stored in c ch ha ar r, w wc ch ha ar r_ _t t, or whatever) and to then accept a variety of input character stream repre-
sentations by adjusting the locale used by iostreams. The alternative would be to modify the pro-
gram itself or to convert input and output files from/to a variety of formats.

The c co od de ec cv vt t facet provides conversion between different character sets when a character is
moved between a stream buffer and external storage:

c cl la as ss s s st td d: :c co od de ec cv vt t_ _b ba as se e {
p pu ub bl li ic c:

e en nu um m r re es su ul lt t { o ok k, p pa ar rt ti ia al l, e er rr ro or r, n no oc co on nv v }; / / result indicators
};

t te em mp pl la at te e <c cl la as ss s I I, c cl la as ss s E E, c cl la as ss s S St ta at te e>
c cl la as ss s s st td d: :c co od de ec cv vt t : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t, p pu ub bl li ic c c co od de ec cv vt t_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f I I i in nt te er rn n_ _t ty yp pe e;
t ty yp pe ed de ef f E E e ex xt te er rn n_ _t ty yp pe e;
t ty yp pe ed de ef f S St ta at te e s st ta at te e_ _t ty yp pe e;

e ex xp pl li ic ci it t c co od de ec cv vt t(s si iz ze e_ _t t r r = 0 0) ;

r re es su ul lt t i in n(S St ta at te e&, c co on ns st t E E* f fr ro om m, c co on ns st t E E* f fr ro om m_ _e en nd d, c co on ns st t E E*& f fr ro om m_ _n ne ex xt t,/ / read
I I* t to o, I I* t to o_ _e en nd d, I I*& t to o_ _n ne ex xt t) c co on ns st t;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

926 Locales Appendix D

r re es su ul lt t o ou ut t(S St ta at te e&, c co on ns st t I I* f fr ro om m, c co on ns st t I I* f fr ro om m_ _e en nd d, c co on ns st t I I*& f fr ro om m_ _n ne ex xt t,/ / write
E E* t to o, E E* t to o_ _e en nd d, E E*& t to o_ _n ne ex xt t) c co on ns st t;

r re es su ul lt t u un ns sh hi if ft t(S St ta at te e&, E E* t to o, E E* t to o_ _e en nd d, E E*& t to o_ _n ne ex xt t) c co on ns st t; / / end character sequence

i in nt t e en nc co od di in ng g() c co on ns st t t th hr ro ow w() ; / / characterize basic encoding properties
b bo oo ol l a al lw wa ay ys s_ _n no oc co on nv v() c co on ns st t t th hr ro ow w() ; / / can we do I/O without code translation?

i in nt t l le en ng gt th h(c co on ns st t S St ta at te e&, c co on ns st t E E* f fr ro om m, c co on ns st t E E* f fr ro om m_ _e en nd d, s si iz ze e_ _t t m ma ax x) c co on ns st t;
i in nt t m ma ax x_ _l le en ng gt th h() c co on ns st t t th hr ro ow w() ; / / maximum possible length()

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜c co od de ec cv vt t() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

A c co od de ec cv vt t facet is used by b ba as si ic c_ _f fi il le eb bu uf f (§21.5) to read or write characters. A b ba as si ic c_ _f fi il le eb bu uf f
obtains this facet from the stream’s locale (§21.7.1).

The S St ta at te e template argument is the type used to hold the shift state of the stream being con-
verted. S St ta at te e can also be used to identify different conversions by specifying a specialization. The
latter is useful because characters of a variety of character encodings (character sets) can be stored
in objects of the same type. For example:

c cl la as ss s J JI IS Ss st ta at te e { /* .. */ };

p p = n ne ew w c co od de ec cv vt t<w wc ch ha ar r_ _t t,c ch ha ar r,m mb bs st ta at te e_ _t t>; / / standard char to wide char
q q = n ne ew w c co od de ec cv vt t<w wc ch ha ar r_ _t t,c ch ha ar r,J JI IS Ss st ta at te e>; / / JIS to wide char

Without the different S St ta at te e arguments, there would be no way for the facet to know which encoding
to assume for the stream of c ch ha ar rs. The m mb bs st ta at te e_ _t t type from <c cw wc ch ha ar r> or <w wc ch ha ar r.h h> identifies
the system’s standard conversion between c ch ha ar r and w wc ch ha ar r_ _t t.

A new c co od de ec cv vt t can be also created as a derived class and identified by name. For example:

c cl la as ss s J JI IS Sc cv vt t : p pu ub bl li ic c c co od de ec cv vt t<w wc ch ha ar r_ _t t,c ch ha ar r,m mb bs st ta at te e_ _t t> { /* ... */ };

A call i in n(s s,f fr ro om m,f fr ro om m_ _e en nd d,f fr ro om m_ _n ne ex xt t,t to o,t to o_ _e en nd d,t to o_ _n ne ex xt t) reads each character in the range
[f fr ro om m,f fr ro om m_ _e en nd d) and tries to convert it. If a character is converted, i in n() writes its converted
form to the corresponding position in the [t to o,t to o_ _e en nd d) range; if not, i in n() stops at that point.
Upon return, i in n() stores the position one-beyond-the-last character read in f fr ro om m_ _n ne ex xt t and the posi-
tion one-beyond-the-last character written in t to o_ _n ne ex xt t. The r re es su ul lt t value returned by i in n() indicates
how much work was done:

o ok k: all characters in the [f fr ro om m,f fr ro om m_ _e en nd d) range converted
p pa ar rt ti ia al l: not all characters in the [f fr ro om m,f fr ro om m_ _e en nd d) range were converted
e er rr ro or r: i in n() encountered a character it couldn’t convert
n no oc co on nv v: no conversion was needed

Note that a p pa ar rt ti ia al l conversion is not necessarily an error. Possibly more characters have to be read
before a multibyte character is complete and can be written, or maybe the output buffer has to be
emptied to make room for more characters.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.6 Character Code Conversion 927

The s s argument of type S St ta at te e indicates the state of the input character sequence at the start of
the call of i in n(). This is significant when the external character representation uses shift states.
Note that s s is a (non-c co on ns st t) reference argument: At the end of the call, s s holds the state of shift state
of the input sequence. This allows a programmer to deal with p pa ar rt ti ia al l conversions and to convert a
long sequence using several calls to i in n().

A call o ou ut t(s s,f fr ro om m,f fr ro om m_ _e en nd d,f fr ro om m_ _n ne ex xt t,t to o,t to o_ _e en nd d,t to o_ _n ne ex xt t) converts [f fr ro om m,f fr ro om m_ _e en nd d)
from the internal to the external representation in the same way the i in n() converts from the external
to the internal representation.

A character stream must start and end in a ‘‘neutral’’ (unshifted) state. Typically, that state is
S St ta at te e(). A call u un ns sh hi if ft t(s s,t to o,t to o_ _e en nd d,t to o_ _n ne ex xt t) looks at s s and places characters in [t to o,t to o_ _e en nd d)
as needed to bring a sequence of characters back to that unshifted state. The result of u un ns sh hi if ft t()
and the use of t to o_ _n ne ex xt t are done just like o ou ut t().

A call l le en ng gt th h(s s,f fr ro om m,f fr ro om m_ _e en nd d,m ma ax x) returns the number of characters that i in n() could con-
vert from [f fr ro om m,f fr ro om m_ _e en nd d).

A call e en nc co od di in ng g() returns
– –1 1 if the encoding of the external character set uses state (for example, uses shift and unshift

character sequences)
0 0 if the encoding uses varying number of bytes to represent individual characters (for exam-

ple, a character representation might use a bit in a byte to indicate whether one or two
bytes are used to represents that character)

n n if every character of the external character representation is n n bytes
A call a al lw wa ay ys s_ _n no oc co on nv v() returns t tr ru ue e if no conversion is required between the internal and the

external character sets and f fa al ls se e otherwise. Clearly, a al lw wa ay ys s_ _n no oc co on nv v()==t tr ru ue e opens the possibil-
ity for the implementation to provide the maximally efficient implementation that simply doesn’t
invoke the conversion functions.

A call m ma ax x_ _l le en ng gt th h() returns the maximum value that l le en ng gt th h() can return for a valid set of
arguments.

The simplest code conversion that I can think of is one that converts input to uppercase. Thus,
this is about as simple as a c co od de ec cv vt t can be and still perform a service:

c cl la as ss s C Cv vt t_ _t to o_ _u up pp pe er r : p pu ub bl li ic c c co od de ec cv vt t<c ch ha ar r,c ch ha ar r,m mb bs st ta at te e_ _t t> { / / convert to uppercase

e ex xp pl li ic ci it t C Cv vt t_ _t to o_ _u up pp pe er r(s si iz ze e_ _t t r r = 0 0) : c co od de ec cv vt t(r r) { }

p pr ro ot te ec ct te ed d:
/ / read external representation write internal representation:
r re es su ul lt t d do o_ _i in n(S St ta at te e& s s, c co on ns st t c ch ha ar r* f fr ro om m, c co on ns st t c ch ha ar r* f fr ro om m_ _e en nd d, c co on ns st t c ch ha ar r*& f fr ro om m_ _n ne ex xt t,

c ch ha ar r* t to o, c ch ha ar r* t to o_ _e en nd d, c ch ha ar r*& t to o_ _n ne ex xt t) c co on ns st t;

/ / read internal representation write external representation:
r re es su ul lt t d do o_ _o ou ut t(S St ta at te e& s s, c co on ns st t c ch ha ar r* f fr ro om m, c co on ns st t c ch ha ar r* f fr ro om m_ _e en nd d, c co on ns st t c ch ha ar r*& f fr ro om m_ _n ne ex xt t,

c ch ha ar r* t to o, c ch ha ar r* t to o_ _e en nd d, c ch ha ar r*& t to o_ _n ne ex xt t) c co on ns st t
{

r re et tu ur rn n c co od de ec cv vt t<c ch ha ar r,c ch ha ar r,m mb bs st ta at te e_ _t t>: :d do o_ _o ou ut t
(s s,f fr ro om m,f fr ro om m_ _e en nd d,f fr ro om m_ _n ne ex xt t,t to o,t to o_ _e en nd d,t to o_ _n ne ex xt t) ;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

928 Locales Appendix D

r re es su ul lt t d do o_ _u un ns sh hi if ft t(S St ta at te e&, E E* t to o, E E* t to o_ _e en nd d, E E*& t to o_ _n ne ex xt t) c co on ns st t { r re et tu ur rn n o ok k; }

i in nt t d do o_ _e en nc co od di in ng g() c co on ns st t t th hr ro ow w() { r re et tu ur rn n 1 1; }
b bo oo ol l d do o_ _a al lw wa ay ys s_ _n no oc co on nv v() c co on ns st t t th hr ro ow w() { r re et tu ur rn n f fa al ls se e; }

i in nt t d do o_ _l le en ng gt th h(c co on ns st t S St ta at te e&, c co on ns st t E E* f fr ro om m, c co on ns st t E E* f fr ro om m_ _e en nd d, s si iz ze e_ _t t m ma ax x) c co on ns st t;
i in nt t d do o_ _m ma ax x_ _l le en ng gt th h() c co on ns st t t th hr ro ow w() ; / / maximum possible length()

};

c co od de ec cv vt t<c ch ha ar r,c ch ha ar r,m mb bs st ta at te e_ _t t>: :r re es su ul lt t
C Cv vt t_ _t to o_ _u up pp pe er r: :d do o_ _i in n(S St ta at te e& s s, c co on ns st t c ch ha ar r* f fr ro om m, c co on ns st t c ch ha ar r* f fr ro om m_ _e en nd d,

c co on ns st t c ch ha ar r*& f fr ro om m_ _n ne ex xt t, c ch ha ar r* t to o, c ch ha ar r* t to o_ _e en nd d, c ch ha ar r*& t to o_ _n ne ex xt t) c co on ns st t
{

/ / ... §D.6[16] ...
}

i in nt t m ma ai in n() / / trivial test
{

l lo oc ca al le e u ul lo oc ca al le e(l lo oc ca al le e() , n ne ew w C Cv vt t_ _t to o_ _u up pp pe er r) ;

c ci in n.i im mb bu ue e(u ul lo oc ca al le e) ;

c ch ha ar r c ch h;
w wh hi il le e (c ci in n>>c ch h) c co ou ut t << c ch h;

}

A _ _b by yn na am me e version (§D.4, §D.4.1) of c co od de ec cv vt t is provided:

t te em mp pl la at te e <c cl la as ss s I I, c cl la as ss s E E, c cl la as ss s S St ta at te e>
c cl la as ss s s st td d: :c co od de ec cv vt t_ _b by yn na am me e : p pu ub bl li ic c c co od de ec cv vt t<I I,E E,S St ta at te e> { /* ... */ };

D.4.7 Messages

Naturally, most end users prefer to use their native language to interact with a program. However,
we cannot provide a standard mechanism for expressing l lo oc ca al le e-specific general interactions.
Instead, the library provides a simple mechanism for keeping a l lo oc ca al le e-specific set of strings from
which a programmer can compose simple messages. In essence, m me es ss sa ag ge es s implements a trivial
read-only database:

c cl la as ss s s st td d: :m me es ss sa ag ge es s_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f i in nt t c ca at ta al lo og g; / / catalog identifier type
};

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :m me es ss sa ag ge es s : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t, p pu ub bl li ic c m me es ss sa ag ge es s_ _b ba as se e {
p pu ub bl li ic c:

t ty yp pe ed de ef f C Ch h c ch ha ar r_ _t ty yp pe e;
t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<C Ch h> s st tr ri in ng g_ _t ty yp pe e;

e ex xp pl li ic ci it t m me es ss sa ag ge es s(s si iz ze e_ _t t r r = 0 0) ;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.7 Messages 929

c ca at ta al lo og g o op pe en n(c co on ns st t b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r>& f fn n, c co on ns st t l lo oc ca al le e&) c co on ns st t;
s st tr ri in ng g_ _t ty yp pe e g ge et t(c ca at ta al lo og g c c, i in nt t s se et t, i in nt t m ms sg gi id d, c co on ns st t s st tr ri in ng g_ _t ty yp pe e& d d) c co on ns st t;
v vo oi id d c cl lo os se e(c ca at ta al lo og g c c) c co on ns st t;

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)

p pr ro ot te ec ct te ed d:
˜m me es ss sa ag ge es s() ;

/ / virtual ‘‘do_’’ functions for public functions (see §D.4.1)
};

A call o op pe en n(s s,l lo oc c) opens a ‘‘catalog’’ of messages called s s for the locale l lo oc c. A catalog is a set
of strings organized in an implementation-specific way and accessed through the
m me es ss sa ag ge es s: :g ge et t() function. A negative value is returned if no catalog named s s can be opened. A
catalog must be opened before the first use of g ge et t().

A call c cl lo os se e(c ca at t) closes the catalog identified by c ca at t and frees all resources associated with
that catalog.

A call g ge et t(c ca at t,s se et t,i id d,"f fo oo o") looks for a message identified by (s se et t,i id d) in the catalog c ca at t.
If a string is found, g ge et t() returns that string; otherwise, g ge et t() returns the default string (here,
s st tr ri in ng g("f fo oo o")).

Here is an example of a m me es ss sa ag ge es s facet for an implementation in which a message catalog is a
vector of sets of ‘‘messages’’ and a ‘‘message’’ is a string:

s st tr ru uc ct t S Se et t {
v ve ec ct to or r<s st tr ri in ng g> m ms sg gs s;

};

s st tr ru uc ct t C Ca at t {
v ve ec ct to or r<S Se et t> s se et ts s;

};

c cl la as ss s M My y_ _m me es ss sa ag ge es s : p pu ub bl li ic c m me es ss sa ag ge es s<c ch ha ar r> {
v ve ec ct to or r<C Ca at t>& c ca at ta al lo og gs s;

p pu ub bl li ic c:
e ex xp pl li ic ci it t M My y_ _m me es ss sa ag ge es s(s si iz ze e_ _t t = 0 0) :c ca at ta al lo og gs s(*n ne ew w v ve ec ct to or r<C Ca at t>) { }

c ca at ta al lo og g d do o_ _o op pe en n(c co on ns st t s st tr ri in ng g& s s, c co on ns st t l lo oc ca al le e& l lo oc c) c co on ns st t; / / open catalog s
s st tr ri in ng g d do o_ _g ge et t(c ca at ta al lo og g c c, i in nt t s s, i in nt t m m, c co on ns st t s st tr ri in ng g&) c co on ns st t; / / get message (s,m) in c
v vo oi id d d do o_ _c cl lo os se e(c ca at ta al lo og g c ca at t) c co on ns st t
{

i if f (c ca at ta al lo og gs s.s si iz ze e()<=c ca at t) c ca at ta al lo og gs s.e er ra as se e(c ca at ta al lo og gs s.b be eg gi in n()+c ca at t) ;
}

˜M My y_ _m me es ss sa ag ge es s() { d de el le et te e &c ca at ta al lo og gs s; }
};

All m me es ss sa ag ge es s’ member functions are c co on ns st t, so the catalog data structure (the v ve ec ct to or r<S Se et t>) is stored
outside the facet.

A message is selected by specifying a catalog, a set within that catalog, and a message string
within that set. A string is supplied as an argument, to be used as a default result in case no mes-
sage is found in the catalog:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

930 Locales Appendix D

s st tr ri in ng g M My y_ _m me es ss sa ag ge es s: :d do o_ _g ge et t(c ca at ta al lo og g c ca at t, i in nt t s se et t, i in nt t m ms sg g, c co on ns st t s st tr ri in ng g& d de ef f) c co on ns st t
{

i if f (c ca at ta al lo og gs s.s si iz ze e()<=c ca at t) r re et tu ur rn n d de ef f;
C Ca at t& c c = c ca at ta al lo og gs s[c ca at t] ;
i if f (c c.s se et ts s.s si iz ze e()<=s se et t) r re et tu ur rn n d de ef f;
S Se et t& s s = c c.s se et ts s[s se et t] ;
i if f (s s.m ms sg gs s.s si iz ze e()<=m ms sg g) r re et tu ur rn n d de ef f;
r re et tu ur rn n s s.m ms sg gs s[m ms sg g] ;

}

Opening a catalog involves reading a textual representation from disk into a C Ca at t structure. Here, I
chose a representation that is trivial to read. A set is delimited by <<< and >>>, and each message
is a line of text:

m me es ss sa ag ge es s<c ch ha ar r>: :c ca at ta al lo og g M My y_ _m me es ss sa ag ge es s: :d do o_ _o op pe en n(c co on ns st t s st tr ri in ng g& n n, c co on ns st t l lo oc ca al le e& l lo oc c) c co on ns st t
{

s st tr ri in ng g n nn n = n n + l lo oc ca al le e().n na am me e() ;
i if fs st tr re ea am m f f(n nn n.c c_ _s st tr r()) ;
i if f (!f f) r re et tu ur rn n -1 1;

c ca at ta al lo og gs s.p pu us sh h_ _b ba ac ck k(C Ca at t()) ; / / make in-core catalog
C Ca at t& c c = c ca at ta al lo og gs s.b ba ac ck k() ;
s st tr ri in ng g s s;
w wh hi il le e (f f>>s s && s s=="<<<") { / / read Set

c c.s se et ts s.p pu us sh h_ _b ba ac ck k(S Se et t()) ;
S Se et t& s ss s = c c.s se et ts s.b ba ac ck k() ;
w wh hi il le e (g ge et tl li in ne e(f f,s s) && s s != ">>>") s ss s.m ms sg gs s.p pu us sh h_ _b ba ac ck k(s s) ; / / read message

}
r re et tu ur rn n c ca at ta al lo og gs s.s si iz ze e()-1 1;

}

Here is a trivial use:

i in nt t m ma ai in n()
{

i if f (!h ha as s_ _f fa ac ce et t< M My y_ _m me es ss sa ag ge es s >(l lo oc ca al le e())) {
c ce er rr r << "n no o m me es ss sa ag ge es s f fa ac ce et t f fo ou un nd d i in n " << l lo oc ca al le e().n na am me e() << ́ \ \n n´;
e ex xi it t(1 1) ;

}

c co on ns st t m me es ss sa ag ge es s<c ch ha ar r>& m m = u us se e_ _f fa ac ce et t< M My y_ _m me es ss sa ag ge es s >(l lo oc ca al le e()) ;
e ex xt te er rn n s st tr ri in ng g m me es ss sa ag ge e_ _d di ir re ec ct to or ry y; / / where I keep my messages
i in nt t c ca at t = m m.o op pe en n(m me es ss sa ag ge e_ _d di ir re ec ct to or ry y,l lo oc ca al le e()) ;
i if f (c ca at t<0 0) {

c ce er rr r << "n no o c ca at ta al lo og g f fo ou un nd d\ \n n";
e ex xi it t(1 1) ;

}

c co ou ut t << m m.g ge et t(c ca at t,0 0,0 0,"M Mi is ss se ed d a ag ga ai in n!") << e en nd dl l;
c co ou ut t << m m.g ge et t(c ca at t,1 1,2 2,"M Mi is ss se ed d a ag ga ai in n!") << e en nd dl l;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.7 Messages 931

c co ou ut t << m m.g ge et t(c ca at t,1 1,3 3,"M Mi is ss se ed d a ag ga ai in n!") << e en nd dl l;
c co ou ut t << m m.g ge et t(c ca at t,3 3,0 0,"M Mi is ss se ed d a ag ga ai in n!") << e en nd dl l;

}

If the catalog is

<<<
h he el ll lo o
g go oo od db by ye e
>>>
<<<
y ye es s
n no o
m ma ay yb be e
>>>

this program prints

h he el ll lo o
m ma ay yb be e
M Mi is ss se ed d a ag ga ai in n!
M Mi is ss se ed d a ag ga ai in n!

D.4.7.1 Using Messages from Other Facets

In addition to being a repository for l lo oc ca al le e-dependent strings used to communicate with users, mes-
sages can be used to hold strings for other facets. For example, the S Se ea as so on n_ _i io o facet (§D.3.2) could
have been written like this:

c cl la as ss s S Se ea as so on n_ _i io o : p pu ub bl li ic c l lo oc ca al le e: :f fa ac ce et t {
c co on ns st t m me es ss sa ag ge es s<c ch ha ar r>& m m; / / message directory
i in nt t c ca at t; / / message catalog

p pu ub bl li ic c:
c cl la as ss s M Mi is ss si in ng g_ _m me es ss sa ag ge es s { };

S Se ea as so on n_ _i io o(i in nt t i i = 0 0)
: l lo oc ca al le e: :f fa ac ce et t(i i) ,

m m(u us se e_ _f fa ac ce et t<S Se ea as so on n_ _m me es ss sa ag ge es s>(l lo oc ca al le e())) ,
c ca at t(m m.o op pe en n(m me es ss sa ag ge e_ _d di ir re ec ct to or ry y,l lo oc ca al le e()))

{ i if f (c ca at t<0 0) t th hr ro ow w M Mi is ss si in ng g_ _m me es ss sa ag ge es s() ; }

˜S Se ea as so on n_ _i io o() { } / / to make it possible to destroy Season_io objects (§D.3)

c co on ns st t s st tr ri in ng g& t to o_ _s st tr r(S Se ea as so on n x x) c co on ns st t; / / string representation of x

b bo oo ol l f fr ro om m_ _s st tr r(c co on ns st t s st tr ri in ng g& s s, S Se ea as so on n& x x) c co on ns st t; / / place Season corresponding to s in x

s st ta at ti ic c l lo oc ca al le e: :i id d i id d; / / facet identifier object (§D.2, §D.3, §D.3.1)
};

l lo oc ca al le e: :i id d S Se ea as so on n_ _i io o: :i id d; / / define the identifier object

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

932 Locales Appendix D

c co on ns st t s st tr ri in ng g& S Se ea as so on n_ _i io o: :t to o_ _s st tr r(S Se ea as so on n x x) c co on ns st t
{

r re et tu ur rn n m m->g ge et t(c ca at t,x x,"n no o-s su uc ch h-s se ea as so on n") ;
}

b bo oo ol l S Se ea as so on n_ _i io o: :f fr ro om m_ _s st tr r(c co on ns st t s st tr ri in ng g& s s, S Se ea as so on n& x x) c co on ns st t
{

f fo or r (i in nt t i i = S Se ea as so on n: :s sp pr ri in ng g; i i<=S Se ea as so on n: :w wi in nt te er r; i i++)
i if f (m m->g ge et t(c ca at t,i i,"n no o-s su uc ch h-s se ea as so on n") == s s) {

x x = S Se ea as so on n(i i) ;
r re et tu ur rn n t tr ru ue e;

}
r re et tu ur rn n f fa al ls se e;

}

This m me es ss sa ag ge es s-based solution differs from the original solution (§D.3.2) in that the implementer of
a set of S Se ea as so on n strings for a new locale needs to be able to add them to a m me es ss sa ag ge es s directory. This
is easy for someone adding a new locale to an execution environment. However, since m me es ss sa ag ge es s
provides only a read-only interface, adding a new set of season names may be beyond the scope of
an application programmer.

A _ _b by yn na am me e version (§D.4, §D.4.1) of m me es ss sa ag ge es s is provided:

t te em mp pl la at te e <c cl la as ss s C Ch h>
c cl la as ss s s st td d: :m me es ss sa ag ge es s_ _b by yn na am me e : p pu ub bl li ic c m me es ss sa ag ge es s<C Ch h> { /* ... */ };

D.5 Advice

[1] Expect that every nontrivial program or system that interacts directly with people will be used
in several different countries; §D.1.

[2] Don’t assume that everyone uses the same character set as you do; §D.4.1.
[3] Prefer using l lo oc ca al le es to writing ad hoc code for culture-sensitive I/O; §D.1.
[4] Avoid embedding locale name strings in program text; §D.2.1.
[5] Minimize the use of global format information; §D.2.3, §D.4.4.7.
[6] Prefer locale-sensitive string comparisons and sorts; §D.2.4, §D.4.1.
[7] Make f fa ac ce et ts immutable; §D.2.2, §D.3.
[8] Keep changes of l lo oc ca al le e to a few places in a program; §D.2.3.
[9] Let l lo oc ca al le e handle the lifetime of f fa ac ce et ts; §D.3.
[10] When writing locale-sensitive I/O functions, remember to handle exceptions from user-

supplied (overriding) functions; §D.4.2.2.
[11] Use a simple M Mo on ne ey y type to hold monetary values; §D.4.3.
[12] Use simple user-defined types to hold values that require locale-sensitive I/O (rather than cast-

ing to and from values of built-in types); §D.4.3.
[13] Don’t believe timing figures until you have a good idea of all factors involved; §D.4.4.1.
[14] Be aware of the limitations of t ti im me e_ _t t; §D.4.4.1, §D.4.4.5.
[15] Use a date-input routine that accepts a range of input formats; §D.4.4.5.
[16] Prefer the character classification functions in which the locale is explicit; §D.4.5, §D.4.5.1.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.6 Exercises 933

D.6 Exercises

1. (∗2.5) Define a S Se ea as so on n_ _i io o (§D.3.2) for a language other than American English.
2. (∗2) Define a S Se ea as so on n_ _i io o (§D.3.2) class that takes a set of name strings as a constructor argu-

ment so that S Se ea as so on n names for different locales can be represented as objects of this class.
3. (∗3) Write a c co ol ll la at te e<c ch ha ar r>: :c co om mp pa ar re e() that gives dictionary order. Preferably, do this for a

language, such as German or French, that has more letters in its alphabet than English does.
4. (∗2) Write a program that reads and writes b bo oo ol ls as numbers, as English words, and as words in

another language of your choice.
5. (∗2.5) Define a T Ti im me e type for representing time of day. Define a D Da at te e_ _a an nd d_ _t ti im me e type by using

T Ti im me e and a D Da at te e type. Discuss the pros and cons of this approach compared to the D Da at te e from
(§D.4.4). Implement l lo oc ca al le e-sensitive I/O for T Ti im me e and D Da at te e_ _a an nd d_ _t ti im me e.

6. (∗2.5) Design and implement a postal code (zip code) facet. Implement it for at least two coun-
tries with dissimilar conventions for writing addresses. For example: N NJ J 0 07 79 93 32 2 and C CB B2 21QA .

7. (∗2.5) Design and implement a phone number facet. Implement it for at least two countries
with dissimilar conventions for writing phone numbers. For example, (9 97 73 3) 3 36 60 0-8 80 00 00 0 and
1 12 22 23 3 3 34 43 30 00 00 0.

8. (∗2.5) Experiment to find out what input and output formats your implementation uses for date
information.

9. (∗2.5) Define a g ge et t_ _t ti im me e() that ‘‘guesses’’ about the meaning of ambiguous dates, such as
12/5/1995, but still rejects all or almost all mistakes. Be precise about what ‘‘guesses’’ are
accepted, and discuss the likelihood of a mistake.

10. (∗2) Define a g ge et t_ _t ti im me e() that accepts a greater variety of input formats than the one in
§D.4.4.5.

11. (∗2) Make a list of the locales supported on your system.
12. (∗2.5) Figure out where named locales are stored on your system. If you have access to the part

of the system where locales are stored, make a new named locale. Be very careful not to break
existing locales.

13. (∗2) Compare the two S Se ea as so on n_ _i io o implementations (§D.3.2 and §D.4.7.1).
14. (∗2) Write and test a D Da at te e_ _o ou ut t facet that writes D Da at te es using a format supplied as a constructor

argument. Discuss the pros and cons of this approach compared to the global date format pro-
vided by d da at te e_ _f fm mt t (§D.4.4.6).

15. (∗2.5) Implement I/O of Roman numerals (such as X XI I and M MD DC CL LI II I).
16. (∗2.5) Implement and test C Cv vt t_ _t to o_ _u up pp pe er r (§D.4.6).
17. (∗2.5) Use c cl lo oc ck k() to determine average cost of (1) a function call, (2) a virtual function call,

(3) reading a c ch ha ar r, (4) reading a 1-digit i in nt t, (5) reading a 5-digit i in nt t, (6) reading a 5-digit d do ou u- -
b bl le e, (7) a 1-character s st tr ri in ng g, (8) a 5-character s st tr ri in ng g,and (9) a 40-character s st tr ri in ng g.

18. (∗6.5) Learn another natural language.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

_ __ _______________________________________

Appendix E
_ __ _______________________________________

Standard-Library Exception Safety

Everything will work just as you expect it to,
unless your expectations are incorrect.

– Hyman Rosen

Exception safety — exception-safe implementation techniques — representing resources
— assignment — p pu us sh h_ _b ba ac ck k() — constructors and invariants — standard container
guarantees — insertion and removal of elements — guarantees and tradeoffs — s sw wa ap p()
— initialization and iterators — references to elements — predicates — s st tr ri in ng gs s, streams,
algorithms, v va al la ar rr ra ay y, and c co om mp pl le ex x — the C standard library — implications for library
users — advice — exercises.

E.1 Introduction

Standard-library functions often invoke operations that a user supplies as function or template argu-
ments. Naturally, some of these user-supplied operations will occasionally throw exceptions.
Other functions, such as allocator functions, can also throw exceptions. Consider:

v vo oi id d f f(v ve ec ct to or r<X X>& v v, c co on ns st t X X& g g)
{

v v[2 2] = g g; / / X’s assignment might throw an exception
v v.p pu us sh h_ _b ba ac ck k(g g) ; / / vector<X>’s allocator might throw an exception
s so or rt t(v v.b be eg gi in n() ,v v.e en nd d()) ; / / X’s less-than operation might throw an exception
v ve ec ct to or r<X X> u u = v v; / / X’s copy constructor might throw an exception
/ / ...

/ / u destroyed here: we must ensure that X’s destructor can work correctly
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

936 Standard-Library Exception Safety Appendix E

What happens if the assignment throws an exception while trying to copy g g? Will v v be left with an
invalid element? What happens if the constructor that v v.p pu us sh h_ _b ba ac ck k() uses to copy g g throws
s st td d: :b ba ad d_ _a al ll lo oc c? Has the number of elements changed? Has an invalid element been added to the
container? What happens if X X’s less-than operator throws an exception during the sort? Have the
elements been partially sorted? Could an element have been removed from the container by the
sorting algorithm and not put back?

Finding the complete list of possible exceptions in this example is left as an exercise (§E.8[1]).
Explaining how this example is well behaved for every well-defined type X X – even an X X that throws
exceptions – is part of the aim of this appendix. Naturally, a major part of this explanation involves
giving meaning and effective terminology to the notions of ‘‘well behaved’’ and ‘‘well defined’’ in
the context of exceptions.

The purpose of this appendix is to
[1] identify how a user can design types that meet the standard library’s requirements,
[2] state the guarantees offered by the standard library,
[3] state the standard-library requirements on user-supplied code,
[4] demonstrate effective techniques for crafting exception-safe and efficient containers, and
[5] present a few general rules for exception-safe programming.

The discussion of exception safety necessarily focuses on worst-case behavior. That is, where
could an exception cause the most problems? How does the standard library protect itself and its
users from potential problems? And, how can users help prevent problems? Please don’t let this
discussion of exception-handling techniques distract from the central fact that throwing an excep-
tion is the best method for reporting an error (§14.1, §14.9). The discussion of concepts, tech-
niques, and standard-library guarantees is organized like this:

§E.2 discusses the notion of exception safety.
§E.3 presents techniques for implementing efficient exception-safe containers and operations.
§E.4 outlines the guarantees offered for standard-library containers and their operations.
§E.5 summarizes exception-safety issues for the non-container parts of the standard library.
§E.6 reviews exception safety from the point of view of a standard-library user.

As ever, the standard library provides examples of the kinds of concerns that must be addressed in
demanding applications. The techniques used to provide exception safety for the standard library
can be applied to a wide range of problems.

E.2 Exception Safety

An operation on an object is said to be exception safe if that operation leaves the object in a valid
state when the operation is terminated by throwing an exception. This valid state could be an error
state requiring cleanup, but it must be well defined so that reasonable error-handling code can be
written for the object. For example, an exception handler might destroy the object, repair the
object, repeat a variant of the operation, just carry on, etc.

In other words, the object will have an invariant (§24.3.7.1), its constructors will establish that
invariant, all further operations maintain that invariant even if an exception is thrown, and its
destructor will do final cleanup. An operation should take care that the invariant is maintained
before throwing an exception, so that the object is in a valid state. However, it is quite possible for

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.2 Exception Safety 937

that valid state to be one that doesn’t suit the application. For example, a string may have been left
as the empty string or a container may have been left unsorted. Thus, ‘‘repair’’ means giving an
object a value that is more appropriate/desirable for the application than the one it was left with
after an operation failed. In the context of the standard library, the most interesting objects are con-
tainers.

Here, we consider under which conditions operations on standard-library containers can be con-
sidered exception safe. There can be only two conceptually really simple strategies:

[1] ‘‘No guarantees:’’ If an exception is thrown, any container being manipulated is possibly
corrupted.

[2] ‘‘Strong guarantee:’’ If an exception is thrown, any container being manipulated remains in
the state in which it was before the standard-library operation started.

Unfortunately, both answers are too simple for real use. Alternative [1] is unacceptable because it
implies that after an exception is thrown from a container operation, the container cannot be
accessed; it can’t even be destroyed without fear of run-time errors. Alternative [2] is unacceptable
because it imposes the cost of roll-back semantics on every individual standard-library operation.

To resolve this dilemma, the C++ standard library provides a set of exception-safety guarantees
that share the burden of producing correct programs between implementers of the standard library
and users of the standard library:

[3a] ‘‘Basic guarantee for all operations:’’ The basic invariants of the standard library are
maintained, and no resources, such as memory, are leaked.

[3b] ‘‘Strong guarantee for key operations:’’ In addition to providing the basic guarantee, either
the operation succeeds, or has no effects. This guarantee is provided for key library opera-
tions, such as p pu us sh h_ _b ba ac ck k(), single-element i in ns se er rt t() on a l li is st t, and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y()
(§E.3.1, §E.4.1).

[3c] ‘‘Nothrow guarantee for some operations:’’ In addition to providing the basic guarantee,
some operations are guaranteed not to throw an exception This guarantee is provided for a
few simple operations, such as s sw wa ap p() and p po op p_ _b ba ac ck k() (§E.4.1).

Both the basic guarantee and the strong guarantee are provided on the condition that user-supplied
operations (such as assignments and s sw wa ap p() functions) do not leave container elements in invalid
states, that user-supplied operations do not leak resources, and that destructors do not throw excep-
tions. For example, consider these ‘‘handle-like’’ (§25.7) classes:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Sa af fe e {
T T* p p; / / p points to a T allocated using new

p pu ub bl li ic c:
S Sa af fe e() :p p(n ne ew w T T) { }
˜S Sa af fe e() { d de el le et te e p p; }
S Sa af fe e& o op pe er ra at to or r=(c co on ns st t S Sa af fe e& a a) { *p p = *a a.p p; r re et tu ur rn n *t th hi is s; }
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s U Un ns sa af fe e { / / sloppy and dangerous code
T T* p p; / / p points to a T

p pu ub bl li ic c:
U Un ns sa af fe e(T T* p pp p) :p p(p pp p) { }
˜U Un ns sa af fe e() { i if f (!p p->d de es st tr ru uc ct ti ib bl le e()) t th hr ro ow w E E() ; d de el le et te e p p; }

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

938 Standard-Library Exception Safety Appendix E

U Un ns sa af fe e& o op pe er ra at to or r=(c co on ns st t U Un ns sa af fe e& a a)
{

p p->˜T T() ; / / destroy old value (§10.4.11)
n ne ew w(p p) T T(a a.p p) ; / / construct copy of a.p in *p (§10.4.11)
r re et tu ur rn n *t th hi is s;

}

/ / ...
};

v vo oi id d f f(v ve ec ct to or r< S Sa af fe e<S So om me e_ _t ty yp pe e> >&v vg g, v ve ec ct to or r< U Un ns sa af fe e<S So om me e_ _t ty yp pe e> >&v vb b)
{

v vg g.a at t(1 1) = S Sa af fe e<S So om me e_ _t ty yp pe e>() ;
v vb b.a at t(1 1) = U Un ns sa af fe e<S So om me e_ _t ty yp pe e>(n ne ew w S So om me e_ _t ty yp pe e) ;
/ / ...

}

In this example, construction of a S Sa af fe e succeeds only if a T T is successfully constructed. The con-
struction of a T T can fail because allocation might fail (and throw s st td d: :b ba ad d_ _a al ll lo oc c) and because T T’s
constructor might throw an exception. However, in every successfully constructed S Sa af fe e, p p will
point to a successfully constructed T T; if a constructor fails, no T T object (or S Sa af fe e object) is created.
Similarly, T T’s assignment operator may throw an exception, causing S Sa af fe e’s assignment operator to
implicitly re-throw that exception. However, that is no problem as long as T T’s assignment operator
always leaves its operands in a good state. Therefore, S Sa af fe e is well behaved, and consequently every
standard-library operation on a S Sa af fe e will have a reasonable and well-defined result.

On the other hand, U Un ns sa af fe e() is carelessly written (or rather, it is carefully written to demon-
strate undesirable behavior). The construction of an U Un ns sa af fe e will not fail. Instead, the operations
on U Un ns sa af fe e, such as assignment and destruction, are left to deal with a variety of potential problems.
The assignment operator may fail by throwing an exception from T T’s copy constructor. This would
leave a T T in an undefined state because the old value of *p p was destroyed and no new value
replaced it. In general, the results of that are unpredictable. U Un ns sa af fe e’s destructor contains an ill-
conceived attempt to protect against undesirable destruction. However, throwing an exception dur-
ing exception handling will cause a call of t te er rm mi in na at te e() (§14.7), and the standard library requires
that a destructor return normally after destroying an object. The standard library does not – and
cannot – make any guarantees when a user supplies objects this badly behaved.

From the point of view of exception handling, S Sa af fe e and U Un ns sa af fe e differ in that S Sa af fe e uses its con-
structor to establish an invariant (§24.3.7.1) that allows its operations to be implemented simply
and safely. If that invariant cannot be established, an exception is thrown before an invalid object
is constructed. U Un ns sa af fe e, on the other hand, muddles along without a meaningful invariant, and the
individual operations throw exceptions without an overall error-handling strategy. Naturally, this
results in violations of the standard library’s (reasonable) assumptions about the behavior of types.
For example, U Un ns sa af fe e can leave invalid elements in a container after throwing an exception from
T T: :o op pe er ra at to or r=() and may throw an exception from its destructor.

Note that the standard-library guarantees relative to ill-behaved user-supplied operations are
analogous to the language guarantees relative to violations of the basic type system. If a basic
operation is not used according to its specification, the resulting behavior is undefined. For

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.2 Exception Safety 939

example, if you throw an exception from a destructor for a v ve ec ct to or r element, you have no more rea-
son to hope for a reasonable result than if you dereference a pointer initialized to a random number:

c cl la as ss s B Bo om mb b {
p pu ub bl li ic c:

/ / ...
˜B Bo om mb b() { t th hr ro ow w T Tr ro ou ub bl le e() ; };

};

v ve ec ct to or r<B Bo om mb b> b b(1 10 0) ; / / leads to undefined behavior

v vo oi id d f f()
{

i in nt t* p p = r re ei in nt te er rp pr re et t_ _c ca as st t<i in nt t*>(r ra an nd d()) ; / / leads to undefined behavior
*p p = 7 7;

}

Stated positively: If you obey the basic rules of the language and the standard library, the library
will behave well even when you throw exceptions.

In addition to achieving pure exception safety, we usually prefer to avoid resource leaks. That
is, an operation that throws an exception should not only leave its operands in well-defined states
but also ensure that every resource that it acquired is (eventually) released. For example, at the
point where an exception is thrown, all memory allocated must be either deallocated or owned by
some object, which in turn must ensure that the memory is properly deallocated.

The standard-library guarantees the absence of resource leaks provided that user-supplied opera-
tions called by the library also avoid resource leaks. Consider:

v vo oi id d l le ea ak k(b bo oo ol l a ab bo or rt t)
{

v ve ec ct to or r<i in nt t> v v(1 10 0) ; / / no leak
v ve ec ct to or r<i in nt t>* p p = n ne ew w v ve ec ct to or r<i in nt t>(1 10 0) ; / / potential memory leak
a au ut to o_ _p pt tr r< v ve ec ct to or r<i in nt t> > q q(n ne ew w v ve ec ct to or r<i in nt t>(1 10 0)) ; / / no leak (§14.4.2)

i if f (a ab bo or rt t) t th hr ro ow w U Up p() ;
/ / ...
d de el le et te e p p;

}

Upon throwing the exception, the v ve ec ct to or r called v v and the v ve ec ct to or r held by q q will be correctly
destroyed so that their resources are released. The v ve ec ct to or r pointed to by p p is not guarded against
exceptions and will not be destroyed. To make this piece of code safe, we must either explicitly
delete p p before throwing the exception or make sure it is owned by an object – such as an a au ut to o_ _p pt tr r
(§14.4.2) – that will properly destroy it if an exception is thrown.

Note that the language rules for partial construction and destruction ensure that exceptions
thrown while constructing sub-objects and members will be handled correctly without special atten-
tion from standard-library code (§14.4.1). This rule is an essential underpinning for all techniques
dealing with exceptions.

Also, remember that memory isn’t the only kind of resource that can leak. Opened files, locks,
network connections, and threads are examples of system resources that a function may have to
release or hand over to an object before throwing an exception.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

940 Standard-Library Exception Safety Appendix E

E.3 Exception-Safe Implementation Techniques

As usual, the standard library provides examples of problems that occur in many other contexts and
of solutions that apply widely. The basic tools available for writing exception-safe code are

[1] the try-block (§8.3.1), and
[2] the support for the ‘‘resource acquisition is initialization’’ technique (§14.4).

The general principles to follow are to
[3] never let go of a piece of information before we can store its replacement, and
[4] always leave objects in valid states when throwing or re-throwing an exception.

That way, we can always back out of an error situation. The practical difficulty in following these
principles is that innocent-looking operations (such as <, =, and s so or rt t()) might throw exceptions.
Knowing what to look for in an application takes experience.

When you are writing a library, the ideal is to aim at the strong exception-safety guarantee
(§E.2) and always to provide the basic guarantee. When writing a specific program, there may be
less concern for exception safety. For example, if I write a simple data analysis program for my
own use, I’m usually quite willing to have the program terminate in the unlikely event of virtual
memory exhaustion. However, correctness and basic exception safety are closely related.

The techniques for providing basic exception safety, such as defining and checking invariants
(§24.3.7.1), are similar to the techniques that are useful to get a program small and correct. It fol-
lows that the overhead of providing basic exception safety (the basic guarantee; §E.2) – or even the
strong guarantee – can be minimal or even insignificant; see §E.8[17].

Here, I will consider an implementation of the standard container v ve ec ct to or r (§16.3) to see what it
takes to achieve that ideal and where we might prefer to settle for more conditional safety.

E.3.1 A Simple Vector

A typical implementation of v ve ec ct to or r (§16.3) will consist of a handle holding pointers to the first ele-
ment, one-past-the-last element, and one-past-the-last allocated space (§17.1.3) (or the equivalent
information represented as a pointer plus offsets):

f fi ir rs st t
s sp pa ac ce e
l la as st t . .

elements
.

..

.
extra space

v ve ec ct to or r:

Here is a declaration of v ve ec ct to or r simplified to present only what is needed to discuss exception safety
and avoidance of resource leaks:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
c cl la as ss s v ve ec ct to or r {
p pr ri iv va at te e:

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space
A A a al ll lo oc c; / / allocator

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.1 A Simple Vector 941

p pu ub bl li ic c:
e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;

v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment

˜v ve ec ct to or r() ;

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;

/ / ...
};

Consider first a naive implementation of a constructor:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a) / / warning: naive implementation

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements (§19.4.1)
s sp pa ac ce e = l la as st t = v v+n n;
f fo or r (T T* p p = v v; p p!=l la as st t; ++p p) a a.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct copy of val in *p (§19.4.1)

}

There are three sources of exceptions here:
[1] a al ll lo oc ca at te e() throws an exception indicating that no memory is available;
[2] the allocator’s copy constructor throws an exception;
[3] the copy constructor for the element type T T throws an exception because it can’t copy v va al l.

In all cases, no object is created, so v ve ec ct to or r’s destructor is not called (§14.4.1).
When a al ll lo oc ca at te e() fails, the t th hr ro ow w will exit before any resources are acquired, so all is well.
When T T’s copy constructor fails, we have acquired some memory that must be freed to avoid

memory leaks. A more difficult problem is that the copy constructor for T T might throw an excep-
tion after correctly constructing a few elements but before constructing them all.

To handle this problem, we could keep track of which elements have been constructed and
destroy those (and only those) in case of an error:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a) / / elaborate implementation

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements

i it te er ra at to or r p p;

t tr ry y {
i it te er ra at to or r e en nd d = v v+n n;
f fo or r (p p=v v; p p!=e en nd d; ++p p) a al ll lo oc c.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct element (§19.4.1)
l la as st t = s sp pa ac ce e = p p;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

942 Standard-Library Exception Safety Appendix E

c ca at tc ch h (...) {
f fo or r (i it te er ra at to or r q q = v v; q q!=p p; ++q q) a al ll lo oc c.d de es st tr ro oy y(q q) ; / / destroy constructed elements
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ; / / free memory
t th hr ro ow w; / / re-throw

}
}

The overhead here is the overhead of the try-block. In a good C++ implementation, this overhead is
negligible compared to the cost of allocating memory and initializing elements. For implementa-
tions where entering a try-block incurs a cost, it may be worthwhile to add a test i if f(n n) before the
t tr ry y and handle the empty vector case separately.

The main part of this constructor is an exception-safe implementation of u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T>
v vo oi id d u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(F Fo or r b be eg g, F Fo or r e en nd d, c co on ns st t T T& x x)
{

F Fo or r p p;
t tr ry y {

f fo or r (p p=b be eg g; p p!=e en nd d; ++p p)
n ne ew w(s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&*p p)) T T(x x) ; / / construct copy of x in *p (§10.4.11)

}
c ca at tc ch h (...) { / / destroy constructed elements and rethrow:

f fo or r (F Fo or r q q = b be eg g; q q!=p p; ++q q) (&*q q)->˜T T() ; / / (§10.4.11)
t th hr ro ow w;

}
}

The curious construct &*p p takes care of iterators that are not pointers. In that case, we need to take
the address of the element obtained by dereference to get a pointer. The explicit cast to v vo oi id d*
ensures that the standard library placement function is used (§19.4.5), and not some user-defined
o op pe er ra at to or r n ne ew w() for T T*s. This code is operating at a rather low level where writing truly general
code can be difficult.

Fortunately, we don’t have to reimplement u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), because the standard library
provides the desired strong guarantee for it (§E.2). It is often essential to have initialization opera-
tions that either complete successfully, having initialized every element, or fail leaving no con-
structed elements behind. Consequently, the standard-library algorithms u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(),
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() (§19.4.4) are guaranteed to have this strong
exception-safety property (§E.4.4).

Note that the u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm does not protect against exceptions thrown by ele-
ment destructors or iterator operations (§E.4.4). Doing so would be prohibitively expensive (see
§E.8[16-17]).

The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm can be applied to many kinds of sequences. Consequently,
it takes a forward iterator (§19.2.1) and cannot guarantee to destroy elements in the reverse order of
their construction.

Using u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), we can write:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.1 A Simple Vector 943

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a) / / messy implementation

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements
t tr ry y {

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
s sp pa ac ce e = l la as st t = v v+n n;

}
c ca at tc ch h (...) {

a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ; / / free memory
t th hr ro ow w; / / re-throw

}
}

However, I wouldn’t call that pretty code. The next section will demonstrate how it can be made
much simpler.

Note that the constructor re-throws a caught exception. The intent is to make v ve ec ct to or r transparent
to exceptions so that the user can determine the exact cause of a problem. All standard-library con-
tainers have this property. Exception transparency is often the best policy for templates and other
‘‘thin’’ layers of software. This is in contrast to major parts of a system (‘‘modules’’) that gener-
ally need to take responsibility for all exceptions thrown. That is, the implementer of such a mod-
ule must be able to list every exception that the module can throw. Achieving this may involve
grouping exceptions (§14.2), mapping exceptions from lower-level routines into the module’s own
exceptions (§14.6.3), or exception specification (§14.6).

E.3.2 Representing Memory Explicitly

Experience revealed that writing correct exception-safe code using explicit try-blocks is more diffi-
cult than most people expect. In fact, it is unnecessarily difficult because there is an alternative:
The ‘‘resource acquisition is initialization’’ technique (§14.4) can be used to reduce the amount of
code needing to be written and to make the code more stylized. In this case, the key resource
required by the v ve ec ct to or r is memory to hold its elements. By providing an auxiliary class to represent
the notion of memory used by a v ve ec ct to or r, we can simplify the code and decrease the chance of acci-
dentally forgetting to release it:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
s st tr ru uc ct t v ve ec ct to or r_ _b ba as se e {

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n)
: a al ll lo oc c(a a) , v v(a a.a al ll lo oc ca at te e(n n)) , s sp pa ac ce e(v v+n n) , l la as st t(v v+n n) { }

˜v ve ec ct to or r_ _b ba as se e() { a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

As long as v v and l la as st t are correct, v ve ec ct to or r_ _b ba as se e can be destroyed. Class v ve ec ct to or r_ _b ba as se e deals with

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

944 Standard-Library Exception Safety Appendix E

memory for a type T T, not objects of type T T. Consequently, a user of v ve ec ct to or r_ _b ba as se e must destroy all
constructed objects in a v ve ec ct to or r_ _b ba as se e before the v ve ec ct to or r_ _b ba as se e itself is destroyed.

Naturally, v ve ec ct to or r_ _b ba as se e itself is written so that if an exception is thrown (by the allocator’s copy
constructor or a al ll lo oc ca at te e() function) no v ve ec ct to or r_ _b ba as se e object is created and no memory is leaked.

We want to be able to s sw wa ap p() v ve ec ct to or r_ _b ba as se es. However, the default s sw wa ap p() doesn’t suit our
needs because it copies and destroys a temporary. Because v ve ec ct to or r_ _b ba as se e is a special-purpose class
that wasn’t given fool-proof copy semantics, that destructions would lead to undesirable sideef-
fects. Consequently, we provide a specialization:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(v ve ec ct to or r_ _b ba as se e<T T>& a a, v ve ec ct to or r_ _b ba as se e<T T>& b b)
{

s sw wa ap p(a a.a a,b b.a a) ; s sw wa ap p(a a.v v,b b.v v) ; s sw wa ap p(a a.s sp pa ac ce e,b b.s sp pa ac ce e) ; s sw wa ap p(a a.l la as st t,b b.l la as st t) ;
}

Given v ve ec ct to or r_ _b ba as se e, v ve ec ct to or r can be defined like this:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
c cl la as ss s v ve ec ct to or r : p pr ri iv va at te e v ve ec ct to or r_ _b ba as se e<T T,A A> {

v vo oi id d d de es st tr ro oy y_ _e el le em me en nt ts s() { f fo or r (T T* p p = v v; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ; } / / §10.4.11
p pu ub bl li ic c:

e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;

v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment

˜v ve ec ct to or r() { d de es st tr ro oy y_ _e el le em me en nt ts s() ; }

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;

/ / ...
};

The v ve ec ct to or r destructor explicitly invokes the T T destructor for every element. This implies that if an
element destructor throws an exception, the v ve ec ct to or r destruction fails. This can be a disaster if it hap-
pens during stack unwinding caused by an exception and t te er rm mi in na at te e() is called (§14.7). In the case
of normal destruction, throwing an exception from a destructor typically leads to resource leaks and
unpredictable behavior of code relying on reasonable behavior of objects. There is no really good
way to protect against exceptions thrown from destructors, so the library makes no guarantees if an
element destructor throws (§E.4).

Now the constructor can be simply defined:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a,n n) / / allocate space for n elements
{

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
}

The copy constructor differs by using u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() instead of u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.2 Representing Memory Explicitly 945

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(c co on ns st t v ve ec ct to or r<T T,A A>& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a.a al ll lo oc c,a a.s si iz ze e())
{

u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,v v) ;
}

Note that this style of constructor relies on the fundamental language rule that when an exception is
thrown from a constructor, sub-objects (such as bases) that have already been completely con-
structed will be properly destroyed (§14.4.1). The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm and its cousins
(§E.4.4) provide the equivalent guarantee for partially constructed sequences.

E.3.3 Assignment

As usual, assignment differs from construction in that an old value must be taken care of. Consider
a straightforward implementation:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) / / offers the strong guarantee (§E.2)
{

v ve ec ct to or r_ _b ba as se e<T T,A A> b b(a al ll lo oc c,a a.s si iz ze e()) ; / / get memory
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,b b.v v) ; / / copy elements
d de es st tr ro oy y_ _e el le em me en nt ts s() ;
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; / / free old memory
v ve ec ct to or r_ _b ba as se e: :o op pe er ra at to or r=(b b) ; / / install new representation
b b.v v = 0 0; / / prevent deallocation
r re et tu ur rn n *t th hi is s;

}

This assignment is safe, but it repeats a lot of code from constructors and destructors. To avoid
this, we could write:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) / / offers the strong guarantee (§E.2)
{

v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

The old elements are destroyed by t te em mp p’s destructor, and the memory used to hold them is deallo-
cated by t te em mp p’s v ve ec ct to or r_ _b ba as se e’s destructor.

The performance of the two versions ought to be equivalent. Essentially, they are just two dif-
ferent ways of specifying the same set of operations. However, the second implementation is
shorter and doesn’t replicate code from related v ve ec ct to or r functions, so writing the assignment that way
ought to be less error prone and lead to simpler maintenance.

Note the absence of the traditional test for self-assignment (§10.4.4). These assignment imple-
mentations work by first constructing a copy and then swapping representations. This obviously
handles self-assignment correctly. I decided that the efficiency gained from the test in the rare case

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

946 Standard-Library Exception Safety Appendix E

of self-assignment was more than offset by its cost in the common case where a different v ve ec ct to or r is
assigned.

In either case, two potentially significant optimizations are missing:
[1] If the capacity of the vector assigned to is large enough to hold the assigned vector, we don’t

need to allocate new memory.
[2] An element assignment may be more efficient than an element destruction followed by an

element construction.
Implementing these optimizations, we get:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) / / optimized, basic guarantee (§E.2)
{

i if f (c ca ap pa ac ci it ty y() < a a.s si iz ze e()) { / / allocate new vector representation:
v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

i if f (t th hi is s == &a a) r re et tu ur rn n *t th hi is s; / / protect against self assignment (§10.4.4)

/ / assign to old elements:
s si iz ze e_ _t ty yp pe e s sz z = s si iz ze e() ;
s si iz ze e_ _t ty yp pe e a as sz z = a a.s si iz ze e() ;
a al ll lo oc c = a a.g ge et t_ _a al ll lo oc ca at to or r() ; / / copy the allocator
i if f (a as sz z<=s sz z) {

c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+a as sz z,v v) ;
f fo or r (T T* p p = v v+a as sz z; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ; / / destroy surplus elements (§10.4.11)

}
e el ls se e {

c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+s sz z,v v) ;
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n()+s sz z,a a.e en nd d() ,s sp pa ac ce e) ; / / construct extra elements

}
s sp pa ac ce e = v v+a as sz z;
r re et tu ur rn n *t th hi is s;

}

These optimizations are not free. The c co op py y() algorithm (§18.6.1) does not offer the strong
exception-safety guarantee. It does not guarantee that it will leave its target unchanged if an excep-
tion is thrown during copying. Thus, if T T: :o op pe er ra at to or r=() throws an exception during c co op py y(), the
v ve ec ct to or r being assigned to need not be a copy of the vector being assigned, and it need not be
unchanged. For example, the first five elements might be copies of elements of the assigned vector
and the rest unchanged. It is also plausible that an element – the element that was being copied
when T T: :o op pe er ra at to or r=() threw an exception – ends up with a value that is neither the old value nor a
copy of the corresponding element in the vector being assigned. However, if T T: :o op pe er ra at to or r=()
leaves its operands in a valid state if it throws an exception, the v ve ec ct to or r is still in a valid state – even
if it wasn’t the state we would have preferred.

Here, I have copied the allocator using an assignment. It is actually not required that every allo-
cator support assignment (§19.4.3); see also §E.8[9].

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.3 Assignment 947

The standard-library v ve ec ct to or r assignment offers the weaker exception-safety property of this last
implementation – and its potential performance advantages. That is, v ve ec ct to or r assignment provides
the basic guarantee, so it meets most people’s idea of exception safety. However, it does not pro-
vide the strong guarantee (§E.2). If you need an assignment that leaves the v ve ec ct to or r unchanged if an
exception is thrown, you must either use a library implementation that provides the strong guaran-
tee or provide your own assignment operation. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / "obvious" a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(a a.g ge et t_ _a al ll lo oc ca at to or r()) ;
t te em mp p.r re es se er rv ve e(b b.s si iz ze e()) ;
f fo or r (t ty yp pe en na am me e v ve ec ct to or r<T T,A A>: :i it te er ra at to or r p p = b b.b be eg gi in n() ; p p!=b b.e en nd d() ; ++p p)

t te em mp p.p pu us sh h_ _b ba ac ck k(*p p) ;
s sw wa ap p(a a,t te em mp p) ;

}

If there is insufficient memory for t te em mp p to be created with room for b b.s si iz ze e() elements,
s st td d: :b ba ad d_ _a al ll lo oc c is thrown before any changes are made to a a. Similarly, if p pu us sh h_ _b ba ac ck k() fails for
any reason, a a will remain untouched because we apply p pu us sh h_ _b ba ac ck k() to t te em mp p rather than to a a. In
that case, any elements of t te em mp p created by p pu us sh h_ _b ba ac ck k() will be destroyed before the exception
that caused the failure is re-thrown.

Swap does not copy v ve ec ct to or r elements. It simply swaps the data members of a v ve ec ct to or r; that is, it
swaps v ve ec ct to or r_ _b ba as se es (§E.3.2). Consequently, it does not throw exceptions even if operations on the
elements might (§E.4.3). Consequently, s sa af fe e_ _a as ss si ig gn n() does not do spurious copies of elements
and is reasonably efficient.

As is often the case, there are alternatives to the obvious implementation. We can let the library
perform the copy into the temporary for us:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / simple a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(b b) ; / / copy the elements of b into a temporary
s sw wa ap p(a a,t te em mp p) ;

}

Indeed, we could simply use call-by-value (§7.2):

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, v ve ec ct to or r<T T,A A> b b) / / simple a = b (note: b is passed by value)
{

s sw wa ap p(a a,b b) ;
}

E.3.4 p pu us sh h_ _b ba ac ck k(())

From an exception-safety point of view, p pu us sh h_ _b ba ac ck k() is similar to the assignment in that we must
take care that the v ve ec ct to or r remains unchanged if we fail to add a new element:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

948 Standard-Library Exception Safety Appendix E

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :p pu us sh h_ _b ba ac ck k(c co on ns st t T T& x x)
{

i if f (s sp pa ac ce e == l la as st t) { / / no more free space; relocate:
v ve ec ct to or r_ _b ba as se e b b(a al ll lo oc c,s si iz ze e()?2 2*s si iz ze e():2 2) ; / / double the allocation
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(v v,s sp pa ac ce e,b b.v v) ;
n ne ew w(b b.s sp pa ac ce e) T T(x x) ; / / place a copy of x in *b.space (§10.4.11)
++b b.s sp pa ac ce e;
d de es st tr ro oy y_ _e el le em me en nt ts s() ;
s sw wa ap p<v ve ec ct to or r_ _b ba as se e<T T,A A> >(b b,*t th hi is s) ; / / swap representations
r re et tu ur rn n;

}
n ne ew w(s sp pa ac ce e) T T(x x) ; / / place a copy of x in *space (§10.4.11)
++s sp pa ac ce e;

}

Naturally, the copy constructor used to initialize *s sp pa ac ce e might throw an exception. If that happens,
the value of the v ve ec ct to or r remains unchanged, with s sp pa ac ce e left unincremented. In that case, the v ve ec ct to or r
elements are not reallocated so that iterators referring to them are not invalidated. Thus, this imple-
mentation implements the strong guarantee that an exception thrown by an allocator or even a
user-supplied copy constructor leaves the v ve ec ct to or r unchanged. The standard library offers that guar-
antee for p pu us sh h_ _b ba ac ck k() (§E.4.1).

Note the absence of a try-block (except for the one hidden in u un ni in ni it ti ia al li iz ze ed d_ _c co op py y()). The
update was done by carefully ordering the operations so that if an exception is thrown, the v ve ec ct to or r
remains unchanged.

The approach of gaining exception safety through ordering and the ‘‘resource acquisition is
initialization’’ technique (§14.4) tends to be more elegant and more efficient than explicitly han-
dling errors using try-blocks. More problems with exception safety arise from a programmer order-
ing code in unfortunate ways than from lack of specific exception-handling code. The basic rule of
ordering is not to destroy information before its replacement has been constructed and can be
assigned without the possibility of an exception.

Exceptions introduce possibilities for surprises in the form of unexpected control flows. For a
piece of code with a simple local control flow, such as the o op pe er ra at to or r=(), s sa af fe e_ _a as ss si ig gn n(), and
p pu us sh h_ _b ba ac ck k() examples, the opportunities for surprises are limited. It is relatively simple to look at
such code and ask oneself ‘‘can this line of code throw an exception, and what happens if it does?’’
For large functions with complicated control structures, such as complicated conditional statements
and nested loops, this can be hard. Adding try-blocks increases this local control structure com-
plexity and can therefore be a source of confusion and errors (§14.4). I conjecture that the effec-
tiveness of the ordering approach and the ‘‘resource acquisition is initialization’’ approach com-
pared to more extensive use of try-blocks stems from the simplification of the local control flow.
Simple, stylized code is easier to understand and easier to get right.

Note that the v ve ec ct to or r implementation is presented as an example of the problems that exceptions
can pose and of techniques for addressing those problems. The standard does not require an imple-
mentation to be exactly like the one presented here. What the standard does guarantee is the sub-
ject of §E.4.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.5 Constructors and Invariants 949

E.3.5 Constructors and Invariants

From the point of view of exception safety, other v ve ec ct to or r operations are either equivalent to the ones
already examined (because they acquire and release resources in similar ways) or trivial (because
they don’t perform operations that require cleverness to maintain valid states). However, for most
classes, such ‘‘trivial’’ functions constitute the majority of code. The difficulty of writing such
functions depends critically on the environment that a constructor established for them to operate
in. Said differently, the complexity of ‘‘ordinary member functions’’ depends critically on choos-
ing a good class invariant (§24.3.7.1). By examining the ‘‘trivial’’ v ve ec ct to or r functions, it is possible
to gain insight into the interesting question of what makes a good invariant for a class and how con-
structors should be written to establish such invariants.

Operations such as v ve ec ct to or r subscripting (§16.3.3) are easy to write because they can rely on the
invariant established by the constructors and maintained by all functions that acquire or release
resources. In particular, a subscript operator can rely on v v referring to an array of elements:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
T T& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e i i)
{

r re et tu ur rn n v v[i i] ;
}

It is important and fundamental to have constructors acquire resources and establish a simple
invariant. To see why, consider an alternative definition of v ve ec ct to or r_ _b ba as se e:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > / / clumsy use of constructor
c cl la as ss s v ve ec ct to or r_ _b ba as se e {
p pu ub bl li ic c:

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n) : a al ll lo oc c(a a) , v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0)
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ;
s sp pa ac ce e = l la as st t = v v+n n;

}

˜v ve ec ct to or r_ _b ba as se e() { i if f (v v) a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

Here, I construct a v ve ec ct to or r_ _b ba as se e in two stages: First, I establish a ‘‘safe state’’ where v v, s sp pa ac ce e, and
l la as st t are set to 0 0. Only after that has been done do I try to allocate memory. This is done out of
misplaced fear that if an exception happens during element allocation, a partially constructed object
could be left behind. This fear is misplaced because a partially constructed object cannot be ‘‘left
behind’’ and later accessed. The rules for static objects, automatic objects, member objects, and
elements of the standard-library containers prevent that. However, it could/can happen in pre-
standard libraries that used/use placement new (§10.4.11) to construct objects in containers
designed without concern for exception safety. Old habits can be hard to break.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

950 Standard-Library Exception Safety Appendix E

Note that this attempt to write safer code complicates the invariant for the class: It is no longer
guaranteed that v v points to allocated memory. Now v v might be 0 0. This has one immediate cost.
The standard-library requirements for allocators do not guarantee that we can safely deallocate a
pointer with the value 0 0 (§19.4.1). In this, allocators differ from d de el le et te e (§6.2.6). Consequently, I
had to add a test in the destructor. Also, each element is first initialized and then assigned. The
cost of doing that extra work can be significant for element types for which assignment is nontriv-
ial, such as s st tr ri in ng g and l li is st t.

This two-stage construct is not an uncommon style. Sometimes, it is even made explicit by
having the constructor do only some ‘‘simple and safe’’ initialization to put the object into a
destructible state. The real construction is left to an i in ni it t() function that the user must explicitly
call. For example:

t te em mp pl la at te e<c cl la as ss s T T> / / archaic (pre-standard, pre-exception) style
c cl la as ss s v ve ec ct to or r_ _b ba as se e {
p pu ub bl li ic c:

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e() : v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0) { }
˜v ve ec ct to or r_ _b ba as se e() { f fr re ee e(v v) ; }

b bo oo ol l i in ni it t(s si iz ze e_ _t t n n) / / return true if initialization succeeded
{

i if f (v v = (T T*)m ma al ll lo oc c(s si iz ze eo of f(T T)*n n)) {
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,T T()) ;
s sp pa ac ce e = l la as st t = v v+n n;
r re et tu ur rn n t tr ru ue e;

}
r re et tu ur rn n f fa al ls se e;

}
};

The perceived value of this style is
[1] The constructor can’t throw an exception, and the success of an initialization using i in ni it t()

can be tested by ‘‘usual’’ (that is, non-exception) means.
[2] There exists a trivial valid state. In case of a serious problem, an operation can give an

object that state.
[3] The acquisition of resources is delayed until a fully initialized object is actually needed.

The following subsections examine these points and shows why this two-stage construction tech-
nique doesn’t deliver its expected benefits. It can also be a source of problems.

E.3.5.1 Using i in ni it t(()) Functions

The first point (using an i in ni it t() function in preference to a constructor) is bogus. Using construc-
tors and exception handling is a more general and systematic way of dealing with resource acquisi-
tion and initialization errors (§14.1, §14.4). This style is a relic of pre-exception C++.

Carefully written code using the two styles are roughly equivalent. Consider:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.5.1 Using i in ni it t(()) Functions 951

i in nt t f f1 1(i in nt t n n)
{

v ve ec ct to or r<X X> v v;
/ / ...
i if f (v v.i in ni it t(n n)) {

/ / use v as vector of n elements
}
e el ls se e {

/ / handle_problem
}

}

and

i in nt t f f2 2(i in nt t n n)
t tr ry y {

v ve ec ct to or r v v<X X> v v(n n) ;
/ / ...
/ / use v as vector of n elements

}
c ca at tc ch h (...) {

/ / handle problem
}

However, having a separate i in ni it t() function is an opportunity to
[1] forget to call i in ni it t() (§10.2.3),
[2] forget to test on the success of i in ni it t(),
[3] call i in ni it t() more than once,
[4] forget that i in ni it t() might throw an exception, and
[5] use the object before calling i in ni it t().

The definition of v ve ec ct to or r<T T>: :i in ni it t() illustrates [4].
In a good C++ implementation, f f2 2() will be marginally faster than f f1 1() because it avoids the

test in the common case.

E.3.5.2 Relying on a Default Valid State

The second point (having an easy-to-construct ‘‘default’’ valid state) is correct in general, but in the
case of v ve ec ct to or r, it is achieved at an unnecessary cost. It is now possible to have a v ve ec ct to or r_ _b ba as se e with
v v==0 0, so the vector implementation must protect against that possibility throughout. For example:

t te em mp pl la at te e< c cl la as ss s T T>
T T& v ve ec ct to or r<T T>: :o op pe er ra at to or r[](s si iz ze e_ _t t i i)
{

i if f (v v) r re et tu ur rn n v v[i i] ;
/ / handle error

}

Leaving the possibility of v v==0 0 open makes the cost of non-range-checked subscripting equivalent
to range-checked access:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

952 Standard-Library Exception Safety Appendix E

t te em mp pl la at te e< c cl la as ss s T T>
T T& v ve ec ct to or r<T T>: :a at t(s si iz ze e_ _t t i i)
{

i if f (i i<v v.s si iz ze e()) r re et tu ur rn n v v[i i] ;
t th hr ro ow w o ou ut t_ _o of f_ _r ra an ng ge e("v ve ec ct to or r i in nd de ex x") ;

}

What fundamentally happened here was that I complicated the basic invariant for v ve ec ct to or r_ _b ba as se e by
introducing the possibility of v v==0 0. In consequence, the basic invariant for v ve ec ct to or r was similarly
complicated. The end result of this is that all code in v ve ec ct to or r and v ve ec ct to or r_ _b ba as se e must be more com-
plicated to cope. This is a source of potential errors, maintenance problems, and run-time over-
head. Note that conditional statements can be surprisingly costly on modern machine architectures.
Where efficiency matters, it can be crucial to implement a key operation, such as vector subscript-
ing, without conditional statements.

Interestingly, the original definition of v ve ec ct to or r_ _b ba as se e already did have an easy-to-construct valid
state. No v ve ec ct to or r_ _b ba as se e object could exist unless the initial allocation succeeded. Consequently, the
implementer of v ve ec ct to or r could write an ‘‘emergency exit’’ function like this:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :e em me er rg ge en nc cy y_ _e ex xi it t()
{

s sp pa ac ce e = v v; / / set the size of *this to 0
t th hr ro ow w T To ot ta al l_ _f fa ai il lu ur re e() ;

}

This is a bit drastic because it fails to call element destructors and to deallocate the space for ele-
ments held by the v ve ec ct to or r_ _b ba as se e. That is, it fails to provide the basic guarantee (§E.2). If we are
willing to trust the values of v v and s sp pa ac ce e and the element destructors, we can avoid potential
resource leaks:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :e em me er rg ge en nc cy y_ _e ex xi it t()
{

d de es st tr ro oy y_ _e el le em me en nt ts s() ; / / clean up
t th hr ro ow w T To ot ta al l_ _f fa ai il lu ur re e() ;

}

Please note that the standard v ve ec ct to or r is such a clean design that it minimizes the problems caused by
two-phase construction. The i in ni it t() function is roughly equivalent to r re es si iz ze e(), and in most places
the possibility of v v==0 0 is already covered by s si iz ze e()==0 0 tests. The negative effects described for
two-phase construction become more marked when we consider application classes that acquire
significant resources, such as network connections and files. Such classes are rarely part of a
framework that guides their use and their implementation in the way the standard-library require-
ments guide the definition and use of v ve ec ct to or r. The problems also tend to increase as the mapping
between the application concepts and the resources required to implement them becomes more
complex. Few classes map as directly onto system resources as does v ve ec ct to or r.

The idea of having a ‘‘safe state’’ is in principle a good one. If we can’t put an object into a
valid state without fear of throwing an exception before completing that operation, we do indeed

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.3.5.2 Relying on a Default Valid State 953

have a problem. However, this ‘‘safe state’’ should be one that is a natural part of the semantics of
the class rather than an implementation artifact that complicates the class invariant.

E.3.5.3 Delaying resource acquisition

Like the second point (§E.3.5.2), the third (to delay acquisition until a resource is needed) misap-
plies a good idea in a way that imposes cost without yielding benefits. In many cases, notably in
containers such as v ve ec ct to or r, the best way of delaying resource acquisition is for the programmer to
delay the creation of objects until they are needed. Consider a naive use of v ve ec ct to or r:

v vo oi id d f f(i in nt t n n)
{

v ve ec ct to or r<X X> v v(n n) ; / / make n default objects of type X
/ / ...

v v[3 3] = X X(9 99 9) ; / / real ‘‘initialization’’ of v[3]
/ / ...

}

Constructing an X X only to assign a new value to it later is wasteful – especially if an X X assignment
is expensive. Therefore, two-phase construction of X X can seem attractive. For example, the type X X
may itself be a v ve ec ct to or r, so we might consider two-phase construction of v ve ec ct to or r to optimize creation
of empty v ve ec ct to or rs. However, creating default (empty) vectors is already efficient, so complicating
the implementation with a special case for the empty vector seems futile. More generally, the best
solution to spurious initialization is rarely to remove complicated initialization from the element
constructors. Instead, a user can create elements only when needed. For example:

v vo oi id d f f2 2(i in nt t n n)
{

v ve ec ct to or r<X X> v v; / / make empty vector
/ / ...

v v.p pu us sh h_ _b ba ac ck k(X X(9 99 9)) ; / / construct element when needed
/ / ...

}

To sum up: the two-phase construction approach leads to more complicated invariants and typically
to less elegant, more error-prone, and harder-to-maintain code. Consequently, the language-
supported ‘‘constructor approach’’ should be preferred to the ‘‘i in ni it t()-function approach’’ when-
ever feasible. That is, resources should be acquired in constructors whenever delayed resource
acquisition isn’t mandated by the inherent semantics of a class.

E.4 Standard Container Guarantees

If a library operation itself throws an exception, it can – and does – make sure that the objects on
which it operates are left in a well-defined state. For example, a at t() throwing o ou ut t_ _o of f_ _r ra an ng ge e for a
v ve ec ct to or r (§16.3.3) is not a problem with exception safety for the v ve ec ct to or r. The writer of a at t() has no
problem making sure that a v ve ec ct to or r is in a well-defined state before throwing. The problems – for

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

954 Standard-Library Exception Safety Appendix E

library implementers, for library users, and for people trying to understand code – come when a
user-supplied function throws an exception.

The standard-library containers offer the basic guarantee (§E.2): The basic invariants of the
library are maintained, and no resources are leaked as long as user code behaves as required. That
is, user-supplied operations should not leave container elements in invalid states or throw excep-
tions from destructors. By ‘‘operations,’’ I mean operations used by the standard-library imple-
mentation, such as constructors, assignments, destructors, and operations on iterators (§E.4.4).

It is relatively easy for the programmer to ensure that such operations meet the library’s expec-
tations. In fact, much naively written code conforms to the library’s requirements. The following
types clearly meet the standard library’s requirements for container element types:

[1] built-in types – including pointers,
[2] types without user-defined operations,
[3] classes with operations that neither throw exceptions nor leave operands in invalid states,
[4] classes with destructors that don’t throw exceptions and for which it is simple to verify that

operations used by the standard library (such as constructors, assignments, <, ==, and
s sw wa ap p()) don’t leave operands in invalid states.

In each case, we must also make sure that no resource is leaked. For example:

v vo oi id d f f(C Ci ir rc cl le e* p pc c, T Tr ri ia an ng gl le e* p pt t, v ve ec ct to or r<S Sh ha ap pe e*>& v v2 2)
{

v ve ec ct to or r<S Sh ha ap pe e*> v v(1 10 0) ; / / either create vector or throw bad_alloc
v v[3 3] = p pc c; / / no exception thrown
v v.i in ns se er rt t(v v.b be eg gi in n()+4 4,p pt t) ; / / either insert pt or no effect on v
v v2 2.e er ra as se e(v v2 2.b be eg gi in n()+3 3) ; / / either erase v2[3] or no effect on v2
v v2 2 = v v; / / copy v or no effect on v2
/ / ...

}

When f f() exits, v v will be properly destroyed, and v v2 2 will be in a valid state. This fragment does
not indicate who is responsible for deleting p pc c and p pt t. If f f() is responsible, it can either catch
exceptions and do the required deletion, or assign the pointers to local a au ut to o_ _p pt tr rs.

The more interesting question is: When do the library operations offer the strong guarantee that
an operation either succeeds or has no effect on its operands? For example:

v vo oi id d f f(v ve ec ct to or r<X X>& v vx x)
{

v vx x.i in ns se er rt t(v vx x.b be eg gi in n()+4 4,X X(7 7)) ; / / add element
}

In general, X X’s operations and v ve ec ct to or r<X X>’s allocator can throw an exception. What can we say
about the elements of v vx x when f f() exits because of an exception? The basic guarantee ensures that
no resources have been leaked and that v vx x has a set of valid elements. However, exactly what ele-
ments? Is v vx x unchanged? Could a default X X have been added? Could an element have been
removed because that was the only way for i in ns se er rt t() to recover while maintaining the basic guaran-
tee? Sometimes, it is not enough to know that a container is in a good state; we also want to know
exactly what state that is. After catching an exception, we typically want to know that the elements
are exactly those we intended, or we will have to start error recovery.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.4.1 Insertion and Removal of Elements 955

E.4.1 Insertion and Removal of Elements

Inserting an element into a container and removing one are obvious examples of operations that
might leave a container in an unpredictable state if an exception is thrown. The reason is that inser-
tions and deletions invoke many operations that may throw exceptions:

[1] A new value is copied into a container.
[2] An element deleted from (erased from) a container must be destroyed.
[3] Sometimes, memory must be allocated to hold a new element.
[4] Sometimes, v ve ec ct to or r and d de eq qu ue e elements must be copied to new locations.
[5] Associative containers call comparison functions for elements.
[6] Many insertions and deletions involve iterator operations.

Each of these cases can cause an exception to be thrown.
If a destructor throws an exception, no guarantees are made (§E.2). Making guarantees in this

case would be prohibitively expensive. However, the library can and does protect itself – and its
users – from exceptions thrown by other user-supplied operations.

When manipulating a linked data structure, such as a l li is st t or a m ma ap p, elements can be added and
removed without affecting other elements in the container. This is not the case for a container
implemented using contiguous allocation of elements, such as a v ve ec ct to or r or a d de eq qu ue e. There, elements
sometimes need to be moved to new locations.

In addition to the basic guarantee, the standard library offers the strong guarantee for a few
operations that insert or remove elements. Because containers implemented as linked data struc-
tures behave differently from containers with contiguous allocation of elements, the standard pro-
vides slightly different guarantees for different kinds of containers:

[1] Guarantees for v ve ec ct to or r (§16.3) and d de eq qu ue e (§17.2.3):
– If an exception is thrown by a p pu us sh h_ _b ba ac ck k() or a p pu us sh h_ _f fr ro on nt t(), that function has no

effect.
– Unless thrown by the copy constructor or the assignment operator of the element type, if

an exception is thrown by an i in ns se er rt t(), that function has no effect.
– Unless thrown by the copy constructor or the assignment operator of the element type,

no e er ra as se e() throws an exception.
– No p po op p_ _b ba ac ck k() or p po op p_ _f fr ro on nt t() throws an exception.

[2] Guarantees for l li is st t (§17.2.2):
– If an exception is thrown by a p pu us sh h_ _b ba ac ck k() or a p pu us sh h_ _f fr ro on nt t(), that function has no

effect.
– If an exception is thrown by an i in ns se er rt t(), that function has no effect.
– No e er ra as se e(), p po op p_ _b ba ac ck k(), p po op p_ _f fr ro on nt t(), s sp pl li ic ce e(), or r re ev ve er rs se e() throws an exception.
– Unless thrown by a predicate or a comparison function, the l li is st t member functions

r re em mo ov ve e(), r re em mo ov ve e_ _i if f(), u un ni iq qu ue e(), s so or rt t(), and m me er rg ge e() do not throw exceptions.
[3] Guarantees for associative containers (§17.4):

– If an exception is thrown by an i in ns se er rt t() while inserting a single element, that function
has no effect.

– No e er ra as se e() throws an exception.
Note that where the strong guarantee is provided for an operation on a container, all iterators,
pointers to elements, and references to elements remain valid if an exception is thrown.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

956 Standard-Library Exception Safety Appendix E

These rules can be summarized in a table:
_ __

Container-Operation Guarantees_ ___ __
vector deque list map_ __

c cl le ea ar r(()) nothrow nothrow nothrow nothrow
(copy) (copy)

e er ra as se e(()) nothrow nothrow nothrow nothrow
(copy) (copy)

1 1- -e el le em me en nt t i in ns se er rt t(()) strong strong strong strong
(copy) (copy)

N N- -e el le em me en nt t i in ns se er rt t(()) strong strong strong basic
(copy) (copy)

m me er rg ge e(()) — — nothrow —
(comparison)

p pu us sh h_ _b ba ac ck k(()) strong strong strong —

p pu us sh h_ _f fr ro on nt t(()) — strong strong —

p po op p_ _b ba ac ck k(()) nothrow nothrow nothrow —

p po op p_ _f fr ro on nt t(()) — nothrow nothrow —

r re em mo ov ve e(()) — — nothrow —
(comparison)

r re em mo ov ve e_ _i if f(()) — — nothrow —
(predicate)

r re ev ve er rs se e(()) — — nothrow —

s sp pl li ic ce e(()) — — nothrow —

s sw wa ap p(()) nothrow nothrow nothrow nothrow
(copy-of-comparison)

u un ni iq qu ue e(()) — — nothrow —
(comparison)_ __ 





















































































































In this table:
basic means that the operation provides only the basic guarantee (§E.2)
strong means that the operation provides the strong guarantee (§E.2)
nothrow means that the operation does not throw an exception (§E.2)
— means that the operation is not provided as a member of this container

Where a guarantee requires that some user-supplied operations not throw exceptions, those
operations are indicated in parentheses under the guarantee. These requirements are precisely
stated in the text preceding the table.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.4.1 Insertion and Removal of Elements 957

The s sw wa ap p() functions differ from the other functions mentioned by not being members.
The guarantee for c cl le ea ar r() is derived from that offered by e er ra as se e() (§16.3.6). This table lists
guarantees offered in addition to the basic guarantee. Consequently this table does not list oper-
ations, such as r re ev ve er rs se e() and u un ni iq qu ue e() for v ve ec ct to or r, that are provided only as algorithms for all
sequences without additional guarantees.

The ‘‘almost container’’ b ba as si ic c_ _s st tr ri in ng g (§17.5, §20.3) offers the basic guarantee for all opera-
tions (§E.5.1). The standard also guarantees that b ba as si ic c_ _s st tr ri in ng g’s e er ra as se e() and s sw wa ap p() don’t
throw, and offers the strong guarantee for b ba as si ic c_ _s st tr ri in ng g’s i in ns se er rt t() and p pu us sh h_ _b ba ac ck k().

In addition to ensuring that a container is unchanged, an operation providing the strong
guarantee also leaves all iterators, pointers, and references valid. For example:

v vo oi id d u up pd da at te e(m ma ap p<s st tr ri in ng g,X X>& m m, m ma ap p<s st tr ri in ng g,X X>: :i it te er ra at to or r c cu ur rr re en nt t)
{

X X x x;
s st tr ri in ng g s s;
w wh hi il le e (c ci in n>>s s>>x x)
t tr ry y {

c cu ur rr re en nt t = m m.i in ns se er rt t(c cu ur rr re en nt t,m ma ak ke e_ _p pa ai ir r(s s,x x)) ;
}
c ca at tc ch h(...) {

/ / here current still denotes the current element
}

}

E.4.2 Guarantees and Tradeoffs

The patchwork of additional guarantees reflects implementation realities. Programmers prefer
the strong guarantee with as few conditions as possible, but they also tend to insist that each
individual standard-library operation be optimally efficient. Both concerns are reasonable, but
for many operations, it is not possible to satisfy both simultaneously. To give a better idea of
the tradeoffs involved, I’ll examine ways of adding of single and multiple elements to l li is st ts,
v ve ec ct to or rs, and m ma ap ps.

Consider adding a single element to a l li is st t or a v ve ec ct to or r. As ever, p pu us sh h_ _b ba ac ck k() provides the
simplest way of doing that:

v vo oi id d f f(l li is st t<X X>& l ls st t, v ve ec ct to or r<X X>& v ve ec c, c co on ns st t X X& x x)
{

t tr ry y {
l ls st t.p pu us sh h_ _b ba ac ck k(x x) ; / / add to list

}
c ca at tc ch h (...) {

/ / lst is unchanged
r re et tu ur rn n;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

958 Standard-Library Exception Safety Appendix E

t tr ry y {
v ve ec c.p pu us sh h_ _b ba ac ck k(x x) ; / / add to vector

}
c ca at tc ch h (...) {

/ / vec is unchanged
r re et tu ur rn n;

}

/ / lst and vec each have a new element with the value x
}

Providing the strong guarantee in these cases is simple and cheap. It is also very useful because
it provides a completely exception-safe way of adding elements. However, p pu us sh h_ _b ba ac ck k() isn’t
defined for associative containers – a m ma ap p has no b ba ac ck k(). After all, the last element of an
associative container is defined by the order relation rather than by position.

The guarantees for i in ns se er rt t() are a bit more complicated. The reason is that sometimes
i in ns se er rt t() has to place an element in ‘‘the middle’’ of a container. This is no problem for a
linked data structure, such as l li is st t or m ma ap p. However, if there is free reserved space in a v ve ec ct to or r,
the obvious implementation of v ve ec ct to or r<X X>: :i in ns se er rt t() copies the elements after the insertion
point to make room. This is optimally efficient, but there is no simple way of restoring a v ve ec ct to or r
if X X’s copy assignment or copy constructor throws an exception (see §E.8[10-11]). Conse-
quently, v ve ec ct to or r provides a guarantee that is conditional upon element copy operations not
throwing exceptions. However, l li is st t and m ma ap p don’t need such a condition; they can simply link
in new elements after doing any necessary copying.

As an example, assume that X X’s copy assignment and copy constructor throw
X X: :c ca an nn no ot t_ _c co op py y if they cannot successfully create a copy:

v vo oi id d f f(l li is st t<X X>& l ls st t, v ve ec ct to or r<X X>& v ve ec c, m ma ap p<s st tr ri in ng g,X X>& m m, c co on ns st t X X& x x, c co on ns st t s st tr ri in ng g& s s)
{

t tr ry y {
l ls st t.i in ns se er rt t(l ls st t.b be eg gi in n() ,x x) ; / / add to list

}
c ca at tc ch h (...) {

/ / lst is unchanged
r re et tu ur rn n;

}

t tr ry y {
v ve ec c.i in ns se er rt t(v ve ec c.b be eg gi in n() ,x x) ; / / add to vector

}
c ca at tc ch h (X X: :c ca an nn no ot t_ _c co op py y) {

/ / oops: vec may or may not have a new element
r re et tu ur rn n;

}
c ca at tc ch h (...) {

/ / vec is unchanged
r re et tu ur rn n;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.4.2 Guarantees and Tradeoffs 959

t tr ry y {
m m.i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(s s,x x)) ; / / add to map

}
c ca at tc ch h (...) {

/ / m is unchanged
r re et tu ur rn n;

}

/ / lst and vec each have a new element with the value x
/ / m has an element with the value (s,x)

}

If X X: :c ca an nn no ot t_ _c co op py y is caught, a new element may or may not have been inserted into v ve ec c. If a
new element was inserted, it will be an object in a valid state, but it is unspecified exactly what
the value is. It is possible that after X X: :c ca an nn no ot t_ _c co op py y, some element will have been ‘‘mysteri-
ously’’ duplicated (see §E.8[11]). Alternatively, i in ns se er rt t() may be implemented so that it deletes
some ‘‘trailing’’ elements to be certain that no invalid elements are left in a container.

Unfortunately, providing the strong guarantee for v ve ec ct to or r’s i in ns se er rt t() without the caveat
about exceptions thrown by copy operations is not feasible. The cost of completely protecting
against an exception while moving elements in a v ve ec ct to or r would be significant compared to sim-
ply providing the basic guarantee in that case.

Element types with copy operations that can throw exceptions are not uncommon. Exam-
ples from the standard library itself are v ve ec ct to or r<s st tr ri in ng g>, v ve ec ct to or r< v ve ec ct to or r<d do ou ub bl le e> >, and
m ma ap p<s st tr ri in ng g,i in nt t>.

The l li is st t and v ve ec ct to or r containers provide the same guarantees for i in ns se er rt t() of single and multi-
ple elements. The reason is simply that for v ve ec ct to or r and l li is st t, the same implementation strategies
apply to both single-element and multiple-element i in ns se er rt t(). However, m ma ap p provides the
strong guarantee for single-element i in ns se er rt t(), but only the basic guarantee for multiple-element
i in ns se er rt t(). A single-element i in ns se er rt t() for m ma ap p that provides the strong guarantee is easily
implemented. However, the obvious strategy for implementing multiple-element i in ns se er rt t() for a
m ma ap p is to insert the new elements one after another, and it is not easy to provide the strong guar-
antee for that. The problem with this is that there is no simple way of backing out of previous
successful insertions if the insertion of an element fails.

If we want an insertion function that provides the strong guarantee that either every element
was successfully added or the operation had no effect, we can build it by constructing a new
container and then s sw wa ap p():

t te em mp pl la at te e<c cl la as ss s C C, c cl la as ss s I It te er r>
v vo oi id d s sa af fe e_ _i in ns se er rt t(C C& c c, t ty yp pe en na am me e C C: :c co on ns st t_ _i it te er ra at to or r i i, I It te er r b be eg gi in n, I It te er r e en nd d)
{

C C t tm mp p(c c.b be eg gi in n() ,i i) ; / / copy leading elements to temporary
c co op py y(b be eg gi in n,e en nd d,i in ns se er rt te er r(t tm mp p,t tm mp p.e en nd d())) ; / / copy new elements
c co op py y(i i,c c.e en nd d() ,i in ns se er rt te er r(t tm mp p,t tm mp p.e en nd d())) ; / / copy trailing elements
s sw wa ap p(c c,t tm mp p) ;

}

As ever, this code may misbehave if the element destructor throws an exception. However, if
an element copy operation throws an exception, the argument container is unchanged.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

960 Standard-Library Exception Safety Appendix E

E.4.3 Swap

Like copy constructors and assignments, s sw wa ap p() operations are essential to many standard
algorithms and are often supplied by users. For example, s so or rt t() and s st ta ab bl le e_ _s so or rt t() typically
reorder elements, using s sw wa ap p(). Thus, if a s sw wa ap p() function throws an exception while
exchanging values from a container, the container could be left with unchanged elements or a
duplicate element rather than a pair of swapped elements.

Consider the obvious definition of the standard-library s sw wa ap p() function (§18.6.8):

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(T T& a a, T T& b b)
{

T T t tm mp p = a a;
a a = b b;
b b = t tm mp p;

}

Clearly, s sw wa ap p() doesn’t throw an exception unless the element type’s copy constructor or copy
assignment does.

With one minor exception for associative containers, standard container s sw wa ap p() functions
are guaranteed not to throw exceptions. Basically, containers are swapped by exchanging the
data structures that act as handles for the elements (§13.5, §17.1.3). Since the elements them-
selves are not moved, element constructors and assignments are not invoked, so they don’t get
an opportunity to throw an exception. In addition, the standard guarantees that no standard-
library s sw wa ap p() function invalidates any references, pointers, or iterators referring to the ele-
ments of the containers being swapped. This leaves only one potential source of exceptions:
The comparison object in an associative container is copied as part of the handle. The only pos-
sible exception from a s sw wa ap p() of standard containers is the copy constructor and assignment of
the container’s comparison object (§17.1.4.1). Fortunately, comparison objects usually have
trivial copy operations that do not have opportunities to throw exceptions.

A user-supplied s sw wa ap p() should be written to provide the same guarantees. This is rela-
tively simple to do as long as one remembers to swap types represented as handles by swapping
their handles, rather than slowly and elaborately copying the information referred to by the han-
dles (§13.5, §16.3.9, §17.1.3).

E.4.4 Initialization and Iterators

Allocation of memory for elements and the initialization of such memory are fundamental parts
of every container implementation (§E.3). Consequently, the standard algorithms for construct-
ing objects in uninitialized memory – u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() (§19.4.4) – are guaranteed to leave no constructed objects behind if they
throw an exception. They provide the strong guarantee (§E.2). This sometimes involves
destroying elements, so the requirement that destructors not throw exceptions is essential to
these algorithms; see §E.8[14]. In addition, the iterators supplied as arguments to these algo-
rithms are required to be well behaved. That is, they must be valid iterators, refer to valid
sequences, and iterator operations (such as ++ and != and *) on a valid iterator are not allowed
to throw exceptions.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.4.4 Initialization and Iterators 961

Iterators are examples of objects that are copied freely by standard algorithms and opera-
tions on standard containers. Thus, copy constructors and copy assignments of iterators should
not throw exceptions. In particular, the standard guarantees that no copy constructor or assign-
ment operator of an iterator returned from a standard container throws an exception. For exam-
ple, an iterator returned by v ve ec ct to or r<T T>: :b be eg gi in n() can be copied without fear of exceptions.

Note that ++ and -- on an iterator can throw exceptions. For example, an
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r (§19.2.6) could reasonably throw an exception to indicate an input error,
and a range-checked iterator could throw an exception to indicate an attempt to move outside its
valid range (§19.3). However, they cannot throw exceptions when moving an iterator from one
element of a sequence to another, without violating the definition of ++ and -- on an iterator.
Thus, u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() assume that ++
and -- on their iterator arguments will not throw; if they do throw, either those ‘‘iterators’’
weren’t iterators according to the standard, or the ‘‘sequence’’ specified by them wasn’t a
sequence. Again, the standard containers do not protect the user from the user’s own undefined
behavior (§E.2).

E.4.5 References to Elements

When a reference, a pointer, or an iterator to an element of a container is handed to some code,
that code can corrupt the container by corrupting the element. For example:

v vo oi id d f f(c co on ns st t X X& x x)
{

l li is st t<X X> l ls st t;
l ls st t.p pu us sh h_ _b ba ac ck k(x x) ;
l li is st t<X X>: :i it te er ra at to or r i i = l ls st t.b be eg gi in n() ;
*i i = x x; / / copy x into list
/ / ...

}

If x x is corrupted, l li is st t’s destructor may not be able to properly destroy l ls st t. For example:

s st tr ru uc ct t X X {
i in nt t* p p;

X X() { p p = n ne ew w i in nt t; }
˜X X() { d de el le et te e p p; }
/ / ...

};

v vo oi id d m ma al li ic ci io ou us s()
{

X X x x;
x x.p p = r re ei in nt te er rp pr re et t_ _c ca as st t<i in nt t*>(7 7) ; / / corrupt x
f f(x x) ; / / time bomb

}

When the execution reaches the end on f f(), the l li is st t<X X> destructor is called, and that will in
turn invoke X X’s destructor for the corrupted value. The effect of executing d de el le et te e p p when p p
isn’t 0 0 and doesn’t point to an X X is undefined and could be an immediate crash. Alternatively, it

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

962 Standard-Library Exception Safety Appendix E

might leave the free store corrupted in a way that causes difficult-to-track problems much later
on in an apparently unrelated part of a program.

This possibility of corruption should not stop people from manipulating container elements
through references and iterators; it is often the simplest and most efficient way of doing things.
However, it is wise to take extra care with such references into containers. When the integrity
of a container is crucial, it might be worthwhile to offer safer alternatives to less experienced
users. For example, we might provide an operation that checks the validity of a new element
before copying it into an important container. Naturally, such checking can only be done with
knowledge of the application types.

In general, if an element of a container is corrupted, subsequent operations on the container
can fail in nasty ways. This is not particular to containers. Any object left in a bad state can
cause subsequent failure.

E.4.6 Predicates

Many standard algorithms and many operations on standard containers rely on predicates that
can be supplied by users. In particular, all associative containers depend on predicates for both
lookup and insertion.

A predicate used by a standard container operation may throw an exception. In that case,
every standard-library operation provides the basic guarantee, and some operations, such as
i in ns se er rt t() of a single element, provide the strong guarantee (§E.4.1). If a predicate throws an
exception from an operation on a container, the resulting set of elements in the container may
not be exactly what the user wanted, but it will be a set of valid elements. For example, if ==
throws an exception when invoked from l li is st t: :u un ni iq qu ue e() (§17.2.2.3), the user cannot assume
that no duplicates are in the list. All the user can safely assume is that every element on the list
is valid (see §E.5.3).

Fortunately, predicates rarely do anything that might throw an exception. However, user-
defined <, ==, and != predicates must be taken into account when considering exception safety.

The comparison object of an associative container is copied as part of a s sw wa ap p() (§E.4.3).
Consequently, it is a good idea to ensure that the copy operations of predicates that might be
used as comparison objects do not throw exceptions.

E.5 The Rest of the Standard Library

The crucial issue in exception safety is to maintain the consistency of objects; that is, we must
maintain the basic invariants for individual objects and the consistency of collections of objects.
In the context of the standard library, the objects for which it is the most difficult to provide
exception safety are the containers. From the point of view of exception safety, the rest of the
standard library is less interesting. However, note that from the perspective of exception safety,
a built-in array is a container that might be corrupted by an unsafe operation.

In general, standard-library functions throw only the exceptions that they are specified to
throw, plus any thrown by user-supplied operations that they may call. In addition, any func-
tion that (directly or indirectly) allocates memory can throw an exception to indicate memory
exhaustion (typically, s st td d: :b ba ad d_ _a al ll lo oc c).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.5.1 Strings 963

E.5.1 Strings

The operations on s st tr ri in ng gs can throw a variety of exceptions. However, b ba as si ic c_ _s st tr ri in ng g manipu-
lates its characters through the functions provided by c ch ha ar r_ _t tr ra ai it ts s (§20.2), and these functions
are not allowed to throw exceptions. That is, the c ch ha ar r_ _t tr ra ai it ts s supplied by the standard library
do not throw exceptions, and no guarantees are made if an operation of a user-defined
c ch ha ar r_ _t tr ra ai it ts s throws an exception. In particular, note that a type used as the element (character)
type for a b ba as si ic c_ _s st tr ri in ng g is not allowed to have a user-defined copy constructor or a user-defined
copy assignment. This removes a significant potential source of exception throws.

A b ba as si ic c_ _s st tr ri in ng g is very much like a standard container (§17.5, §20.3). In fact, its elements
constitute a sequence that can be accessed using b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>: :i it te er ra at to or rs and
b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>: :c co on ns st t_ _i it te er ra at to or rs. Consequently, a string implementation offers the
basic guarantee (§E.2), and the guarantees for e er ra as se e(), i in ns se er rt t(), p pu us sh h_ _b ba ac ck k() and s sw wa ap p()
(§E.4.1) apply to b ba as si ic c_ _s st tr ri in ng gs. For example, b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>: :p pu us sh h_ _b ba ac ck k()
offers the strong guarantee.

E.5.2 Streams

If required to do so, iostream functions throw exceptions to signal state changes (§21.3.6). The
semantics of this are well defined and pose no exception-safety problems. If a user-defined
o op pe er ra at to or r<<() or o op pe er ra at to or r>>() throws an exception, it may appear to the user as if the ios-
tream library threw an exception. However, such an exception will not affect the stream state
(§21.3.3). Further operations on the stream may not find the expected data – because the previ-
ous operation threw an exception instead of completing normally – but the stream itself is
uncorrupted. As ever after an I/O problem, a c cl le ea ar r() may be needed before doing further
reads/writes (§21.3.3, §21.3.5).

Like b ba as si ic c_ _s st tr ri in ng g, the iostreams rely on c ch ha ar r_ _t tr ra ai it ts s to manipulate characters (§20.2.1,
§E.5.1). Thus, an implementation can assume that operations on characters do not throw excep-
tions, and no guarantees are made if the user violates that assumption.

To allow for crucial optimizations, l lo oc ca al le es (§D.2) and f fa ac ce et ts (§D.3) are assumed not to
throw exceptions. If they do, a stream using them could be corrupted. However, the most
likely exception, a s st td d: :b ba ad d_ _c ca as st t from a u us se e_ _f fa ac ce et t (§D.3.1), can occur only in user-supplied
code outside the standard stream implementation. At worst, this will produce incomplete output
or cause a read to fail rather than corrupt the o os st tr re ea am m (or i is st tr re ea am m) itself.

E.5.3 Algorithms

Aside from u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), and u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n() (§E.4.4),
the standard offers only the basic guarantee (§E.2) for algorithms. That is, provided that user-
supplied objects are well behaved, the algorithms will maintain all standard-library invariants
and leak no resources. To avoid undefined behavior, user-supplied operations should always
leave their operands in valid states, and destructors should not throw exceptions.

The algorithms themselves do not throw exceptions. Instead, they report errors and failures
through their return values. For example, search algorithms generally return the end of a
sequence to indicate ‘‘not found’’ (§18.2). Thus, exceptions thrown from a standard algorithm

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

964 Standard-Library Exception Safety Appendix E

must originate from a user-supplied operation. That is, the exception must come from an opera-
tion on an element – such as a predicate (§18.4), an assignment, or a s sw wa ap p() – or from an allo-
cator (§19.4).

If such an operation throws an exception, the algorithm terminates immediately, and it is up
to the functions that invoked the algorithm to handle the exception. For some algorithms, it is
possible for an exception to occur at a point where the container is not in a state that the user
would consider good. For example, some sorting algorithms temporarily copy elements into a
buffer and later put them back into the container. Such a s so or rt t() might copy elements out of the
container (planning to write them back in proper order later), overwrite them, and then throw an
exception. From a user’s point of view, the container was corrupted. However, all elements are
in a valid state, so recovery should be reasonably straightforward.

Note that the standard algorithms access sequences through iterators. That is, the standard
algorithms never operate on containers directly, only on elements in a container. The fact that a
standard algorithm never directly adds or removes elements from a container simplifies the
analysis of the impact of exceptions. Similarly, if a data structure is accessed only through iter-
ators, pointers, and references to c co on ns st t (for example, through a c co on ns st t R Re ec c*), it is usually trivial
to verify that an exception has no undesired effects.

E.5.4 Valarray and Complex

The numeric functions do not explicitly throw exceptions (Chapter 22). However, v va al la ar rr ra ay y
needs to allocate memory and thus might throw s st td d: :b ba ad d_ _a al ll lo oc c. Furthermore, v va al la ar rr ra ay y or
c co om mp pl le ex x may be given an element type (scalar type) that throws exceptions. As ever, the stan-
dard library provides the basic guarantee (§E.2), but no specific guarantees are made about the
effects of a computation terminated by an exception.

Like b ba as si ic c_ _s st tr ri in ng g (§E.5.1), v va al la ar rr ra ay y and c co om mp pl le ex x are allowed to assume that their template
argument type does not have user-defined copy operations so that they can be bitwise copied.
Typically, these standard-library numeric types are optimized for speed, assuming that their ele-
ment type (scalar type) does not throw exceptions.

E.5.5 The C Standard Library

A standard-library operation without an exception specification may throw exceptions in an
implementation-defined manner. However, functions from the standard C library do not throw
exceptions unless they take a function argument that does. After all, these functions are shared
with C, and C doesn’t have exceptions. An implementation may declare a standard C function
with an empty exception-specification, t th hr ro ow w(), to help the compiler generate better code.

Functions such as q qs so or rt t() and b bs se ea ar rc ch h() (§18.11) take a pointer to function as argument.
They can therefore throw an exception if their arguments can. The basic guarantee (§E.2) cov-
ers these functions.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.6 Implications for Library Users 965

E.6 Implications for Library Users

One way to look at exception safety in the context of the standard library is that we have no
problems unless we create them for ourselves: The library will function correctly as long as
user-supplied operations meet the standard library’s basic requirements (§E.2). In particular, no
exception thrown by a standard container operation will cause memory leaks from containers or
leave a container in an invalid state. Thus, the problem for the library user becomes: How can I
define my types so that they don’t cause undefined behavior or leak resources?

The basic rules are:
[1] When updating an object, don’t destroy its old representation before a new representa-

tion is completely constructed and can replace the old one without risk of exceptions.
For example, see the implementations of v ve ec ct to or r: :o op pe er ra at to or r=(), s sa af fe e_ _a as ss si ig gn n(), and
v ve ec ct to or r: :p pu us sh h_ _b ba ac ck k() in §E.3.

[2] Before throwing an exception, release every resource acquired that is not owned by
some (other) object.
[2a] The ‘‘resource acquisition is initialization’’ technique (§14.4) and the language rule

that partially constructed objects are destroyed to the extent that they were con-
structed (§14.4.1) can be most helpful here. For example, see l le ea ak k() in §E.2.

[2b] The u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() algorithm and its cousins provide automatic release of
resources in case of failure to complete construction of a set of objects (§E.4.4).

[3] Before throwing an exception, make sure that every operand is in a valid state. That is,
leave each object in a state that allows it to be accessed and destroyed without causing
undefined behavior or an exception to be thrown from a destructor. For example, see
v ve ec ct to or r’s assignment in §E.3.2.
[3a] Note that constructors are special in that when an exception is thrown from a con-

structor, no object is left behind to be destroyed later. This implies that we don’t
have to establish an invariant and that we must be sure to release all resources
acquired during a failed construction before throwing an exception.

[3b] Note that destructors are special in that an exception thrown from a destructor
almost certainly leads to violation of invariants and/or calls to t te er rm mi in na at te e().

In practice, it can be surprisingly difficult to follow these rules. The primary reason is that
exceptions can be thrown from places where people don’t expect them. A good example is
s st td d: :b ba ad d_ _a al ll lo oc c. Every function that directly or indirectly uses n ne ew w or an a al ll lo oc ca at to or r to acquire
memory can throw b ba ad d_ _a al ll lo oc c. In some programs, we can solve this particular problem by not
running out of memory. However, for programs that are meant to run for a long time or to
accept arbitrary amounts of input, we must expect to handle various failures to acquire
resources. Thus, we must assume every function capable of throwing an exception until we
have proved otherwise.

One simple way to try to avoid surprises is to use containers of elements that do not throw
exceptions (such as containers of pointers and containers of simple concrete types) or linked
containers (such as l li is st t) that provide the strong guarantee (§E.4). Another, complementary,
approach is to rely primarily on operations, such as p pu us sh h_ _b ba ac ck k(), that offer the strong guaran-
tee that an operation either succeeds or has no effect (§E.2). However, these approaches are by
themselves insufficient to avoid resource leaks and can lead to an ad hoc, overly restrictive, and

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

966 Standard-Library Exception Safety Appendix E

pessimistic approach to error handling and recovery. For example, a v ve ec ct to or r<T T*> is trivially
exception safe if operations on T T don’t throw exceptions. However, unless the objects pointed
to are deleted somewhere, an exception from the v ve ec ct to or r will lead to a resource leak. Thus,
introducing a H Ha an nd dl le e class to deal with deallocation (§25.7) and using v ve ec ct to or r<Handle<T> >
rather than the plain v ve ec ct to or r<T T*> will probably improve the resilience of the code.

When writing new code, it is possible to take a more systematic approach and make sure
that every resource is represented by a class with an invariant that provides the basic guarantee
(§E.2). Given that, it becomes feasible to identify the critical objects in an application and pro-
vide roll-back semantics (that is, the strong guarantee – possibly under some specific condi-
tions) for operations on such objects.

Most applications contain data structures and code that are not written with exception safety
in mind. Where necessary, such code can be fitted into an exception-safe framework by either
verifying that it doesn’t throw exceptions (as was the case for the C standard library; §E.5.5) or
through the use of interface classes for which the exception behavior and resource management
can be precisely specified.

When designing types intended for use in an exception-safe environment, we must pay spe-
cial attention to the operations used by the standard library: constructors, destructors, assign-
ments, comparisons, swap functions, functions used as predicates, and operations on iterators.
This is best done by defining a class invariant that can be simply established by all constructors.
Sometimes, we must design our class invariants so that we can put an object into a state where
it can be destroyed even when an operation suffers a failure at an ‘‘inconvenient’’ point. Ide-
ally, that state isn’t an artifact defined simply to aid exception handling, but a state that follows
naturally from the semantics of the type (§E.3.5).

When considering exception safety, the emphasis should be on defining valid states for
objects (invariants) and on proper release of resources. It is therefore important to represent
resources directly as classes. The v ve ec ct to or r_ _b ba as se e (§E.3.2) is a simple example of this. The con-
structors for such resource classes acquire lower-level resources (such as the raw memory for
v ve ec ct to or r_ _b ba as se e) and establish invariants (such as the proper initialization of the pointers of a
v ve ec ct to or r_ _b ba as se e). The destructors of such classes implicitly free lower-level resources. The rules
for partial construction (§14.4.1) and the ‘‘resource acquisition is initialization’’ technique
(§14.4) support this way of handling resources.

A well-written constructor establishes the class invariant for an object (§24.3.7.1). That is,
the constructor gives the object a value that allows subsequent operations to be written simply
and to complete successfully. This implies that a constructor often needs to acquire resources.
If that cannot be done, the constructor can throw an exception so that we can deal with that
problem before an object is created. This approach is directly supported by the language and
the standard library (§E.3.5).

The requirement to release resources and to place operands in valid states before throwing
an exception means that the burden of exception handling is shared among the function throw-
ing, the functions on the call chain to the handler, and the handler. Throwing an exception does
not make handling an error ‘‘somebody else’s problem.’’ It is the obligation of functions
throwing or passing along an exception to release resources that they own and to put operands
in consistent states. Unless they do that, an exception handler can do little more than try to ter-
minate gracefully.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section E.7 Advice 967

E.7 Advice

[1] Be clear about what degree of exception safety you want; §E.2.
[2] Exception safety should be part of an overall strategy for fault tolerance; §E.2.
[3] Provide the basic guarantee for all classes. That is, maintain an invariant, and don’t leak

resources; §E.2, §E.3.2, §E.4.
[4] Where possible and affordable, provide the strong guarantee that an operation either suc-

ceeds or leaves all operands unchanged; §E.2, §E.3.
[5] Don’t throw an exception from a destructor; §E.2, §E.3.2, §E.4.
[6] Don’t throw an exception from an iterator navigating a valid sequence; §E.4.1, §E.4.4.
[7] Exception safety involves careful examination of individual operations; §E.3.
[8] Design templates to be transparent to exceptions; §E.3.1.
[9] Prefer the constructor approach to resource requisition to using i in ni it t() functions; §E.3.5.
[10] Define an invariant for a class to make it clear what is a valid state; §E.2, §E.6.
[11] Make sure that an object can always be put into a valid state without fear of an exception

being thrown; §E.3.2, §E.6.
[12] Keep invariants simple; §E.3.5.
[13] Leave all operands in valid states before throwing an exception; §E.2, §E.6.
[14] Avoid resource leaks; §E.2, §E.3.1, §E.6.
[15] Represent resources directly; §E.3.2, §E.6.
[16] Remember that s sw wa ap p() can sometimes be an alternative to copying elements; §E.3.3.
[17] Where possible, rely on ordering of operations rather than on explicit use of try-blocks;

§E.3.4.
[18] Don’t destroy ‘‘old’’ information until its replacement has been safely produced; §E.3.3,

§E.6.
[19] Rely on the ‘‘resource acquisition is initialization’’ technique; §E.3, §E.3.2, §E.6.
[20] Make sure that comparison operations for associative containers can be copied; §E.3.3.
[21] Identify critical data structures and provide them with operations that provide the strong

guarantee; §E.6

E.8 Exercises

1. (∗1) List all exceptions that could possibly be thrown from f f() in §E.1.
2. (∗1) Answer the questions after the example in §E.1.
3. (∗1) Define a class T Te es st te er r that occasionally throws exceptions from basic operations, such

as copy constructors. Use T Te es st te er r to test your standard-library containers.
4. (∗1) Find the error in the ‘‘messy’’ version of v ve ec ct to or r’s constructor (§E.3.1), and write a

program to get it to crash. Hint: First implement v ve ec ct to or r’s destructor.
5. (∗2) Implement a simple list providing the basic guarantee. Be very specific about what

the list requires of its users to provide the guarantee.
6. (∗3) Implement a simple list providing the strong guarantee. Carefully test this list. Give

an argument why people should believe it to be safe.
7. (∗2.5) Reimplement S St tr ri in ng g from §11.12 to be as safe as a standard container.
8. (∗2) Compare the run time of the various versions of v ve ec ct to or r’s assignment and

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

968 Standard-Library Exception Safety Appendix E

s sa af fe e_ _a as ss si ig gn n() (§E.3.3).
9. (∗1.5) Copy an allocator without using an assignment operator (as needed to improve

o op pe er ra at to or r=() in §E.3.3).
10. (∗2) Add single-element and multiple-element e er ra as se e() and i in ns se er rt t() that provide the

basic guarantee to v ve ec ct to or r (§E.3.2).
11. (∗2) Add single-element and multiple-element e er ra as se e() and i in ns se er rt t() that provide the

strong guarantee to v ve ec ct to or r (§E.3.2). Compare the cost and complexity of these solutions to
the solutions to exercise 10.

12. (∗2) Write a s sa af fe e_ _i in ns se er rt t() (§E.4.2) that inserts elements into the existing v ve ec ct to or r (rather
than copying to a temporary). What constraints do you have to impose on operations?

13. (∗2) Write a s sa af fe e_ _i in ns se er rt t() (§E.4.2) that inserts elements into the existing m ma ap p (rather than
copying to a temporary). What constraints do you have to impose on operations?

14. (∗2.5) Compare the size, complexity, and performance of the s sa af fe e_ _i in ns se er rt t() functions
from exercises 12 and 13 to the s sa af fe e_ _i in ns se er rt t() from §E.4.2.

15. (∗2.5) Write a better (simpler and faster) s sa af fe e_ _i in ns se er rt t() for associative containers only.
Use traits to write a s sa af fe e_ _i in ns se er rt t() that automatically selects the optimal s sa af fe e_ _i in ns se er rt t() for
a container. Hint: §19.2.3.

16. (∗2.5) Try to rewrite u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() (§19.4.4, §E.3.1) to handle destructors that
throw exceptions. Is that possible? If so, at what cost? If not, why not?

17. (∗2.5) Try to rewrite u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() (§19.4.4, §E.3.1) to handle iterators that throw
exceptions for ++ and --. Is that possible? If so, at what cost? If not, why not?

18. (∗3) Take a container from a library different from the standard library. Examine its docu-
mentation to see what exception-safety guarantees it provides. Do some tests to see how
resilient it is against exceptions thrown by memory allocation and user-supplied code.
Compare it to a corresponding standard-library container.

19. (∗3) Try to optimize the v ve ec ct to or r from §E.3 by disregarding the possibility of exceptions.
For example, remove all try-blocks. Compare the performance against the version from
§E.3 and against a standard-library v ve ec ct to or r implementation. Also, compare the size and the
complexity of the source code of these different v ve ec ct to or rs.

20. (∗1) Define invariants for v ve ec ct to or r (§E.3) with and without the possibility of v v==0 0 (§E.3.5) .
21. (∗2.5) Read the source of an implementation of v ve ec ct to or r. What guarantees are implemented

for assignment, multi-element i in ns se er rt t(), and r re es si iz ze e()?
22. (∗3) Write a version of h ha as sh h_ _m ma ap p (§17.6) that is as safe as a standard container.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

_ __ _______________________________________

I
_ __ _______________________________________

Index

Is there another word for synonym?
– anon

162
** 263
-1 831
->* 853
.* 853
16-bit character 580
7-bit char 580
8-bit char 580

bitset 494
,
and[] 838
operator 123
predefined 264
prohibiting 264

!
for basic_ios 616
logical_not 516
valarray 664

!=
bitset 494
complex 680
generated 468
iterator 551
not_equal_to 516
string 591
valarray 667

#, preprocessing directive 813
$ character 81
%
modulus 517

valarray 667
%: digraph 829
%:%: digraph 829
%=, valarray 664
%>digraph 829
&
bitset 495
bitwiseand operator 124
predefined 264
prohibiting 264
valarray 667

&&
logicaland operator 123
logical_and 516
valarray 667

&=
of bitset 494
valarray 664

’ , character literal 73
*
and[] , -> and 290
complex 680
iterator 551
multiplies 517
valarray 667

*=
complex 679
valarray 664

+
complex 680

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

870 Index

iterator 551
plus 517
string 593
user-defined 265
user-defined operator 281
valarray 667

++
increment operator 125
iterator 551
user-defined operator 264, 291

+=
advance() and 551
complex 679
iterator 551
operator 109
string 592
user-defined operator 264, 268, 281
valarray 664

-
complex 680
distance() and 551, 554
iterator 551
minus 517
negate 517
valarray 664, 667

--
decrement operator 125
iterator 551
user-defined operator 291

-=
complex 679
iterator 551
operator 109
valarray 664

->
and* and[] 290
iterator 551
member access operator 102
user-defined operator 289

->* , pointer to member 418
.
floating-point 74
member access operator 101

.* , pointer to member 418

... , ellipsis 154
/
complex 680
divides 517
valarray 667

/* comment 161
//
comment 10
difference from C 816

/=
complex 679
valarray 664

::
andvirtual function, operator 312
explicit qualification 847
namespace and 169
operator 305
scope resolution operator 82, 228

::* , pointer to member 418
:> digraph 829
<
comparison 467
iterator 551
less 516
string 591
template syntax 811
valarray 667
vector 457

<%digraph 829
<: digraph 829
<<
bitset 494
bitset 495
complex 680
for output why 607
inserter 608
of char 611
of complex 612
of pointer to function 631
of streambuf 642
ostream 609
outputcout 46
output operator 607
precedence 608
put to 607
string 598
valarray 667
virtual 612

<<=
of bitset 494
valarray 664

<=
generated 468
iterator 551
less_equal 516
string 591
valarray 667

=
map 484
predefined 264
prohibiting 264
string 587
user-defined operator 281
valarray 663
vector 447

==
bitset 494
complex 680

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Index 871

equal_to 516
equality without 468
iterator 551
string 591
user-defined 534
valarray 667
vector 457

>
and>> 812
generated 468
greater 516
iterator 551
string 591
valarray 667

>=
generated 468
greater_equal 516
iterator 551
string 591
valarray 667

>>
> and 812
bitset 494
bitset 495
char 615
complex 680
extractor 608
get from 607
inputcin 50, 112
istream 614
of complex 621
of pointer to function 632
string 598
valarray 667

>>=
of bitset 494
valarray 664

?: , arithmetic-if 134
[]
, and 838
-> and* and 290
andinsert() 488
bitset 494
design of 295
iterator 551
map 482
of vector 445
onstring 584
valarray 663

\
backslash 830
escape character 73, 830

\’ , single quote 830
^
bitset 495
bitwise exclusive or operator 124

valarray 667
^=
of bitset 494
valarray 664

_ character 81
|
bitset 495
bitwiseor operator 124
valarray 667

|=
of bitset 494
valarray 664

||
logicalor operator 123
logical_or 516
valarray 667

~, valarray 664
0
constant-expression 835
false and 71
null integer value 830
string and 587
zero null 88

-1 andsize_t 448
1, true and 71

A
Aarhus 536
abort() 218, 380
abs() 660– 661, 680
valarray 667

abstract
and concrete type 771
class 708
class 313
class and design 318
class, class hierarchy and 324
iterator 435
nodeclass 774
type 34, 767, 769

abstraction
classes and 733
data 30

abstraction, late 437
abstraction, levels of 733
access 278
checked 445
control 225, 402
control and base class 405
control and multiple-inheritance 406
control, cast and 414
control, run-time 785
control,using-declarationand 407
element 445
operator, design of 295

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

872 Index – A –

to base 850
to member 849
to memberclass 851
unchecked 445

accumulate() 682
acos() , valarray 667
acquisition, resource 364
action 776
Ada 10, 725
adapter
member function 520
pointer to function 521

adapters, container 469
add element to sequence 529
adding
to container 555
to sequence 555
to standard library 434

address of element 454
addressing, united of 88
adjacent_difference() 684
adjacent_find() 525
adjustfield 626, 630
adoption of C++, gradual 718
advance() and+= 551
aims
and means 694
design 700

Algol68 10
algorithm 56
C-style function and 522
and member function 520
and polymorphic object 63
and polymorphism 520
and sequence 508
andstring 584
container and 507
conventions 508
design 510
exception container 566
generalized numeric 682
generic 41
modifying sequence 529
nonmodifying sequence 523
on array 544
return value 508
summary 509

<algorithm> 432, 509
algorithms, standard library 64
alias,namespace 178
alignment 102
all, catch 362
allocate array 128
allocate() 567
allocation
C-style 577

and de-allocation 127
unit of 88

allocator 567
Pool_alloc 572
general 573
nothrow 823
use of 568
user-defined 570

allocator 567
allocator_type 443, 480
alternative
design 710
error handling 192, 355
implementation 320
interface 173
return 357
to macro 161

ambiguity
dynamic_cast and 412
resolution, multiple-inheritance 391

ambiguous type conversion 276
ambition 693
analogy
bridge 724
car factory 698
plug 728
proof by 692
units 728

analysis
design and 696
error 711
experimentation and 710
method, choosing an 696
stage 697

and C-style string,string 579
and
keyword 829
operator&, bitwise 124
operator&&, logical 123

and_eq keyword 829
Annemarie 92
anomaly, constructor and destructor 245
anonymousunion 841
ANSI
C 13
C++ 11

any() 494
app append to file 639
append to file,app 639
append() , string 592
application framework 731, 786
apply() to valarray 664
architecture 696
arg() 680
argc , main() argv 117
argument

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– A – Index 873

array 147
command line 117
deducingtemplate 335, 855
default 153
depend ontemplate 861
explicit template 335
functiontemplate 335
passing 283
passing, function 145
reference 98
template 331
type check, function 145
type conversion, function 145
type, difference from C 817
types,virtual function 310
undeclared 154
value, example of default 227

argv argc , main() 117
arithmetic
conversions, usual 122
conversions, usual 836
function object 517
mixed-mode 268
pointer 88, 93, 125
type 70
vector 65, 662

arithmetic-if?: 134
array 26, 88
algorithm on 544
allocate 128
argument 147
array of 837
as container 496
assignment 92
associative 286, 480
by string, initialization of 89
deallocate 128
delete 250
element, constructor for 250
element object 244
initializer 89
initializer, difference from C 818
layout 669
multidimensional 668, 677, 836
new and 423
of array 837
of objects 250
passing multidimensional 839
pointer and 91, 147
string and 589
valarray and 663
valarray andvector and 662

arrays, numeric 662
ASCII 580, 829
character set 73, 601

asin() 660

valarray 667
asm assembler 806
assembler 8, 10
asm 806

Assert() 750
assert() 750
<assert.h> 432
assertion checking 750
assign()
char_traits 581
string 588
vector 447

assignment
and initialization 283
array 92
copy 246, 283
function call and 99
map 484
of class object 245
operator 110, 268
string 587
to self 246
valarray 663

Assoc example 286
associative
array 286, 480
array– seemap
container 480
container, sequence and 461

associativity of operator 121
asynchronous event 357
at() 53, 445
onstring 585
out_of_range and 385

atan() 660
valarray 667

atan2() 660
valarray 667

ate 639
atexit()
and destructors 218
and exception 382

atof() 600
atoi() 589, 600
atol() 600
AT&T Bell Laboratories 11
auto 843
automatic
garbage collection 247, 844
memory 843
memory management 844
object 244

auto_ptr 367

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

874 Index – B –

B
\b , backspace 830
back() 445
of queue 476

back_inserter() 57, 555
back_insert_iterator 555
backslash\ 830
backspace\b 830
bad() 616
bad_alloc 129
andnew 384
exception 576
missing 823

badbit 617
bad_cast 410
anddynamic_cast 384

bad_exception 378, 384
bad_typeid andtypeid() 384
balance 695
base
access to 850
and derivedclass 39, 737
class 303
class, access control and 405
class, initialization of 306
class, overriding fromvirtual 401
class,private 743
class, private member of 305
class,protected 743
class, replicated 394
class , universal 438
class,virtual 396
member or 740
overrideprivate 738
private 405, 742
protected 319, 405

basefield 626– 627
Basic 725
basic_filebuf , class 648
basic_ios 608, 616, 622, 629
! for 616
format state 606
stream state 606

basic_iostream 637
formatting 606

basic_istream 613
basic_ofstream 638
basic_ostream 608– 609
basic_streambuf 645
buffering 606

basicstring
begin() 584
end() 584
rbegin() 584
rend() 584

basic_string 582

const_iterator 583
const_pointer 583
const_reference 583
const_reverse_iterator 583
difference_type 583
iterator 583
member type 582
pointer 583
reference 583
reverse_iterator 583
size_type 583
traits_type 583
value_type 583

basic_stringstream 640
BCPL 10
before() 415
beg , seekdir and
begin() 54, 481
basicstring 584
iterator 444

behavior, undefined 828
Bell Laboratories, AT&T 11
Bi 511
bibliography, design 719
bidirectional iterator 550
bidirectional_iterator_tag 553
big-O notation 464
binary
mode,binary 639
operator, user-defined 263
search 540, 546

binary binary mode 639
binary_function 515
binary_negate 518
not2() and 522

binary_search() 540
bind1st() 518
andbinder1st 520

bind2nd() 518
binder1st 518
bind1st() and 520

binder2nd 518– 519
binding
name 860
strength, operator 121, 607

BinOp 511
BinPred 511
bit
field 125, 840
field, bitset and 492
pattern 73
position 492
reference to 492
vector 124

bitand keyword 829
bitor keyword 829

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– B – Index 875

bits
in char 658
in float 658
in int 658

<bitset> 431
bitset 492

494
!= 494
& 495
&= of 494
<< 495
<< 494
<<= of 494
== 494
>> 495
>> 494
>>= of 494
[] 494
^ 495
^= of 494
and bit field 492
andenum 492
andset 492
andvector<bool> 492
constructor 493
flip() 494
input 495
operation 494
output 495
reset() 494
set() 494
| 495
|= of 494

bitset() , invalid_argument and 385
bitwise
and operator& 124
exclusive or operator̂ 124
logical operators 124
or operator| 124

blackboard as design tool 703
BLAS 668
bool 71
conversion to 835
input of 615
output of 610
vector of 458

boolalpha 610, 625
boolalpha() 633
break 109, 116
case and 134
statement 116

bridge analogy 724
bsearch() 546
buffer
memory 575
ostream and 642

position in 642
Buffer 331, 335
example 738

buffering 642
I/O 645
basic_streambuf 606

built-in
feature vs technique 43
type 70
type, constructor for 131
type, input of 614
type, output of 609
type, user-defined operator and 265

by
reference,catch 360
value,catch 359

byte 76

C
C
// , difference from 816
ANSI 13
C++ and 13– 14, 199
and C++ 7
and C++ compatibility 816
and C++, mixing 719
and exception 383
and, learning 7
argument type, difference from 817
array initializer, difference from 818
declaration and definition, difference from 818
difference from 816
enum, difference from 817
function call, difference from 816
function definition, difference from 817
initialization andgoto , difference from 818
input and output 651
int implicit, difference from 817
jump past initialization, difference from 818
linkage to 205
macros, difference from 818
programmer 14
scope, difference from 816
sizeof , difference from 816
standard library 599
struct name, difference from 818
struct scope, difference from 818
void* assignment, difference from 818
with Classes 10
with classes 686

C++ 21
.c file 202
cache example 232
calculator example 107, 165, 190, 208
call

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

876 Index – C –

by reference 98, 146
by value 146
function 145
of destructor, explicit 256

callback 371
stream 650

call-by reference 282
callC() example 384
call_from_C() example 384
calloc() 577
capacity() 455
car factory analogy 698
Car example 772
card, CRC 703
c_array 496
carriage return\r 830
CASE 711, 725, 730
case andbreak 134
case-sensitive compare 591
<cassert> 432
cast
C-style 131
and access control 414
cross 408
deprecated C-style 819
down 408
up 408

casting awayconst 414
catch all 362
catch 186, 361
all 362
by reference 360
by value 359
every exception 54

catch(...) 54
category, iterator 553
<cctype> 432, 601
ceil() 660
cerr 609
andclog 624
initialization 637

<cerrno> 432
<cfloat> 433, 660
C-function and exception 382
C++ 10
ANSI 11
C and 7
ISO 11
and C 13– 14, 199
compatibility, C and 816
design of 7, 10
feature summary 819
functional decomposition and 726
gradual adoption of 718
gradual approach to learning 7
introducing 718

large programs and 9
learning 6, 718, 820
library, first 686
misuse of 725
mixing C and 719
procedural programming and 725
programmer 14
properties of 724
standardization 11
style subscript 674
teaching and 12
use of 12

change 700
incremental 684
response to 698
size of sequence 529

changing interface 774
char 73, 76
7-bit 580
8-bit 580
<< of 611
>> 615
bits in 658
character type 71
get() 620
input 618
input of 615
output of 610
signed 831
unsigned 831

char* , specialization and 344
character 580
$ 81
16-bit 580
\ , escape 73, 830
_ 81
buffer,streambuf and 642
classification, wide 601
literal ’ 73
name, universal 831
national 829
set 829
set, ASCII 73, 601
set, large 831
set, restricted 829
special 830
string 432
traits 580
type 580
typechar 71
value of 580

characters in name 81
CHAR_BIT 660
char_traits 580
assign() 581
char_type 580

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– C – Index 877

compare() 581
copy() 581
eof() 581
eq() 581
eq_int_type() 581
find() 581
get_state() 581
int_type() 581
length() 581
lt() 581
move() 581
not_eof() 581
off_type 581
pos_type 581
state_type 581
to_char_type() 581
to_int_type() 581

char_traits<char> 580
char_traits<wchart> 581
char_type 608
char_traits 580

check, range 445, 561
checked
access 445
iterator 561
pointer 291

Checked example 565
Checked_iter example 561
checking
assertion 750
for, wild pointer 722
invariant 749

checking, late, missing 823
checking
of exception-specification376
range 275, 781

choosing
a design method 696
an analysis method 696

cin 614
>>, input 50, 112
cout and 624
initialization 637
value of 276

circle and ellipse 703
class
abstract 313
and design, abstract 318
and type 724
base 303
basic_filebuf 648
concept and 301
constructor for derived 306
conversion of pointer to 304
derived 15, 303
destructor for derived 306

forward reference to 278
friend 279
function 776
handle 782
hierarchy 15, 307, 734
hierarchy and abstract class 324
hierarchy andtemplate 345
hierarchy design 314
hierarchy, reorganization of 707
initialization of base 306
interface 778
member, constructor for 247
member of derived 304
member, private 225
member, public 225
node 772
object, assignment of 245
operations, set of 237
overriding fromvirtual base 401
pointer to 304
private base 743
private member of base 305
protected base 743
storage 244
use of 725

class 16, 32
abstract 708
abstract node 774
access to member 851
and concept 223
base and derived 39, 737
concrete 236, 241, 766
concrete node 774
declaration 225
definition 225
free-standing 732
function-like 514
helper 293
hierarchy 38, 389
hierarchy navigation 411
kind of 765
lattice 389
leaf 774
member 293
namespace and 849
nested 293
not a 705
random number 685
string 292
struct and 234
template and 348
union and 843
universal base 438
user-defined type 224

classes
and abstraction 733

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

878 Index – C –

and concepts 732
and real-world 734
design and 732
find the 702
finding the 734
stream 637
use of 733

classic() locale 649
classification 703
cleanup, initialization and 364
clear goal 698
clear() , 487, 616
failure and 385

<climits> 433, 660
<clocale> 433, 650
Clock example 398
clog 609
cerr and 624
initialization 637

clone 424
clone() 426
close() 639
closing
of file 638
of stream 639

closure 676
cloud example 700
Clu 10
Club_eq 516
<cmath> 434, 660
Cmp 339, 511
Cobol 725
code
bloat, curbing 342
uniformity of 767

coders and designers 695
coercion 267
collaboration, design 708
collating sequence 338
collector,
conservative 846
copying 846

comma and subscripting 838
command line argument 117
comment 138
/* 161
// 10

common
code and constructor 624
code and destructor 624

commonality 301
communication 694– 695, 717
compare, case-sensitive 591
compare()
char_traits 581
string 590

comparison
< 467
default 467
equality and 457
in map 484
requirement 467
string 590
user-supplied 467

compatibility 13
C and C++ 816

compilation
separate 27, 198
template separate 351
unit of 197

compile time, header and 211
compile-time polymorphism 347
compl keyword 829
complete encapsulation 283
complex 64, 267
!= 680
* 680
*= 679
+ 680
+= 679
- 680
-= 679
/ 680
/= 679
<< 680
<< of 612
== 680
>> 680
>> of 621
andcomplex<> 680
conversion 681
cos() 680
cosh() 680
expr() 680
input 680
log() 680
log10() 680
mathematical functions 680
operations 679
output 680
pow() 680
sin() 680
sinh() 680
sqrt() 680
tanh() 680

complex<> , complex and 680
complexity divide and conquer 693
component 701, 755
standard 698, 714

composite operator 268
composition ofnamespace 181
compositor 677

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– C – Index 879

computation, numerical 64
concatenation,string 592– 593
concept 15
and class 301
class and 223
independent 327

concepts, classes and 732
concrete
class 236, 241, 766
class, derive from 780
nodeclass 774
type 33, 236, 766– 767
type, abstract and 771
type and derivation 768
type, problems with 37
type, reuse of 241
type, reuse of 768

condition 753
declaration in 135

conditional expression 134
conj() 680
connection between input and output 623
const 94
C-style string and 90
and linkage 199
and overloading 600
casting away 414
function, inspector 706
iterator 443
member 249
member function 229
physical and logical 231
pointer 96
pointer to 96

constant
expression 833
in-class definition of 249
member 249
time 464

constant-expression0 835
const_cast 131, 232
const_iterator 54, 443, 480
basic_string 583

const_mem_fun1_ref_t 518, 521
const_mem_fun1_t 518, 521
const_mem_fun_ref_t 518, 521
const_mem_fun_t 518, 521
const_pointer 443
basic_string 583

const_reference 443, 480
basic_string 583

const_reverse_iterator 443, 480
basic_string 583

construct() 567
construction
and destruction 244

and destruction, order or 414
order of 248, 252
valarray 662

constructor 32– 33, 226, 706
and C-style initialization 270
and conversion 272
and destructor 242, 246– 247
and destructor anomaly 245
and initializer list 270
andtemplate , copy 348
and type conversion 269, 275
andunion 257
andvirtual base 397
bitset 493
common code and 624
copy 246, 283
default 243
default copy 271
exception in 367
exceptions in 371
explicit 284
for array element 250
for built-in type 131
for class member 247
for derived class 306
for free store object 246
for global variable 252
for local variable 245
map 484
pointer to 424
string 585
vector 447
virtual 323, 424

constructors, exceptions and 366
cont iterator 508
container 40, 52
STL 441
Simula-style 438
Smalltalk-style 438
adapters 469
adding to 555
algorithm, exception 566
and algorithm 507
and iterator 435, 444
and polymorphism 520
array as 496
associative 480

container, based 438
container
design 434, 441
implementation of 465
input into 451
intrusive 438
iterator 464
kind of 461
memory management 455, 567

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

880 Index – C –

operation on 464
optimal 435
representation of 465
sequence and 512
standard library 56
standard-library 442
string as 491
summary 464
user-defined 497
valarray as 492

containers 431
containment 738
and inheritance 740

context
of template definition 860
of template instantiation 860

continue 116
statement 116

contravariance 420
control, format 625
controlled statement 136
convenience
and orthogonality 431
vs. safety 847

conventions
algorithm 508
lexical 794
national 649

conversion 706
ambiguous type 276
complex 681
constructor and 272
constructor and type 269, 275
explicit 284
floating-point 834
implicit 275, 281, 284
implicit type 76, 276, 833
integer 834
of pointer to class 304
of string , implicit 590
operator, type 275
pointer 834
signed unsigned integer 834
string 589
to bool 835
to floating-point 835
to integer type 835
to integral 835
undefinedenum 77
user-defined 347
user-defined pointer 349
user-defined type 267, 281

conversions 747
usual arithmetic 122

conversions, usual, arithmetic 836
cookbook method 692

copy 229, 245, 271
assignment 246, 283
constructor 246, 283
constructor andtemplate 348
constructor, default 271
delayed 295
memberwise 283
of exception 362
requirement 466

copy() 42, 529, 589
char_traits 581

_copy suffix 533
copy_backward() 529
copyfmt() 627
copyfmt_event 651

copyfmt_event , copyfmt() 651
copy_if() not standard 530
copying, elimination of 675
copy-on-write 295
cos() 660
complex 680
valarray 667

cosh() 660
complex 680
valarray 667

cost of exception 381
count() 57, 494, 526
in map 485

count_if() 62, 526
counting, reference 783
coupling, efficiency and 768
cout 609
<<, output 46
andcin 624
initialization 637

Cowboy example 778
__cplusplus 206
CRC card 703
create dependency 745
creation
localization of object 322
object 242

criteria
sorting 534
standard library 430

cross cast 408
<csetjmp> 433
cshift() 664
<csignal> 433
<cstdarg> 433
<cstdio> 202, 432
<cstdlib> 219, 432, 434, 546, 577, 600, 661
c_str() 589
<cstring> 432, 577, 599
C-style
allocation 577

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– C – Index 881

cast 131
cast, deprecated 819
error handling 661
function and algorithm 522
initialization, constructor and 270
string andconst 90
string,string and 579
string,string and 589

<ctime> 431, 433
<ctype.h> 432, 601
cur , seekdir and
curbing code bloat 342
Currying 520
<cwchar> 432
<cwtype> 432, 601
<cwtype.h> 601
cycle, development 698

D
data
abstraction 30
abstraction vs inheritance 727
member, pointer to 853
per-object 573
per-type 573

data() 589
date, format of 649
Date example 236
DBL_MINEXP 660
deallocate array 128
deallocate() 567
de-allocation, allocation and 127
debugging 226
dec 626– 627, 634
decimal 73
output 626

decision, delaying 706
declaration 23, 78– 79
and definition, difference from C 818
and definition,namespace member 167
class 225
friend 279
function 143
in condition 135
in for statement 137
of member class, forward 293
point of 82

declaration 803
declarations, keeping consistent 201
declarator operator 80
declarator 807
decomposition, functional 725
decrement
increment and 291
operator-- 125

deducingtemplate argument 335, 855
default
argument 153
argument value, example of 227
comparison 467
constructor 243
copy constructor 271
template argument 340, 824
value 239
value, supplying 500

default 109
#define 160
definition 78
class 225
context oftemplate 860
difference from C declaration and 818
function 144
in-class 235
namespace member declaration and 167
of constant, in-class 249
of virtual function 310
point of 861
using-directiveand 180

delayed copy 295
delaying decision 706
delegation 290
delete
element from sequence 529, 534
from hash_map 501

delete
and garbage collection 845
array 250
delete[] and 250
operator 127
size and 421

delete() , operator 129, 576
delete[] 128
anddelete 250

delete[]() , operator 423, 576
delete_ptr() example 531
denorm_min() 659
depend ontemplate argument 861
dependencies 724
dependency 15
create 745
inheritance 737
minimize 173
use 745

deprecated
C-style cast 819
static 818

<deque> 431
deque , double-ended queue 474
derivation, concrete type and 768
derive
from concrete class 780

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

882 Index – D –

withoutvirtual 780
derived
andfriend 852
class 15, 303
class , base and 39, 737
class, constructor for 306
class, destructor for 306
class, member of 304
exceptions 359

design 696
I/O 605
abstract class and 318
aims 700
algorithm 510
alternative 710
and analysis 696
and classes 732
and language 724
and language, gap between 725
and programming 692
bibliography 719
class hierarchy 314
collaboration 708
container 434, 441
error 711
for testing 712
how to start a 708
hybrid 718
inheritance and 707
integrity of 716
language and programming language 730
method 694
method, choosing a 696
object-oriented 692, 726
of C++ 7, 10
of [] 295
of access operator 295
reuse 709
stability of 708
stage 697
standard library 429– 430
steps 701
string 579
template in 757
tool, blackboard as 703
tool, presentation as 704
tool, tutorial as 708
tools 711
unit of 755

designers, coders and 695
destroy() 567
destruction
construction and 244
order or construction and 414

destructor 33, 283
and garbage collection 846

andunion 257
anomaly, constructor and 245
common code and 624
constructor and 242, 246– 247
exception in 373
explicit call of 256
for derived class 306
virtual 319

destructors
atexit() and 218
exceptions and 366

development
cycle 698
process 696
software 692
stage 697

diagnostics 432
diamond-shaped inheritance 399
dictionary 480
– seemap

difference
from C 816
from C // 816
from C argument type 817
from C array initializer 818
from C declaration and definition 818
from Cenum 817
from C function call 816
from C function definition 817
from C initialization andgoto 818
from C int implicit 817
from C jump past initialization 818
from C macros 818
from C scope 816
from Csizeof 816
from Cstruct name 818
from Cstruct scope 818
from Cvoid* assignment 818

difference_type 443, 480, 552
basic_string 583

digits 658
digits10 659
digraph
%: 829
%:%: 829
%> 829
:> 829
<% 829
<: 829

direct manipulation 730
directed acyclic graph 308
direction
of seek,seekdir
of seekg()
of seekp()

directive

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– D – Index 883

#, preprocessing 813
template instantiation 866

discrimination of exception 188
disguised pointer 844
dispatch, double 326
distance() and- 551, 554
distribution
exponential 685
uniform 685

div() 661
divide and conquer, complexity 693
divides / 517
div_t 661
do statement 114, 137
documentation 714– 715
do_it() example 777
domain error 661
dominance 401
Donald Knuth 713
dot product 684
double
dispatch 326
quote 830

double 74
output 626

double-ended queuedeque 474
doubly-linkedlist 470
down cast 408
draw_all() example 520
Duff’s device 141
dynamic
memory 127, 576, 843
store 34
type checking 727
type checking, mis-use of 439

dynamic_cast 407– 408
and ambiguity 412
and polymorphism 409
andstatic_cast 413
bad_cast and 384
implementation of 409
to reference 410
use of 774

E
eatwhite() 620
eback() 645
EDOM661
efficiency 8, 713
and coupling 768
and generality 431
of operation 464

egptr() 645
element
access 445

access,list 472
access,map 482
address of 454
constructor for array 250
first 445
from sequence, delete 529, 534
last 445
object, array 244
requirements for 466
to sequence, add 529

eliminate_duplicates() example 534
eliminating programmers 730
elimination
of copying 675
of temporary 675

ellipse, circle and 703
ellipsis... 154
else 134
emphasis, examples and 5
Employee example 302
emptystring 585
empty() 455, 489
string 598

encapsulation 754
complete 283

end , seekdir and
end() 54, 481
basicstring 584
iterator 444

#endif 162
endl 634
ends 634
engineering, viewgraph 704
enum 76
and integer 77
bitset and 492
conversion, undefined 77
difference from C 817
member 249
sizeof 78
user-defined operator and 265

enumeration 76
switch on 77

enumerator 76
EOF 620, 653
eof() 616
char_traits 581

eofbit 617
epptr() 645
epsilon() 659
eq() , char_traits 581
eq_int_type() , char_traits 581
equal() 527
equality
and comparison 457
hash_map 497

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

884 Index – E –

without== 468
equal_range() 540
in map 485

equal_to == 516
equivalence, type 104
Erand 685
ERANGE601, 661
erase()
from map 487
from vector 452
in string 595

errno 383, 601, 661
<errno.h> 432
error
analysis 711
design 711
domain 661
exception and 622
handling 115, 186, 383, 566
handling, C-style 661
handling alternative 192, 355
handling, multilevel 383
linkage 199
loop and 523
range 661
recovery 566
reporting 186
run-time 29, 355
sequence 512
string 586

errors, exceptions and 355, 374
escape character\ 73, 830
essential operators 283
evaluation
lazy 707
order of 122
short-circuit 123, 134

event
asynchronous 357
driven simulation 326

event 651
event_callback 651
example
(bad),Shape 417
Assoc 286
Buffer 738
Car 772
Checked 565
Checked_iter 561
Clock 398
Cowboy 778
Date 236
Employee 302
Expr 424
Extract_officers 524
Filter 786

Form 635
Hello, world! 46
Io 776
Io_circle 775
Io_obj 774
Ival_box 315, 407
Lock_ptr 366
Math_container 346
Matrix 282
Object 417
Plane 729
Pool 570
Range 781
Rational 747
Saab 728
Set 769
Set_controller 785
Shape 774
Slice_iter 670
Stack 27
Storable 396
String 328
Substring 596
Table 243
Vector 341, 780
Vehicle 734
Window 398
cache 232
calculator 107, 165, 190, 208
callC() 384
call_from_C() 384
cloud 700
delete_ptr() 531
do_it() 777
draw_all() 520
eliminate_duplicates() 534
identity() 531
iocopy() 617
iosbase::Init 639
iseq() 513
of default argument value 227
of input 114
of operator overloading 292
of reference 292
of user-defined memory management 292
of virtual function 646
oseq() 556
scrollbar 743
sort() 158, 334

example:, membertemplate 349
examples and emphasis 5
exception 29, 186, 355
C and 383
C-function and 382
I/O 622
and error 622

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– E – Index 885

and function 375
and interface 375
andmain() 54
and member initialization 373
and multiple inheritance 360
andnew 367, 369
and recursive function 374
atexit() and 382
bad_alloc 576
catch every 54
container algorithm 566
copy of 362
cost of 381
discrimination of 188
handler 812
in constructor 367
in destructor 373
mapping 378
new and 576
qsort() and 382
standard 384
type of 379

<exception> 379– 380, 384– 385, 433
exception hierarchy 385
exceptions 357
and constructors 366
and destructors 366
and errors 355, 374
derived 359
grouping of 358
in constructor 371
uncaught 380
unexpected 377

exceptions() 622
exception-specification375
checking of 376

exclusive or operator̂, bitwise 124
exhaustion
free store 129
resource 369

exit() 116, 218
exp() , valarray 667
experimentation and analysis 710
explicit
call of destructor 256
conversion 284
qualification:: 847
template argument 335
template instantiation 866
type conversion 130

explicit constructor 284
exponent, size of 659
exponential distribution 685
exponentiation, vector 667
export 205
Expr example 424

expr() 660
complex 680

expression
conditional 134
constant 833

expression, full 254
expression798
extended type information 416
extensibility 700
extensible I/O 605
extern 205
extern 198
external linkage 199
Extract_officers example 524
extractor,>> 608

F
\f , formfeed 830
fabs() 660
facilities, standard library 66, 429
factory 323
fail() 616
failbit 617
failure 709, 716
failure andclear() 385
false and0 71
fat interface 439, 761
fault tolerance 383
feature
summary, C++ 819
vs technique, built-in 43

features, portability and 815
feedback 695, 698
field
bit 125, 840
output 629– 630
type of 75

fields, order of 75
file
.c 202
.h 201
and stream 637
closing of 638
header 27, 201
input from 637
mode of 639
opening of 638
output to 637
position in 642
source 197

filebuf 649
fill() 537, 629
fill_n() 537
Filter example 786
finally 362

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

886 Index – F –

find the classes 702
find() 57, 525
char_traits 581
in map 485
in string 594

find_end() 528
find_first_not_of() in string 594
find_first_of() 525
in string 594

find_if() 62, 525
finding the classes 734
find_last() 444
find_last_of() in string 594
firewall 383
first
C++ library 686
element 445

first-time switch 253, 640
fixed 626, 628
fixed() 634
flag manipulation 626
flags() 626
flexibility 700
flip() bitset 494
float 74
bits in 658
output 626

float_denorm_style 659
floatfield 626, 628
<float.h> 433
floating
point output 626, 628
point type 74

floating-point
. 74
conversion 834
conversion to 835
literal 74
promotion 833

float_round_style 659
floor() 660
FLT_RADIX 660
flush 634
flush() 631, 642
flushing of output 626
fmod() 660
For 511
for
statement 26, 136
statement, declaration in 137

for(;;) 109
for_each() 62, 523
Form example 635
formal
methods 711
model 730

format
control 625
information,locale 606
object 635
of date 649
of integer 649
state 625
state,basic_ios 606
state,ios_base 606
string 652

formatted output 625
formatting
basic_iostream 606
in core 641

formfeed\f 830
for-statementinitializer 825
Fortran
style subscript 674
vector 668

forward
and output iterator 554
declaration of member class 293
iterator 550
reference to class 278

forwarding function 778, 780
forward_iterator_tag 553
foundation operator 706
fragmentation, memory 846
framework, application 731, 786
free
store 34, 127, 421, 576, 843
store exhaustion 129
store object 244
store object, constructor for 246

free() 577
free-standing
class 732
function 732

frexp() 660
friend 16, 278, 852
and member 265, 280
class 279
declaration 279
derived and 852
function 279
of friend 852
template and 854

front operation 472
front() 445, 472
of queue 476

front_inserter() 555
front_insert_iterator 555
<fstream> 432, 638
fstream 638
function
adapter, pointer to 521

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– F – Index 887

and algorithm, C-style 522
argument passing 145
argument type check 145
argument type conversion 145
argument types,virtual 310
call 145
call and assignment 99
call, difference from C 816
class 776
const member 229
declaration 143
definition 144
definition, difference from C 817
definition ofvirtual 310
definition, old-style 817
example ofvirtual 646
exception and 375
forwarding 778, 780
free-standing 732
friend 279
get() 759
helper 273
higher-order 518
implementation ofvirtual 36
inline 144
inline member 235
inspectorconst 706
member 224, 238
name, overloaded 149
nested 806
object 287, 514, 776
object, arithmetic 517
only, instantiate used 866
operator:: andvirtual 312
pointer to 156
pointer to member 418
purevirtual 313
set() 759
specialization 344
static member 278
template 334
template argument 335
template overloading 336
type of overriding 424
valuereturn 148
virtual 310, 390, 706
virtual 15
virtual output 612

functional
decomposition 725
decomposition and C++ 726

<functional> 431, 516– 519, 521
function-likeclass 514
functions, list ofoperator 262
functor 514
fundamental

sequence 469
type 23, 70

G
game 685
gap between design and language 725
garbage
collection, automatic 247, 844
collection,delete and 845
collection, destructor and 846
collector 128, 130

gargantuanism 713
gbump() 645
gcount() 618
general allocator 573
generality
efficiency and 431
of sequence 512
of solution 701

generalized
numeric algorithm 682
slice 677

general-purpose programming-language 21
generate() 537
generated
!= 468
<= 468
> 468
>= 468
specialization 859

generate_n() 537
generator
random number 537
type 348

generic
algorithm 41
programming 40, 757– 758
programming,template and 327

get
area 645
from, >> 607
position,tellp() 642

get() 618, 643
char 620
function 759

get_allocator() 457
from string 598

getchar() 653
getline() 51, 618
into string 598

getloc() 646, 650
get_state() , char_traits 581
get_temporary_buffer() 575
global 16
initialization of 217

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

888 Index – G –

namespace 847
object 244, 252
objects 640
scope 82, 847
variable 200, 228
variable, constructor for 252
variable, use of 111

global() locale 649
goal, clear 698
good() 616
goodbit 617
goto
difference from C initialization and 818
nonlocal 357
statement 137

gptr() 645
gradual
adoption of C++ 718
approach to learning C++ 7

grammar 793
graph, directed acyclic 308
greater > 516
greater_equal >= 516
grouping of exceptions 358
growing system 711
gslice 677
gslice_array 677
guarantees, standard 827

H
.h
file 201
header 821

hack,struct 809
half-open sequence 512
handle
class 782
intrusive 783

handler, exception 812
hardware 75
has-a 741
has_denorm 659
has_denorm_loss 659
hash
function 502
function,hash_map 497
table 497

hashing 502
hash_map 497
delete from 501
equality 497
hash function 497
lookup 500
representation 498
resize() 502

has_infinity 659
has_quiet_NaN 659
has_signaling_NaN 659
header 117, 201
.h 821
and compile time 211
file 27, 201
standard 431
standard library 202

heap 34, 543, 576
andpriority_queue 543
memory 843
store 127

heap , priority_queue and 479
Hello, world! example 46
helper
class 293
function 273
function andnamespace 240

hex 626– 627, 634
hexadecimal 73
output 626

hiding
information 27
name 82

hierarchies, interface 708
hierarchy 732
class 38, 389
class 15, 307, 734
design, class 314
exception 385
navigation,class 411
object 739, 748
reorganization of class 707
stream 637
traditional 315

higher-order function 518
high-level language 7
Histogram 455
horizontal tab\t 830
how to start a design 708
human activity, programming as a 693
hybrid design 718

I
ideas, real-world as source of 734
identifier 81
identity() example 531
IEC-559,is_iec559 659
if
statement 133
switch and 134

_if suffix 525
#ifdef 162
#ifndef 216

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– I – Index 889

ifstream 638
ignore() 618
imag() 679– 680
imbue() 645, 647, 650
imbue_event 651

imbue_event , imbue() 651
implementation
alternative 320
and interface 317
dependency type of integer literal 832
inheritance 400, 743
interface and 224, 314, 399, 758, 771
iterator 59
of I/O 606
of RTTI 409
of container 465
of dynamic_cast 409
of virtual function 36
pre-standard 820
priority_queue 478
stack 475– 476
stage 697

implementation-defined 827
implicit
conversion 275, 281, 284
conversion ofstring 590
type conversion 76, 276, 833

implicit_cast 335
in core formatting 641
In 511
in open for reading 639
in_avail() 644, 646
in-class
definition 235
definition of constant 249

#include guard 216
include directory, standard 201
#include 27, 117, 183, 201
includes() 542
inclusion,template 350
increment
and decrement 291
operator++ 125

incremental change 684
indentation 138
independent concept 327
index 454
indirect_array 679
indirection 290
individual 716
inertia, organizational 713
infinity() 659
information hiding 27
inheritance 39, 303, 307, 703
and design 707
andtemplate 349

containment and 740
data abstraction vs 727
dependency 737
diamond-shaped 399
implementation 400, 743
interface 400, 743
multiple 308, 390, 735
template and 347
using multiple 399
using-declarationand 392
using-directiveand 392

initialization 79, 226, 244
and cleanup 364
andgoto , difference from C 818
assignment and 283
cerr 637
cin 637
clog 637
constructor and C-style 270
cout 637
difference from C jump past 818
library 640
main() and 217
member 248
of array by string 89
of base class 306
of global 217
of reference 98
of structure 102
order of member 247
reference member 244, 250
run-time 217

initializer
array 89
for-statement825
list, constructor and 270
member 247

initiative 695
inline
and linkage 199
function 144
member function 235

inner product 684
inner_product() 683
innovation 717
inplace_merge() 541
input
and output 432, 605
and output, C 651
and output, connection between 623
bitset 495
char 618
cin >> 50, 112
complex 680
example of 114
from file 637

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

890 Index – I –

into container 451
into vector 451
iterator 550
manipulator 632
of bool 615
of built-in type 614
of char 615
of pointer 615
of user-defined type 621
sequence 513
string 598
unbuffered 642
unformatted 618
valarray 668
width() of 616

input_iterator_tag 553
insert() 55
[] and 488
into map 487
into vector 452
string 592

inserter,<< 608
inserter() 555
insertion, overwriting vs 555
insert_iterator 555
inspectorconst function 706
inspiration 734
instantiate used function only 866
instantiation
context oftemplate 860
directive,template 866
explicit template 866
multiple 867
point of 863
template 859

int 73, 76
bits in 658
implicit, difference from C 817
largest 658
output bits of 495
smallest 658

integer
conversion 834
conversion,signed unsigned 834
enum and 77
format of 649
literal 73, 76
literal, implementation dependency type of 832
literal, type of 832
output 627
type 70, 73
type, conversion to 835
value0, null 830

integral
conversion to 835
promotion 833

type 70
integration 728
integrity of design 716
interface
alternative 173
and implementation 224, 314, 399, 758, 771
changing 774
class 778
exception and 375
fat 439, 761
hierarchies 708
implementation and 317
inheritance 400, 743
module and 165
multiple 172
public andprotected 645
specifying 707

internal
linkage 199
structure 694

internal 625, 630
internal() 634
INT_MAX 660
introducing C++ 718
intrusive
container 438
handle 783

int_type 608
int_type() , char_traits 581
invalid_argument andbitset() 385
invariant 748
checking 749

I/O 47, 50
buffering 645
design 605
exception 622
extensible 605
implementation of 606
iterator and 60
object 774
sentry 624
system, organization of 606
type safe 607
unbuffered 647
wide character 608

Io example 776
Io_circle example 775
iocopy() example 617
<iomanip> 432, 633
Io_obj example 774
<ios> 432, 608
ios 625, 822
ios_base 626, 628– 629, 650
format state 606

iosbase::Init example 639
<iosfwd> 432, 607

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– I – Index 891

iostate 617, 822
io_state 822
<iostream> 46, 432, 609, 614
<istream> and 613
<ostream> and 608

iostream 637
sentry 624

is-a 741
isalnum() 601
isalpha() 113, 601
is_bounded 659
iscntrl() 601
isdigit() 601
Iseq 513
iseq() example 513
is_exact 659
isgraph() 601
is_iec559 IEC-559 659
is_integer 658
islower() 601
is_modulo 659
ISO
646 829
C++ 11

isprint() 601
is_signed 658
isspace() 601, 615
whitespace 114

is_specialized 658
<istream> 432
and<iostream> 613

istream 614, 643
>> 614
and iterator 559

istreambuf iterator 559
istreambuf_iterator 559
istream_iterator 60, 559
istringstream 641
istrstream 656
isupper() 601
isxdigit() 601
iterator 57, 549
!= 551
* 551
+ 551
++ 551
+= 551
- 551
-- 551
-= 551
-> 551
< 551
<= 551
== 551
> 551
>= 551

STL 441
Sink 532
[] 551
abstract 435
and I/O 60
and sequence 550
begin() 444
bidirectional 550
category 553
checked 561
const 443
cont 508
container 464
container and 435, 444
end() 444
forward 550
forward and output 554
implementation 59
input 550
istream and 559
istreambuf 559
map 481
naming convention 511
operation 551
ostream and 558
ostreambuf 560
output 550
random-access 550
rbegin() 444
read through 551
rend() 444
reverse 443, 557
stream 558
string 584
user-defined 561
valarray 670
valid 550
write through 551

<iterator> 432
iterator 54, 443, 480
basic_string 583

iterator_category 552
iterator_traits 552
iter_swap() 538
itoa() 155
Itor 435
Ival_box example 315, 407
Ival_slider 399
iword() 650

J
jump past initialization, difference from C 818

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

892 Index – K –

K
keeping consistent declarations 201
Kernighan and Ritchie 654
key 55
and value 480

key,
duplicate 480, 490
unique 480

key_comp() 485
key_compare 480, 485
key_type 480
keyword 793– 794
and 829
and_eq 829
bitand 829
bitor 829
compl 829
not 829
not_eq 829
or 829
or_eq 829
xor 829
xor_eq 829

kind
of class 765
of container 461

kinds of object 244
Knuth, Donald 713

L
L’ , wide-character literal 73
labs() 661
lack of modularity 309
language
and library 45
design and 724
gap between design and 725
high-level 7
low-level 8
people and machines 9
programming 15
programming styles technique 6
support 433– 434

large
character set 831
program 211– 212
programs and C++ 9

largestint 658
last element 445
last-time switch 640
Latin-1 580
lattice,class 389
layout, array 669
lazy evaluation 707

ldexp() 660
ldiv() 661
ldiv_t 661
leafclass 774
learning
C and 7
C++ 6, 718, 820
C++, gradual approach to 7

left 625, 630
left() 634
legacy 708
length ofvalarray 664, 679
length()
char_traits 581
of string 598
string 586

less 515
< 516

less_equal <= 516
less_than 519
levels of abstraction 733
lexical conventions 794
lexicographical_compare() of sequence 544
libraries, standard 700
library 15, 701, 714, 755
C standard 599
algorithms, standard 64
container, standard 56
facilities, standard 66, 429
first C++ 686
header, standard 202
initialization 640
language and 45
non-standard 45
standard 45, 182
standard– see standard library

lifetime
of object 84
of temporary 254

limits, numeric 658
<limits> 433, 658
<limits.h> 433, 660
line, read 618
linear time 464
Link 394
linkage
andnamespace 207
and pointer to function 207
const and 199
error 199
external 199
inline and 199
internal 199
to C 205
type-safe 198

linker 198

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– L – Index 893

Liskov substitution 743
Lisp 725
list
of operator functions 262
operation 452

<list> 431
List 435
list 54
doubly-linked 470
element access 472
merge() algorithm and 541
merge() stable 470
remove() 472
remove_if() 472
reverse() 472
sort() stable 470
unique() 472

literal
’ , character 73
L’ , wide-character 73
floating-point 74
implementation dependency type of integer 832
integer 73, 76
of user-defined type 273
string 294
string 46, 90
type of integer 832

loader 198
local
fix 697
scope 82
static 145
static store 251
variable, constructor for 245

<locale> 433, 649
locale 649
POSIX 649
classic() 649
format information 606
global() 649

locale() 649
<locale.h> 433, 650
locality 212
localization of object creation 322
locking 366, 785
Lock_ptr example 366
log() 660
complex 680
valarray 667

log10() 660
complex 680
valarray 667

logarithmic time 464
logical
and operator&& 123
const , physical and 231

operators, bitwise 124
or operator|| 123
structure of program 198

logical_and && 516
logical_not 515
! 516

logical_or || 516
longnamespace name 178
long 73
long double 74
longer term 699
lookup,hash_map 500
loop
and error 523
merging 675
statement 116

lower_bound() 540
in map 485

low-level language 8
lt() , char_traits 581
lvalue 84, 264, 281
lying 705

M
machines, language people and 9
macro 160
alternative to 161

macros, difference from C 818
main() 46, 116, 218
and initialization 217
argv argc 117
exception and 54

maintenance 212
software 712

make_heap() 543
make_pair() 482
malloc() 577
management 713
memory 843

manipulator
input 632
output 631
standard 633
user-defined 635
with argument 633

mantissa, size of 659
manual overload resolution 151
map 480
<map> 431
map 55, 480
= 484
[] 482
assignment 484
comparison in 484
constructor 484

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

894 Index – M –

count() in 485
element access 482
equal_range() in 485
erase() from 487
find() in 485
insert() into 487
iterator 481
lower_bound() in 485
member type 480
modify a 487
subscripting 482
upper_bound() in 485
use of 774

mapped type, value 55
mapped_type 480
mapping exception 378
Marian 79
masks_array 678
Math_container example 346
mathematical
functions,complex 680
functions, standard 660
functions,valarray 667
functions, vector 667
model 711

<math.h> 434, 660
Matrix 672
example 282

max() 544, 658
valarray 664

max_element() of sequence 544
max_exponent 659
max_exponent10 659
max_size() 455, 489
of string 598

meaning for operator, predefined 264
means, aims and 694
measurement, productivity 716
member
->* , pointer to 418
.* , pointer to 418
::* , pointer to 418
access operator-> 102
access operator. 101
access to 849
and nonmember operators 267
class 293
class , access to 851
class, forward declaration of 293
const 249
constant 249
constructor for class 247
enum 249
friend and 265, 280
function 224, 238
function adapter 520

function, algorithm and 520
function,const 229
function,inline 235
function, pointer to 418
function,static 278
initialization 248
initialization, exception and 373
initialization, order of 247
initialization, reference 244, 250
initializer 247
object 244
object,union 244
of base class, private 305
of derived class 304
of template , static 854
or base 740
or pointer 738
pointer to data 853
private class 225
protected 404– 405
public class 225
reference 740
static 228, 421
template 330
template example: 349
template , missing 823
type,basic_string 582
type,map 480
type,vector 442
union 257, 843

member-declaration808
memberwise copy 283
memchr() 577
memcmp() 577
memcpy() 577
mem_fun() 63, 518, 521
mem_fun1_ref_t 518, 521
mem_fun1_t 518, 521
mem_fun_ref() 518, 521
mem_fun_ref_t 518, 521
mem_fun_t 518, 520– 521
memmove() 577
memory
automatic 843
buffer 575
dynamic 127, 576, 843
fragmentation 846
heap 843
management 843
management, automatic 844
management, container 455, 567
management, example of user-defined 292
stack 843
static 843
uninitialized 574

<memory> 431, 574

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– M – Index 895

memset() 577
merge() 541
algorithm andlist 541
stable,list 470

messagequeue 477
method 310
choosing a design 696
choosing an analysis 696
cookbook 692
design 694

methods, formal 711
min() 544, 658
valarray 664

min_element() of sequence 544
min_exponent 659
min_exponent10 659
minimalism 706
minimize dependency 173
minus - 517
mismatch() 516, 527
missing
bad_alloc 823
checking, late 823
membertemplate 823
namespace 822
specialization partial 823
standard library 822

mis-use
of RTTI 439
of dynamic type checking 439

misuse
of C++ 725
of RTTI 417

mixed-mode arithmetic 268
mixin 402
mixing C and C++ 719
ML 10
mode of file 639
model
formal 730
mathematical 711
waterfall 697

models 708
modf() 660
modifier 706
modify amap 487
modifying sequence algorithm 529
modular programming 26
modularity 312
lack of 309

module
and interface 165
and type 30

modulus % 517
moron 713, 717
move() , char_traits 581

multidimensional
array 668, 677, 836
array, passing 839

multilevel error handling 383
multimap 490
multi-method 326
multiple
inheritance 308, 390, 735
inheritance, exception and 360
inheritance, use of 776
inheritance, using 399
instantiation 867
interface 172

multiple-inheritance
access control and 406
ambiguity resolution 391

multiplies * 517
multiset 491
mutable 232
mutual reference 278

N
\n , newline 830
name 81
binding 860
binding,template 859
characters in 81
clash 176
hiding 82
longnamespace 178
namespace qualified 169
shortnamespace 178

names, reserved 81
namespace
nested 848
transition to 182

namespace 27, 167, 847
alias 178
and:: 169
andclass 849
and overloading 183
composition 179
composition of 181
global 847
helper function and 240
is open 184
linkage and 207
member declaration and definition 167
missing 822
name, long 178
name, short 178
operators and 265
purpose of 180
qualified name 169
relops 468

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

896 Index – N –

selection from 180
std 46
unnamed 177, 200
using 183

naming convention, iterator 511
narrow() 645
n-ary operators 675
national
character 829
conventions 649

natural operation 767
NDEBUG 750
negate - 517
nested
class 293
function 806
namespace 848

nesting 756
<new> 384, 433, 576
new
and array 423
and exception 576
bad_alloc and 384
exception and 367, 369
operator 127
placement 255
size and 421

new()
operator 129, 576
placement 576

new[]() , operator 423, 576
new_handler 129, 576
_new_handler 370
newline\n 830
next_permutation() 545
Nicholas 49
noboolalpha() 633
Nocase 467
node
class 772
class , abstract 774
class , concrete 774

non-C++ program 217
none() 494
nonlocalgoto 357
nonmember operators, member and 267
nonmodifying sequence algorithm 523
non-standard library 45
non-typetemplate parameter 331
norm() 680
noshowbase() 634
noshowpoint() 634
noshowpos() 634
noskipws() 634
not aclass 705
not keyword 829

not1() 518
andunary_negate 522

not2() 518
andbinary_negate 522

notation, value of 261
not_eof() , char_traits 581
not_eq keyword 829
not_equal_to != 516
nothrow 576
allocator 823

nouppercase() 634
npos 586
nth_element() 540
null
0 zero 88
integer value0 830

NULL 88, 433
number, size of 75
numeric
algorithm, generalized 682
arrays 662
limits 658

<numeric> 434, 682
numerical computation 64
numeric_limits 658

O
O notation 464
object 32, 84
I/O 774
array element 244
automatic 244
constructor for free store 246
creation 242
creation, localization of 322
format 635
free store 244
function 287, 514, 776
global 244, 252
hierarchy 739, 748
kinds of 244
lifetime of 84
member 244
placement of 255
real-world 732
state of 748
static 244
temporary 244, 254
union member 244
variably-sized 243

Object 438
example 417

object-oriented
design 692, 726
programming 37– 38, 301

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– O – Index 897

pure 732
objects
array of 250
global 640

oct 626– 627
oct() 634
octal 73
output 626

ODR the one-definition-rule 203
offset, pointer to member and 419
off_type 608, 643
char_traits 581

ofstream 638
old-style function definition 817
one right way 693
one-beyond-last 512
one-definition-rule, ODR the 203
Op 511
open
for reading,in 639
for writing, out 639
namespace is 184

opening of file 638
openmode 639
operation
bitset 494
efficiency of 464
front 472
iterator 551
list 452
natural 767
on container 464

operations
complex 679
on references 97
on structure 102
selecting 705
set of class 237
valarray 664, 667
vector 664, 667

operator
, 123
&, bitwiseand 124
&&, logicaland 123
+, user-defined 281
++, increment 125
++, user-defined 264, 291
+= 109
+=, user-defined 264, 268, 281
-- , decrement 125
-- , user-defined 291
-= 109
-> , member access 102
-> , user-defined 289
. , member access 101
:: 305

:: andvirtual function 312
:: , scope resolution 82, 228
<<, output 607
=, user-defined 281
^ , bitwise exclusive or 124
and built-in type, user-defined 265
andenum, user-defined 265
assignment 110, 268
associativity of 121
binding strength 121, 607
composite 268
declarator 80
delete 127
design of access 295
foundation 706
new 127
overloaded 241
overloading, example of 292
precedence 121
predefined meaning for 264
stack 450
summary 119
ternary 636
type conversion 275
user-defined 263
user-defined binary 263
user-defined unary 263
| , bitwiseor 124
|| , logicalor 123

operator
delete() 129, 576
delete[]() 423, 576
functions, list of 262
new() 129, 576
new[]() 423, 576
void*() 616

operator() 287
operator[] 286
operator 810
operators
andnamespace 265
bitwise logical 124
essential 283
member and nonmember 267
n-ary 675

optimal container 435
optimization 675
or
keyword 829
operator| , bitwise 124
operator|| , logical 123

order 467
of construction 248, 252
of evaluation 122
of fields 75
of member initialization 247

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

898 Index – O –

of specialization 343
or construction and destruction 414

or_eq keyword 829
organization
of I/O system 606
standard library 431

organizational inertia 713
orthogonality, convenience and 431
oseq() example 556
<ostream> 432
and<iostream> 608

ostream 608, 642
<< 609
and buffer 642
and iterator 558
andstreambuf 642
put() 609
template and 608
write() 609

ostreambuf iterator 560
ostreambuf_iterator 560
ostream_iterator 60, 558
ostringstream 641
ostrstream 656
Out 511
out open for writing 639
out_of_range 53, 446
andat() 385
string 586

output 47
C input and 651
bits of int 495
bitset 495
complex 680
connection between input and 623
cout << 46
decimal 626
double 626
field 629– 630
float 626
floating point 626, 628
flushing of 626
formatted 625
function,virtual 612
hexadecimal 626
input and 432, 605
integer 627
iterator 550
manipulator 631
octal 626
of bool 610
of built-in type 609
of char 610
of pointer 611
of user-defined type 612
operator<< 607

padding 625
sequence 556
string 598
to file 637
unbuffered 642
valarray 668
why, << for 607

output_iterator_tag 553
overflow,stack 476
overflow() 647
overflow_error andto_ulong() 385
overhead 8
overlapping sequences 529
overload
resolution 149
resolution, manual 151
return type and 151
scope and 151

overloaded
function name 149
operator 241

overloading
const and 600
example of operator 292
functiontemplate 336
namespace and 183

override 313
private base 738

overriding 395
from virtual base class 401
function, type of 424

overwriting vs insertion 555

P
padding 630
output 625

pair 482
paradigm, programming 22
parameter
non-typetemplate 331
template 331

parameterization
policy 757
template 707

parametric polymorphism 347
parentheses, uses of 123
parser, recursive decent 108
partial
sort 539
specialization 342

partial_sort() 539
partial_sort_copy() 539
partial_sum() 684
partition 542
partition() 542

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– P – Index 899

partitioning of program 208, 211
passing multidimensional array 839
pattern 709
specialization 342

pbackfail() 647
pbase() 645
pbump() 645
peek() 643
people and machines, language 9
perfection 43
permutation 545
per-object data 573
per-type data 573
phone_book example 52
physical
and logicalconst 231
structure of program 198

placement
new 255
new() 576
of object 255

Plane example 729
plug analogy 728
plus + 517
point
of declaration 82
of definition 861
of instantiation 863

pointer 26, 87
and array 91, 147
arithmetic 88, 93, 125
checked 291
checking for, wild 722
const 96
conversion 834
conversion, user-defined 349
disguised 844
input of 615
member or 738
output of 611
semantics 294
size of 75
smart 289, 291
to class 304
to class, conversion of 304
to const 96
to constructor 424
to data member 853
to function 156
to function,<< of 631
to function,>> of 632
to function adapter 521
to function, linkage and 207
to member->* 418
to member.* 418
to member::* 418

to member and offset 419
to member function 418
to void 100
type 569

pointer 443, 552, 567
basic_string 583

pointers andunion 845
pointer_to_binary_function 521
pointer_to_unary_function 518, 521
polar() 680
policy parameterization 757
polymorphic 35
object, algorithm and 63

polymorphism 158, 312
algorithm and 520
compile-time 347
container and 520
dynamic_cast and 409
parametric 347
run-time 347
see virtual function

Pool example 570
Pool_alloc allocator 572
pop()
of priority_queue 478
of queue 476
of stack 475

pop_back() 450
pop_front() 472
pop_heap() 543
portability 9, 700, 828
and features 815

position
bit 492
in buffer 642
in file 642

POSIX locale 649
postcondition 753
pos_type 608, 643
char_traits 581

pow() 660
complex 680
valarray 667

pptr() 645
precedence
<< 608
operator 121

precision() 628
precondition 753
Pred 511
predefined
, 264
& 264
= 264
meaning for operator 264

predicate 61, 63, 515

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

900 Index – P –

standard library 516
user-defined 516

prefix code 624
preprocessing directive# 813
presentation as design tool 704
pre-standard implementation 820
prev_permutation() 545
printf() 651
priority queue 478
priority_queue
andheap 479
heap and 543
implementation 478
pop() of 478
push() of 478
top() of 478

private
class member 225
member of base class 305

private 402
base 405, 742
base class 743
base, override 738
public protected 849– 850

private: 234
problems
of scale 715
with concrete type 37

procedural
programming 23
programming and C++ 725

process, development 696
product
dot 684
inner 684

productivity measurement 716
program 46, 798
large 211– 212
logical structure of 198
non-C++ 217
partitioning of 208, 211
physical structure of 198
size of 8
start 217
structure of 8
termination 218

programmed-in relationship 746
programmer
C 14
C++ 14

programmers, eliminating 730
programming 16
and C++, procedural 725
as a human activity 693
design and 692
generic 40, 757– 758

language 15
language, design language and 730
modular 26
object-oriented 37– 38, 301
paradigm 22
procedural 23
purpose of 694
style 22
styles technique language 6
template and generic 327

programming-language, general-purpose 21
prohibiting
, 264
& 264
= 264

promotion
floating-point 833
integral 833
standard 833

proof by analogy 692
properties of C++ 724
protected 402
base 319, 405
base class 743
interface,public and 645
member 404– 405
private , public 849– 850

protection 226
unit of 754

prototypes 710
proxy 785
Ptr 349
ptrdiff_t 122, 433
ptrfun() 518
ptr_fun() 521
pubimbue() 646
public class member 225
public 402
andprotected interface 645
protected private 849– 850

public: 225, 234
pubseekoff()
pubseekpos()
pubsetbuf() 646
pubsync() 646
pure
object-oriented 732
virtual function 313

purpose
of namespace 180
of programming 694

push()
of priority_queue 478
of queue 476
of stack 475

push_back() 55, 450

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– P – Index 901

andrealloc() 451
push_front() 55, 472
push_heap() 543
put
area 645
to, << 607

put() , ostream 609
putback() 643
pword() 650

Q
qsort() 158, 546
and exception 382

quadratic time 464
qualification:: , explicit 847
qualified name,namespace 169
qualifier,template as 858
quality 717
queue
deque , double-ended 474
priority 478

<queue> 431
queue
back() of 476
front() of 476
message 477
pop() of 476
push() of 476

quiet_NaN() 659
quote
\’ , single 830
double 830

quotient 661

R
\r , carriage return 830
Ran 511
rand() , random number 685
Randint 685
RAND_MAX685
random
number 538
numberclass 685
number generator 537
numberrand() 685

random-access iterator 550
random_access_iterator_tag 553
random_shuffle() 537
range
check 445, 561
check ofstring 584
check,valarray 664
checking 275, 781

checkingVec 53
error 661
sequence and 512

Range example 781
Rational example 747
raw storage 574
raw_storage_iterator 575
rbegin() 481
basicstring 584
iterator 444

rdbuf() 644
rdstate() 616
read
line 618
through iterator 551

read() 618
readsome() 643
real() 679– 680
realloc() 577
push_back() and 451

real-world
as source of ideas 734
classes and 734
object 732

rebind 567
use of 569

recursion 148
recursive
decent parser 108
function, exception and 374

reduce 683
reduction 683
redundancy 712
reference 97
argument 98
call by 98, 146
call-by 282
count 292
counting 783
dynamic_cast to 410
example of 292
initialization of 98
member 740
member initialization 244, 250
mutual 278
return by 148
return by 283
to class, forward 278

reference 443, 480, 552, 567
basic_string 583
to bit 492

references, operations on 97
register 806
register_callback() 651
reinterpret_cast 130, 256
relationship, programmed-in 746

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

902 Index – R –

relationships between templates 348
relaxation of return type 424
release, resource 364
reliability 383
relops , namespace 468
remainder 661
remove() 536
list 472

remove_copy_if() 536
remove_if() 536
list 472

renaming virtual function 778
rend() 481
basicstring 584
iterator 444

reorganization of class hierarchy 707
replace() 535
in string 595

replace_copy() 535
replace_copy_if() 535
replace_if() 535
replicated base class 394
representation
hash_map 498
of container 465

requirement
comparison 467
copy 466

requirements for element 466
reserve() 455
reserved names 81
reset() bitset 494
resetiosflags() 634
resize() 52, 455
hash_map 502
of string 598
of valarray 664
valarray 666

resource
acquisition 364
exhaustion 369
release 364

response to change 698
responsibility 700, 706
restricted character set 829
restriction 9
result
of sizeof 122
type 122

resumption 370
re-throw 362, 379
return
\r , carriage 830
by reference 283
type and overload 151
type ofvirtual 424

type, relaxation of 424
value 283
value, algorithm 508
value type check 148
value type conversion 148

return
alternative 357
by reference 148
by value 148
function value 148
of void expression 148

return; 148
return_temporary_buffer() 575
reuse 714
design 709
of concrete type 241
of concrete type 768

reverse iterator 443, 557
reverse() 537
list 472

reverse_copy() 537
reverse_iterator 443, 480, 557
basic_string 583

reward 713
rfind() in string 594
right 625, 630
right() 634
Ritchie, Kernighan and 654
rotate() 537
rotate_copy() 537
round_error() 659
RTTI 407
implementation of 409
mis-use of 439
misuse of 417
use of 417

rule of two 741
run time support 8
run-time
access control 785
error 29, 355
initialization 217
polymorphism 347
type identification 407
type information 407, 774

S
Saab example 728
safety, convenience vs. 847
Satellite 390
saving space 840
sbumpc() 646
scale 212, 692
problems of 715

scaling 665

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– S – Index 903

scientific 626, 628
scientific() 634
scope 278
and overload 151
difference from C 816
global 82, 847
local 82
resolution operator:: 82, 228

scrollbar example 743
search, binary 540, 546
search() 528
search_n() 528
seekdir
andbeg 643
andcur 643
andend 643
direction of seek

seekg()
direction of 643

seekoff()
seekp()
direction of 643
set position 642

seekpos()
selecting operations 705
selection fromnamespace 180
self, assignment to 246
self-referencethis 230
semantics
pointer 294
value 294

sentry
I/O 624
iostream 624

separate
compilation 27, 198
compilation,template 351

separation of concerns 694
sequence 41, 469
add element to 529
adding to 555
algorithm and 508
algorithm, modifying 529
algorithm, nonmodifying 523
and associative container 461
and container 512
and range 512
change size of 529
delete element from 529, 534
error 512
fundamental 469
generality of 512
half-open 512
input 513
iterator and 550
lexicographical_compare() of 544

max_element() of 544
min_element() of 544
output 556
set operation on 542
sorted 539
string 579

sequences, overlapping 529
set 124
of class operations 237
operation on sequence 542
position,seekp()

<set> 431
Set example 769
set 491
bitset and 492
of Shape* 348

set()
bitset 494
function 759

setbase() 634
setbuf() 647
Set_controller example 785
set_difference() 543
setf() 626, 630
setfill() 634
setg() 645
set_intersection() 542
setiosflags() 634
<setjmp.h> 433
set_new_handler() 129, 576
setp() 645
setprecision() 633– 634
setstate() 616
set_symmetric_difference() 543
set_terminate() 380
set_unexpected() 379
set_union() 542
setw() 634
sgetc() 646
sgetn() 646
Shakespeare 709
Shape
example 774
example 37
example (bad) 417

Shape* , set of 348
shift() 664
shortnamespace name 178
short 73
short-circuit evaluation 123, 134
showbase 626, 628
showbase() 634
showmanyc() 647
showpoint 626
showpoint() 634
showpos 626

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

904 Index – S –

showpos() 634
shuffle 538
sign extension 831
signal 357
<signal.h> 157, 433
signaling_NaN() 659
signed
char 831
type 73
unsigned integer conversion 834

Simula 10, 38
Simula-style container 438
simulation 685, 711
event driven 326

sin() 660
complex 680
valarray 667

single quote\’ 830
sinh() 660
complex 680
valarray 667

Sink iterator 532
size
anddelete 421
andnew 421
of exponent 659
of mantissa 659
of number 75
of pointer 75
of program 8
of sequence, change 529
of string 147
of structure 102

size() 455, 489, 494
of string 598
of valarray 664
string 586

sizeof 75
difference from C 816
enum 78
result of 122

size_t 122, 433
-1 and 448

size_type 443, 480
basic_string 583

skipws 625
skipws() 634
slice, generalized 677
slice 664, 668
slice_array 671
Slice_iter example 670
slicing 307
smallestint 658
Smalltalk 725
style 417

Smalltalk-style container 438

smanip 633
smart pointer 289, 291
snextc() 646
software
development 692
maintenance 712

solution, generality of 701
sort 546
partial 539
stable 539

sort() 56, 539
example 158, 334
stable,list 470

sorted sequence 539
sort_heap() 543
sorting 338
criteria 534

source
code,template 350
file 197
of ideas, real-world as 734

space, saving 840
special character 830
specialization 859
andchar* 344
andvoid* 341
function 344
generated 859
order of 343
partial 342
partial, missing 823
pattern 342
template 341
use of 865
user 859

specialized, more 343
specifying interface 707
splice() 470
sputbackc() 646
sputc() 646
sputn() 646
sqrt() 660
complex 680
valarray 667

srand() 685
<sstream> 119, 432, 640
stability of design 708
stable
list merge() 470
list sort() 470
sort 539

stable_partition() 542
stable_sort() 539
stack
memory 843
operator 450

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– S – Index 905

<stack> 431
Stack example 27
stack
implementation 475– 476
overflow 476
pop() of 475
push() of 475
top() of 475
underflow 476

stage
analysis 697
design 697
development 697
implementation 697

standard
component 698, 714
exception 384
guarantees 827
header 431
include directory 201
libraries 700
library 45, 182
library, C 599
library, adding to 434
library algorithms 64
library container 56
library criteria 430
library design 429– 430
library facilities 66, 429
library header 202
library, missing 822
library organization 431
library predicate 516
manipulator 633
mathematical functions 660
promotion 833

standardization, C++ 11
standard-library container 442
start, program 217
starting from scratch 708
state
format 625
machine 730
of object 748
stream 616

statement
break 116
continue 116
controlled 136
do 114, 137
for 26, 136
goto 137
if 133
loop 116
summary 132
switch 25, 133

while 136
statement802
state_type , char_traits 581
static
memory 843
type checking 727

static
anachronism 200
deprecated 818
local 145
member 228, 421
member function 278
member oftemplate 854
object 244
store, local 251

static_cast 130, 159
dynamic_cast and 413

std , namespace 46
std:: 46
<stdarg.h> 155, 433
<stddef> 433
<stddef.h> 433
<stdexcept> 385, 432
<stdio.h> 182, 202, 432
<stdlib.h> 432, 434, 546, 577, 600, 661
steps, design 701
STL 66
container 441
iterator 441

Storable example 396
storage
class 244
raw 574

store
dynamic 34
free 34, 127, 421, 576, 843
heap 127
localstatic 251

strcat() 599
strchr() 599
strcmp() 599
strcpy() 599
strcspn() 599
stream 432
callback 650
classes 637
closing of 639
file and 637
hierarchy 637
iterator 558
state 616
state,basic_ios 606
string 640– 641

<streambuf> 432
streambuf 646– 647, 649
<< of 642

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

906 Index – S –

and character buffer 642
ostream and 642

streamoff 609
streamsize 609
stride() 668
string
andconst , C-style 90
character 432
format 652
initialization of array by 89
literal 46, 90
size of 147

<string> 48, 432, 580
String example 328
string 48, 582
!= 591
+ 593
+= 592
< 591
<< 598
<= 591
= 587
== 591
> 591
>= 591
>> 598
[] on 584
algorithm and 584
and0 587
and C-style string 579
and C-style string 589
and array 589
append() 592
as container 491
assign() 588
assignment 587
at() on 585
class 292
compare() 590
comparison 590
concatenation 592– 593
constructor 585
conversion 589
design 579
empty 585
empty() 598
erase() in 595
error 586
find() in 594
find_first_not_of() in 594
find_first_of() in 594
find_last_of() in 594
get_allocator() from 598
getline() into 598
implicit conversion of 590
input 598

insert() 592
iterator 584
length() 586
length() of 598
literal 294
max_size() of 598
of user-defined type 583
out_of_range 586
output 598
range check of 584
replace() in 595
resize() of 598
rfind() in 594
sequence 579
size() 586
size() of 598
stream 640– 641
subscripting of 584
substr() of 596
swap() 599
unsigned 583

stringbuf 649
<string.h> 432, 577, 599
stringstream 641
strlen() 599
strncat() 599
strncmp() 599
strncpy() 599
strpbrk() 599
strrchr() 599
strstr() 599
<strstream.h> 656
struct 101
andclass 234
hack 809
name, difference from C 818
scope, difference from C 818

structure 101
initialization of 102
internal 694
of program 8
operations on 102
size of 102

style, programming 22
subarray 663, 671, 677– 679
subarrays 668
subclass 303
superclass and 39

subrange 781
subscript
C++ style 674
Fortran style 674

subscripting 445, 454
comma and 838
map 482
of string 584

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– S – Index 907

user-defined 286
valarray 663

substitution, Liskov 743
substr() of string 596
substring 596
Substring example 596
subtype 743
subtyping 730, 742
successful large system 709
suffix
_copy 533
_if 525
code 624

Sum 514
sum() of valarray 664
summary
algorithm 509
container 464
syntax 793

sungetc() 646
superclass 303
and subclass 39

supplying default value 500
support 714
run time 8

swap() 344, 457– 458, 489, 538
string 599

swap_ranges() 538
switch
first-time 253, 640
last-time 640
on type 417

switch 109
andif 134
on enumeration 77
statement 25, 133

sync() 643, 647
sync_with_stdio() 651
synonym, seetypedef
syntax
<, template 811
summary 793

system
growing 711
successful large 709
working 709

T
\t , horizontal tab 830
tab
\t , horizontal 830
\v , vertical 830

Table example 243
tan() , valarray 667
tanh() 660

complex 680
valarray 667

Task 394
taxonomy 703
teaching and C++ 12
technique
built-in feature vs 43
language, programming styles 6

tellg() 643
tellp() get position 642
template, use of 776
template 16, 40, 328, 854
andclass 348
andfriend 854
and generic programming 327
and inheritance 347
andostream 608
argument 331
argument, deducing 335, 855
argument, default 340, 824
argument, depend on 861
argument, explicit 335
argument, function 335
as qualifier 858
astemplate parameter 855
class hierarchy and 345
copy constructor and 348
definition, context of 860
example:, member 349
function 334
in design 757
inclusion 350
inheritance and 349
instantiation 859
instantiation, context of 860
instantiation directive 866
instantiation, explicit 866
member 330
missing member 823
name binding 859
overloading, function 336
parameter 331
parameter, non-type 331
parameter,template as 855
parameterization 707
separate compilation 351
source code 350
specialization 341
static member of 854
syntax< 811

template-declaration811
templates, relationships between 348
temporary 98
elimination of 675
lifetime of 254
object 244, 254

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

908 Index – T –

variable 244, 254
term, longer 699
terminate() 380
terminate_handler 380
termination 370
program 218

ternary operator 636
test() 494
testing 712
design for 712

this 278
self-reference 230

throw 186, 362, 379
tie() 623
time
constant 464
linear 464
logarithmic 464
quadratic 464

<time.h> 431, 433
Tiny 275
tinyness_before 659
to_char_type() , char_traits 581
to_int_type() , char_traits 581
tools, design 711
top()
of priority_queue 478
of stack 475

to_ulong() 494
overflow_error and 385

toupper() 591
traditional hierarchy 315
traits, character 580
traits_type 608
basic_string 583

transform() 530
transition 717– 718
andusing-directive183
to namespace 182

translation unit 197
traps 659
traversal 61
tree 307
trigraphs 829
true and1 71
trunc truncate file 639
truncate file,trunc 639
truncation 835
try 187
try-block 187, 812
tutorial as design tool 708
two, rule of 741
type 23, 69
abstract 34, 767, 769
abstract and concrete 771
arithmetic 70

built-in 70
char , character 71
character 580
check, function argument 145
check, return value 148
checking, dynamic 727
checking, mis-use of dynamic 439
checking, static 727
class and 724
class user-defined 224
concrete 33, 236, 766– 767
constructor for built-in 131
conversion, ambiguous 276
conversion, constructor and 269, 275
conversion, explicit 130
conversion, function argument 145
conversion, implicit 76, 276, 833
conversion operator 275
conversion, return value 148
conversion, unions and 842
conversion, user-defined 267, 281
equivalence 104
floating point 74
fundamental 23, 70
generator 348
identification, run-time 407
information, extended 416
information, run-time 407, 774
input of built-in 614
input of user-defined 621
integer 70, 73
integral 70
literal of user-defined 273
module and 30
of exception 379
of field 75
of integer literal 832
of integer literal, implementation dependency 832
of overriding function 424
of virtual , return 424
output of built-in 609
output of user-defined 612
pointer 569
problems with concrete 37
relaxation of return 424
result 122
reuse of concrete 241
safe I/O 607
signed 73
string of user-defined 583
switch on 417
unsigned 73
user-defined 32, 70
user-defined operator and built-in 265

typedef 84
type-field 308

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– T – Index 909

typeid() 414
bad_typeid and 384

<typeinfo> 384, 415, 433
type_info 414
typename 443, 856
type-safe linkage 198

U
uflow() 647
unary operator, user-defined 263
unary_function 515
unary_negate 518
not1() and 522

unbuffered
I/O 647
input 642
output 642

uncaught exceptions 380
uncaught_exception() 373
unchecked access 445
undeclared argument 154
#undef 162
undefined
behavior 828
enum conversion 77

underflow,stack 476
underflow() 647
unexpected exceptions 377
unexpected() 375
unexpected_handler 379
unformatted input 618
unget() 643
Unicode 580
uniform distribution 685
uniformity of code 767
uninitialized memory 574
uninitialized_copy() 574
uninitialized_fill() 574
uninitialized_fill_n() 574
union 841
andclass 843
anonymous 841
constructor and 257
destructor and 257
member 257, 843
member object 244
pointers and 845
unnamed 841

unions and type conversion 842
unique() 532
list 472

unique_copy() 56, 532
unit
of allocation 88
of compilation 197

of design 755
of protection 754
translation 197

unitbuf 626
united of addressing 88
units analogy 728
universal
baseclass 438
character name 831

UNIX 8, 13
unnamed
namespace 177, 200
union 841

unsetf() 626
unsigned
char 831
integer conversion,signed 834
string 583
type 73

up cast 408
upper_bound() 540
in map 485

uppercase 626
uppercase() 634
Urand 685
use
case 704
count 292
dependency 745
of C++ 12
of RTTI 417
of allocator 568
of class 725
of classes 733
of dynamic_cast 774
of global variable 111
of map 774
of multiple inheritance 776
of rebind 569
of specialization 865
of template 776

used function only, instantiate 866
user specialization 859
user-defined
+ 265
== 534
allocator 570
binary operator 263
container 497
conversion 347
iterator 561
manipulator 635
memory management, example of 292
operator 263
operator+ 281
operator++ 264, 291

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

910 Index – U –

operator+= 264, 268, 281
operator-- 291
operator-> 289
operator= 281
operator and built-in type 265
operator andenum 265
pointer conversion 349
predicate 516
subscripting 286
type 32, 70
type,class 224
type conversion 267, 281
type, input of 621
type, literal of 273
type, output of 612
type,string of 583
unary operator 263

user-supplied comparison 467
uses of parentheses 123
using multiple inheritance 399
using
namespace 183
namespace , using vs. 847
vs.using namespace 847

using-declaration169, 180
and access control 407
and inheritance 392
vs.using-directive847

using-directive171
and definition 180
and inheritance 392
transition and 183
using-declarationvs. 847

usual arithmetic conversions 122
utilities 431
<utility> 431, 468

V
\v , vertical tab 830
va_arg() 155
<valarray> 434, 662
valarray 65, 662
! 664
!= 667
% 667
%= 664
& 667
&& 667
&= 664
* 667
*= 664
+ 667
+= 664
- 664, 667
-= 664

/ 667
/= 664
< 667
<< 667
<<= 664
<= 667
= 663
== 667
> 667
>= 667
>> 667
>>= 664
[] 663
^ 667
^= 664
abs() 667
acos() 667
and array 663
andvector and array 662
apply() to 664
as container 492
asin() 667
assignment 663
atan() 667
atan2() 667
construction 662
cos() 667
cosh() 667
exp() 667
input 668
iterator 670
length of 664, 679
log() 667
log10() 667
mathematical functions 667
max() 664
min() 664
operations 664, 667
output 668
pow() 667
range check 664
resize() 666
resize() of 664
sin() 667
sinh() 667
size() of 664
sqrt() 667
subscripting 663
sum() of 664
tan() 667
tanh() 667
| 667
|= 664
|| 667
~ 664

valid iterator 550

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

– V – Index 911

value
call by 146
default 239
key and 480
mapped type 55
of character 580
of cin 276
of notation 261
return 283
return by 148
return , function 148
semantics 294

value_comp() 485
value_compare 485
value_type 443, 480, 552
basic_string 583

variable
constructor for global 252
constructor for local 245
global 200, 228
temporary 244, 254

variably-sized object 243
Vec, range checking 53
vector
Fortran 668
arithmetic 65, 662
bit 124
exponentiation 667
mathematical functions 667
operations 664, 667

<vector> 431
Vector 435
example 341, 780

vector 52, 442, 469
< 457
= 447
== 457
[] of 445
and array,valarray and 662
assign() 447
constructor 447
erase() from 452
input into 451
insert() into 452
member type 442
of bool 458
of vector 836
vector of 836

vector<bool> 458
bitset and 492

Vehicle example 734
vertical tab\v 830
viewgraph engineering 704
virtual
function 15
function, renaming 778

virtual 34
<< 612
base class 396
base class, overriding from 401
base, constructor and 397
constructor 323, 424
derive without 780
destructor 319
function 310, 390, 706
function argument types 310
function, definition of 310
function, example of 646
function, implementation of 36
function, operator:: and 312
function, pure 313
output function 612
return type of 424

vision 698
void 76
expression,return of 148
pointer to 100

void*
assignment, difference from C 818
specialization and 341

void*() , operator 616
volatile 808

W
waterfall model 697
wcerr 609
<wchar.h> 432
wchar_t 72– 73
wcin 614
wcout and 624

wclog 609
wcout 609
andwcin 624

wfilebuf 649
wfstream 638
while statement 136
whitespace 614– 615
isspace() 114

wide
character I/O 608
character classification 601

wide-character literalL’ 73
widen() 645
width() 629
of input 616

wifstream 638
wild pointer checking for 722
Window example 398
wiostream 637
wistream 614
wistringstream 641

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

912 Index – W –

wofstream 638
word 76
working system 709
wostream 608
wostringstream 641
wrapper 781
write through iterator 551
write() , ostream 609
ws 634
wstreambuf 649
wstring 582
wstringbuf 649
wstringstream 641
<wtype.h> 432

X
X3J16 11
xalloc() 650
xgetn() 647
xor keyword 829
xor_eq keyword 829
xputn() 647

Y
Year 285

Z
zero null,0 88

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	The C++ Programming Language (Special 3rd Edition)
	Title
	Copyright
	Contents
	Preface
	Preface to the Second Edition
	Preface to the First Edition
	Part 0: Introduction
	Ch1 Notes to the Reader
	1.1 The Structure of This Book
	1.2 Learning C++
	1.3 The Design of C++
	1.4 Historical Note
	1.5 Use of C++
	1.6 C and C++
	1.7 Thinking about Programming in C++
	1.8 Advice

	Ch2 A Tour of C++
	2.1 What is C++?
	2.2 Programming Paradigms
	2.3 Procedural Programming
	2.4 Modular Programming
	2.5 Data Abstraction
	2.6 Object Oriented Programming
	2.7 Generic Programming
	2.8 Postscript
	2.9 Advice

	Ch3 A Tour of the Standard Library
	3.1 Introduction
	3.2 Hello, world!
	3.3 The Standard Library Namespace
	3.4 Output
	3.5 Strings
	3.6 Input
	3.7 Containers
	3.8 Algorithms
	3.9 Math
	3.10 Standard Library Facilities
	3.11 Advice

	Part I: Basic Facilities
	Ch4 Types and Declarations
	4.1 Types
	4.2 Booleans
	4.3 Character Types
	4.4 Integer Types
	4.5 Floating Point Types
	4.6 Sizes
	4.7 Void
	4.8 Enumerations
	4.9 Declarations
	4.10 Advice
	4.11 Exercises

	Ch5 Pointers, Arrays, and Structures
	5.1 Pointers
	5.2 Arrays
	5.3 Pointers into Arrays
	5.4 Constants
	5.5 References
	5.6 Pointer to Void
	5.7 Structures
	5.8 Advice

	Ch6 Expressions and Statements
	6.1 A Desk Calculator
	6.2 Operator Summary
	6.3 Statement Summary
	6.4 Comments and Indentation
	6.5 Advice

	Ch7 Functions
	7.1 Function Declarations
	7.2 Argument Passing
	7.3 Value Return
	7.4 Overloaded Function Names
	7.5 Default Arguments
	7.6 Unspecified Number of Arguments
	7.7 Pointer to Function
	7.8 Macros
	7.9 Advice
	7.10 Exercises

	Ch8 Namespaces and Exceptions
	8.1 Modularization and Interfaces
	8.2 Namespaces
	8.3 Exceptions
	8.4 Advice
	8.5 Exercises

	Ch9 Source Files and Programs
	9.1 Separate Compilation
	9.2 Linkage
	9.3 Using Header Files
	9.4 Programs
	9.5 Advice
	9.6 Exercises

	Part II: Abstraction Mechanisms
	Ch10 Classes
	10.1 Introduction
	10.2 Classes
	10.3 Efficient User Defined Types
	10.4 Objects
	10.5 Advice

	Ch11 Operator Overloading
	11.1 Introduction
	11.2 Operator Functions
	11.3 A Complex Number Type
	11.4 Conversion Operators
	11.5 Friends
	11.6 Large Objects
	11.7 Essential Operators
	11.8 Subscripting
	11.9 Function Call
	11.10 Dereferencing
	11.11 Increment and Decrement
	11.12 A String Class
	11.13 Advice
	11.14 Exercises

	Ch12 Derived Classes
	12.1 Introduction
	12.2 Derived Classes
	12.3 Abstract Classes
	12.4 Design of Class Hierarchies
	12.5 Class Hierarchies and Abstract Classes
	12.6 Advice
	12.7 Exercises

	Ch13 Templates
	13.1 Introduction
	13.2 A Simple String Template
	13.3 Function Templates
	13.4 Using Template Arguments to Specify Policy
	13.5 Specialization
	13.6 Derivation and Templates
	13.7 Source Code Organization
	13.8 Advice
	13.9 Exercises

	Ch14 Exception Handling
	14.1 Error Handling
	14.2 Grouping of Exceptions
	14.3 Catching Exceptions
	14.4 Resource Management
	14.5 Exceptions That Are Not Errors
	14.6 Exception Specifications
	14.7 Uncaught Exceptions
	14.8 Exceptions and Efficiency
	14.9 Error Handling Alternatives
	14.10 Standard Exceptions
	14.11 Advice
	14.12 Exercises

	Ch15 Class Hierarchies
	15.1 Introduction and Overview
	15.2 Multiple Inheritance
	15.3 Access Control
	15.4 Run Time Type Information
	15.5 Pointers to Members
	15.6 Free Store
	15.7 Advice
	15.8 Exercises

	Part III: The Standard Library
	Ch16 Library Organization and Containers
	16.1 Standard Library Design
	16.2 Container Design
	16.3 Vector
	16.4 Advice
	16.5 Exercises

	Ch17 Standard Containers
	17.1 Standard Containers
	17.2 Sequences
	17.3 Sequence Adapters
	17.4 Associative Containers
	17.5 Almost Containers
	17.6 Defining a New Container
	17.7 Advice
	17.8 Exercises

	Ch18 Algorithms and Function Objects
	18.1 Introduction
	18.2 Overview of Standard Library Algorithms
	18.3 Sequences and Containers
	18.4 Function Objects
	18.5 Nonmodifying Sequence Algorithms
	18.6 Modifying Sequence Algorithms
	18.7 Sorted Sequences
	18.8 Heaps
	18.9 Min and Max
	18.10 Permutations
	18.11 C Style Algorithms
	18.12 Advice
	18.13 Exercises

	Ch19 Iterators and Allocators
	19.1 Introduction
	19.2 Iterators and Sequences
	19.3 Checked Iterators
	19.4 Allocators
	19.5 Advice
	19.6 Exercises

	Ch20 Strings
	20.1 Introduction
	20.2 Characters
	20.3 Basic_string
	20.4 The C Standard Library
	20.5 Advice
	20.6 Exercises

	Ch21 Streams
	21.1 Introduction
	21.2 Output
	21.3 Input
	21.4 Formatting
	21.5 File Streams and String Streams
	21.6 Buffering
	21.7 Locale
	21.8 C Input/Output
	21.9 Advice
	21.10 Exercises

	Ch22 Numerics
	22.1 Introduction
	22.2 Numeric Limits
	22.3 Standard Mathematical Functions
	22.4 Vector Arithmetic
	22.5 Complex Arithmetic
	22.6 Generalized Numeric Algorithms
	22.7 Random Numbers
	22.8 Advice
	22.9 Exercises

	Part IV: Design Using C++
	Ch23 Development and Design
	23.1 Overview
	23.2 Introduction
	23.3 Aims and Means
	23.4 The Development Process
	23.5 Management
	23.6 Annotated Bibliography
	23.7 Advice

	Ch24 Design and Programming
	24.1 Overview
	24.2 Design and Programming Language
	24.3 Classes
	24.4 Components
	24.5 Advice

	Ch25 Roles of Classes
	25.1 Kinds of Classes
	25.2 Concrete Types
	25.3 Abstract Types
	25.4 Node Classes
	25.5 Actions
	25.6 Interface Classes
	25.7 Handle Classes
	25.8 Application Frameworks
	25.9 Advice
	25.10 Exercises

	Appendices and Index
	AppA Grammar
	A.1 Introduction
	A.2 Keywords
	A.3 Lexical Conventions
	A.4 Programs
	A.5 Expressions
	A.6 Statements
	A.7 Declarations
	A.8 Classes
	A.9 Templates
	A.10 Exception Handling
	A.11 Preprocessing Directives

	AppB Compatibility
	B.1 Introduction
	B.2 C/C++ Compatibility
	B.3 Coping with Older C++ Implementations

	AppC Technicalities
	C.1 Introduction and Overview
	C.2 The Standard
	C.3 Character Sets
	C.4 Types of Integer Literals
	C.5 Constant Expressions
	C.6 Implicit Type Conversion
	C.7 Multidimensional Arrays
	C.8 Saving Space
	C.9 Memory Management
	C.10 Namespaces
	C.11 Access Control
	C.12 Pointers to Data Members
	C.13 Templates
	C.14 Advice

	AppD Locales
	D.1 Handling Cultural Differences
	D.1.1 Programming Cultural Differences

	D.2 The locale Class
	D.2.1 Named Locales
	D.2.1.1 Constructing New Locales

	D.2.2 Copying and Comparing Locales
	D.2.3 The global() and the classic() Locales
	D.2.4 Comparing Strings

	D.3 Facets
	D.3.1 Accessing Facets in a Locale
	D.3.2 A Simple User-Defined Facet
	D.3.3 Uses of Locales and Facets

	D.4 Standard Facets
	D.4.1 String Comparison
	D.4.1.1 Named Collate

	D.4.2 Numeric Input and Output
	D.4.2.1 Numeric Punctuation
	D.4.2.2 Numeric Output
	D.4.2.3 Numeric Input

	D.4.3 Input and Output of Monetary Values
	D.4.3.1 Money Punctuation
	D.4.3.2 Money Output
	D.4.3.3 Money Input

	D.4.4 Date and Time Input and Output
	D.4.4.1 Clocks and Timers
	D.4.4.2 A Date Class
	D.4.4.3 Date and Time Output
	D.4.4.4 Date and Time Input
	D.4.4.5 A More Flexible Date Class
	D.4.4.6 Specifying a Date Format
	D.4.4.7 A Date Input Facet

	D.4.5 Character Classification
	D.4.5.1 Convenience Interfaces

	D.4.6 Character Code Conversion
	D.4.7 Messages
	D.4.7.1 Using Messages from Other Facets

	D.5 Advice

	AppE Standard-Library Exception Safety
	E.1 Introduction
	E.2 Exception Safety
	E.3 Exception-Safe Implementation Techniques
	E.3.1 A Simple Vector
	E.3.2 Representing Memory Explicitly
	E.3.3 Assignment
	E.3.4 push_ back()
	E.3.5 Constructors and Invariants
	E.3.5.1 Using init() Functions
	E.3.5.2 Relying on a Default Valid State
	E.3.5.3 Delaying resource acquisition

	E.4 Standard Container Guarantees
	E.4.1 Insertion and Removal of Elements
	E.4.2 Guarantees and Tradeoffs
	E.4.3 Swap
	E.4.4 Initialization and Iterators
	E.4.5 References to Elements
	E.4.6 Predicates

	E.5 The Rest of the Standard Library
	E.5.1 Strings
	E.5.2 Streams
	E.5.3 Algorithms
	E.5.4 Valarray and Complex
	E.5.5 The C Standard Library

	E.6 Implications for Library Users
	E.7 Advice
	E.8 Exercises

	Index

