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Preface

Programming is understanding.
— Kristen Nygaard

| find using G+ more enjoyable than ever.+€s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed
its use. However, € is notjust fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now,*@ has fulfilled most of the hopes | originally had for it, and also suc-
ceeded at tasks | hadn’t even dreamt of.

This book introduces standard-€ and the key programming and design techniques supportec
by C++. Standard €+ is a far more powerful and polished language than the versioftdh€o-
duced by the first edition of this book. New language features such as namespaces, excepti
templates, and run-time type identification allow many techniques to be applied more directly th
was possible before, and the standard library allows the programmer to start from a much hig
level than the bare language.

About a third of the information in the second edition of this book came from the first. Thi
third edition is the result of a rewrite of even larger magnitude. It offers something to even t
most experienced+@ programmer; at the same time, this book is easier for the novice to approa
than its predecessors were. The explosiontdf @de and the massive amount of experience accu-
mulated as a result makes this possible.

The definition of an extensive standard library makes a difference to thetwago@cepts can
be presented. As before, this book presentsi@dependently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a “bottom
order so that a construct is used only after it has been defined. However, it is much easier to u
well-designed library than it is to understand the details of its implementation. Therefore, the st:
dard library can be used to provide realistic and interesting examples well before a reader car
assumed to understand its inner workings. The standard library itself is also a fertile source of |
gramming examples and design techniques.

TISO/IEC 14882, Standard for the-€Programming Language.
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This book presents every majot-€language feature and the standard library. It is organized
around language and library facilities. However, features are presented in the context of their
That is, the focus is on the language as the tool for design and programming rather than on the
guage in itself. This book demonstrates key techniques that ntakefféctive and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples
taken from the domain of systems software. A compariibe, Annotated €+ Language Stan-
dard, presents the complete language definition together with annotations to make it more comg
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C
support key programming techniques. The aim is to take the reader far beyond the point where
or she gets code running primarily by copying examples and emulating programming styles frc
other languages. Only a good understanding of the ideas behind the language facilities lead
mastery. Supplemented by implementation documentation, the information provided is sufficie
for completing significant real-world projects. The hope is that this book will help the reader ga
new insights and become a better programmer and designer.

Acknowledgments
In addition to the people mentioned in the acknowledgement sections of the first and second ¢
tions, | would like to thank Matt Austern, Hans Boehm, Don Caldwell, Lawrence Crowl, Alar
Feuer, Andrew Forrest, David Gay, Tim Griffin, Peter Juhl, Brian Kernighan, Andrew Koenig
Mike Mowbray, Rob Murray, Lee Nackman, Joseph Newcomer, Alex Stepanov, David Vandev
orde, Peter Weinberger, and Chris Van Wyk for commenting on draft chapters of this third editic
Without their help and suggestions, this book would have been harder to understand, contai
more errors, been slightly less complete, and probably been a little bit shorter.

| would also like to thank the volunteers on therGtandards committees who did an immense
amount of constructive work to make&€what it is today. It is slightly unfair to single out indi-
viduals, but it would be even more unfair not to mention anyone, so I'd like to especially mentic
Mike Ball, Dag Biick, Sean Corfield, Ted Goldstein, Kim Knuttila, Andrew Koenig, ddsfoie,
Dmitry Lenkov, Nathan Myers, Martin O’'Riordan, Tom Plum, Jonathan Shopiro, John Spice
Jerry Schwarz, Alex Stepanov, and Mike Vilot, as people who each directly cooperated with r
over some part of 8- and its standard library.

Murray Hill, New Jersey Bjarne Stroustrup



Preface to the Second Edition

The road goes ever on and on.
— Bilbo Baggins

As promised in the first edition of this bookt€has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds work
in a great range of application areas. The @ser-community has grown a hundredfold during the
six years since the first edition of this book; many lessons have been learned, and many techni
have been discovered and/or validated by experience. Some of these experiences are reflected

The primary aim of the language extensions made in the last six years has been to enhance
as a language for data abstraction and object-oriented programming in general and to enhance
a tool for writing high-quality libraries of user-defined types in particular. A ‘“high-quality
library,” is a library that provides a concept to a user in the form of one or more classes that :
convenient, safe, and efficient to use. In this contafie means that a class provides a specific
type-safe interface between the users of the library and its provéfiicientmeans that use of the
class does not impose significant overheads in run-time or space on the user compared with h
written C code.

This book presents the completetdanguage. Chapters 1 through 10 give a tutorial introduc-
tion; Chapters 11 through 13 provide a discussion of design and software development issues;
finally, the complete €+ reference manual is included. Naturally, the features added and resoll
tions made since the original edition are integral parts of the presentation. They include refir
overloading resolution, memory management facilities, and access control mechanisms, type-
linkage, const and static member functions, abstract classes, multiple inheritance, templates, ar
exception handling.

C++ is a general-purpose programming language; its core application domain is systems p
gramming in the broadest sense. In additiont {8 successfully used in many application areas
that are not covered by this label. Implementations-of €xist from some of the most modest
microcomputers to the largest supercomputers and for almost all operating systems. Conseque
this book describes thet€ language itself without trying to explain a particular implementation,
programming environment, or library.

This book presents many examples of classes that, though useful, should be classified
“toys.” This style of exposition allows general principles and useful techniques to stand out mo
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clearly than they would in a fully elaborated program, where they would be buried in details. Mc
of the useful classes presented here, such as linked lists, arrays, character strings, matrices, gre
classes, associative arrays, etc., are available in “bulletproof” and/or “goldplated” versions from
wide variety of commercial and non-commercial sources. Many of these “industrial strength
classes and libraries are actually direct and indirect descendants of the toy versions found here.

This edition provides a greater emphasis on tutorial aspects than did the first edition of t
book. However, the presentation is still aimed squarely at experienced programmers and endea
not to insult their intelligence or experience. The discussion of design issues has been gre
expanded to reflect the demand for information beyond the description of language features
their immediate use. Technical detail and precision have also been increased. The reference |
ual, in particular, represents many years of work in this direction. The intent has been to provid
book with a depth sufficient to make more than one reading rewarding to most programmers.
other words, this book presents the+GQanguage, its fundamental principles, and the key tech-
niques needed to apply it. Enjoy!

Acknowledgments

In addition to the people mentioned in the acknowledgements section in the preface to the first ¢
tion, I would like to thank Al Aho, Steve Buroff, Jim Coplien, Ted Goldstein, Tony Hansen, Lor-
raine Juhl, Peter Juhl, Brian Kernighan, Andrew Koenig, Bill Leggett, Warren Montgomery, Mik
Mowbray, Rob Murray, Jonathan Shopiro, Mike Vilot, and Peter Weinberger for commenting c
draft chapters of this second edition. Many people influenced the developmeint fsb@ 1985

to 1991. | can mention only a few: Andrew Koenig, Brian Kernighan, Doug Mcllroy, and Jonathg
Shopiro. Also thanks to the many participants of the “external reviews” of the reference manu
drafts and to the people who suffered through the first year of X3J16.

Murray Hill, New Jersey Bjarne Stroustrup
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Language shapes the way we think,
and determines what we can think about.
— B.L.Whorf

C++is a general purpose programming language designed to make programming more enjoy:
for the serious programmer. Except for minor detaits; i§ a superset of the C programming lan-
guage. In addition to the facilities provided by G;+@rovides flexible and efficient facilities for
defining new types. A programmer can partition an application into manageable pieces by defin
new types that closely match the concepts of the application. This technique for program constt
tion is often calledlata abstraction.Objects of some user-defined types contain type information.
Such objects can be used conveniently and safely in contexts in which their type cannot be de
mined at compile time. Programs using objects of such types are oftenataietibased When
used well, these techniques result in shorter, easier to understand, and easier to maintain progre

The key concept in€ is class A class is a user-defined type. Classes provide data hiding
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic typin
user-controlled memory management, and mechanisms for overloading operatorgrodides
much better facilities for type checking and for expressing modularity than C does. It also conta
improvements that are not directly related to classes, including symbolic constants, inline subst
tion of functions, default function arguments, overloaded function names, free store managem
operators, and a reference typet+QCetains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This allows the user-defined type
be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implementation will ru
on most systems that support C. C libraries can be used from pr@ram, and most tools that
support programming in C can be used wit+C

This book is primarily intended to help serious programmers learn the language and use it
nontrivial projects. It provides a complete description bf,@Gnany complete examples, and many
more program fragments.
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Acknowledgments

C++ could never have matured without the constant use, suggestions, and constructive criticisn
many friends and colleagues. In particular, Tom Cargill, Jim Coplien, Stu Feldman, Sandy Fras
Steve Johnson, Brian Kernighan, Bart Locanthi, Doug Mcllroy, Dennis Ritchie, Larry Rosler, Jer
Schwarz, and Jon Shopiro provided important ideas for development of the language. Dave |
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In addition, hundreds of people contributed to the development-tfa@d its compiler by
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Introduction

This introduction gives an overview of the major concepts and features of-thpgrd@:
gramming language and its standard library. It also provides an overview of this book
and explains the approach taken to the description of the language facilities and their

use. In addition, the introductory chapters present some background information about
C++, the design of €+, and the use of€3-.

Chapters

1 Notes to the Reader
2 ATour of G+
3 A Tour of the Standard Library
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“... and you, Marcus, you have given me many things; now | shall give you this good
advice. Be many people. Give up the game of being always Marcus Cocoza. You
have worried too much about Marcus Cocoza, so that you have been really his slave
and prisoner. You have not done anything without first considering how it would
affect Marcus Cocoza’s happiness and prestige. You were always much afraid that
Marcus might do a stupid thing, or be bored. What would it really have mattered? All
over the world people are doing stupid things ... | should like you to be easy, your lit-
tle heart to be light again. You must from now, be more than one, many people, as
many as you can think of ...”

— Karen Blixen
(“The Dreamers” from “Seven Gothic Tales”
written under the pseudonym Isak Dinesen,
Random House, Inc.
Copyright, Isac Dinesen, 1934 renewed 1961)
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Notesto the Reader

"The time has come," the Walrus said,
"to talk of many things."
—L.Carroll

Structure of this book — how to learn C++ — the design of C++ — efficiency and struc-
ture — philosophical note — historical note — what C++ is used for — C and C++ —
suggestions for C programmers — suggestions for C++ programmers — thoughts about
programming in C++ — advice — references.

1.1 The Structure of This Book

This book consists of six parts:
Introduction: Chapters 1 through 3 give an overview of the C++ language, the key programming
stylesit supports, and the C++ standard library.
Part I:  Chapters 4 through 9 provide a tutorial introduction to C++'s built-in types and the
basic facilities for constructing programs out of them.
Part I1: Chapters 10 through 15 are a tutorial introduction to object-oriented and generic pro-
gramming using C++.
Part I11: Chapters 16 through 22 present the C++ standard library.
Part IV: Chapters 23 through 25 discuss design and software development issues.
Appendices. Appendices A through E provide language-technical details.
Chapter 1 provides an overview of this book, some hints about how to use it, and some background
information about C++ and its use. Y ou are encouraged to skim through it, read what appears inter-
esting, and return to it after reading other parts of the book.
Chapters 2 and 3 provide an overview of the major concepts and features of the C++ program-
ming language and its standard library. Their purpose is to motivate you to spend time on funda-
mental concepts and basic language features by showing what can be expressed using the complete
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C++ language. If nothing else, these chapters should convince you that C++ isn't (just) C and that
C++ has come a long way since the first and second editions of this book. Chapter 2 gives a high-
level acquaintance with C++. The discussion focuses on the language features supporting data
abstraction, object-oriented programming, and generic programming. Chapter 3 introduces the
basic principles and major facilities of the standard library. This allows me to use standard library
facilities in the following chapters. It also allows you to use library facilities in exercises rather
than relying directly on lower-level, built-in features.

The introductory chapters provide an example of a general technique that is applied throughout
this book: to enable a more direct and realistic discussion of some technique or feature, | occasion-
aly present a concept briefly at first and then discuss it in depth later. This approach allows me to
present concrete examples before a more general treatment of a topic. Thus, the organization of
this book reflects the observation that we usually learn best by progressing from the concrete to the
abstract — even where the abstract seems simple and obvious in retrospect.

Part | describes the subset of Ct++ that supports the styles of programming traditionally done in
C or Pascal. It covers fundamental types, expressions, and control structures for C++ programs.
Modularity — as supported by namespaces, source files, and exception handling — is also discussed.
| assume that you are familiar with the fundamental programming concepts used in Part I. For
example, | explain C++'s facilities for expressing recursion and iteration, but | do not spend much
time explaining how these concepts are useful.

Part 1l describes C++'s facilities for defining and using new types. Concrete and abstract
classes (interfaces) are presented here (Chapter 10, Chapter 12), together with operator overloading
(Chapter 11), polymorphism, and the use of class hierarchies (Chapter 12, Chapter 15). Chapter 13
presents templates, that is, C++'s facilities for defining families of types and functions. It demon-
strates the basic techniques used to provide containers, such as lists, and to support generic pro-
gramming. Chapter 14 presents exception handling, discusses techniques for error handling, and
presents strategies for fault tolerance. | assume that you either aren’t well acquainted with object-
oriented programming and generic programming or could benefit from an explanation of how the
main abstraction techniques are supported by C++. Thus, | don't just present the language features
supporting the abstraction techniques; | also explain the techniques themselves. Part IV goes fur-
ther in this direction.

Part 11 presents the C++ standard library. The aim is to provide an understanding of how to use
the library, to demonstrate general design and programming techniques, and to show how to extend
thelibrary. Thelibrary provides containers (such aslist, vector, and map; Chapter 16, Chapter 17),
standard algorithms (such as sort, find, and merge; Chapter 18, Chapter 19), strings (Chapter 20),
Input/Output (Chapter 21), and support for numerical computation (Chapter 22).

Part 1V discusses issues that arise when C++ is used in the design and implementation of large
software systems. Chapter 23 concentrates on design and management issues. Chapter 24 discusses
the relation between the C++ programming language and design issues. Chapter 25 presents some
ways of using classesin design.

Appendix A is C++'s grammar, with a few annotations. Appendix B discusses the relation
between C and C++ and between Standard C++ (also called ISO C++ and ANSI C++) and the ver-
sions of C++ that preceded it. Appendix C presents some language-technical examples. Appendix
D explains the standard library’s facilities supporting internationalization. Appendix E discusses
the exception-safety guarantees and requirements of the standard library.
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1.1.1 Examplesand References

This book emphasizes program organization rather than the writing of algorithms. Consequently, |
avoid clever or harder-to-understand algorithms. A trivial algorithm is typically better suited to
illustrate an aspect of the language definition or a point about program structure. For example, |
use a Shell sort where, in rea code, a quicksort would be better. Often, reimplementation with a
more suitable algorithm is an exercise. In real code, a cal of alibrary function is typically more
appropriate than the code used here for illustration of language features.

Textbook examples necessarily give awarped view of software development. By clarifying and
simplifying the examples, the complexities that arise from scale disappear. | see no substitute for
writing realistically-sized programs for getting an impression of what programming and a program-
ming language are really like. This book concentrates on the language features, the basic tech-
niques from which every program is composed, and the rules for composition.

The selection of examples reflects my background in compilers, foundation libraries, and simu-
lations. Examples are smplified versions of what isfound in real code. The simplification is nec-
essary to keep programming language and design points from getting lost in details. There are no
‘“*cute’” examples without counterpartsin real code. Wherever possible, | relegated to Appendix C
language-technical examples of the sort that use variables named x and y, types called A and B, and
functionscalled f() and g() .

In code examples, a proportional-width font is used for identifiers. For example:

#include<iostream>

int main()

{
}

At first glance, this presentation style will seem ‘‘unnatura’’ to programmers accustomed to seeing
code in constant-width fonts. However, proportional-width fonts are generally regarded as better
than constant-width fonts for presentation of text. Using a proportional-width font also allows me
to present code with fewer illogical line breaks. Furthermore, my experiments show that most peo-
ple find the new style more readable after a short while.

Where possible, the C++ language and library features are presented in the context of their use
rather than in the dry manner of amanual. The language features presented and the detail in which
they are described reflect my view of what is needed for effective use of C++. A companion, The
Annotated C++ Language Sandard, authored by Andrew Koenig and myself, is the compl ete defi-
nition of the language together with comments aimed at making it more accessible. Logicaly,
there ought to be another companion, The Annotated C++ Sandard Library. However, since both
time and my capacity for writing are limited, | cannot promise to produce that.

References to parts of this book are of the form §2.3.4 (Chapter 2, section 3, subsection 4),
§B.5.6 (Appendix B, subsection 5.6), and §6.6[10] (Chapter 6, exercise 10). Italics are used spar-
ingly for emphasis (e.g., ‘‘astring literal is not acceptable’’), for first occurrences of important con-
cepts (e.g., polymorphism), for nonterminals of the C++ grammar (e.g., for-statement), and for com-
ments in code examples. Semi-bold italics are used to refer to identifiers, keywords, and numeric
values from code examples (e.g., counter, class, and 1712).

std: : cout << " Hello, new world! \n";
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1.1.2 Exercises

Exercises are found at the ends of chapters. The exercises are mainly of the write-a-program vari-
ety. Always write enough code for a solution to be compiled and run with at least a few test cases.
The exercises vary considerably in difficulty, so they are marked with an estimate of their diffi-
culty. The scaleis exponential so that if a ([1l) exercise takes you ten minutes, a ([2) might take an
hour, and a ([B) might take a day. The time needed to write and test a program depends more on
your experience than on the exerciseitself. A ([l) exercise might take aday if you first have to get
acquainted with a new computer system in order to run it. On the other hand, a ([5) exercise might
be done in an hour by someone who happens to have the right collection of programs handy.

Any book on programming in C can be used as a source of extra exercises for Part 1. Any book
on data structures and algorithms can be used as a source of exercisesfor Parts|1 and I11.

1.1.3 Implementation Note

The language used in this book is*‘pure C++'"’ as defined in the C++ standard [C++,1998]. There-
fore, the examples ought to run on every C++ implementation. The major program fragments in
this book were tried using several C++ implementations. Examples using features only recently
adopted into C++ didn’t compile on every implementation. However, | see no point in mentioning
which implementations failed to compile which examples. Such information would soon be out of
date because implementers are working hard to ensure that their implementations correctly accept
every C++ feature. See Appendix B for suggestions on how to cope with older C++ compilers and
with code written for C compilers.

1.2 Learning C++

The most important thing to do when learning C++ is to focus on concepts and not get lost in
language-technical details. The purpose of learning a programming language is to become a better
programmer; that is, to become more effective at designing and implementing new systems and at
maintaining old ones. For this, an appreciation of programming and design techniques is far more
important than an understanding of details; that understanding comes with time and practice.

C++ supports avariety of programming styles. All are based on strong static type checking, and
most aim at achieving a high level of abstraction and a direct representation of the programmer’s
ideas. Each style can achieve its aims effectively while maintaining run-time and space efficiency.
A programmer coming from a different language (say C, Fortran, Smalltalk, Lisp, ML, Ada, Eiffd,
Pascal, or Modula-2) should realize that to gain the benefits of C++, they must spend time learning
and internalizing programming styles and techniques suitable to C++. The same applies to pro-
grammers used to an earlier and less expressive version of C++,

Thoughtlessly applying techniques effective in one language to another typically leads to awk-
ward, poorly performing, and hard-to-maintain code. Such code is also most frustrating to write
because every line of code and every compiler error message reminds the programmer that the lan-
guage used differs from ‘‘the old language.”” You can write in the style of Fortran, C, Smalltalk,
etc., in any language, but doing so is neither pleasant nor economical in alanguage with a different
philosophy. Every language can be a fertile source of ideas of how to write C++ programs.
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However, ideas must be transformed into something that fits with the general structure and type
system of C++ in order to be effective in the different context. Over the basic type system of alan-
guage, only Pyrrhic victories are possible.

C++ supports a gradual approach to learning. How you approach learning a new programming
|language depends on what you already know and what you aim to learn. There is no one approach
that suits everyone. My assumption is that you are learning C++ to become a better programmer
and designer. That is, | assume that your purpose in learning C++ is not smply to learn anew syn-
tax for doing things the way you used to, but to learn new and better ways of building systems.
This has to be done gradually because acquiring any significant new skill takes time and requires
practice. Consider how long it would take to learn a new natural language well or to learn to play a
new musical instrument well. Becoming a better system designer is easier and faster, but not as
much easier and faster as most people would likeit to be.

It follows that you will be using C++ — often for building real systems — before understanding
every language feature and technique. By supporting several programming paradigms (Chapter 2),
C++ supports productive programming at severa levels of expertise. Each new style of program-
ming adds another tool to your toolbox, but each is effective on its own and each adds to your
effectiveness as aprogrammer. C++ isorganized so that you can learn its concepts in aroughly lin-
ear order and gain practical benefits along the way. Thisisimportant because it allows you to gain
benefits roughly in proportion to the effort expended.

In the continuing debate on whether one needs to learn C before C++, | am firmly convinced
that it is best to go directly to C++. Ct++ is safer, more expressive, and reduces the need to focus on
low-level techniques. It is easier for you to learn the trickier parts of C that are needed to compen-
sate for its lack of higher-level facilities after you have been exposed to the common subset of C
and C++ and to some of the higher-level techniques supported directly in C++. Appendix B is a
guide for programmers going from C++ to C, say, to deal with legacy code.

Several independently developed and distributed implementations of C++ exist. A wedlth of
tools, libraries, and software development environments are also available. A mass of textbooks,
manuals, journals, newsletters, electronic bulletin boards, mailing lists, conferences, and courses
are available to inform you about the latest developmentsin Ct+, its use, toals, libraries, implemen-
tations, etc. If you plan to use C++ serioudly, | strongly suggest that you gain access to such
sources. Each has its own emphasis and bias, so use at least two. For example, see [Barton,1994],
[Booch,1994], [Henricson,1997], [Koenig,1997], [Martin,1995].

1.3 TheDesign of C++

Simplicity was an important design criterion: where there was a choice between simplifying the
language definition and simplifying the compiler, the former was chosen. However, great impor-
tance was attached to retaining a high degree of compatibility with C [Koenig,1989] [Strous-
trup,1994] (Appendix B); this precluded cleaning up the C syntax.

C++ has no built-in high-level data types and no high-level primitive operations. For example,
the C++ language does not provide a matrix type with an inversion operator or a string type with a
concatenation operator. If a user wants such atype, it can be defined in the language itself. In fact,
defining a new general-purpose or application-specific type is the most fundamental programming
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activity in C++. A well-designed user-defined type differs from a built-in type only in the way it is
defined, not in the way it is used. The C++ standard library described in Part 111 provides many
examples of such types and their uses. From a user’'s point of view, there is little difference
between a built-in type and a type provided by the standard library.

Features that would incur run-time or memory overheads even when not used were avoided in
the design of C++. For example, constructs that would make it necessary to store ‘* housekeeping
information’’ in every object were rgjected, so if a user declares a structure consisting of two 16-bit
quantities, that structure will fit into a 32-bit register.

C++ was designed to be used in atraditional compilation and run-time environment, that is, the
C programming environment on the UNIX system. Fortunately, C++ was never restricted to UNIX;
it smply used UNIX and C as amodel for the relationships between language, libraries, compilers,
linkers, execution environments, etc. That minima model helped C++ to be successful on essen-
tially every computing platform. There are, however, good reasons for using C++ in environments
that provide significantly more support. Facilities such as dynamic loading, incremental compila
tion, and a database of type definitions can be put to good use without affecting the language.

C++ type-checking and data-hiding features rely on compile-time analysis of programs to pre-
vent accidental corruption of data. They do not provide secrecy or protection against someone who
is deliberately breaking the rules. They can, however, be used freely without incurring run-time or
space overheads. Theideaisthat to be useful, a language feature must not only be elegant; it must
also be affordable in the context of areal program.

For a systematic and detailed description of the design of C++, see[Stroustrup,1994].

1.3.1 Efficiency and Structure

C++ was developed from the C programming language and, with few exceptions, retains C as a
subset. The base language, the C subset of C++, is designed to ensure a very close correspondence
between its types, operators, and statements and the objects that computers deal with directly: num-
bers, characters, and addresses. Except for the new, delete, typeid, dynamic_cast, and throw oper-
ators and the try-block, individual C++ expressions and statements need no run-time support.

C++ can use the same function call and return sequences as C — or more efficient ones. When
even such relatively efficient mechanisms are too expensive, a C++ function can be substituted
inline, so that we can enjoy the notational convenience of functions without run-time overhead.

One of the original aims for C was to replace assembly coding for the most demanding systems
programming tasks. When C++ was designed, care was taken not to compromise the gains in this
area. The difference between C and C++ is primarily in the degree of emphasis on types and struc-
ture. Cisexpressive and permissive. Ct+ is even more expressive. However, to gain that increase
in expressiveness, you must pay more attention to the types of objects. Knowing the types of
objects, the compiler can dea correctly with expressions when you would otherwise have had to
specify operations in painful detail. Knowing the types of objects also enables the compiler to
detect errors that would otherwise persist until testing — or even later. Note that using the type sys-
tem to check function arguments, to protect data from accidental corruption, to provide new types,
to provide new operators, etc., does not increase run-time or space overheadsin C++.

The emphasis on structure in C++ reflects the increase in the scale of programs written since C
was designed. You can make a small program (say, 1,000 lines) work through brute force even
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when breaking every rule of good style. For alarger program, thisis simply not so. If the structure
of a100,000-line program is bad, you will find that new errors are introduced as fast as old ones are
removed. Ct++ was designed to enable larger programs to be structured in arational way so that it
would be reasonable for a single person to cope with far larger amounts of code. In addition, the
aim was to have an average line of C++ code express much more than the average line of C or Pas-
cal code. Ct++ has by now been shown to over-fulfill these goals.

Not every piece of code can be well-structured, hardware-independent, easy-to-read, etc. C++
possesses features that are intended for manipulating hardware facilities in a direct and efficient
way without regard for safety or ease of comprehension. It also possesses facilities for hiding such
code behind elegant and safe interfaces.

Naturally, the use of C++ for larger programs leads to the use of C++ by groups of program-
mers. C++'s emphasis on modularity, strongly typed interfaces, and flexibility pays off here. C++
has as good a balance of facilities for writing large programs as any language has. However, as
programs get larger, the problems associated with their development and maintenance shift from
being language problems to more global problems of tools and management. Part IV explores
some of these issues.

This book emphasizes techniques for providing general-purpose facilities, generaly useful
types, libraries, etc. These techniques will serve programmers of small programs as well as pro-
grammers of large ones. Furthermore, because all nontrivial programs consist of many semi-
independent parts, the techniques for writing such parts serve programmers of all applications.

Y ou might suspect that specifying a program by using a more detailed type structure would lead
to alarger program source text. With C++, thisis not so. A Ct++ program declaring function argu-
ment types, using classes, efc., is typicaly a bit shorter than the equivalent C program not using
these facilities. Where libraries are used, a C++ program will appear much shorter than its C equiv-
alent, assuming, of course, that afunctioning C equivalent could have been built.

1.3.2 Philosophical Note

A programming language serves two related purposes: it provides a vehicle for the programmer to
specify actions to be executed, and it provides a set of concepts for the programmer to use when
thinking about what can be done. The first purpose ideally requires a language that is ‘* close to the
machine’’ so that all important aspects of a machine are handled simply and efficiently in a way
that is reasonably obvious to the programmer. The C language was primarily designed with thisin
mind. The second purpose ideally requires a language that is ‘‘ close to the problem to be solved’’
so that the concepts of a solution can be expressed directly and concisely. The facilities added to C
to create C++ were primarily designed with thisin mind.

The connection between the language in which we think/program and the problems and solu-
tions we can imagine is very close. For this reason, restricting language features with the intent of
eliminating programmer errorsis at best dangerous. Aswith natural languages, there are great ben-
efits from being at least bilingual. A language provides a programmer with a set of conceptua
tools; if these are inadequate for a task, they will simply be ignored. Good design and the absence
of errors cannot be guaranteed merely by the presence or the absence of specific language features.

The type system should be especially helpful for nontrivial tasks. The C++ class concept has, in
fact, proven itself to be a powerful conceptual tool.
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1.4 Historical Note

| invented C++, wrote its early definitions, and produced its first implementation. | chose and for-
mulated the design criteria for C++, designed all its major facilities, and was responsible for the
processing of extension proposalsin the C++ standards committee.

Clearly, C++ owes much to C [Kernighan,1978]. Except for closing a few serious loopholes in
the type system (see Appendix B), Cisretained as a subset. | also retained C's emphasis on facili-
ties that are low-level enough to cope with the most demanding systems programming tasks. C in
turn owes much to its predecessor BCPL [Richards,1980]; in fact, BCPL’s// comment convention
was (re)introduced in C++. The other main source of inspiration for Ct+ was Simula67
[Dahl,1970] [Dahl,1972]; the class concept (with derived classes and virtual functions) was bor-
rowed from it. C++'s facility for overloading operators and the freedom to place a declaration
wherever a statement can occur resembles Algol68 [Woodward,1974].

Since the original edition of this book, the language has been extensively reviewed and refined.
The major areas for revision were overload resolution, linking, and memory management facilities.
In addition, several minor changes were made to increase C compatibility. Several generalizations
and a few major extensions were added: these included multiple inheritance, static member func-
tions, const member functions, protected members, templates, exception handling, run-time type
identification, and namespaces. The overall theme of these extensions and revisions was to make
C++ abetter language for writing and using libraries. The evolution of C++ is described in [Strous-
trup,1994].

The template facility was primarily designed to support statically typed containers (such as lists,
vectors, and maps) and to support elegant and efficient use of such containers (generic program-
ming). A key aim was to reduce the use of macros and casts (explicit type conversion). Templates
were partly inspired by Ada' s generics (both their strengths and their weaknesses) and partly by
Clu's parameterized modules. Similarly, the C++ exception-handling mechanism was inspired
partly by Ada [Ichbiah,1979], Clu [Liskov,1979], and ML [Wikstrom,1987]. Other developments
in the 1985 to 1995 time span — such as multiple inheritance, pure virtual functions, and name-
spaces — were primarily generalizations driven by experience with the use of C++ rather than ideas
imported from other languages.

Earlier versions of the language, collectively known as *‘C with Classes’ [Stroustrup,1994],
have been in use since 1980. The language was originally invented because | wanted to write some
event-driven simulations for which Simula67 would have been ideal, except for efficiency consid-
erations. ‘*C with Classes’ was used for major projects in which the facilities for writing programs
that use minimal time and space were severely tested. It lacked operator overloading, references,
virtual functions, templates, exceptions, and many details. The first use of C++ outside a research
organization started in July 1983.

The name C++ (pronounced ‘*see plus plus’) was coined by Rick Mascitti in the summer of
1983. The name signifies the evolutionary nature of the changes from C; **++'’ is the C increment
operator. The dlightly shorter name **C+’’ is a syntax error; it has also been used as the name of an
unrelated language. Connoisseurs of C semantics find C++ inferior to ++C. The language is not
called D, because it is an extension of C, and it does not attempt to remedy problems by removing
features. For yet another interpretation of the name C++, see the appendix of [Orwell,1949].

C++ was designed primarily so that my friends and | would not have to program in assembler,
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C, or various modern high-level languages. Its main purpose was to make writing good programs
easier and more pleasant for the individual programmer. In the early years, there was no C++ paper
design; design, documentation, and implementation went on simultaneously. There was no ‘' C++
project’’ either, or a‘‘C++ design committee.’’ Throughout, C++ evolved to cope with problems
encountered by users and as aresult of discussions between my friends, my colleagues, and me.

Later, the explosive growth of C++ use caused some changes. Sometime during 1987, it
became clear that formal standardization of C++ was inevitable and that we needed to start prepar-
ing the ground for a standardization effort [Stroustrup,1994]. The result was a conscious effort to
maintain contact between implementers of C++ compilers and major users through paper and elec-
tronic mail and through face-to-face meetings at C++ conferences and elsewhere.

AT&T Bell Laboratories made a major contribution to this by allowing me to share drafts of
revised versions of the C++ reference manual with implementers and users. Because many of these
people work for companies that could be seen as competing with AT&T, the significance of this
contribution should not be underestimated. A less enlightened company could have caused major
problems of language fragmentation simply by doing nothing. As it happened, about a hundred
individuals from dozens of organizations read and commented on what became the generally
accepted reference manual and the base document for the ANSI C++ standardization effort. Their
names can be found in The Annotated C++ Reference Manual [Ellis,1989]. Finaly, the X3J16
committee of ANSI was convened in December 1989 at the initiative of Hewlett-Packard. In June
1991, this ANSI (American national) standardization of C++ became part of an 1SO (international)
standardization effort for C++. From 1990, these joint C++ standards committees have been the
main forum for the evolution of C++ and the refinement of its definition. | served on these commit-
tees throughout. In particular, as the chairman of the working group for extensions, | was directly
responsible for the handling of proposals for major changes to C++ and the addition of new lan-
guage features. An initial draft standard for public review was produced in April 1995. The ISO
C++ standard (1SO/IEC 14882) was ratified in 1998.

C++ evolved hand-in-hand with some of the key classes presented in this book. For example, |
designed complex, vector, and stack classes together with the operator overloading mechanisms.
String and list classes were developed by Jonathan Shopiro and me as part of the same effort.
Jonathan’s string and list classes were the first to see extensive use as part of alibrary. The string
class from the standard C++ library hasitsroots in these early efforts. The task library described in
[Stroustrup,1987] and in §12.7[11] was part of the first **C with Classes’ program ever written. |
wrote it and its associated classes to support Simula-style simulations. The task library has been
revised and reimplemented, notably by Jonathan Shopiro, and is till in extensive use. The stream
library as described in the first edition of this book was designed and implemented by me. Jerry
Schwarz transformed it into the iostreams library (Chapter 21) using Andrew Koenig's manipul ator
technique (821.4.6) and other ideas. The iostreams library was further refined during standardiza-
tion, when the bulk of the work was done by Jerry Schwarz, Nathan Myers, and Norihiro Kumagai.
The development of the template facility was influenced by the vector, map, list, and sort tem-
plates devised by Andrew Koenig, Alex Stepanov, me, and others. In turn, Alex Stepanov’s work
on generic programming using templates led to the containers and algorithms parts of the standard
Ct+ library (816.3, Chapter 17, Chapter 18, §19.2). The valarray library for numerical computa-
tion (Chapter 22) is primarily the work of Kent Budge.
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15 Useof C++

C++ is used by hundreds of thousands of programmers in essentially every application domain.
This use is supported by about a dozen independent implementations, hundreds of libraries, hun-
dreds of textbooks, severa technical journals, many conferences, and innumerable consultants.
Training and education at avariety of levels are widely available.

Early applications tended to have a strong systems programming flavor. For example, severa
major operating systems have been written in C++ [Campbell,1987] [Rozier,1988] [Hamilton,1993]
[Berg,1995] [Parrington,1995] and many more have key parts done in C++. | considered uncom-
promising low-level efficiency essential for C++. This allows us to use C++ to write device drivers
and other software that rely on direct manipulation of hardware under real-time constraints. In such
code, predictability of performance is at least as important as raw speed. Often, so is compactness
of the resulting system. C++ was designed so that every language feature is usable in code under
severe time and space constraints [ Stroustrup,1994,84.5].

Most applications have sections of code that are critical for acceptable performance. However,
the largest amount of code is not in such sections. For most code, maintainability, ease of exten-
sion, and ease of testing is key. C++'s support for these concerns has led to its widespread use
where reliability is a must and in areas where requirements change significantly over time. Exam-
ples are banking, trading, insurance, telecommunications, and military applications. For years, the
central control of the U.S. long-distance telephone system has relied on C++ and every 800 call
(that is, a call paid for by the called party) has been routed by a C++ program [Kamath,1993].
Many such applications are large and long-lived. As aresult, stability, compatibility, and scalabil-
ity have been constant concerns in the development of C++. Million-line C++ programs are not
uncommon.

Like C, C++ wasn't specifically designed with numerical computation in mind. However, much
numerical, scientific, and engineering computation is done in C++. A major reason for this is that
traditional numerical work must often be combined with graphics and with computations relying on
data structures that don't fit into the traditional Fortran mold [Budge,1992] [Barton,1994]. Graph-
ics and user interfaces are areas in which C++ is heavily used. Anyone who has used either an
Apple Macintosh or a PC running Windows has indirectly used C++ because the primary user inter-
faces of these systems are C++ programs. In addition, some of the most popular libraries support-
ing X for UNIX are written in C++. Thus, C++ isa common choice for the vast number of applica
tionsin which the user interface isamajor part.

All of this points to what may be C++'s greatest strength: its ability to be used effectively for
applications that require work in avariety of application areas. It is quite common to find an appli-
cation that involves local and wide-area networking, numerics, graphics, user interaction, and data-
base access. Traditionally, such application areas have been considered distinct, and they have
most often been served by distinct technical communities using a variety of programming lan-
guages. However, C++ has been widely used in all of those areas. Furthermore, it is able to coexist
with code fragments and programs written in other languages.

C++ iswidely used for teaching and research. This has surprised some who — correctly — point
out that C++isn't the smallest or cleanest language ever designed. It is, however

— clean enough for successful teaching of basic concepts,

— redlistic, efficient, and flexible enough for demanding projects,
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— available enough for organizations and collaborations relying on diverse development and
execution environments,
— comprehensive enough to be a vehicle for teaching advanced concepts and techniques, and
— commercia enough to be avehicle for putting what is learned into non-academic use.
C++isalanguage that you can grow with.

16 Cand C++

C was chosen as the base language for C++ because it

[1] isversatile, terse, and relatively low-level;

[2] is adequate for most systems programming tasks,

[3] runs everywhere and on everything; and

[4] fitsinto the UNIX programming environment.

C hasiits problems, but a language designed from scratch would have some too, and we know C’'s
problems. Importantly, working with C enabled ** C with Classes’ to be a useful (if awkward) tool
within months of the first thought of adding Simula-like classesto C.

As C++ became more widely used, and as the facilities it provided over and above those of C
became more significant, the question of whether to retain compatibility was raised again and
again. Clearly some problems could be avoided if some of the C heritage was rejected (see, e.g.,
[Sethi,1981]). Thiswas not done because

[1] there are millions of lines of C code that might benefit from C++, provided that a complete

rewrite from C to C++ were unnecessary;

[2] there are millions of lines of library functions and utility software code written in C that

could be used from/on C++ programs provided C++ were link-compatible with and syntacti-
cally very similar to C;

[3] there are hundreds of thousands of programmers who know C and therefore need only learn

to use the new features of C++ and not relearn the basics; and

[4] C++ and C will be used on the same systems by the same people for years, so the differ-

ences should be either very large or very small so asto minimize mistakes and confusion.
The definition of C++ has been revised to ensure that a construct that is both legal C and legal C++
has the same meaning in both languages (with afew minor exceptions; see §B.2).

The C language has itself evolved, partly under the influence of the development of C++
[Rosler,1984]. The ANSI C standard [C,1990] contains a function declaration syntax borrowed
from **C with Classes’” Borrowing works both ways. For example, the void* pointer type was
invented for ANSI C and first implemented in C++. As promised in the first edition of this book,
the definition of C++ has been reviewed to remove gratuitous incompatibilities; C++ is now more
compatible with C than it was originally. The ideal was for C++ to be as close to ANSI C as possi-
ble — but no closer [Koenig,1989]. One hundred percent compatibility was never a goal because
that would compromise type safety and the smooth integration of user-defined and built-in types.

Knowing C is not a prerequisite for learning C++. Programming in C encourages many tech-
niques and tricks that are rendered unnecessary by C++ language features. For example, explicit
type conversion (casting) is less frequently needed in C++ than it isin C (81.6.1). However, good
C programs tend to be C++ programs. For example, every program in Kernighan and Ritchie, The
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C Programming Language (2nd Edition) [Kernighan,1988], is a C++ program. Experience with
any statically typed language will be a help when learning Ct+.

1.6.1 Suggestionsfor C Programmers

The better one knows C, the harder it seems to be to avoid writing C++ in C style, thereby losing
some of the potential benefits of C++. Please take alook at Appendix B, which describes the dif-
ferences between C and C++. Here are afew pointers to the areas in which C++ has better ways of
doing something than C has:

[1] Macros are admost never necessary in C++. Use const (85.4) or enum (84.8) to define mani-
fest constants, inline (87.1.1) to avoid function-calling overhead, templates (Chapter 13) to
specify families of functions and types, and namespaces (§8.2) to avoid name clashes.

[2] Don't declare a variable before you need it so that you can initialize it immediately. A
declaration can occur anywhere a statement can (86.3.1), in for-statement initializers
(86.3.3), and in conditions (86.3.2.1).

[3] Don't use malloc() . The new operator (86.2.6) does the same job better, and instead of
realloc() , try avector (83.8).

[4] Try to avoid void* , pointer arithmetic, unions, and casts, except deep within the implemen-
tation of some function or class. In most cases, a cast is an indication of a design error. If
you must use an explicit type conversion, try using one of the ‘‘new casts'’ (86.2.7) for a
more precise statement of what you are trying to do.

[5] Minimize the use of arrays and C-style strings. The C++ standard library string (83.5) and
vector (83.7.1) classes can often be used to simplify programming compared to traditional C
style. In general, try not to build yourself what has already been provided by the standard
library.

To obey C linkage conventions, a C++ function must be declared to have C linkage (8§9.2.4).

Most important, try thinking of a program as a set of interacting concepts represented as classes

and objects, instead of as a bunch of data structures with functions twiddling their bits.

1.6.2 Suggestionsfor C++ Programmers

By now, many people have been using C++ for a decade. Many more are using C++ in a single
environment and have learned to live with the restrictions imposed by early compilers and first-
generation libraries. Often, what an experienced C++ programmer has failed to notice over the
yearsis not the introduction of new features as such, but rather the changes in relationships between
features that make fundamental new programming techniques feasible. In other words, what you
didn't think of when first learning C++ or found impractical just might be a superior approach
today. You find out only by re-examining the basics.

Read through the chapters in order. If you already know the contents of a chapter, you can be
through in minutes. If you don't already know the contents, you'll have learned something unex-
pected. | learned afair bit writing this book, and | suspect that hardly any C++ programmer knows
every feature and technique presented. Furthermore, to use the language well, you need a perspec-
tive that brings order to the set of features and techniques. Through its organization and examples,
this book offers such a perspective.
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1.7 Thinking about Programmingin C++

Ideally, you approach the task of designing a program in three stages. First, you gain aclear under-
standing of the problem (analysis), then you identify the key concepts involved in a solution
(design), and finally you express that solution in a program (programming). However, the details
of the problem and the concepts of the solution often become clearly understood only through the
effort to express them in a program and trying to get it to run acceptably. Thisis where the choice
of programming language matters.

In most applications, there are concepts that are not easily represented as one of the fundamental
types or as a function without associated data. Given such a concept, declare a class to represent it
inthe program. A Ct++ classisatype. That is, it specifies how objects of its class behave: how they
are created, how they can be manipulated, and how they are destroyed. A class may also specify
how objects are represented, although in the early stages of the design of a program that should not
be the major concern. The key to writing good programs is to design classes so that each cleanly
represents a single concept. Often, this means that you must focus on questions such as; How are
objects of this class created? Can objects of this class be copied and/or destroyed? What opera-
tions can be applied to such objects? If there are no good answers to such questions, the concept
probably wasn't ‘‘clean’” in the first place. It might then be a good idea to think more about the
problem and its proposed solution instead of immediately starting to ‘‘ code around’’ the problems.

The concepts that are easiest to deal with are the ones that have a traditional mathematical for-
malism: numbers of all sorts, sets, geometric shapes, etc. Text-oriented /O, strings, basic contain-
ers, the fundamental algorithms on such containers, and some mathematical classes are part of the
standard C++ library (Chapter 3, 816.1.2). In addition, a bewildering variety of libraries supporting
general and domain-specific concepts are available.

A concept does not exist in a vacuum; there are always clusters of related concepts. Organizing
the relationship between classes in a program — that is, determining the exact relationship between
the different concepts involved in a solution — is often harder than laying out the individual classes
in the first place. The result had better not be a muddie in which every class (concept) depends on
every other. Consider two classes, A and B. Relationships such as *‘A calls functions from B,”’
“*A createsBs,’’ and ‘*A hasaB member’’ seldom cause major problems, while relationships such
as''A usesdatafrom B’ can typically be eliminated.

One of the most powerful intellectua tools for managing complexity is hierarchical ordering,
that is, organizing related concepts into a tree structure with the most general concept as the root.
In C++, derived classes represent such structures. A program can often be organized as a set of
trees or directed acyclic graphs of classes. That is, the programmer specifies a number of base
classes, each with its own set of derived classes. Virtua functions (82.5.5, §12.2.6) can often be
used to define operations for the most general version of a concept (a base class). When necessary,
the interpretation of these operations can be refined for particular special cases (derived classes).

Sometimes even a directed acyclic graph seems insufficient for organizing the concepts of a
program; some concepts seem to be inherently mutually dependent. In that case, we try to localize
cyclic dependencies so that they do not affect the overall structure of the program. If you cannot
eliminate or localize such mutual dependencies, then you are most likely in a predicament that no
programming language can help you out of. Unless you can conceive of some easily stated rela
tionships between the basic concepts, the programis likely to become unmanageable.
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One of the best tools for untangling dependency graphs is the clean separation of interface and
implementation. Abstract classes (§2.5.4, §12.3) are C++'s primary tool for doing that.

Another form of commonality can be expressed through templates (82.7, Chapter 13). A class
template specifies a family of classes. For example, a list template specifies ‘‘list of T,”” where
““T" can be any type. Thus, atemplate is a mechanism for specifying how one type is generated
given another type as an argument. The most common templates are container classes such aslists,
vectors, and associative arrays (maps) and the fundamental algorithms using such containers. It is
usualy a mistake to express parameterization of a class and its associated functions with a type
using inheritance. It is best done using templates.

Remember that much programming can be simply and clearly done using only primitive types,
data structures, plain functions, and a few library classes. The whole apparatus involved in defin-
ing new types should not be used except when thereis areal need.

The question ‘*How does one write good programs in C++? is very similar to the question
‘“How does one write good English prose?’ There are two answers. ‘‘Know what you want to
say’’ and ‘‘Practice. Imitate good writing.”” Both appear to be as appropriate for C++ as they are
for English —and as hard to follow.

1.8 Advice

Hereisaset of ‘‘rules’ you might consider while learning C++. As you get more proficient you
can evolve them into something suitable for your kind of applications and your style of program-
ming. They are deliberately very simple, so they lack detail. Don't take them too literally. To
write a good program takes intelligence, taste, and patience. You are not going to get it right the
first time. Experiment!
[1] When you program, you create a concrete representation of the ideas in your solution to some

problem. Let the structure of the program reflect those ideas as directly as possible:

[a] If you canthink of “*it"" as a separate idea, makeit aclass.

[b] If you can think of “*it"" as a separate entity, make it an object of some class.

[c] If two classes have a common interface, make that interface an abstract class.

[d] If the implementations of two classes have something significant in common, make that

commonality a base class.
[€] If aclassisacontainer of objects, make it atemplate.
[f] If afunction implements an algorithm for a container, make it a template function imple-
menting the algorithm for afamily of containers.

[g] If aset of classes, templates, etc., are logically related, place them in a common namespace.
[2] When you define either a class that does not implement either a mathematical entity like a

matrix or acomplex number or alow-level type such asalinked list:

[a Don't use global data (use members).

[b] Don't use global functions.

[c] Don't use public data members.

[d] Don't use friends, except to avoid [a] or [C].

[€] Don't put a‘‘typefield’’ in aclass; use virtual functions.

[f] Don't useinline functions, except as a significant optimization.
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More specific or detailed rules of thumb can be found in the ‘*Advice’ section of each chapter.
Remember, this advice is only rough rules of thumb, not immutable laws. A piece of advice should
be applied only ‘‘where reasonable.”” There is no substitute for intelligence, experience, common
sense, and good taste.

| find rules of the form ‘‘never do this”’ unhelpful. Consequently, most advice is phrased as
suggestions of what to do, while negative suggestions tend not to be phrased as absolute prohibi-
tions. | know of no major feature of C++ that | have not seen put to good use. The ‘*Advice'’ sec-
tions do not contain explanations. Instead, each piece of advice is accompanied by a reference to
the appropriate section of the book. Where negative advice is given, that section usually provides a
suggested alternative.

1.8.1 References
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A Tour of C++

The first thing we do, let’s
kill all the language lawyers.
— Henry VI, part Il

What is G+? — programming paradigms- procedural programming- modularity—
separate compilatior- exception handling— data abstraction— user-defined types-
concrete types— abstract types— virtual functions— object-oriented programming-
generic programming— containers— algorithms— language and programming-
advice.

2.1 What is G-+?tour.intro]

C++is a general-purpose programming language with a bias towards systems programming that

— is abetter C,

— supports data abstraction,

— supports object-oriented programming, and

— supports generic programming.
This chapter explains what this means without going into the finer details of the language defi
tion. Its purpose is to give you a general overview-of @nd the key techniques for usingrigt
to provide you with the detailed information necessary to start programmirtgrin C

If you find some parts of this chapter rough going, just ignore those parts and plow on. All w
be explained in detail in later chapters. However, if you do skip part of this chapter, do yoursel
favor by returning to it later.

Detailed understanding of language feature=ven ofall features of a language cannot com-
pensate for lack of an overall view of the language and the fundamental techniques for using it.
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2.2 Programming Paradigmgtour.paradigm]

Object-oriented programming is a technique for programmirgg paradigm for writing “good”
programs for a set of problems. If the term “object-oriented programming language” means ar
thing, it must mean a programming language that provides mechanisms that support the obj
oriented style of programming well.

There is an important distinction here. A language is sasdipporta style of programming if
it provides facilities that make it convenient (reasonably easy, safe, and efficient) to use that st
A language does not support a technique if it takes exceptional effort or skill to write such pr
grams; it merelyenableghe technique to be used. For example, you can write structured progran
in Fortran77 and object-oriented programs in C, but it is unnecessarily hard to do so because tl
languages do not directly support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allo
direct use of the paradigm, but also in the more subtle form of compile-time and/or run-time chec
against unintentional deviation from the paradigm. Type checking is the most obvious example
this; ambiguity detection and run-time checks are also used to extend linguistic support for pe
digms. Extra-linguistic facilities such as libraries and programming environments can provide ft
ther support for paradigms.

One language is not necessarily better than another because it possesses a feature the othe
not. There are many examples to the contrary. The important issue is not so much what featur
language possesses, but that the features it does possess are sufficient to support the desire
gramming styles in the desired application areas:

[1] All features must be cleanly and elegantly integrated into the language.

[2] It must be possible to use features in combination to achieve solutions that would otherw

require extra, separate features.

[3] There should be as few spurious and “special-purpose” features as possible.

[4] A feature’s implementation should not impose significant overheads on programs that

not require it.

[5] A user should need to know only about the subset of the language explicitly used to write

program.
The first principle is an appeal to aesthetics and logic. The next two are expressions of the idee
minimalism. The last two can be summarized as “what you don’t know won'’t hurt you.”

C++ was designed to support data abstraction, object-oriented programming, and generic [
gramming in addition to traditional C programming techniques under these constraints.néttwas
meant to force one particular programming style upon all users.

The following sections consider some programming styles and the key language mechanis
supporting them. The presentation progresses through a series of techniques starting with proc
ral programming and leading up to the use of class hierarchies in object-oriented programming
generic programming using templates. Each paradigm builds on its predecessors, each adds s
thing new to the €+ programmer’s toolbox, and each reflects a proven design approach.

The presentation of language features is not exhaustive. The emphasis is on design approa
and ways of organizing programs rather than on language details. At this stage, it is far m
important to gain an idea of what can be done usihgt@an to understand exactly how it can be
achieved.
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2.3 Procedural Programmingtour.proc]

The original programming paradigm is:

Decide which procedures you want;
use the best algorithms you can find.

The focus is on the processirgthe algorithm needed to perform the desired computation. Lan-
guages support this paradigm by providing facilities for passing arguments to functions and retu
ing values from functions. The literature related to this way of thinking is filled with discussion o
ways to pass arguments, ways to distinguish different kinds of arguments, different kinds of fur
tions (e.g., procedures, routines, and macros), etc.

A typical example of “good style” is a square-root function. Given a double-precision
floating-point argument, it produces a result. To do this, it performs a well-understood mathems
cal computation:

double sgrt( double arg)
{

/1 code for calculating a square root

}

void f()
double root2 = sqrt( 2);
/..

}

Curly braces{ }, express grouping int@. Here, they indicate the start and end of the function
bodies. The double slash,, begins a comment that extends to the end of the line. The keywor
void indicates that a function does not return a value.

From the point of view of program organization, functions are used to create order in a maze
algorithms. The algorithms themselves are written using function calls and other language fac
ties. The following subsections present a thumb-nail sketch+efsGnost basic facilities for
expressing computation.

2.3.1 Variables and Arithmetic [tour.var]

Every name and every expression has a type that determines the operations that may be perfo
on it. For example, the declaration

int inch;

specifies thainch is of typeint; that is,inch is an integer variable.

A declarationis a statement that introduces a name into the program. It specifies a type for tt
name. Atypedefines the proper use of a name or an expression.

C++ offers a variety of fundamental types, which correspond directly to hardware facilities. Fc
example:
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bool /1 Boolean, possible values are true and false
char /1 character, for example, 'a’, 'z’, and '9’
int /1 integer, for example, 1, 42, and 1216

double  // double-precision floating-point number, for example, 3.14 and 299793.0

A char variable is of the natural size to hold a character on a given machine (typically a byte), a
anint variable is of the natural size for integer arithmetic on a given machine (typically a word).
The arithmetic operators can be used for any combination of these types:

+ / I plus, both unary and binary

- /| minus, both unary and binary
* [ [ multiply

/ [ | divide

% /1 remainder

So can the comparison operators:

== /| equal

1= / | not equal

< / I less than

> / | greater than

<= / I less than or equal
>= | | greater than or equal

In assignments and in arithmetic operationst @erforms all meaningful conversions between the
basic types so that they can be mixed freely:

void some function() /| function that doesn’t return a value

{
double d= 2. 2; /1 initialize floating-point number
inti=7 [ I initialize integer
d = d+i; / | assign sumto d
i =d*i; /| assign product to i
}

As in C,=is the assignment operator arm tests equality.

2.3.2 Tests and Loops [tour.loop]

C++ provides a conventional set of statements for expressing selection and looping. For exam
here is a simple function that prompts the user and returns a Boolean indicating the response:

bool accept()

cout << " Do you want to proceed(y or n)?\n"; / / write question

char answer = 0;
cin >> answer; / | read answer

if (answer =="y") return true
return false
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The << operator (“put to”) is used as an output operatmut is the standard output stream. The
>> operator (“get from”) is used as an input operatimn is the standard input stream. The type of
the right-hand operand of> determines what input is accepted and is the target of the input oper:
tion. The\n character at the end of the output string represents a newline.

The example could be slightly improved by taking an ‘n’ answer into account:

bool accept2()

cout << " Do you want to proceed(y or n)?\n"; / / write question

char answer = 0;
cin >> answer; / | read answer

switch ( answer) {

case’ y':
return true
case’ n’:
return false
default:
cout<< "1 Il take that for a no. \n";
return false
}

}

A switch-statemertests a value against a set of constants. The case constants must be distinct,
if the value tested does not match any of themdgéfault is chosen. The programmer need not
provide adefault.

Few programs are written without loops. In this case, we might like to give the user a few trie

bool accept3()
{

int tries=1;

while ( tries< 4) {
cout << " Do you want to proceed(y or n)?\n"; / [/ write question
char answer = 0;
cin >> answer; / | read answer

switch ( answer) {
case’ y':
return true
case’ n’:
return false
default:
cout << " Sarry, | don’t understand that. \n";
tries= tries+ 1;
}
}
cout << " 1" Il take that for a no. \n";
return false
}

Thewhile-statemengxecutes until its condition beconfaise
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2.3.3 Pointers and Arrays [tour.ptr]
An array can be declared like this:
char v[ 10]; / / array of 10 characters
Similarly, a pointer can be declared like this:
char* p; / / pointer to character

In declarations]] means “array of” and® means “pointer to.” All arrays have as their lower
bound, sor has ten elements| 0] ...v[ 9] . A pointer variable can hold the address of an object of
the appropriate type:

p=&v[3; / | p points to v's fourth element

Unary&is the address-of operator.
Consider copying ten elements from one array to another:

void another_function()

{

int vi[ 10];

int v2[ 10];

..

for (int i=0; i<10; ++i) vi[i]= v2[i];
}

This for-statementan be read as “sétto zero, whilei is less tharl0, copy theith element and
increment.” When applied to an integer variable, the increment opetataimply addsl.

2.4 Modular Programming [tour.module]

Over the years, the emphasis in the design of programs has shifted from the design of proced
and toward the organization of data. Among other things, this reflects an increase in program s
A set of related procedures with the data they manipulate is often cattedide The program-
ming paradigm becomes:

Decide which modules you want;
partition the program so that data is hidden within modules.

This paradigm is also known as tHata-hiding principle Where there is no grouping of proce-
dures with related data, the procedural programming style suffices. Also, the techniques for desi
ing “good procedures” are now applied for each procedure in a module. The most common exa
ple of a module is the definition of a stack. The main problems that have to be solved are:

[1] Provide a user interface for the stack (e.g., functpusk() andpop() ).

[2] Ensure that the representation of the stack (e.g., an array of elements) can be accessed

through this user interface.
[3] Ensure that the stack is initialized before its first use.
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C++ provides a mechanism for grouping related data, functions, etc., into separate namespaces.
example, the user interface o8ck module could be declared and used like this:

namespace Siack { /| interface
void push( char);
char pop() ;

}

void f()

Stack: : push(" ¢’) ;
if (Stack : pop() !'= “¢’) emor(" impossble") ;
}

The Stack: : qualification indicates that thpush() andpop() are those from th&tack name-
space. Other uses of those names will not interfere or cause confusion.
The definition of theStack could be provided in a separately-compiled part of the program:

namespace Sack { /| implementation
const int max_size= 200;
char v[ max_siz€|;
int top=0;
void push( char c) { /* check for overflow and push*t }
char pop() { /* check for underflow and pop }
}

The key point about thiStack module is that the user code is insulated from the data representatic
of Stack by the code implementin®tiack: : push() andStack: : pop() . The user doesn’t need to
know that theStack is implemented using an array, and the implementation can be changed withc
affecting user code.

Because data is only one of the things one might want to “hide,” the notion of data hiding
trivially extended to the notion ahformation hiding that is, the names of functions, types, etc.,
can also be made local to a module. Consequentty,allows any declaration to be placed in a
namespace (88.2).

This Stack module is one way of representing a stack. The following sections use a variety
stacks to illustrate different programming styles.

2.4.1 Separate Compilation [tour.comp]

C++ supports C’s notion of separate compilation. This can be used to organize a program into a
of semi-independent fragments.

Typically, we place the declarations that specify the interface to a module in a file with a nar
indicating its intended use. Thus,

namespace Siack { /| interface
void push( char);
char pop() ;

}

would be placed in a filstack. h, and users wilincludethat file, called deader file like this:
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#include " stack. h" | | getthe interface
void f()

Stack: : push(” ¢') ;
if (Stack : pop() !'= “¢) emor(" impossble") ;
}

To help the compiler ensure consistency, the file providing the implementationStihtkenodule
will also include the interface:

#include " stack. h" | | getthe interface

namespace Siack { /| representation
const int max_size= 200;
char v[ max_size ;
int top=0;

}

void Stack:: push( char c) { /* check for overflow and push*t }
char Stack : pop() { /* check for underflow and pop }

The user code goes in a third file, agser. c. The code iruser. ¢ andstack. ¢ shares the stack
interface information presented stack. h, but the two files are otherwise independent and can be
separately compiled. Graphically, the program fragments can be represented like this:

stack.h:
Stiack interface
user.c: stack.c:
#include "stack.h" #include "stack.h"
use stack define stack

Separate compilation is an issue in all real programs. It is not simply a concern in programs t
present facilities, such asSiack, as modules. Strictly speaking, using separate compilation isn't
language issue; it is an issue of how best to take advantage of a particular language implementa
However, it is of great practical importance. The best approach is to maximize modularity, rep!
sent that modularity logically through language features, and then exploit the modularity physica
through files for effective separate compilation (Chapter 8, Chapter 9).

2.4.2 Exception Handling [tour.except]

When a program is designed as a set of modules, error handling must be considered in light of tl
modules. Which module is responsible for handling what errors? Often, the module that detects
error doesn’t know what action to take. The recovery action depends on the module that invol
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the operation rather than on the module that found the error while trying to perform the operati
As programs grow, and especially when libraries are used extensively, standards for handling er
(or, more generally, “exceptional circumstances”) become important.

Consider again th&tack example. Whabughtto be done when we try gpush() one too
many characters? The writer of tB#ack module doesn’t know what the user would like to be
done in this case, and the user cannot consistently detect the problem (if the user could, the c
flow wouldn’t happen in the first place). The solution is for 8tack implementer to detect the
overflow and then tell the (unknown) user. The user can then take appropriate action. For ex:

ple:

namespace Sack { / | interface
void push( char);
char pop() ;

class Overflow{ }; / / type representing overflow exceptions

}

When detecting an overflow§tack: : push() can invoke the exception-handling code; that is,
“throw an Overflow exception:”

void Stack : push( char c)

{
if (top == max_size) throw Overflow() ;
/1 pushc

}

Thethrow transfers control to a handler for exceptions of gk : Overflow in some function
that directly or indirectly calle®tack: : push() . To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. Thispthacts as a mul-
tilevel return. For example:

void f()

{
I ...

try { // exceptions here are handled by the handler defined below
while ( true) Stack: : push(” ¢) ;

}
catch ( Stack: : Overflow) {

/1 oops: stack overflow; take appropriate action
}

I ..
}

The while loop will try to loop forever. Therefore, theatch-clause providing a handler for
Stack: : Overflow will be entered after some call 8fack: : push() causes ¢hrow.

Use of the exception-handling mechanisms can make error handling more regular and reade
See §8.3 and Chapter 14 for further discussion and details.
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2.5 Data Abstraction[tour.da]

Modularity is a fundamental aspect of all successful large programs. It remains a focus of
design discussions throughout this book. However, modules in the form described previously
not sufficient to express complex systems cleanly. Here, | first present a way of using modules
provide a form of user-defined types and then show how to overcome some problems with t
approach by defining user-defined types directly.

2.5.1 Modules Defining Types [tour.types]

Programming with modules leads to the centralization of all data of a type under the control o
type manager module. For example, if we wanted many stacither than the single one pro-
vided by theStack module above- we could define a stack manager with an interface like this:

namespace S@ack {

struct Rep; /| definition of stack layout is elsewhere
typedef Rep& stack;

stack create() ; | | make a new stack

void destroy( stack s); | | delete s

void push( stack s char c); / / pushcontos

char pop( stack s); ! | pops

}

The declaration
struct Rep;

says thaRepis the name of a type, but it leaves the type to be defined later (85.7). The declarati
typedef Rep& stack;

gives the namstack to a “reference tdRep’ (details in 85.5). The idea is that a stack is identified
by its Stack: : stack and that further details are hidden from users.
A Stack: : stack acts much like a variable of a built-in type:

struct Bad pop{ };

void f()

{
Stack: : stack s1= Stack:: create() ; / / make a new stack

Stack: : stack s2= Stack : create() ; / / make another new stack
Stack: : push(sl,” ¢) ;

Stack: : push(s2” k) ;

if (Stack : pop(sl) != “¢’) throw Bad pop() ;

if (Stack : pop(s2) != " k') throw Bad pop() ;

Stack: : destroy( s1);
Stack: : destroy( s2);
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We could implement thiStack in several ways. It is important that a user doesn’t need to know
how we do it. As long as we keep the interface unchanged, a user will not be affected if we dec
to re-implemen8tack.

An implementation might preallocate a few stack representations fiddkt: create() hand
out a reference to an unused orgiack: : destroy() could then mark a representation “unused”
so thatStack: : create() can recycle it:

namespace Siack { /| representation
const int max_size= 200;
struct Rep{
char v[ max_size| ;
int top;
|3
const int max=16;/ / maximum number of stacks

Rep stackg max]; / / preallocated stack representations
bool used max]; / / used][i]is true if stacks]i] is in use

}

void Stack : push( stack s char c) { /* check s for overflow and push/c }
char Stack:: pop( stack s { /* check s for underflow and pdp }

Stack: : stack Siack : create()

/1 pick an unused Rep, mark it used, initialize it, and return a reference to it

}
void Siack : destroy( stack s) { /* mark s unusety }

What we have done is to wrap a set of interface functions around the representation type. How
resulting “stack type” behaves depends partly on how we defined these interface functions, pa
on how we presented the representation type to the usBack$, and partly on the design of the
representation type itself.

This is often less than ideal. A significant problem is that the presentation of such “fake types
to the users can vary greatly depending on the details of the representatieratyp&sers ought
to be insulated from knowledge of the representation type. For example, had we chosen to u
more elaborate data structure to identify a stack, the rules for assignment and initialization
Stack: : stacks would have changed dramatically. This may indeed be desirable at times. Ho
ever, it shows that we have simply moved the problem of providing conveStizmks from the
Stack module to theStack: : stack representation type.

More fundamentally, user-defined types implemented through a module providing access to
implementation type don’t behave like built-in types and receive less and different support than
built-in types. For example, the time thatSiack : Rep can be used is controlled through
Stack: : create() andStack : destroy() rather than by the usual language rules.



32 ATourof C++ Chapter 2

2.5.2 User-Defined Types [tour.udt]

C++ attacks this problem by allowing a user to directly define types that behave in (nearly) tl
same way as built-in types. Such a type is often calledbatract data type | prefer the term
user-defined typeA more reasonable definition abstract data typevould require a mathemati-
cal “abstract” specification. Given such a specification, what are caff@eshere would be con-
crete examples of such truly abstract entities. The programming paradigm becomes:

Decide which types you want;
provide a full set of operations for each type.

Where there is no need for more than one object of a type, the data-hiding programming style u:
modules suffices.

Arithmetic types such as rational and complex numbers are common examples of user-defi
types. Consider:

class complex{
double re, im;

public:
complex( double r, double i) { re=r; im=i; } / / construct complex from two scalars
complex( double 1) { re=r; im=0; } /| construct complex from one scalar
complex) { re=im=0; } / | default complex: (0,0)
friend complex operator+( complex complex);
friend complex operator-( complex complex); / | binary
friend complex operator-( complex); / | unary

friend complex operator*( complex, complex);
friend complex operator/( complex, complex);

friend bool operator==( complex, complex); / | equal
friend bool operator!=( complex complex); / | not equal
/...

h
The declaration of class (that is, user-defined typmplex specifies the representation of a com-
plex number and the set of operations on a complex humber. The representaiiatdsthat is,
re andim are accessible only to the functions specified in the declaration ofccianpbex Such
functions can be defined like this:

complex operator+( complex al, complex a2)
{

}

A member function with the same name as its class is calledsdructor A constructor defines a
way to initialize an object of its class. Clasanplex provides three constructors. One makes a
complex from a double, another takes a pair dbubles, and the third makes amplex with a
default value.

Classcomplex can be used like this:

return complex( al. re+a2. re, al. im+a2. im);
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void f( complex 2)
{

complex a= 2. 3;
complex b= 1/ a;
complex ¢ = a+b*complex( 1, 2. 3);
/...
if(c!= b) c=-( b/ a)+ 2*b;
}

The compiler converts operators involvingmplex numbers into appropriate function calls. For
examplec!= b meansoperator!=( c, b) andl/ a meansperator/( complex( 1), a) .
Most, but not all, modules are better expressed as user-defined types.

2.5.3 Concrete Types [tour.concrete]

User-defined types can be designed to meet a wide variety of needs. Consider a useBdekined
type along the lines of theomplextype. To make the example a bit more realistic, Sagk type
is defined to take its number of elements as an argument:

class Siack {
char* v;
int top;
int max_size

public:
class Underflow { }; /| used as exception
class Overflow{ }; /I used as exception
class Bad size{ }; | | used as exception
Stack( int s); / | constructor
~Stack() ; | | destructor
void push( char c);
char pop() ;

%

The constructoStack( int) will be called whenever an object of the class is created. This take:
care of initialization. If any cleanup is needed when an object of the class goes out of scope, ac
plement to the constructercalled thedestructor— can be declared:

Stack: : Stack( int s) / | constructor
{
top = 0;
if (10000<s) throw Bad_siz€) ;
max_size=s;
v=new char[ s]; / / allocate elements on the free store (heap, dynamic store)
}
Stack: :~ Stack() /| destructor

delete]] v; | | free the elements for possible reuse of their space (§86.2.6)
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The constructor initializes a ne@ack variable. To do so, it allocates some memory on the free
store (also called theeapor dynamic storgusing thenew operator. The destructor cleans up by
freeing that memory. This is all done without intervention by use@&auks. The users simply
create and usstacks much as they would variables of built-in types. For example:

Stack s varl( 10); / | global stack with 10 elements
void f( Stack& s ref, int i) | | reference to Stack
{

Stack s var2(i); /1 local stack with i elements

Stack* s _ptr = new Sfack( 20); / / pointer to Stack allocated on free store

s varl. push(” a’) ;
s var2. push(” b’) ;

s ref. push(” ¢) ;
s_ptr-> push(" d) ;
...

}

This Stack type obeys the same rules for naming, scope, allocation, lifetime, copying, etc., as dc
a built-in type such ast andchar.
Naturally, thepush() andpop() member functions must also be defined somewhere:

void Stack : push( char c)

{
if (top == max_size) throw Overflow() ;
v[ top] =¢;
top=top+ 1;

}

char Stack:: pop()

{
if (top==0) throw Underflow() ;
top=top- 1,
return V top];

}

Types such asomplex andStack are calledconcrete typesin contrast t@bstract typeswhere the
interface more completely insulates a user from implementation details.

2.5.4 Abstract Types [tour.abstract]

One property was lost in the transition fr@ack as a “fake type” implemented by a module
(82.5.1) to a proper type (82.5.3). The representation is not decoupled from the user interfe
rather, it is a part of what would be included in a program fragment 8tdcks. The representa-
tion is private, and therefore accessible only through the member functions, but it is present. |
changes in any significant way, a user must recompile. This is the price to pay for having concr
types behave exactly like built-in types. In particular, we cannot have genuine local variables o
type without knowing the size of the type’s representation.

For types that don't change often, and where local variables provide much-needed clarity ¢
efficiency, this is acceptable and often ideal. However, if we want to completely isolate users o
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stack from changes to its implementation, this &iatk is insufficient. Then, the solution is to
decouple the interface from the representation and give up genuine local variables.
First, we define the interface:

class Sack {

public:
class Underflow{ }; /| used as exception
class Overflow{ }; /| used as exception

virtual void push( char c) =0;
virtual char pop() =0;
%

The wordvirtual means “may be redefined later in a class derived from this one” in Simula anc
C++. A class derived fronstack provides an implementation for ti8ack interface. The curious
=0 syntax says that some class derived fi@iack mustdefine the function. Thus, thBtack can
serve as the interface to any class that implemermpasty) andpop() functions.

This Stack could be used like this:

void f( Stack& s ref)
{

s ref. push(” ¢) ;

if (s_ref pop() '= “¢’) throw bad_stack() ;
}

Note howf() uses theStack interface in complete ignorance of implementation details. A class
that provides the interface to a variety of other classes is often caltdgnaorphic type

Not surprisingly, the implementation could consist of everything from the concreteStdaks
that we left out of the interfacgiack:

class Array stack: public Stack{ / / Array_stack implements Stack
char* p;
int max_size
int top;
public:
Array_stack( int s);
~Array_stack() ;

void push( char c);
char pop() ;
3

The *: public” can be read as “is derived from,” “implements,” and “is a subtype of.”
For a function likef() to use aStack in complete ignorance of implementation details, some
other function will have to make an object on which it can operate. For example:

void g()
{

Array_stack as(200);
f(as);
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Sincef() doesn’'t know aboulrray_stacks but only knows th&tack interface, it will work just as
well for a different implementation of@tack. For example:

class List stack : public Stack { / | List_stack implements Stack

list<char> Ic; | | (standard library) list of characters (§3.7.3)
public:
List_stack() { }
void push( char c) { lc. push front(c); }
char pop() ;
%
char List_stack: : pop()
{
char x=lc. front() ; / | get first element
Ic. pop_front() ; / | remove first element
return x
}

Here, the representation is a list of characters. I@.hgush_front( c) addsc as the first element of
Ic, the calllc. pop_front() removes the first element, ald front() denotedc’s first element.
A function can create laist_stack and havd() use it:

void h()

{
List_stack Is;
f(ls);

}

2.5.5 Virtual Functions [tour.virtual]

How is the calls set. pop() inf() resolved to the right function definition? Wh#&h is called
from h() , List stack:pop() must be called. Whenf() is called from g() ,
Array stack:: pop() must be called. To achieve this resolutionStack object must contain
information to indicate the function to be called at run-time. A common implementation techniqt
is for the compiler to convert the name ofietual function into an index into a table of pointers to
functions. That table is usually called “a virtual function table” or simplytbh. Each class with
virtual functions has its owwtbl identifying its virtual functions. This can be represented graphi-

cally like this:
Array_stack object: vtbl:
‘ Array stack: push() ‘
Y
max_size ————=| Array stack: pop() |
top
List_stack object: vtbl:
List_stack: push()
Ic —

| List stack: pop) |
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The functions in thetbl allow the object to be used correctly even when the size of the object an
the layout of its data are unknown to the caller. All the caller needs to know is the location of t
vtbl in a Stack and the index used for each virtual function. This virtual call mechanism can b
made essentially as efficient as the “normal function call” mechanism. Its space overhead is c
pointer in each object of a class with virtual functions plusutinlfor each such class.

2.6 Object-Oriented Programming|tour.oop]

Data abstraction is fundamental to good design and will remain a focus of design throughout 1
book. However, user-defined types by themselves are not flexible enough to serve our needs.
section first demonstrates a problem with simple user-defined data types and then shows hov
overcome that problem by using class hierarchies.

2.6.1 Problems with Concrete Types [tour.problems]

A concrete type, like a “fake type” defined through a module, defines a sort of black box. Onc
the black box has been defined, it does not really interact with the rest of the program. There is
way of adapting it to new uses except by modifying its definition. This situation can be ideal, but
can also lead to severe inflexibility. Consider defining a Sifpe for use in a graphics system.
Assume for the moment that the system has to support circles, triangles, and squares. Assume
that we have

class Point{ /* ...*/ };
class Color{ /* ..* }

The/* and*/ specify the beginning and end, respectively, of a comment. This comment notatic
can be used for multi-line comments and comments that end before the end of a line.
We might define a shape like this:

enum Kind { circle, triangle, square}; / / enumeration (84.8)

class Smape {
Kind k I I type field

Point center;
Color col;
/...

public:
void draw() ;
void rotate( int);
I ..

%

The “type field” k is necessary to allow operations suchdessn() androtate() to determine
what kind of shape they are dealing with (in a Pascal-like language, one might use a variant rec
with tagk). The functiondraw() might be defined like this:
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void Shape: : draw()
{
switch (k) {
case crcle:
/1 draw a circle
break;
case triangle:
/1 draw a triangle
break;
case sguare:
/1 draw a square
break;

}

This is a mess. Functions suchdiaw() must “know about” all the kinds of shapes there are.
Therefore, the code for any such function grows each time a new shape is added to the syster
we define a new shape, every operation on a shape must be examined and (possibly) modified.
are not able to add a new shape to a system unless we have access to the source code for
operation. Because adding a new shape involves “touching” the code of every important operat
on shapes, doing so requires great skill and potentially introduces bugs into the code that han
other (older) shapes. The choice of representation of particular shapes can get severely crampe
the requirement that (at least some of) their representation must fit into the typically fixed-siz
framework presented by the definition of the general Sfipe.

2.6.2 Class Hierarchies [tour.hierarchies]

The problem is that there is no distinction between the general properties of every shape (that
shape has a color, it can be drawn, etc.) and the properties of a specific kind of shape (a circle
shape that has a radius, is drawn by a circle-drawing function, etc.). Expressing this distinction
taking advantage of it defines object-oriented programming. Languages with constructs that all
this distinction to be expressed and used support object-oriented programming. Other langue
don't.
The inheritance mechanism (borrowed for+tGrom Simula) provides a solution. First, we

specify a class that defines the general properties of all shapes:

class Smape {
Point center;

Color col;
...
public:
Point where() { return center; }
void move( Point to) { center =to; /* ...*/ draw() ; }

virtual void draw() =0;
virtual void rotate( int angle) = 0;
Il ...
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As in the abstract typ8tack in §2.5.4, the functions for which the calling interface can be defined
— but where the implementation cannot be defined-yatevirtual. In particular, the functions
draw() androtate() can be defined only for specific shapes, so they are dedlimtadl.

Given this definition, we can write general functions manipulating vectors of pointers to shape

void rotate_all( vector<Shape*>& v, int angle) // rotate v's elements angle degrees

{
}

To define a particular shape, we must say that it is a shape and specify its particular proper
(including the virtual functions):

class Circle: public Shape {
int radius,
public:
void draw() { /* ..*/ }
void rotate(int) {} / / yes, the null function

for (int i =0; i<v. size)) ; ++i) V[ i]-> rotate( angle);

k

In C++, classCircle is said to bealerivedfrom classSiape, and clas$Stape is said to be &aseof
classCircle. An alternative terminology call€ircle and Stape subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base
derived classes is commonly referred tinkgritance

The programming paradigm is:

Decide which classes you want;
provide a full set of operations for each class;
make commonality explicit by using inheritance.

Where there is no such commonality, data abstraction suffices. The amount of commona
between types that can be exploited by using inheritance and virtual functions is the litmus tes
the applicability of object-oriented programming to a problem. In some areas, such as interact
graphics, there is clearly enormous scope for object-oriented programming. In other areas, suc
classical arithmetic types and computations based on them, there appears to be hardly any scoy
more than data abstraction, and the facilities needed for the support of object-oriented programn
seem unnecessary.

Finding commonality among types in a system is not a trivial process. The amount of commc
ality to be exploited is affected by the way the system is designed. When a system is designe
and even when the requirements for the system are wittemmonality must be actively sought.
Classes can be designed specifically as building blocks for other types, and existing classes ca
examined to see if they exhibit similarities that can be exploited in a common base class.

For attempts to explain what object-oriented programming is without recourse to specific pr
gramming language constructs, see [Kerr,1987] and [Booch,1994] in §23.6.

Class hierarchies and abstract classes (§2.5.4) complement each other instead of being mut
exclusive (812.5). In general, the paradigms listed here tend to be complementary and of
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mutually supportive. For example, classes and modules contain functions, while modules cont
classes and functions. The experienced designer applies a variety of paradigms as need dictate

2.7 Generic Programmingtour.generic]

Someone who wants a stack is unlikely always to want a stack of characters. A stack is a gen
concept, independent of the notion of a character. Consequently, it ought to be represented i
pendently.

More generally, if an algorithm can be expressed independently of representation details an
it can be done so affordably and without logical contortions, it ought to be done so.

The programming paradigm is:

Decide which algorithms you want;
parameterize them so that they work for
a variety of suitable types and data structures.

2.7.1 Containers [tour.containers]

We can generalize a stack-of-characters type to a stack-of-anything type by makiamjtiate
and replacing the specific tyjphar with a template parameter. For example:

template<class T> class Siack {
T v,
int max_size
int top;

public:
class Underflow{ };
class Overflow{ };

Stack(int s); / / constructor
~Stack() ; / | destructor

void push(T);
\ T pop() ;

Thetemplate<class T> prefix makesT a parameter of the declaration it prefixes.
The member functions might be defined similarly:

template<class T> void Stack<T>:: push( T ¢)

{
if (top == max_size) throw Overflow() ;
v[ top] =¢;
top=top+ 1;
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template<class T> T Siack<T>:: pop()

{
if (top==0) throw Underflow() ;
top=top- 1,
return Vi top];

}

Given these definitions, we can use stacks like this:
Stack<char> sc; | | stack of characters
Stack<complex> scplx;  / / stack of complex numbers
Stack< list<int> > sli; /| stack of list of integers
void f()

{
sc push(’ ¢) ;

if (sc. pop() !'= “¢) throw Bad pop() ;

scpix. push( complex( 1, 2)) ;
if (scplx. pop() !'= complex( 1, 2)) throw Bad_pop() ;
}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates. A c
holding a collection of elements of some type is commonly callechtainer classor simply a
container

Templates are a compile-time mechanism so that their use incurs no run-time overhead c«
pared to “hand-written code.”

2.7.2 Generic Algorithms [tour.algorithms]

The G+ standard library provides a variety of containers, and users can write their own (Chapter
Chapter 17, Chapter 18). Thus, we find that we can apply the generic programming paradigm o
more to parameterize algorithms by containers. For example, we want to sort, copy, and se:
vectors, lists, and arrays without having to wrgert() , copy() , andsearch() functions for each
container. We also don’t want to convert to a specific data structure accepted by a single sort fu
tion. Therefore, we must find a generalized way of defining our containers that allows us to man
ulate one without knowing exactly which kind of container it is.

One approach, the approach taken for the containers and non-numerical algorithmstin the ¢
standard library (83.8, Chapter 18) is to focus on the notion of a sequence and manipul
sequences through iterators.

Here is a graphical representation of the notion of a sequence:

begin end

\
elements: == - =0 ]=::

A sequence has a beginning and an end. An iterator refers to an element, and provides an oper
that makes the iterator refer to the next element of the sequence. The end of a sequence
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iterator that refers one beyond the last element of the sequence. The physical representatio
“the end” may be a sentinel element, but it doesn’t have to be. In fact, the point is that this noti
of sequences covers a wide variety of representations, including lists and arrays.

We need some standard notation for operations such as “access an element through an itere
and “make the iterator refer to the next element.” The obvious choices (once you get the idea)
to use the dereference operatoto mean “access an element through an iterator” and the incre-
ment operatot+ to mean “make the iterator refer to the next element.”

Given that, we can write code like this:

template<class In, class Out> void copy(In from, In too far, Out to)

while ( from!= too_far) {
*to=*from / / copy element pointed to
++10; /| nextinput
++from; /| next output

}

This copies any container for which we can define iterators with the right syntax and semantics.
C++'s built-in, low-level array and pointer types have the right operations for that, so we ce
write

char vcl| 200]; // array of 200 characters
char vc2[ 500]; // array of 500 characters

void f()

copy(& vel 0],& vel[ 200],& ve2[ Q) ;
}

This copiesrcl from its first element until its last intec2 starting atve?’s first element.

All standard library containers (816.3, Chapter 17) support this notion of iterators ar
sequences.

Two template parametelm andOut are used to indicate the types of the source and the targe
instead of a single argument. This was done because we often want to copy from one kind of c
tainer into another. For example:

complex ac[ 200];

void g( vector<complex>& vc, list<complex>& Ic)

{
copy(& ac] 0] ,& ac] 200], lc. begin()) ;

copy( lc. begin() , Ic. end() , vc. begin()) ;
}

This copies the array to thist and thelist to thevector. For a standard containdregin() is an
iterator pointing to the first element.
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2.8 Postscriptftour.post]

No programming language is perfect. Fortunately, a programming language does not have tc
perfect to be a good tool for building great systems. In fact, a general-purpose programming |
guage cannot be perfect for all of the many tasks to which it is put. What is perfect for one tasl
often seriously flawed for another because perfection in one area implies specialization.+¥hus, (
was designed to be a good tool for building a wide variety of systems and to allow a wide variety
ideas to be expressed directly.

Not everything can be expressed directly using the built-in features of a language. In fact, t
isn't even the ideal. Language features exist to support a variety of programming styles and te
niques. Consequently, the task of learning a language should focus on mastering the native
natural styles for that languagenot on the understanding of every little detail of all the language
features.

In practical programming, there is little advantage in knowing the most obscure language fe
tures or for using the largest number of features. A single language feature in isolation is of lit
interest. Only in the context provided by techniques and by other features does the feature acc
meaning and interest. Thus, when reading the following chapters, please remember that the
purpose of examining the details of€is to be able to use them in concert to support good pro-
gramming style in the context of sound designs.

2.9 Advice[tour.advice]

[1] Don't panic! All will become clear in time; §2.1.
[2] You don't have to know every detail of-€to write good programs; 8§1.7.
[3] Focus on programming techniques, not on language features; 82.1.
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A Tour of the Standard Library

Why waste time learning
when ignorance is instantaneous?
— Hobbes

Standard libraries— output— strings— input — vectors— range checking— lists —
maps— container overview— algorithms— iterators— I/O iterators— traversals and
predicates— algorithms using member functiors algorithm overview— complex
numbers— vector arithmetie— standard library overview- advice.

3.1 Introduction [tour2.lib]

No significant program is written in just a bare programming language. First, a set of supporti
libraries are developed. These then form the basis for further work.

Continuing Chapter 2, this chapter gives a quick tour of key library facilities to give you an ide
what can be done using-€and its standard library. Useful library types, suclstasg, vector,
list, andmap, are presented as well as the most common ways of using them. Doing this allows |
to give better examples and to set better exercises in the following chapters. As in Chapter 2,
are strongly encouraged not to be distracted or discouraged by an incomplete understandin
details. The purpose of this chapter is to give you a taste of what is to come and to convey
understanding of the simplest uses of the most useful library facilities. A more detailed introdu
tion to the standard library is given in 816.1.2.

The standard library facilities described in this book are part of every compteien@lemen-
tation. In addition to the standard<€library, most implementations offer “graphical user inter-
face” systems, often referred to as GUIs or window systems, for interaction between a user ar
program. Similarly, most application development environments provide “foundation libraries’
that support corporate or industrial “standard” development and/or execution environments. |
not describe such systems and libraries. The intent is to provide a self-contained descrigtion of (
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as defined by the standard and to keep the examples portable, except where specifically noted.
urally, a programmer is encouraged to explore the more extensive facilities available on most ¢
tems, but that is left to exercises.

3.2 Hello, world! [tour2.hello]
The minimal G+ program is
int main() {}
It defines a function callexhain, which takes no arguments and does nothing.
Every G-+ program must have a function nammadin() . The program starts by executing that
function. Theint value returned bynain() , if any, is the program’s return value to “the system.”
If no value is returned, the system will receive a value indicating successful completion. A nonze

value frommain() indicates failure.
Typically, a program produces some output. Here is a program that writdelbot world! :

#include <iostream>
int main()

{

}

The line#include <iostream> instructs the compiler tmcludethe declarations of the standard
stream |/O facilities as found instream. Without these declarations, the expression

std: : cout << " Hello, world! \n";

std: : cout << " Hello, world! \n"

would make no sense. The operatar(“put to”) writes its second argument onto its first. In this
case, the string literdlHello, world! \n" is written onto the standard output stresidh : cout. A
string literal is a sequence of characters surrounded by double quotes. In a string literal, the b:
slash charactdrfollowed by another character denotes a single special character. In thimdsse,
the newline character, so that the characters writteHelte, world! followed by a newline.

3.3 The Standard Library Namespacetour2.name]

The standard library is defined in a namespace (82.4, 88.2) c#ifledThat is why | wrote
std: : cout rather than plaircout. | was being explicit about using tistandard cout, rather than
some othecout.

Every standard library facility is provided through some standard header simiiastaeanm>.
For example:

#include<string>
#include<list>

This makes the standastfing andlist available. To use them, tistd: : prefix can be used:
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std: : string s="Four legs Good; two legs Baaad'";
std: : list<std: : string> slogans;

For simplicity, | will rarely use thestd:: prefix explicitly in examples. Neither will | always
#include the necessary headers explicitly. To compile and run the program fragments here, y
must#include the appropriate headers (as listed in 83.7.5, §3.8.6, and Chapter 16). In additic
you must either use trstd: : prefix or make every name frostd global (88.2.3). For example:

#include<string> / | make the standard string facilities accessible
using namespace std; /| make std names available without std:: prefix

string s="Ignorance is blissd"; / / ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namesp
However, to keep short the program fragments used to illustrate language and library feature
omit repetitive#includes andstd: : qualifications. In this book, | use the standard library almost
exclusively, so if a name from the standard library is used, it either is a use of what the stand
offers or part of an explanation of how the standard facility might be defined.

3.4 Output[tour2.ostream]

The iostream library defines output for every built-in type. Further, it is easy to define output of
user-defined type. By default, values outputaoat are converted to a sequence of characters. For
example,

void f()
{

cout << 10;
}

will place the charactek followed by the charactéron the standard output stream. So will
void g()

int i =10;
cout << i;
}
Output of different types can be combined in the obvious way:
void h(int i)
{
cout << "the value of i is";
cout << i;
cout << " \n’;
}

If i has the valudO, the output will be
the value of i is 10
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A character constant is a character enclosed in single quotes. Note that a character constant ic
put as a character rather than as a numerical value. For example,

void k()
{

cout<<’ a’;
cout<<’ b
cout<< ' C’;

}

will output abc.

People soon tire of repeating the name of the output stream when outputting several rele
items. Fortunately, the result of an output expression can itself be used for further output. |
example:

void h2(int i)
{

}
This is equivalent th() . Streams are explained in more detail in Chapter 21.

cout << "the value of i is" <<i<<’'\n;

3.5 Strings[tour2.string]

The standard library providessiring type to complement the string literals used earlier. The
string type provides a variety of useful string operations, such as concatenation. For example:

string s1="Hello";
string s2 =" world";

void mi()
{ string s3=s1+", " +s2+" \n";
cout << s3,
}
Here,s3is initialized to the character sequence
Hello, world!

followed by a newline. Addition of strings means concatenation. You can add strings, string lite
als, and characters to a string.

In many applications, the most common form of concatenation is adding something to the e
of a string. This is directly supported by tke operation. For example:

void m2( string& s1, string& s2)

{
sl=s1+"\n";/ / append newline
s2+="\n"; | | append newline
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The two ways of adding to the end of a string are semantically equivalent, but | prefer the lat
because it is more concise and likely to be more efficiently implemented.
Naturally,strings can be compared against each other and against string literals. For exampl
string incantation;

void respond( const string& answer)

{ if (answer == incantation) {
/1 perform magic
Llse if (answer == "yes") {
..
}
/..
}

The standard library string class is described in Chapter 20. Among other useful features, it
vides the ability to manipulate substrings. For example:

string name= " Niels Sroustrup”;

void m3()

{
string s= name substr( 6, 10);
name replace( 0, 5," Nicholas') ;

s = "Stroustrup”

Il
/| name becomes "Nicholas Stroustrup”

}

The substr() operation returns a string that is a copy of the substring indicated by its argumen
The first argument is an index into the string (a position), and the second argument is the lengtt
the desired substring. Since indexing starts fipsgets the valuStroustrup.

Thereplace() operation replaces a substring with a value. In this case, the substring starting
0 with length5 is Niels; it is replaced byNicholas. Thus, the final value afiame is Nicholas
Stroustrup. Note that the replacement string need not be the same size as the substring that
replacing.

3.5.1 C-Style Strings [tour2.cstring]

A C-style string is a zero-terminated array of characters (85.2.2). As shown, we can easily ent
C-style string into &tring. To call functions that take C-style strings, we need to be able to extrac
the value of astring in the form of a C-style string. Thestr() function does that (§20.4.1). For
example, we can print tameusing the C output functioprintf() (821.8) like this:

void f()
{

}

printf(" name %\n", name c_str()) ;
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3.6 Input [tour2.istream]

The standard library offeiistreams for input. Likeostreams, istreams deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator> (“get from”) is used as an input operatasin is the standard input stream.
The type of the right-hand operand>ef determines what input is accepted and what is the target
of the input operation. For example,

void f()

{
int i;
cin>>i; / / read an integer into i
double d

cin>>d;/ / read a double-precision, floating-point number into d

}

reads a number, such 4234, from the standard input into the integer variabdnd a floating-
point number, such d®. 34€5, into the double-precision, floating-point variadle

Here is an example that performs inch-to-centimeter and centimeter-to-inch conversions. Y
input a number followed by a character indicating the unit: centimeters or inches. The progr:
then outputs the corresponding value in the other unit:

int main()

{
const float factor = 2. 54; // 1 inch equals 2.54 cm
float x, in, cm
char ch=0;

cout << " enter length: ";

cin >> x; / | read a floating-point number
cin >> ch; | | read a suffix
switch ( ch) {
case’i’: /I inch
in=x;
cm= x* factor;
break;
case’ C: / | cm
in = x/ factor;
cm=x;
break;
default:
in=cm=0;
break;
}

cout<<in<<" in=" << cm<<" cmn";

}
The switch-statemertests a value against a set of constants. bféak-statementare used to exit
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the switch-statementThe case constants must be distinct. If the value tested does not match any
them, thedefault is chosen. The programmer need not providefault.
Often, we want to read a sequence of characters. A convenient way of doing that is to read |
astring. For example:
int main()
{
string sir;

cout << " Please enter your name\n";
cin >> str;
cout << "Hello, " << str <<"! \n";

}
If you type in
Eric
the response is
Hello, Eric!
By default, a whitespace character (85.2.2) such as a space terminates the read, so if you enter
Eric Bloodaxe
pretending to be the ill-fated king of York, the response is still
Hello, Eric!
You can read a whole line using thetline() function. For example:
int main()
{ string sir;
cout << " Please enter your namen";
getling( cin, str);

cout << "Hello, " << sir <<"! \n";

}

With this program, the input
Eric Bloodaxe

yields the desired output:
Hello, Eric Bloodaxe!

The standard strings have the nice property of expanding to hold what you put in them, so if y
enter a couple of megabytes of semicolons, the program will echo pages of semicolons back at
— unless your machine or operating system runs out of some critical resource first.
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3.7 Containerstour2.stl]

Much computing involves creating collections of various forms of objects and then manipulatir
such collections. Reading characters into a string and printing out the string is a simple exam|
A class with the main purpose of holding objects is commonly caltmh&iner Providing suit-
able containers for a given task and supporting them with useful fundamental operations are imj
tant steps in the construction of any program.

To illustrate the standard library’s most useful containers, consider a simple program for kee
ing names and telephone numbers. This is the kind of program for which different approact
appear “simple and obvious” to people of different backgrounds.

3.7.1 Vector [tour2.vector]

For many C programmers, a built-in array of (name,number) pairs would seem to be a suita
starting point:

struct Entry {
string name
int number;
L

Entry phone_book{ 1000] ;

void print_entry(int i) / / simple use
{

}

However, a built-in array has a fixed size. If we choose a large size, we waste space; if we choo
smaller size, the array will overflow. In either case, we will have to write low-level memory-
management code. The standard library providestar (§16.3) that takes care of that:

cout << phone_book[ i]. name<<" ~ << phone_book] i]. number << " \n’;

vector<Entry> phone_book( 1000);

void print_entry(int i) / / simple use, exactly as for array

{

}
void add entries( int n) // increase size by n

cout << phone_book] i]. name<<’ ~ << phone_book] i]. number << " \n";

phone_book. resize( phone_book. size\)+ n);

}

Thevector member functiorsize() gives the number of elements.

Note the use of parentheses in the definitiophlwine_book. We made a single object of type
vector<Entry> and supplied its initial size as an initializer. This is very different from declaring &
built-in array:

vector<Entry> book( 1000); [ | vector of 1000 elements
vector<Entry> bookg 1000]; / / 1000 empty vectors
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Should you make the mistake of usfhgwhere you mear() when declaring aector, your com-
piler will almost certainly catch the mistake and issue an error message when you try to use
vector.

A vedtor is a single object that can be assigned. For example:

void f( vector<Entry>& v)

{
vector<Entry> v2 = phone_book;
V=V2,
/...

}

Assigning avector involves copying its elements. Thus, after the initialization and assignment i
f() , vandv2 each holds a separate copy of evéngry in the phone book. Whenwector holds
many elements, such innocent-looking assignments and initializations can be prohibitively exp
sive. Where copying is undesirable, references or pointers should be used.

3.7.2 Range Checking [tour2.range]

The standard libraryector does not provide range checking by default (816.3.3). For example:

void f()

{
int i = phone_book] 1001]. number; / / 1001 is out of range

..
}

The initialization is likely to place some random value irather than giving an error. This is
undesirable, so | will use a simple range-checking adaptatieectair, calledVeg, in the following
chapters. AVecis like avector, except that it throws an exception of typé_of rangeif a sub-
script is out of range.

Techniques for implementing types such\V&e and for using exceptions effectively are dis-
cussed in 811.12, 88.3, and Chapter 14. However, the definition here is sufficient for the examy
in this book:

template<class T> class Vec: public vector<T> {
public:

Ver() : vector<T>() {}

Vec(int s) : vedor<T>(s) { }

T& operator[]( int i) { return at(i); } /| range-checked
const T& operator[]( int i) const{ return at(i); } / / range-checked

kh

Theat() operation is avector subscript operation that throws an exception of gyieof_range
if its argument is out of theector’s range (816.3.3).

Returning to the problem of keeping names and telephone numbers, we can novease a
ensure that out-of-range accesses are caught. For example:

Vec<Entry> phone_book( 1000);
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void print_entry(int i) / / simple use, exactly as for vector

{
cout << phone_book[ i]. name<<" ~ << phone_book{ i]. number << \n’;
}
An out-of-range access will throw an exception that the user can catch. For example:
void f()
{
try {

for (int i = 0; i<10000; i++) print_entry(i);

catch (out_of_range) {
cout << "range aror\n";
}

}

The exception will be thrown, and then caught, wpkone book] i] is tried withi==1000.
If the user doesn’t catch this kind of exception, the program will terminate in a well-defined mann
rather than proceeding or failing in an undefined manner. One way to minimize surprises frc
exceptions is to useraain() with atry-blockas its body:
int main()
try {
/1 your code

catch (out_of_range) {
cerr << "range @ror\n”;

}
catch(...) {

cerr << " unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error m
sage is printed on the standard error-diagnostic output sterarg§21.2.1).

3.7.3 List [tour2.list]

Insertion and deletion of phone book entries could be common. Therefore, a list could be mi
appropriate than a vector for representing a simple phone book. For example:

list<Entry> phone_book;

When we use a list, we tend not to access elements using subscripting the way we commonly d
vectors. Instead, we might search the list looking for an element with a given value. To do this,
take advantage of the fact thdistis a sequence as described in §3.8:

void print_entry( const string& s)

typedef list<Entry>: : const iterator LlI;
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for (LI i = phone_book. begin() ; i!= phone_book end() ; ++i) {
Entry& e=*i; / |/ reference used as shorthand
if (s==e name cout<< e name<<  ~ << e number <<’ \n’;

}

The search fos starts at the beginning of the list and proceeds until estieefound or the end is
reached. Every standard library container provides the fundiemgin() andend() , which return

an iterator to the first and to one-past-the-last element, respectively (§16.3.2). Given ani,iteratc
the next element is+i. Given an iterator, the element it refers to 14.

A user need not know the exact type of the iterator for a standard container. That iterator typ
part of the definition of the container and can be referred to by name. When we don’'t need to m
ify an element of the containarpnst _iterator is the type we want. Otherwise, we use the plain
iterator type (§16.3.1).

Adding elements to Bstis easy:

void add_entry( Entry& e, list<Entry>:: iterator i)

{

phone_book. push front(e); / / add at beginning

phone_book. push back(e); / / add atend

phone_book. insert( i, €); / | add before the element ‘i’ refers to
}

3.7.4 Map [tour2.map]

Writing code to look up a name in a list of (hame,number) pairs is really quite tedious. In additic
a linear search is quite inefficient for all but the shortest lists. Other data structures directly supf
insertion, deletion, and searching based on values. In particular, the standard library provides
map type (817.4.1). Anapis a container of pairs of values. For example:

map<string, int> phone_book;

In other contexts, map is known as an associative array or a dictionary.
When indexed by a value of its first type (called kbg a map returns the corresponding value
of the second type (called thelueor themapped type For example:

void print_entry( const string& s)
{
}

If no match was found for the kesya default value is returned from thbone book. The default
value for an integer type inmaap is 0. Here, | assume th@tisn't a valid telephone number.

if (int i = phone book] s]) cout<<s<<’ ~ <<i<<’\n;

3.7.5 Standard Containers [tour2.stdcontainer]

A map, alist, and avector can each be used to represent a phone book. However, each h
strengths and weaknesses. For example, subscriptvegtar is cheap and easy. On the other
hand, inserting an element between two elements tends to be expendist.h@ds exactly the
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opposite properties. Aap resembles st of (key,value) pairs except that it is optimized for find-
ing values based on keys.

The standard library provides some of the most general and useful container types to allow
programmer to select a container that best serves the needs of an application:

g Standard Container Summary S
Cvector<T> A variable-sized vector (§16.3) 0
fist<T> A doubly-linked list (817.2.2) 0
Cueue<T> A queue (817.3.2) O
Lstack<T> A stack (8§17.3.1) g
] 0
eque<T> A double-ended queue (817.2.3) 0
[priority_queue<T> A queue sorted by value (§17.3.3) 0
[set<T> A set (817.4.3) O
Chmultiset<T> A set in which a value can occur many times (817. 4]4)
Umap<key,val> An associative array (§17.4.1)

ultimap<key,val> A map in which a key can occur many times (817. ZBZ)

The standard containers are presented in §16.2, 816.3, and Chapter 17. The containers are de
in namespacstd and presented in headengector>, <list>, <map>, etc. (816.2).

The standard containers and their basic operations are designed to be similar from a notati
point of view. Furthermore, the meanings of the operations are equivalent for the various conte
ers. In general, basic operations apply to every kind of container. For expogbiehack() can
be used (reasonably efficiently) to add elements to the endvedter as well as for dist, and
every container hassize() member function that returns its number of elements.

This notational and semantic uniformity enables programmers to provide new container tyg
that can be used in a very similar manner to the standard ones. The range-checkeWeg=ctor,
(83.7.2), is an example of that. Chapter 17 demonstrates Hwshamap can be added to the
framework. The uniformity of container interfaces also allows us to specify algorithms indepe
dently of individual container types.

3.8 Algorithms [tour2.algorithms]

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need C
ations for basic access such as adding and removing elements. Furthermore, we rarely just ¢
objects in a container. We sort them, print them, extract subsets, remove elements, searct
objects, etc. Consequently, the standard library provides the most common algorithms for cont:
ers in addition to providing the most common container types. For example, the following sorts
vector and places a copy of each unioy@etor element on &ist

void f( vector<Entry>& ve, list<Entry>& le)

{
sort( ve. begin() , ve. end()) ;
unique_copy( ve. begin() , ve. end() , le. begin()) ;
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The standard algorithms are described in Chapter 18. They are expressed in terms of sequenc
elements (82.7.2). A sequence is represented by a pair of iterators specifying the first element
the one-beyond-the-last element. In the exansud() sorts the sequence frome. begin() to
ve. end() - which just happens to be all the elements wéaor. For writing, you need only to
specify the first element to be written. If more than one element is written, the elements followi
that initial element will be overwritten.

If we wanted to add the new elements to the end of a container, we could have written:

void f( vector<Entry>& ve, list<Entry>& le)

{
sort( ve. begin() , ve. end()) ;
unique_copy( ve. begin() , ve. end() , back inserter(le)) ; / / append to le

}

A back inserter() adds elements at the end of a container, extending the container to make ro
for them (819.2.4). C programmers will appreciate that the standard containers pl
back inserter() s eliminate the need to use error-prone, explicit C-style memory manageme
using realloc() (816.3.5). Forgetting to use lzack inserter() when appending can lead to
errors. For example:

void f( list<Entry>& ve, vector<Entry>& le)

{
copy( ve. begin() , ve. end() , le); /| error: le not an iterator
copy( ve. begin() , ve. end() , le. end()) ; / / bad: writes beyond the end
copy( ve. begin() , ve. end() , le. begin()) ;/ / overwrite elements

}

3.8.1 Use of Iterators [tour2.iteruse]

When you first encounter a container, a few iterators referring to useful elements can be obtair
begin() andend() are the best examples of this. In addition, many algorithms return iterators
For example, the standard algoritffimd looks for a value in a sequence and returns an iterator tc
the element found. Usinfind, we can write a function that counts the number of occurrences of
character in atring:

int count( const string& s, char c)

{
string: : const_iterator i = find( s. begin() , s. end() , ¢);
int n=0;
while (i != s end()) {
++n;
i =find(i+1, s. end() , ©);
}
return n;
}

The find algorithm returns an iterator to the first occurrence of a value in a sequence or the ol
past-the-end iterator. Consider what happens for a simple calliof:
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void f()

{
string m="Mary had a little lamb’;
int a_count = count(m,” a’) ;

The first call tofind() finds the” @” in Mary. Thus, the iterator points to that character and not to
s. end() , so we enter the loop. In the loop, we start the searchlathat is, we start one past
where we found théa . We then loop finding the other thréa” s. That donefind() reaches
the end and returrss end() so that the conditioii= s. end() fails and we exit the loop.

That call ofcount() could be graphically represented like this:

| b Vo

M[a]r]y[ [hlafd] Ja] [Ii]t[t[I]e] [I]a]m]b]

The arrows indicate the initial, intermediate, and final values of the itérator
Naturally, thefind algorithm will work equivalently on every standard container. Conse-
quently, we could generalize tobeunt() function in the same way:

template<class C, class T> int count( const C&v, T val)

{
typename C.: const_iterator i = find( v. begin() , v. end() , val); / / "typename;" see §C.13.5
int n=0;
while (i '= v. end()) {
++n;
++i; // skip past the element we just found
i =find(i, v. end() , val);
}
return n;
}

This works, so we can say:

void f( list<complex>& Ic, vector<string>& vc, string s)

{
int i1 = count( Ic, complex( 1, 3)) ;
int i2 = count( v¢," Chrysippus’) ;
int i3 =count(s,” X) ;

}

However, we don't have to definecaunt template. Counting occurrences of an element is so gen-
erally useful that the standard library provides that algorithm. To be fully general, the stande
library count takes a sequence as its argument, rather than a container, so we would say:
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void f( list<complex>& Ic, vector<string>& vs, string s

{
int i1 = count( Ic. begin() , lc. end() , complex( 1, 3)) ;
int i2 = count( vs. begin() , vs. end() ," Diogenes') ;
int i3 = count(s. begin() , s. end() ,” X) ;

}

The use of a sequence allows us to eamt for a built-in array and also to count parts of a con-
tainer. For example:

void g(char cq] , int s2

int i1=count(&cq 0],&cq sg, Z); | | 'Z'sin array
int i2=count(&cq 0],&cq sz 2],” Z); / / 'Z'sinfirst half of array

3.8.2 lIterator Types [tour2.iter]

What are iterators really? Any particular iterator is an object of some type. There are, howeyv
many different iterator types because an iterator needs to hold the information necessary for dc
its job for a particular container type. These iterator types can be as different as the containers
the specialized needs they serve. For examplegtar’s iterator is most likely an ordinary pointer
because a pointer is quite a reasonable way of referring to an elemeectuira

iterator: p

vector: ‘P‘i‘e‘t‘ ‘H‘e‘i‘n‘

Alternatively, avector iterator could be implemented as a pointer toviétor plus an index:

iterator:  (start == p, position == 3)

vector: ‘P‘i‘e‘t‘ ‘H‘e‘i‘n‘

Using such an iterator would allow range checking (819.3).

A list iterator must be something more complicated than a simple pointer to an element beca
an element of a list in general does not know where the next element of that list is. Thus, a list i
ator might be a pointer to a link:
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iterator: p

list: link |—=1link |—="link %
b

elements: P i e t

What is common for all iterators is their semantics and the naming of their operations. For exa
ple, applying++ to any iterator yields an iterator that refers to the next element. Simflariglds

the element to which the iterator refers. In fact, any object that obeys a few simple rules like th
is an iterator (819.2.1). Furthermore, users rarely need to know the type of a specific iterator; e
container “knows” its iterator types and makes them available under the conventionaliterares
tor and const iterator. For example list<Entry>:: iterator is the general iterator type for
list<Entry>. | rarely have to worry about the details of how that type is defined.

3.8.3 lterators and /O [tour2.ioiterators]

Iterators are a general and useful concept for dealing with sequences of elements in contair
However, containers are not the only place where we find sequences of elements. For example
input stream produces a sequence of values and we write a sequence of values to an output st
Consequently, the notion of iterators can be usefully applied to input and output.

To make arostream iterator, we need to specify which stream will be used and the type of
objects written to it. For example, we can define an iterator that refers to the standard out
streamcout:

ostream iterator<string> 0o( cout);

The effect of assigning tooo is to write the assigned valuedout. For example:

int main()

{
*oo="Hello, "; / / meaning couk< "Hello, "
++00;

*oo="world! \n"; / / meaning couk< "world\n"

}

This is yet another way of writing the canonical message to standard output+dde done to
mimic writing into an array through a pointer. This way wouldn’t be my first choice for that simple
task, but the utility of treating output as a write-only container will soon be obwvioug isn’'t
already.

Similarly, anistream iterator is something that allows us to treat an input stream as a read
only container. Again, we must specify the stream to be used and the type of values expected:

istream iterator<string> ii( cin);

Because input iterators invariably appear in pairs representing a sequence, we must provide
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istream _iterator to indicate the end of input. This is the defésiiteam iterator:

istream iterator<string> eos,

We could now reatfiello, world! from input and write it out again like this:

int main()

{
string s1= *ii;
++ii;
string S2 = *ii;

cout<<sl<<’ ~ <<s2<<’\n;

}

Actually, istream iterators andostream iterators are not meant to be used directly. Instead, they
are typically provided as arguments to algorithms. For example, we can write a simple progran
read a file, sort the words read, eliminate duplicates, and write the result to another file:

int main()

{
string from, to;
cin >> from>> to;

ifstream is( from. c_str()) ;
istream iterator<string> ii( is);
istream _iterator<string> eos,

vector<string> b( ii, eos);
sort( b. begin() , b. end()) ;

ofstream os( to. c_str()) ;
ostream iterator<string> 0o( 0s," \n") ;

unique_copy( b. begin() , b. end() , 00);

return! is. eof() &&! os
}

~ —~ — ~

~ ~ ~ ~ ~ ~

get source and target file names

input stream (cstr(); see §3.5)
input iterator for stream
input sentinel

b is a vector initialized from input
sort the buffer

output stream
output iterator for stream

copy buffer to output,
discard replicated values

return error state (83.2, §21.3.3)

An ifstreamis anistream that can be attached to a file, andofstream is anostream that can be
attached to a file. Thestream iterator’s second argument is used to delimit output values.

3.8.4 Traversals and Predicates [tour2.traverse]

Iterators allow us to write loops to iterate through a sequence. However, writing loops can
tedious, so the standard library provides ways for a function to be called for each element c

sequence.

Consider writing a program that reads words from input and records the frequency of th
occurrence. The obvious representation of the strings and their associated frequemeaps is a

map<string, int> histogram;

The obvious action to be taken for each string to record its frequency is:
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void record( const string& )

{
}

Once the input has been read, we would like to output the data we have gathersap Tbesists
of a sequence of (string,int) pairs. Consequently, we would like to call

histogram s]++; / / record frequency of “s”

void print( const pair<const string, int>&r)
{

}

for each element in the map (the first element phiz is calledfirst, and the second element is
calledsecond). The first element of thpair is aconst string rather than a plaistring because all
map keys are constants.

Thus, the main program becomes:

cout<<r. first<<” * <<r. second << " \n’;

int main()
{

istream _iterator<string> ii( cin);

istream jterator<string> eos,

for_each( ii, eos, record);

for_each( histogram. begin() , histogram. end() , print);
}

Note that we don’t need to sort theap to get the output in order. fnap keeps its elements
ordered so that an iteration traversesriap in (increasing) order.

Many programming tasks involve looking for something in a container rather than simply doir
something to every element. For example,fthd algorithm (§18.5.2) provides a convenient way
of looking for a specific value. A more general variant of this idea looks for an element that fulfill
a specific requirement. For example, we might want to seanwdipdor the first value larger than
42. A map is a sequence of (key,value) pairs, so we search that listp@ireconst string, int>
where thent is greater thad2:

bool gt _42( const pair<const string, int>&r)
{

}
void f( map<string, int>& m)

return r. second>42,

typedef map<string, int>:: const_iterator MI;
MI i = find_if( m. begin() , m. end() , gt_42);
/...

}

Alternatively, we could count the number of words with a frequency higher than 42:
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void g( const map<string, int>& m)

int c42 = count_if( m. begin() , m. end() , gt_42);
...
}

A function, such agt_42() , that is used to control the algorithm is callqoredicate A predicate
is called for each element and returns a Boolean value, which the algorithm uses to perform
intended action. For examplénd_if() searches until its predicate retutnse to indicate that an
element of interest has been found. Similactuynt_if() counts the number of times its predicate
is true.

The standard library provides a few useful predicates and some templates that are useful for
ating more (818.4.2).

3.8.5 Algorithms Using Member Functions [tour2.memp]

Many algorithms apply a function to elements of a sequence. For example, in §3.8.4
for_each( ii, eas, record);

callsrecord() to read strings from input.

Often, we deal with containers of pointers and we really would like to call a member function
the object pointed to, rather than a global function on the pointer. For example, we might want
call the member functioSimape: : draw() for each element of Hst<Shape*>. To handle this
specific example, we simply write a nonmember function that invokes the member function. F
example:

void draw( Shape* p)
{

p-> draw() ;

void f( list<Shape*>& sh)

for_each( sh. begin() , sh. end() , draw);
}

By generalizing this technique, we can write the example like this:
void g( list<Shape*>& sh)

for_each( sh. begin() , sh. end() , mem_fun(& Sthape: : draw)) ;
}

The standard librargnem _fun() template (818.4.4.2) takes a pointer to a member function (§15.5)
as its argument and produces something that can be called for a pointer to the member’s class.
result of mem fun(& Sthape: : draw) takes a Stape* argument and returns whatever
Stape: : draw() returns.

The mem fun() mechanism is important because it allows the standard algorithms to be us
for containers of polymorphic objects.
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3.8.6 Standard Library Algorithms [tour2.algolist]

What is an algorithm? A general definition of an algorithm is “a finite set of rules which gives
sequence of operations for solving a specific set of problems [and] has five important featur
Finiteness ... Definiteness ... Input ... Output ... Effectiveness” [Knuth,1968,81.1]. In the context
the G-+ standard library, an algorithm is a set of templates operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namesp
std and presented in thaalgorithm> header. Here are a few | have found particularly useful:

U Selected Standard Algorithms U
Efor_eacho Invoke function for each element (§18.5.1) S
rfind() Find first occurrence of arguments (818.5.2) 0
(ind_if() Find first match of predicate (§18.5.2) O
Leount() Count occurrences of element (§18.5.3) g
ount_if() Count matches of predicate (§18.5.3) g
Teplace() Replace element with new value (818.6.4) 0
replace_if() Replace element that matches predicate with new value (81836.4)
Ccopy() Copy elements (§18.6.1) O
Lunique copy()  Copy elements that are not duplicates (§18.6.1) U
0 Sort elements (818.7.1) g
requal_range()  Find all elements with equivalent values (818.7.2) 0
rmerge() Merge sorted sequences (§18.7.3) 0

These algorithms, and many more (see Chapter 18), can be applied to elements of contair
strings, and built-in arrays.

3.9 Math [tour2.math]

Like C, C-+ wasn't designed primarily with numerical computation in mind. However, a lot of
numerical work is done in@, and the standard library reflects that.

3.9.1 Complex Numbers [tour2.complex]

The standard library supports a family of complex number types along the lines auimiplex
class described in 82.5.2. To support complex numbers where the scalars are single-precis
floating-point numbersfipats), double precision numbemdo{bles), etc., the standard libracpm-
plexis a template:

template<class scalar> class complex {
public:
complex( scalar re, scalar im);
...
2

The usual arithmetic operations and the most common mathematical functions are supported
complex numbers. For example:
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/1 standard exponentiation function froraomplex:
template<class C> complex<C> pow( const complex<C>&, int);

void f( complex<float> fl, complex<double> db)

{
complex<long double> Id = fl+sqgrt( db);
db += fl* 3;
fl = pow( 1/ fl, 2);
/..
}

For more details, see §22.5.

3.9.2 Vector Arithmetic [tour2.valarray]

The vector described in 83.7.1 was designed to be a general mechanism for holding values, to
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it do
not support mathematical vector operations. Adding such operatimestts would be easy, but

its generality and flexibility precludes optimizations that are often considered essential for seric
numerical work. Consequently, the standard library provides a vector, cali@day, that is less
general and more amenable to optimization for numerical computation:

template<class T> class valarray {
/..
T& operator[]( size t);
..

3

The typesize t is the unsigned integer type that the implementation uses for array indices.
The usual arithmetic operations and the most common mathematical functions are supported
valarrays. For example:

/1 standard absolute value function fremalarray>:
template<class T> valarray<T> abg( const valarray<T>&);

void f( valarray<double>& al, valarray<double>& a2)

{
valarray<double> a = al* 3. 14+a2/ al;
a2 +=al*3. 14,
a=abs(a);
double d=a2?[ 7];
/...
}

For more details, see §22.4.

3.9.3 Basic Numeric Support [tour2.basicnum]

Naturally, the standard library contains the most common mathematical funetiureh adog() |,
pow() , andcos() — for floating-point types; see §22.3. In addition, classes that describe th
properties of built-in types such as the maximum exponent dfaat — are provided; see §822.2.
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3.10 Standard Library Facilities [tour2.post]

The facilities provided by the standard library can be classified like this:

[1] Basic run-time language support (e.g., for allocation and run-time type information); se
§16.1.3.

[2] The C standard library (with very minor modifications to minimize violations of the type
system); see 816.1.2.

[3] Strings and 1/O streams (with support for international character sets and localization); <
Chapter 20 and Chapter 21.

[4] A framework of containers (such wector, list, andmap) and algorithms using containers
(such as general traversals, sorts, and merges); see Chapter 16, Chapter 17, Chapter 1¢
Chapter 19.

[5] Support for numerical computation (complex numbers plus vectors with arithmetic oper:
tions, BLAS-like and generalized slices, and semantics designed to ease optimization); !
Chapter 22.

The main criterion for including a class in the library was that it would somehow be used by almc
every G+ programmer (both novices and experts), that it could be provided in a general form tt
did not add significant overhead compared to a simpler version of the same facility, and that sim
uses should be easy to learn. Essentially, thestandard library provides the most common fun-
damental data structures together with the fundamental algorithms used on them.

Every algorithm works with every container without the use of conversions. This frameworl

conventionally called the STL [Stepanov,1994], is extensible in the sense that users can easily |
vide containers and algorithms in addition to the ones provided as part of the standard and F
these work directly with the standard containers and algorithms.

3.11 Adviceltour2.advice]

[1]
[2]

(3]
[4]
[5]
[6]
[7]
[8]
[9]

Don’t reinvent the wheel; use libraries.

Don't believe in magic; understand what your libraries do, how they do it, and at what co
they do it.

When you have a choice, prefer the standard library to other libraries.

Do not think that the standard library is ideal for everything.

Remember tétinclude the headers for the facilities you use; §3.3.

Remember that standard library facilities are defined in namesfh@&s.3.

Usestring rather tharchar* ; 83.5, §3.6.

If in doubt use a range-checked vector (sucWex$; 83.7.2.

Prefervector<T>, list<T>, andmap<key, value>to T[] ; 83.7.1, 83.7.3, §3.7.4.

[10] When adding elements to a container,jussh back() or back inserter() ; 83.7.3, §3.8.
[11] Usepush back() on avector rather tharrealloc() on an array; §3.8.
[12] Catch common exceptionsimain() ; §3.7.2.
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Basic Facilities

This part describes+@’s built-in types and the basic facilities for constructing pro-
grams out of them. The C subset aftGs presented together with+€s additional
support for traditional styles of programming. It also discusses the basic facilities for
composing a €+ program out of logical and physical parts.
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Pointers, Arrays, and Structures
Expressions and Statements
Functions

Namespaces and Exceptions
Source Files and Programs
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Types and Declarations

Accept nothing short of perfection!
— anon

Perfection is achieved
only on the point of collapse.
— C. N. Parkinson

Types— fundamental types— Booleans— characters— character literals— integers
— integer literals— floating-point types— floating-point literals— sizes— void —

enumerations— declarations— names— scope— initialization — objects— typedefs

— advice— exercises.

4.1 Typeddcl.type]
Consider
x=y+f(2);

For this to make sense in &€program, the names y, andf must be suitably declared. That is,
the programmer must specify that entities namey andf exist and that they are of types for
which = (assignment)+ (addition), and) (function call), respectively, are meaningful.

Every name (identifier) in a43 program has a type associated with it. This type determines
what operations can be applied to the name (that is, to the entity referred to by the name) and
such operations are interpreted. For example, the declarations

float x; /| xis a floating-point variable
int y=7, / | yis an integer variable with the initial value 7
float f(int); / / fis a function taking an argument of type int and returning a floating-point number
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would make the example meaningful. Becaygedeclared to be amt, it can be assigned to, used
in arithmetic expressions, etc. On the other héisldeclared to be a function that takesriras
its argument, so it can be called given a suitable argument.

This chapter presents fundamental types (84.1.1) and declarations (84.9). Its examples
demonstrate language features; they are not intended to do anything useful. More extensive
realistic examples are saved for later chapters after more+ofig® been described. This chapter
simply provides the most basic elements from whigkt @rograms are constructed. You must
know these elements, plus the terminology and simple syntax that goes with them, in order to c
plete a real project in¥3 and especially to read code written by others. However, a thoroug!
understanding of every detail mentioned in this chapter is not a requirement for understanding
following chapters. Consequently, you may prefer to skim through this chapter, observing t
major concepts, and return later as the need for understanding of more details arises.

4.1.1 Fundamental Types [dcl.fundamental]

C++ has a set of fundamental types corresponding to the most common basic storage units
computer and the most common ways of using them to hold data:

84.2 A Boolean typebjol)

84.3 Character types (suchchar)

84.4 Integer types (such i)

84.5 Floating-point types (such dsuble)

In addition, a user can define

84.8 Enumeration types for representing specific sets of vanams)
There also is

84.7 A typeyvoid, used to signify the absence of information
From these types, we can construct other types:

85.1 Pointer types (such ag*)

85.2 Array types (such ahar[] )

85.5 Reference types (suchdmuble&)

85.7 Data structures and classes (Chapter 10)

The Boolean, character, and integer types are collectively datlegral types The integral and
floating-point types are collectively calledithmetic types Enumerations and classes (Chapter 10)
are calleduser-defined typelsecause they must be defined by users rather than being available f
use without previous declaration, the way fundamental types are. In contrast, other types are ce
built-in types.

The integral and floating-point types are provided in a variety of sizes to give the programme
choice of the amount of storage consumed, the precision, and the range available for computat
(84.6). The assumption is that a computer provides bytes for holding characters, words for hold
and computing integer values, some entity most suitable for floating-point computation, a
addresses for referring to those entities. The flindamental types together with pointers and
arrays present these machine-level notions to the programmer in a reasonably implementat
independent manner.

For most applications, one could simply b®®l for logical valueschar for charactersint for
integer values, andlouble for floating-point values. The remaining fundamental types are
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variations for optimizations and special needs that are best ignored until such needs arise. T
must be known, however, to read old C and €ode.

4.2 Booleangdcl.bool]

A Boolean,bool, can have one of the two valueae or false A Boolean is used to express the
results of logical operations. For example:

void f(int a, int b)

bool bl = a==b; [ | =is assignment, == is equality
/..
}

If aandb have the same valukl becomedrue; otherwisepl becomedgalse
A common use obool is as the type of the result of a function that tests some condition (:
predicate). For example:

bool is_open( File*) ;
bool greater(int a, int b) { return a>b; }

By definition, true has the valud when converted to an integer afadse has the valu®. Con-
versely, integers can be implicitly convertedbtwl values: nonzero integers converttae and0
converts tdalse For example:

bool b=7; [/ [/ bool(7) is true, so b becomes true
int i =true,  / / int(true) is 1, so i becomes 1

In arithmetic and logical expressiotmols are converted tints; integer arithmetic and logical
operations are performed on the converted values. If the result is converted baok ®0 is
converted tdalseand a nonzero value is convertedrige.

void g()

{
bool a = true
bool b = true;

bool x=at+b; / / atbis 2, so x becomes true
bool y=a| b; / / albis 1, soy becomes true

}

A pointer can be implicitly converted tobwol (8C.6.2.5). A nonzero pointer convertsttae;
zero-valued pointers convertfalse

4.3 Character Typeqgdcl.char]
A variable of typechar can hold a character of the implementation’s character set. For example:

char ch="a;
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Almost universally, a&har has 8 bits so that it can hold one of 256 different values. Typically, the
character set is a variant of 1ISO-646, for example ASCII, thus providing the characters appeat
on your keyboard. Many problems arise from the fact that this set of characters is only partia
standardized (§C.3).

Serious variations occur between character sets supporting different natural languages and
between different character sets supporting the same natural language in different ways. Howe
here we are interested only in how such differences affect the rulestofT@e larger and more
interesting issue of how to program in a multi-lingual, multi-character-set environment is beyor
the scope of this book, although it is alluded to in several places (§20.2, §21.7, §C.3.3).

It is safe to assume that the implementation character set includes the decimal digits, the
alphabetic characters of English, and some of the basic punctuation characters. It is not saf
assume that there are no more than 127 characters in an 8-bit character set (e.g., some sets p
255 characters), that there are no more alphabetic characters than English provides (most Euro
languages provide more), that the alphabetic characters are contiguous (EBCDIC leaves a
between i” and” ), or that every character used to writetGs available (e.g., some national
character sets do not provifle} [ ] | \; 8C.3.1). Whenever possible, we should avoid making
assumptions about the representation of objects. This general rule applies even to characters.

Each character constant has an integer value. For example, the vahiei®B8 in the ASCII
character set. Here is a small program that will tell you the integer value of any character you ¢
to input:

#include <iostream>

int main()
{
char c;
std: : cin>> c;
std: : cout << "the value of " <<c<<" is" <<int(c) << \n;

}

The notatiorint( c) gives the integer value for a charaaterThe possibility of converting ehar

to an integer raises the question: ishar signed or unsigned? The 256 values represented by ar
8-bit byte can be interpreted as the valQds 255 or as the values127 to 127. Unfortunately,
which choice is made for a plaghar is implementation-defined (8C.1, §C.3.4)++Jrovides two
types for which the answer is definisigned char, which can hold at least the valuek27 to 127,
andunsigned char, which can hold at least the valu®® 255. Fortunately, the difference matters
only for values outside th&to 127 range, and the most common characters are within that range.

Values outside that range stored in a plhar can lead to subtle portability problems. See
8C.3.4 if you need to use more than one typehaf or if you store integers ichar variables.

A typewchar_t is provided to hold characters of a larger character set such as Unicode. It is
distinct type. The size afichar_t is implementation-defined and large enough to hold the largest
character set supported by the implementation’s locale (see §21.7, 8C.3.3). The strange name
leftover from C. In Cwchar_t is atypedef (§84.9.7) rather than a built-in type. The suffixwas
added to distinguish standasgpedefs.

Note that the character types are integral types (84.1.1) so that arithmetic and logical operati

(86.2) apply.
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4.3.1 Character Literals [dcl.char.lit]

A character literal, often called a character constant, is a character enclosed in single quotes
example,”a” and” 0" . The type of a character literaldhar. Such character literals are really
symbolic constants for the integer value of the characters in the character set of the machine
which the @+ program is to run. For example, if you are running on a machine using the ASC
character set, the value 00" is 48. The use of character literals rather than decimal notation
makes programs more portable. A few characters also have standard names that use the\backs
as an escape character. For examyplés a newline andt is a horizontal tab. See 8§C.3.2 for
details about escape characters.

Wide character literals are of the folm ab” , where the number of characters between the
quotes and their meanings is implementation-defined to matchictier _t type. A wide character
literal has typewchar t.

4.4 Integer Typeddcl.int]

Like char, each integer type comes in three forms: “plaint, signed int, andunsigned int. In
addition, integers come in three sizehort int, “plain” int, andlong int. A long int can be
referred to as plaitong. Similarly, short is a synonym foshort int, unsigned for unsigned int,
andsigned for signed int.

The unsigned integer types are ideal for uses that treat storage as a bit array. Using
unsigned instead of arnint to gain one more bit to represent positive integers is almost never a goc
idea. Attempts to ensure that some values are positive by declaring vausaditged will typi-
cally be defeated by the implicit conversion rules (8C.6.1, §C.6.2.1).

Unlike plainchars, plainints are always signed. The sigriatitypes are simply more explicit
synonyms for their plaimt counterparts.

4.4.1 Integer Literals [dcl.int.lit]
Integer literals come in four guises: decimal, octal, hexadecimal, and character literals. Decimal
erals are the most commonly used and look as you would expect them to:
0 1234 976 12345678901234567890
The compiler ought to warn about literals that are too long to represent.

A literal starting with zero followed by (0x) is a hexadecimal (base 16) number. A literal
starting with zero followed by a digit is an octal (base 8) number. For example:

decimal: 0 2 63 83
octal: 00 02 077 0123
hexadecmal: 0x0 0x2 Ox3f 0x53

The lettersa, b, ¢, d, e, andf, or their uppercase equivalents, are used to repr&fehl, 12, 13,

14, and15, respectively. Octal and hexadecimal notations are most useful for expressing bit p.
terns. Using these notations to express genuine numbers can lead to surprises. For example,
machine on which amt is represented as a two’'s complement 16-bit intdéfff is the negative
decimal number 1. Had more bits been used to represent an integer, it would hav653%38n
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The suffixU can be used to write explicitiynsigned literals. Similarly, the suffid. can be
used to write explicitlyong literals. For example3 is anint, 3U is anunsigned int, and3L is a
long int. If no suffix is provided, the compiler gives an integer literal a suitable type based on i
value and the implementation’s integer sizes (§C.4).

It is a good idea to limit the use of nonobvious constants to a few well-comnoenttd85.4)
or enumerator (84.8) initializers.

4.5 Floating-Point Typeqgdcl.float]

The floating-point types represent floating-point numbers. Like integers, floating-point types con
in three sizesfloat (single-precision),double (double-precision), andong double (extended-
precision).

The exact meaning of single-, double-, and extended-precision is implementation-define
Choosing the right precision for a problem where the choice matters requires significant und
standing of floating-point computation. If you don’t have that understanding, get advice, take t
time to learn, or usdouble and hope for the best.

4.5.1 Floating-Point Literals [dcl.fp.lit]

By default, a floating-point literal is of typdouble. Again, a compiler ought to warn about
floating-point literals that are too large to be represented. Here are some floating-point literals:

1.23 .23 023 1 1.0 1210 1 23e 15

Note that a space cannot occur in the middle of a floating-point literal. For ex&@fpil e 21
is not a floating-point literal but rather four separate lexical tokens (causing a syntax error);

65.43 e - 21

If you want a floating-point literal of typioat, you can define one using the suffiar F:
3. 14159265f 2. Of 2. 997925F

4.6 Sizegdcl.size]

Some of the aspects ofr€s fundamental types, such as the size ofrpare implementation-

defined (8C.2). | point out these dependencies and often recommend avoiding them or taking s
to minimize their impact. Why should you bother? People who program on a variety of systems
use a variety of compilers care a lot because if they don't, they are forced to waste time finding
fixing obscure bugs. People who claim they don't care about portability usually do so because tl
use only a single system and feel they can afford the attitude that “the language is what my cc
piler implements.” This is a narrow and shortsighted view. If your program is a success, it
likely to be ported, so someone will have to find and fix problems related to implementatior
dependent features. In addition, programs often need to be compiled with other compilers for
same system, and even a future release of your favorite compiler may do some things differe
from the current one. It is far easier to know and limit the impact of implementation dependenc
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when a program is written than to try to untangle the mess afterwards.

It is relatively easy to limit the impact of implementation-dependent language features. Limi
ing the impact of system-dependent library facilities is far harder. Using standard library facilitie
wherever feasible is one approach.

The reason for providing more than one integer type, more than one unsigned type, and r
than one floating-point type is to allow the programmer to take advantage of hardware characte
tics. On many machines, there are significant differences in memory requirements, memory acc
times, and computation speed between the different varieties of fundamental types. If you kno
machine, it is usually easy to choose, for example, the appropriate integer type for a particular v
able. Writing truly portable low-level code is harder.

Sizes of @+ objects are expressed in terms of multiples of the sizechém| so by definition
the size of echar is 1. The size of an object or type can be obtained usingizeef operator
(86.2). This is what is guaranteed about sizes of fundamental types:

1 = sizeof(chark sizeof(shortk sizeof(int)< sizeof(long)
1 < sizeof(boolk sizeof(long)

sizeof(chark sizeof(wchart) < sizeof(long)
sizeof(float)x sizeof(doublek sizeof(long double)
sizeof(N) sizeof(signed N sizeof(unsigned N)

whereN can bechar, short int, int, orlong int. In addition, it is guaranteed thathar has at least
8 bits, ashort at least 16 bits, and leng at least 32 bits. Achar can hold a character of the
machine’s character set.

Here is a graphical representation of a plausible set of fundamental types and a sample string

char: ’
bool:

short: 756

int*: &cl
double: | 1234567e34
char[14]: ‘ Hello, world!\O

On the same scale (.2 inch to a byte), a megabyte of memory would stretch about three miles (
km) to the right.
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Thechar type is supposed to be chosen by the implementation to be the most suitable type
holding and manipulating characters on a given computer; it is typically an 8-bit byte. Similarl
theint type is supposed to be chosen to be the most suitable for holding and manipulating intec
on a given computer; it is typically a 4-byte (32-bit) word. It is unwise to assume more. For exat
ple, there are machines with 32 tinars.

When needed, implementation-dependent aspects about an implementation can be foun
<limits> (§22.2). For example:

#include <limits>

int main()
{
cout << " largest float ==" << numeric_limits<float>: : max()
<<", char is signed==" << numeric_limits<char>:: is_signed<< " \n’;

}

The fundamental types can be mixed freely in assignments and expressions. Wherever poss
values are converted so as not to lose information (8C.6).

If a valuev can be represented exactly in a variable of fjpa conversion o¥ to T is value-
preserving and no problem. The cases where conversions are not value-preserving are best av
(8C.6.2.6).

You need to understand implicit conversion in some detail in order to complete a major proje
and especially to understand real code written by others. However, such understanding is
required to read the following chapters.

4.7 Void[dcl.void]

The typevoid is syntactically a fundamental type. It can, however, be used only as part of a mo
complicated type; there are no objects of typiel. It is used either to specify that a function does
not return a value or as the base type for pointers to objects of unknown type. For example:

void X /| error: there are no void objects
void f() ; /| function f does not return a value (87.3)
void* pv, /| pointer to object of unknown type (85.6)

When declaring a function, you must specify the type of the value returned. Logically, you wou
expect to be able to indicate that a function didn’t return a value by omitting the return type. Ho
ever, that would make the grammar (Appendix A) less regular and clash with C usage. Con
quently,void is used as a “pseudo return type” to indicate that a function doesn’t return a value.

4.8 Enumerations|dcl.enum]

An enumerations a type that can hold a set of values specified by the user. Once defined, an e
meration is used very much like an integer type.
Named integer constants can be defined as members of an enumeration. For example,

enum{ ASM, AUTO, BREAK };
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defines three integer constants, called enumerators, and assigns values to them. By default,
merator values are assigned increasing fopspASME=0, AUTO==1, andBREAK==2. An enu-
meration can be named. For example:

enum keyword { ASM, AUTO, BREAK };

Each enumeration is a distinct type. The type of an enumerator is its enumeration. For exam
AUTO s of typekeyword.

Declaring a variabl&eyword instead of plairint can give both the user and the compiler a hint
as to the intended use. For example:

void f( keyword key)

{
switch ( key) {
case ASMI
/1 do something
break;
case BREAK:
/1 do something
break;
}
}

A compiler can issue a warning because only two out of #eyeord values are handled.

An enumerator can be initialized bycanstant-expressiof§C.5) of integral type (84.1.1). The
range of an enumeration holds all the enumeration’s enumerator values rounded up to the ne:
larger binary power minus. The range goes down @af the smallest enumerator is non-negative
and to the nearest lesser negative binary power if the smallest enumerator is negative. This de
the smallest bit-field capable of holding the enumerator values. For example:

enum €l{ dark, light}, /| range 0:1
enum €2{ a=3, b=9}; /| range 0:15
enum €3{ min=-10, max=1000000}; / / range -1048576:1048575

A value of integral type may be explicitly converted to an enumeration type. The result of suck
conversion is undefined unless the value is within the range of the enumeration. For example:

enum flag{ x=1, y=2, z=4, e=8}; / [/ range 0:15

flag f1=5; [ | type error: 5 is not of type flag
flag f2 =flag(5); / / ok:flag(b) is of type flag and within the range of flag

flag f3=flag(z e); / / ok: flag(12) is of type flag and within the range of flag
flag f4 =flag(99); / / undefined: 99 is not within the range of flag

The last assignment shows why there is no implicit conversion from an integer to an enumerati
most integer values do not have a representation in a particular enumeration.

The notion of a range of values for an enumeration differs from the enumeration notion in t
Pascal family of languages. However, bit-manipulation examples that require values outside the
of enumerators to be well-defined have a long history in C and C
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The sizeof an enumeration is thazeof some integral type that can hold its range and not larger
thansizeof( int) , unless an enumerator cannot be representedia$ @nas arunsigned int. For
example sizeof( e1) could bel or maybe4 but not8 on a machine whersizeof( int)== 4.

By default, enumerations are converted to integers for arithmetic operations (86.2). An enum
ation is a user-defined type, so users can define their own operations, stchnak:< for an enu-
meration (811.2.3).

4.9 Declarationddcl.dcl]

Before a name (identifier) can be used int& @rogram, it must be declared. That is, its type must
be specified to inform the compiler to what kind of entity the name refers. Here are some examy
illustrating the diversity of declarations:

char ch;

string s

int count = 1;

const double pi = 3. 1415926535897932385;
exten int emror_number;

char* name=" Njal";

char* season]] ={ "spring’, "summer’, "fall", "winter" };
struct Date{ int d, m, y; };

int day( Date* p) { return p->d; }

double sgrt( double);

template<class T>T abg( T @) { return a<0?-a: a; }

typedef complex<short> Point;

struct User,

enum Beer { Carlsberg, Tuborg, Thor };
namespace NS{ int a; }

As can be seen from these examples, a declaration can do more than simply associate a type v
name. Most of thesdeclarationsare alsodefinitions that is, they also define an entity for the
name to which they refer. Fah, that entity is the appropriate amount of memory to be used as
variable— that memory will be allocated. Fday, it is the specified function. For the constpnt

it is the value3. 1415926535897932385. For Date, that entity is a new type. F@oint, it is the
type complex<short> so thatPoint becomes a synonym feomplex<short>. Of the declarations
above, only

double sqgrt( double);
extern int emror_number;
struct User;

are not also definitions; that is, the entity they refer to must be defined elsewhere. The code (bc
for the functionsgrt must be specified by some other declaration, the memory fontvariable
emror_number must be allocated by some other declaratiorerobér_number, and some other
declaration of the typgser must define what that type looks like. For example:
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double sgrt(double d) { /* ...*/ }
int error_number = 1;

struct User { /* ...* }
There must always be exactly one definition for each name mrgpfdgram (for the effects of

#include, see §89.2.3). However, there can be many declarations. All declarations of an entity m
agree on the type of the entity referred to. So, this fragment has two errors:

int count;
int count; // error: redefinition

extemn int emror_number;
extern short emror_number; / / error: type mismatch

and this has none (for the usecafern see §9.2):

extemn int emror_number;
extern int emror_number;

Some definitions specify a “value” for the entities they define. For example:

struct Date{ int d, m, y; };

typedef complex<short> Point;

int day( Date* p) { return p>d; }

const double i = 3. 1415926535897932385;

For types, templates, functions, and constants, the “value” is permanent. For nonconstant d
types, the initial value may be changed later. For example:

void f()
{ -
int count =1,
char* name=" Bjarne";
/...
count = 2;
name= " Marian";
}
Of the definitions, only
char ch;
string s

do not specify values. See 84.9.5 and 8§10.4.2 for explanations of how and when a variable
assigned a default value. Any declaration that specifies a value is a definition.

4.9.1 The Structure of a Declaration [dcl.parts]

A declaration consists of four parts: an optional “specifier,” a base type, a declarator, and
optional initializer. Except for function and namespace definitions, a declaration is terminated by
semicolon. For example:



80 Types and Declarations Chapter 4

char* kingg] ={ "Antigonus', " Seleucus', " Ptolemy' };

Here, the base type d¢har, the declarator iskingd] , and the initializer is{...}

A specifier is an initial keyword, such estual (§2.5.5, §12.2.6) aneitern (89.2), that speci-
fies some non-type attribute of what is being declared.

A declarator is composed of a name and optionally some declarator operators. The most ¢
mon declarator operators are (8A.7.1):

* pointer prefix
* const constant pointer prefix
& reference prefix
1 array postfix
0 function positfix

Their use would be simple if they were all either prefix or postfix. Howevdi, , and() were
designed to mirror their use in expressions (86.2). Thus,prefix and[] and() are postfix.
The postfix declarator operators bind tighter than the prefix ones. Conseqdédimys] is a
vector of pointers to something, and we have to use parentheses to express types such as “pc
to function;” see examples in 85.1. For full details, see the grammar in Appendix A.

Note that the type cannot be left out of a declaration. For example:

const c=7; / [/ error: notype

gt(int a, int b) { return(a>b) ?a: b; } // error: no return type
unsigned ui; / / ok: ‘unsigned’ is the type ‘unsigned int’

long li; /1 ok:'long’ is the type ‘long int’

In this, standard €+ differs from earlier versions of C and-€that allowed the first two examples
by consideringnt to be the type when none were specified (§B.2). This “impitit rule was a
source of subtle errors and confusion.

4.9.2 Declaring Multiple Names [dcl.multi]

It is possible to declare several names in a single declaration. The declaration simply contains &
of comma-separated declarators. For example, we can declare two integers like this:

int x, y; [ ] intx;inty;

Note that operators apply to individual names engnd not to any subsequent names in the same
declaration. For example:

int* p, y, [ | int* p; inty; NOT int*y;
int X, *q; [/ intx; int*q;
int V[ 10], *pv; [ I intv[10]; int* pv;

Such constructs make a program less readable and should be avoided.
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4.9.3 Names [dcl.name]

A name (identifier) consists of a sequence of letters and digits. The first character must be a le
The underscore characteiis considered a letter. +€ imposes no limit on the number of charac-
ters in a name. However, some parts of an implementation are not under the control of the c
piler writer (in particular, the linker), and those parts, unfortunately, sometimes do impose limif
Some run-time environments also make it necessary to extend or restrict the set of charac
accepted in an identifier. Extensions (e.g., allowing the char@idtem name) yield nonportable
programs. A €+ keyword (Appendix A), such asew andint, cannot be used as a name of a
user-defined entity. Examples of names are:

hello this_is a most_unusually _long_name
DEFINED foO bAr u_name HorseSense
var0 varl CLASS _class

Examples of character sequences that cannot be used as identifiers are:

012 a fool $sys dass 3var
pay. due foo~bar . name iif

Names starting with an underscore are reserved for special facilities in the implementation and
run-time environment, so such names should not be used in application programs.

When reading a program, the compiler always looks for the longest string of characters tl
could make up a name. Heneerl0 is a single name, not the nawver followed by the number
10. Also,elseif is a single name, not the keywaidefollowed by the keywordf.

Uppercase and lowercase letters are distinc€amt and count are different names, but it is
unwise to choose names that differ only by capitalization. In general, it is best to avoid hames t
differ only in subtle ways. For example, the uppercas@)@fd zero@) can be hard to tell apart,
as can the lowercase L) @nd onel). ConsequenthyiQ, 10, 11, andll are poor choices for identi-
fier names.

Names from a large scope ought to have relatively long and reasonably obvious names, suc
vector, Window_with_border, andDepartment_number. However, code is clearer if names used
only in a small scope have short, conventional names such,andp. Classes (Chapter 10) and
namespaces (88.2) can be used to keep scopes small. It is often useful to keep frequently
names relatively short and reserve really long names for infrequently used entities. Choose na
to reflect the meaning of an entity rather than its implementation. For exghphe_book is bet-
ter thannumber_list even if the phone numbers happen to be storedist @3.7). Choosing good
names is an art.

Try to maintain a consistent naming style. For example, capitalize nonstandard library us
defined types and start nontypes with a lowercase letter (for exaBipjge and current_token).
Also, use all capitals for macros (if you must use macros; for exahhAteK) and use underscores
to separate words in an identifier. However, consistency is hard to achieve because programs
typically composed of fragments from different sources and several different reasonable styles
in use. Be consistent in your use of abbreviations and acronyms.
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4.9.4 Scope [dcl.scope]

A declaration introduces a name into a scope; that is, a name can be used only in a specific pe
the program text. For a name declared in a function (often caltedlanamé, that scope extends
from its point of declaration to the end of the block in which its declaration occubdockis a
section of code delimited by{a} pair.

A name is calledjlobal if it is defined outside any function, class (Chapter 10), or namespact
(88.2). The scope of a global name extends from the point of declaration to the end of the file
which its declaration occurs. A declaration of a name in a block can hide a declaration in
enclosing block or a global name. That is, a name can be redefined to refer to a different en
within a block. After exit from the block, the name resumes its previous meaning. For example:

int x; /| global x

void f()

{
int x; /1 local x hides global x
x=1,; / | assign to local x
{

int x; / | hides first local x
X=2; /| assign to second local x

}
X=3; /| assign to first local x
}
int* p=&x; | | take address of global x

Hiding names is unavoidable when writing large programs. However, a human reader can ea
fail to notice that a name has been hidden. Because such errors are relatively rare, they can be
difficult to find. Consequently, name hiding should be minimized. Using names suahdsfor
global variables or for local variables in a large function is asking for trouble.

A hidden global name can be referred to using the scope resolution operakar example:

int x;

void 2()

{
int x=1;/ / hide global x
::x=2; |/ | assign to global x
X=2; / | assign to local x
/1

}

There is no way to use a hidden local hame.

The scope of a name starts at its point of declaration; that is, after the complete declarator
before the initializer. This implies that a name can be used even to specify its own initial valt
For example:

int x;
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void 13()
{

}

This is not illegal, just silly. A good compiler will warn if a variable is used before it has been st
(see also §5.9[9]).

It is possible to use a single name to refer to two different objects in a block without using t
.. operator. For example:

int x=x;/ / perverse: initialize x with its own (uninitialized) value

int x=11,;
void f4() | | perverse:
{
int y=x; / | use global x:y =11
int x= 22
y=X; / | uselocal x:y =22
}
Function argument names are considered declared in the outermost block of a function, so
void f5(int x)
{
int x; / | error
}

is an error becauseis defined twice in the same scope. Having this be an error allows a nc
uncommon, subtle mistake to be caught.

4.9.5 Initialization [dcl.init]

If an initializer is specified for an object, that initializer determines the initial value of an object. |
no initializer is specified, a global (84.9.4), namespace (88.2), or local static object (§7.1.2, §10.Z
(collectively calledstatic objectyis initialized to0 of the appropriate type. For example:

int a / | means “inta=0;"
double d / | means “double d = 0.0;”

Local variables (sometimes calladtomatic objecsand objects created on the free store (some-
times calleddynamic objectsr heap objecfsare not initialized by default. For example:

void f()
{

int x; / | x does not have a well-defined value
/...

}

Members of arrays and structures are default initialized or not depending on whether the array
structure is static. User-defined types may have default initialization defined (810.4.2).

More complicated objects require more than one value as an initializer. This is handled by i
tializer lists delimited by{ and} for C-style initialization of arrays (85.2.1) and structures (85.7).
For user-defined types with constructors, function-style argument lists are used (82.5.2, §10.2.3)
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Note that an empty pair of parenthegpsin a declaration always means “function” (87.1).
For example:

inta] ={1 2} [ | array initializer
Point z( 1, 2); /I function-style initializer (initialization by constructor)
int f() ; /| function declaration

4.9.6 Objects and Lvalues [dcl.objects]

We can allocate and use “variables” that do not have names, and it is possible to assign
strange-looking expressions (e.gp[ a+10]= 7). Consequently, there is a need for a nhame for
“something in memory.” This is the simplest and most fundamental notion of an object. That i
anobjectis a contiguous region of storage; laalueis an expression that refers to an object. The
word Ivalue was originally coined to mean ‘“something that can be on the left-hand side of a
assignment.” However, not every lvalue may be used on the left-hand side of an assignment;
Ivalue can refer to a constant (85.5). An Ivalue that has not been dembastds often called a
modifiable Ivalue This simple and low-level notion of an object should not be confused with the
notions of class object and object of polymorphic type (§15.4.3).

Unless the programmer specifies otherwise (§7.1.2, §10.4.8), an object declared in a functio
created when its definition is encountered and destroyed when its name goes out of scope (810.
Such objects are called automatic objects. Objects declared in global or namespace sstape and
ics declared in functions or classes are created and initialized once (only) and “live” until the pr
gram terminates (810.4.9). Such objects are called static objects. Array elements and nons
structure or class members have their lifetimes determined by the object of which they are part.

Using thenew and delete operators, you can create objects whose lifetimes are controllec
directly (86.2.6).

4.9.7 Typedef [dcl.typedef]
A declaration prefixed by the keywotgpedef declares a new name for the type rather than a new
variable of the given type. For example:

typedef char* Pchar;
Pchar p1, p2 / | pland p2 are char*s
char* p3=p1l;

A name defined like this, usually called atypedef,” can be a convenient shorthand for a type
with an unwieldy name. For examplansigned char is too long for really frequent use, so we
could define a synonynuchar:

typedef unsigned char uchar;
Another use of gypedefis to limit the direct reference to a type to one place. For example:

typedef int int32;
typedef short intl6;

If we now useint32 wherever we need a potentially large integer, we can port our program to
machine on whickizeof( int) is 2 by redefining the single occurrenceinfin our code:
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typedef long int32;

For good and badypedefs are synonyms for other types rather than distinct types. Consequentl
typedefs mix freely with the types for which they are synonyms. People who would like to hav
distinct types with identical semantics or identical representation should look at enumeratio
(84.8) or classes (Chapter 10).

4.10 Advice[dcl.advice]

[1] Keep scopes small; §4.9.4.

[2] Don't use the same name in both a scope and an enclosing scope; 84.9.4.

[3] Declare one name (only) per declaration; §4.9.2.

[4] Keep common and local names short, and keep uncommon and nonlocal names longer; §4.

[5] Avoid similar-looking names; §4.9.3.

[6] Maintain a consistent naming style; §4.9.3.

[7] Choose names carefully to reflect meaning rather than implementation; §4.9.3.

[8] Use atypedef to define a meaningful name for a built-in type in cases in which the built-in
type used to represent a value might change; §4.9.7.

[9] Usetypedefs to define synonyms for types; use enumerations and classes to define new tyr
84.9.7.

[10] Remember that every declaration must specify a type (there is no “iniptigit§4.9.1.

[11] Avoid unnecessary assumptions about the numeric value of characters; §4.3.1, 8C.6.2.1.

[12] Avoid unnecessary assumptions about the size of integers; 84.6.

[13] Avoid unnecessary assumptions about the range of floating-point types; §4.6.

[14] Prefer a plainint over ashort int or along int; §4.6.

[15] Prefer adouble over afloat or along double; §4.5.

[16] Prefer plairchar oversigned char andunsigned char; §C.3.4.

[17] Avoid making unnecessary assumptions about the sizes of objects; §4.6.

[18] Avoid unsigned arithmetic; §4.4.

[19] View signed to unsigned andunsigned to signed conversions with suspicion; 8C.6.2.6.

[20] View floating-point to integer conversions with suspicion; 8C.6.2.6.

[21] View conversions to a smaller type, suchirdgo char, with suspicion; 8C.6.2.6.

4.11 Exercises [dcl.exercises]

1. (@) Get the “Hello, world!" program (83.2) to run. If that program doesn’t compile as writ-
ten, look at §B.3.1.

2. () For each declaration in 84.9, do the following: If the declaration is not a definition, write
definition for it. If the declaration is a definition, write a declaration for it that is not also a defi
nition.

3. (L..5) Write a program that prints the sizes of the fundamental types, a few pointer types, an
few enumerations of your choice. Use tigeof operator.
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4. ((1.5) Write a program that prints out the lettees ..” Z and the digits 0" ..” 9" and their
integer values. Do the same for other printable characters. Do the same again but use h
decimal notation.

5. (@) What, on your system, are the largest and the smallest values of the followinglwgpes:
short, int, long, float, double, long double, andunsigned.

6. (L) What is the longest local name you can use iftap@ogram on your system? What is the
longest external name you can use int& grogram on your system? Are there any restrictions
on the characters you can use in a name?

7. () Draw a graph of the integer and fundamental types where a type points to another typ
all values of the first can be represented as values of the second on every standards-conforr
implementation. Draw the same graph for the types on your favorite implementation.
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Pointers, Arrays, and Structures

The sublime and the ridiculous

are often so nearly related that

it is difficult to class them separately.
— Tom Paine

Pointers— zero— arrays— string literals— pointers into arrays— constants— point-
ers and constants- references— void* — data structures— advice— exercises.

5.1 Pointersptr.ptr]

For a typeT, T* is the type “pointer tal.” That is, a variable of typd* can hold the address of
an object of typd. For example:

char c="4a;
char* p = &c; / | p holds the address of ¢

or graphically:

Pl & .
c:

Unfortunately, pointers to arrays and pointers to functions need a more complicated notation:

int* pi; /| pointer to int

char** ppc; / | pointer to pointer to char

int* ap[ 15]; /| array of 15 pointers to ints

int (* fp)( char*) ; / / pointer to function taking a char* argument; returns an int
int* f( char*) ; /I function taking a char* argument; returns a pointer to int

See 8§4.9.1 for an explanation of the declaration syntax and Appendix A for the complete gramm:
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The fundamental operation on a pointedéseferencingthat is, referring to the object pointed
to by the pointer. This operation is also caliedirection The dereferencing operator is (prefix)
unary*. For example:

char c="a’;
char* p=&c; / / p holds the address of ¢
char c2=*p; / /| c2=="a

The variable pointed to byis ¢, and the value stored @is” @’ , so the value of p assigned t@2
is"a .

It is possible to perform some arithmetic operations on pointers to array elements (85.3). Po
ers to functions can be extremely useful; they are discussed in §7.7.

The implementation of pointers is intended to map directly to the addressing mechanisms of
machine on which the program runs. Most machines can address a byte. Those that can't ter
have hardware to extract bytes from words. On the other hand, few machines can directly add
an individual bit. Consequently, the smallest object that can be independently allocated &
pointed to using a built-in pointer type i<har. Note that &ool occupies at least as much space
as achar (84.6). To store smaller values more compactly, you can use logical operations (86.2
or bit fields in structures (8C.8.1).

5.1.1 Zero [ptr.zero]

Zero Q) is anint. Because of standard conversions (8C.6.D.8an be used as a constant of any
integral (84.1.1), floating-point, pointer, or pointer-to-member type. The type of zero will be dete
mined by context. Zero will typically (but not necessarily) be represented by the bit @dittern
zerosof the appropriate size.

No object is allocated with the addréss ConsequentlyQ acts as a pointer literal, indicating
that a pointer doesn't refer to an object.

In C, it has been popular to define a mahidLL to represent the zero pointer. Because of
C++'s tighter type checking, the use of pl@nrather than any suggestBJLL macro, leads to
fewer problems. If you feel you must defiN&JLL, use

const int NULL = O;

The const qualifier (85.4) prevents accidental redefinitionNIJLL and ensures th&ULL can be
used where a constant is required.

5.2 Arrays [ptr.array]

For a typeT, T sizg] is the type “array ofize elements of typd.” The elements are indexed
from 0 to size- 1. For example:

float v[ 3]; / / an array of three floats: v[0], v[1], v[2]
char* a[ 32]; / / an array of 32 pointers to char: a[0] .. a[31]
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The number of elements of the array, the array bound, must be a constant expression (8C.5). If
need variable bounds, useextor (83.7.1, §16.3). For example:

void f(int i)
{

int vi[i]; /| error: array size not a constant expression
vector<int>v2(i); / [/ ok
}

Multidimensional arrays are represented as arrays of arrays. For example:

int d2[ 10][ 20]; // d2is an array of 10 arrays of 20 integers

Using comma notation as used for array bounds in some other languages gives compile-time el
because comma ] is a sequencing operator (86.2.2) and is not allowed in constant expressio
(8C.5). For example, try this:

int bad[ 5, 2]; [ | error: comma not allowed in a constant expression

Multidimensional arrays are described in 8C.7. They are best avoided outside low-level code.

5.2.1 Array Initializers [ptr.array.init]
An array can be initialized by a list of values. For example:
int vi[] ={ 1, 2, 3, 4};
char v2[] ={"a’, 'b, "¢, 0}
When an array is declared without a specific size, but with an initializer list, the size is calculat
by counting the elements of the initializer list. Consequenflyandv2 are of typeint[ 4] and

char[ 4] , respectively. If a size is explicitly specified, it is an error to give surplus elements in a
initializer list. For example:

char v3[2] ={ "a, "b, 0} /| error: too many initializers
char v4[ 3] ={ "a’, "b, 0} /1 ok

If the initializer supplies too few elemen®,is assumed for the remaining array elements. For
example:

int v5[ 8] ={ 1, 2, 3, 4};
is equivalent to
int vo] ={ 1, 2, 3 4,0 0 0 0};
Note that there is no array assignment to match the initialization:
void f()
} va={"c, “d, 0}; // error: no array assignment

When you need such assignments, ugector (§16.3) or avalarray (§22.4) instead.
An array of characters can be conveniently initialized by a string literal (85.2.2).
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5.2.2 String Literals [ptr.string.literal]

A string literal is a character sequence enclosed within double quotes:
"this is a string"

A string literal contains one more character than it appears to have; it is terminated by the null ct
acter’ \0" , with the valued. For example:

sizeof(" Bohr")==

The type of a string literal is “array of the appropriate numbezooft characters,” sd'Bohr™ is
of typeconst char[ 5] .

A string literal can be assigned telsar* . This is allowed because in previous definitions of C
and G+, the type of a string literal wazhar*. Allowing the assignment of a string literal to a
char* ensures that millions of lines of C and+#remain valid. It is, however, an error to try to
modify a string literal through such a pointer:

void f()
{

char* p =" Plato";
pl4] ="¢; /| error: assignment to const; result is undefined

This kind of error cannot in general be caught until run-time, and implementations differ in the
enforcement of this rule. Having string literals constant not only is obvious, but also allows impl
mentations to do significant optimizations in the way string literals are stored and accessed.

If we want a string that we are guaranteed to be able to modify, we must copy the charac
into an array:

void f()
char p[] ="Zeno" /| pisan array of 5 char
p[0] ="' R; ! | ok

A string literal is statically allocated so that it is safe to return one from a function. For example:

const char* emror_message( int i)

{
...

return " range eror";

}

The memory holdingange @ror will not go away after a call afitor_message() .
Whether two identical character literals are allocated as one is implementation-defined (§C.
For example:

const char* p =" Heraclitus’,
const char* q =" Heraclitus’,
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void )

if (p==q) cout<<"one \n"; / / resultis implementation-defined
/...

}

Note that== compares addresses (pointer values) when applied to pointers, and not the val
pointed to.

The empty string is written as a pair of adjacent double qudtes,(and has the typeonst
char| 1] ).

The backslash convention for representing nongraphic characters (8C.3.2) can also be
within a string. This makes it possible to represent the double dupsnd the escape character
backslash {) within a string. The most common such character by far is the newline characte
“\n" . For example:

cout<<" beep at end of messagela\n”;

The escape characte¥a” is the ASCII characteBEL (also known aslert), which causes some
kind of sound to be emitted.
It is not possible to have a “real” newline in a string:

"this is mot a string
but a syntax emror”

Long strings can be broken by whitespace to make the program text neater. For example:

char alpha]] =" abcdefghijklmnopgrstuvwxyz'
" ABCDEFGHIJKLMNOPQRSTUVWXYZ';

The compiler will concatenate adjacent stringsakpha could equivalently have been initialized
by the single string:

" abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';

It is possible to have the null character in a string, but most programs will not suspect that th
are characters after it. For example, the stt3@nps\000Munk” will be treated asJens™ by stan-
dard library functions such atrcpy() andstrlen() ; see §20.4.1.

A string with the prefix., such ad." angst', is a string of wide characters (84.3, 8C.3.3). Its
type isconst wchar_t[] .

5.3 Pointers into Arrays|ptr.into]

In C++, pointers and arrays are closely related. The name of an array can be used as a pointer
initial element. For example:

int v ={ 1, 2, 3 4}

int* pl=v; /| pointer to initial element (implicit conversion)

int* p2=&v[ 0]; /| pointer to initial element

int* p3=&v[ 4]; /| pointer to one beyond last element

or graphically:
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Taking a pointer to the element one beyond the end of an array is guaranteed to work. Thi
important for many algorithms (§2.7.2, §18.3). However, since such a pointer does not in fact pc
to an element of the array, it may not be used for reading or writing. The result of taking tl
address of the element before the initial element is undefined and should be avoided. On s
machine architectures, arrays are often allocated on machine addressing boundaries, so “one b
the initial element” simply doesn’t make sense.

The implicit conversion of an array name to a pointer to the initial element of the array is exte
sively used in function calls in C-style code. For example:

extern " C" int strlen( const char*) ; // from <string.h>

void f()

{
char v[] =" Annemarie";
char* p=v; [/ [/ implicit conversion of char[] to char*
strlen( p) ;
strlen( v); /I implicit conversion of char[] to char*
vV=0p; [ | error: cannot assign to array

}

The same value is passed to the standard library fursttlem() in both calls. The snag is that it

is impossible to avoid the implicit conversion. In other words, there is no way of declaring a fun
tion so that the array is copied when the function is called. Fortunately, there is no implicit or
explicit conversion from a pointer to an array.

The implicit conversion of the array argument to a pointer means that the size of the array is |
to the called function. However, the called function must somehow determine the size to perforr
meaningful operation. Like other C standard library functions taking pointers to character
strlen() relies on zero to indicate end-of-strirgiglen( p) returns the number of characters up to
and not including the terminating This is all pretty low-level. The standard libravector
(816.3) andstring (Chapter 20) don't suffer from this problem.

5.3.1 Navigating Arrays [ptr.navigate]

Efficient and elegant access to arrays (and similar data structures) is the key to many algoritt
(see 83.8, Chapter 18). Access can be achieved either through a pointer to an array plus an ind
through a pointer to an element. For example, traversing a character string using an index,

void fi( char V[])

for (int i =0; v[i]!l= O; i++) use( V[ i]) ;
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is equivalent to a traversal using a pointer:

void fp( char v{])
{

for (char* p=v; *p!=0; p++) use(* p);
}

The prefix* operator dereferences a pointer so thatis the character pointed to lpy and ++
increments the pointer so that it refers to the next element of the array.

There is no inherent reason why one version should be faster than the other. With modern ci
pilers, identical code should be generated for both examples (see 85.9[8]). Programmers
choose between the versions on logical and aesthetic grounds.

The result of applying the arithmetic operatérs , ++, or-- to pointers depends on the type
of the object pointed to. When an arithmetic operator is applied to a ppiofetype T*, p is
assumed to point to an element of an array of objects ofTtypel points to the next element of
that array, angd- 1 points to the previous element. This implies that the integer valpelofvill
besizeof( T) larger than the integer valuemf For example, executing

#include <iostream>
int main ()

int vi[ 10];

short vg 10];

Std: : cout << &vi[ 0] <<~ ~ << &vi[ 1] << "\

std:: cout<< &g 0] <<’ ~ << &g 1] << "\n;
}

produced

Ox7fffaef0 Ox7fffaefd
Ox7fffaedc Ox7fffaede

using a default hexadecimal notation for pointer values. This shows that on my implementatic
sizeof( short) is 2 andsizeof( int) is 4.

Subtraction of pointers is defined only when both pointers point to elements of the same ar
(although the language has no fast way of ensuring that is the case). When subtracting one po
from another, the result is the number of array elements between the two pointers (an integer).
can add an integer to a pointer or subtract an integer from a pointer; in both cases, the result
pointer value. If that value does not point to an element of the same array as the original pointe
one beyond, the result of using that value is undefined. For example:

void f()

{
int vi[ 10];
int v2[ 10];

int i1=8&v1[5]-& v1[3];/ /i1=2
int i2=&vl[ 5]-& v2[ 3];/ / result undefined
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int* pl=v2+2; [ 1 pl=_&v2[2]
int* p2=v2- 2, [ | *p2 undefined
}

Complicated pointer arithmetic is usually unnecessary and often best avoided. Addition of point
makes no sense and is not allowed.

Arrays are not self-describing because the number of elements of an array is not guarantee
be stored with the array. This implies that to traverse an array that does not contain a terminator
way character strings do, we must somehow supply the number of elements. For example:

void fp(char v[] , unsigned int size)
{

for (int i=0; i<size i++) use(V[i]) ;

const int N=7,
char v2[ N|;
for (int i=0; i<N; i++) use(v2[i]) ;

}

Note that most €+ implementations offer no range checking for arrays. This array concept i
inherently low-level. A more advanced notion of arrays can be provided through the use of class
see 83.7.1.

5.4 Constantgptr.const]

C++ offers the concept of a user-defined constangnst, to express the notion that a value doesn't
change directly. This is useful in several contexts. For example, many objects don’t actually he
their values changed after initialization, symbolic constants lead to more maintainable code thar
literals embedded directly in code, pointers are often read through but never written through,
most function parameters are read but not written to.

The keywordconst can be added to the declaration of an object to make the object declared
constant. Because it cannot be assigned to, a constant must be initialized. For example:

const int model = 90; / | model is a const
const int v[] ={ 1, 2, 3, 4}; [ I VI[i] is a const
const int x; [ | error: no initializer

Declaring somethingonst ensures that its value will not change within its scope:

void f()

{
model = 200; / / error

V[ 2]++; ! | error

Note thatconst modifies a type; that is, it restricts the ways in which an object can be used, rath
than specifying how the constant is to be allocated. For example:
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void g( const X* p)

{
/1 can’'t modify *p here
}
void h()
{
X val; / [/ val can be modified
g(&val);
/...
}

Depending on how smatrt it is, a compiler can take advantage of an object being a constant in
eral ways. For example, the initializer for a constant is often (but not always) a constant express
(8C.5); if it is, it can be evaluated at compile time. Further, if the compiler knows every use of tl
const, it need not allocate space to hold it. For example:

const int c1=1;

const int c2=2;

const int c3=my f(3); / / don't know the value of c3 at compile time
extern const int c4; [ | don’t know the value of c4 at compile time
const int* p=&c2; /| need to allocate space for c2

Given this, the compiler knows the valuextfandc2 so that they can be used in constant expres-
sions. Because the valuesa3fandc4 are not known at compile time (using only the information
available in this compilation unit; see §9.1), storage must be allocate8 &mdc4. Because the
address ot2 is taken (and presumably used somewhere), storage must be allocat2d Tdre
simple and common case is the one in which the value of the constant is known at compile time
no storage needs to be allocatetljs an example of that. The keywoesem indicates that4 is
defined elsewhere (89.2).

It is typically necessary to allocate store for an array of constants because the compiler can
in general, figure out which elements of the array are referred to in expressions. On me
machines, however, efficiency improvements can be achieved even in this case by placing array
constants in read-only storage.

Common uses fazonsts are as array bounds and case labels. For example:

const int a=42;
const int b=99;
const int max = 128;

int v max];
void f(int i)
switch (i) {

case a
...
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case I
/...
}

}

Enumerators (84.8) are often an alternativeaists in such cases.
The wayconst can be used with class member functions is discussed in §10.2.6 and §10.2.7.
Symbolic constants should be used systematically to avoid “magic numbers” in code. If
numeric constant, such as an array bound, is repeated in code, it becomes hard to revise that
because every occurrence of that constant must be changed to make a correct update. Using a
bolic constant instead localizes information. Usually, a humeric constant represents an assumpg
about the program. For exampéemay represent the number of bytes in an intetf28.the num-
ber of characters needed to buffer input, Gng4 the exchange factor between Danish kroner and
U.S. dollars. Left as numeric constants in the code, these values are hard for a maintainer to
and understand. Often, such numeric values go unnoticed and become errors when a progra
ported or when some other change violates the assumptions they represent. Representing ass
tions as well-commented symbolic constants minimizes such maintenance problems.

5.4.1 Pointers and Constants [ptr.pc]

When using a pointer, two objects are involved: the pointer itself and the object pointed to. “Pi
fixing” a declaration of a pointer witikonst makes the object, but not the pointer, a constant. To
declare a pointer itself, rather than the object pointed to, to be a constant, we use the declal
operator* constinstead of plairf. For example:

void f1( char* p)

{
char s[] ="Gorm";
const char* pc=s; /| pointer to constant
pc 3] =" g; /| error: pc points to constant
pc=p; [ | ok
char *const cp=s; /| constant pointer
cp[3] =" a; [ | ok
cp=p; [ | error: cp is constant
const char *const cpc=s, / | const pointer to const
cpc 3] =" a; /| error: cpc points to constant
cpc=p; /| error: cpc is constant
}

The declarator operator that makes a pointer constantasst There is noconst* declarator
operator, so aonst appearing before theis taken to be part of the base type. For example:

char * const cp; / | const pointer to char
char const* pc; / | pointer to const char
const char* pc2;, / / pointer to const char

Some people find it helpful to read such declarations right-to-left. For examgpds ‘a const
pointer to echar” and “ pc2 is a pointer to &har const.”
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An object that is a constant when accessed through one pointer may be variable when acce
in other ways. This is particularly useful for function arguments. By declaring a pointer argume
const, the function is prohibited from modifying the object pointed to. For example:

char* strepy( char* p, const char* q); // cannot modify *q

You can assign the address of a variable to a pointer to constant because no harm can come
that. However, the address of a constant cannot be assigned to an unrestricted pointer becaus
would allow the object’s value to be changed. For example:

void f4()

int a=1;
const int ¢c=2;
const int* p1=&c; / / ok
const int* p2=_&a; / / ok
int* p3=&c; [ | error: initialization of int* with const int*
*p3=171, /I try to change the value of ¢
}

It is possible to explicitly remove the restrictions on a pointeotwst by explicit type conversion
(810.2.7.1 and 815.4.2.1).

5.5 Referencegptr.ref]

A references an alternative name for an object. The main use of references is for specifying arc
ments and return values for functions in general and for overloaded operators (Chapter 11) in |
ticular. The notatiorX& meangeference toXX For example:

void f()
{
int i=1;
int&r =1i; / | randinow refer to the same int
int x=r; [ [ x=1
r=2 [ 1i=2
}

To ensure that a reference is a name for something (that is, bound to an object), we must initia
the reference. For example:

int i=1;

int&rl=i; / 1 ok: rl initialized

int&r2; /| error: initializer missing
extemn int&r3; / | ok:r3initialized elsewhere

Initialization of a reference is something quite different from assignment to it. Despite appes
ances, no operator operates on a reference. For example:
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void g()
{
int ii=0;
int& rr = ii;
m++; / [ iiis incremented to 1
int* pp = &rr; /| pp points to ii
}

This is legal, butr++ does not increment the referermrcerather,++ is applied to annt that hap-
pens to bei. Consequently, the value of a reference cannot be changed after initialization;
always refers to the object it was initialized to denote. To get a pointer to the object denoted b
referencer, we can write&rr.

The obvious implementation of a reference is as a (constant) pointer that is dereferenced €
time it is used. It doesn’'t do much harm thinking about references that way, as long as one rem
bers that a reference isn't an object that can be manipulated the way a pointer is:

pp:

In some cases, the compiler can optimize away a reference so that there is no object represe
that reference at run-time.

Initialization of a reference is trivial when the initializer is an Ivalue (an object whose addre:
you can take; see 84.9.6). The initializer for a “plaifi& must be an lvalue of typk

The initializer for aconst T& need not be an Ivalue or even of typeln such cases,

[1] first, implicit type conversion td is applied if necessary (see 8§C.6);

[2] then, the resulting value is placed in a temporary variable offtyaad

[3] finally, this temporary variable is used as the value of the initializer.
Consider:

double& dr = 1; / | error: lvalue needed
const double&cdr=1; / / ok

The interpretation of this last initialization might be:

double temp= double(1);/ / first create a temporary with the right value
const double& cdr = temp; // then use the temporary as the initializer for cdr

A temporary created to hold a reference initializer persists until the end of its reference’s scope.
References to variables and references to constants are distinguished because the introducti
a temporary in the case of the variable is highly error-prone; an assignment to the variable wo
become an assignment to thesoon to disappear temporary. No such problem exists for refer-
ences to constants, and references to constants are often important as function arguments (811.
A reference can be used to specify a function argument so that the function can change
value of an object passed to it. For example:
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void increment( int& aa) { aat++; }

void f()
{ .

int x=1,

increment( ) ; [ x=2
}

The semantics of argument passing are defined to be those of initialization, so when call
increment's argumentaa became another name far To keep a program readable, it is often best
to avoid functions that modify their arguments. Instead, you can return a value from the functi
explicitly or require a pointer argument:

int next(int p) { return p+1; }

void incr(int* p) { (* p)++; }

void g()
{ -
int x=1;
increment( x); [ | x=2
X = next( X); [ /I x=3
incr(&x); [ | x=4
}

Theincrement( X) notation doesn’t give a clue to the reader thsitvalue is being modified, the
way x=next( X) andincr(&x) does. Consequently “plain” reference arguments should be usec
only where the name of the function gives a strong hint that the reference argument is modified.

References can also be used to define functions that can be used on both the left-hand
right-hand sides of an assignment. Again, many of the most interesting uses of this are found in
design of nontrivial user-defined types. As an example, let us define a simple associative art
First, we define strud®air like this:

struct Pair {
string name
double val;
I3

The basic idea is thatstring has a floating-point value associated with it. It is easy to define a
function, valueg() , that maintains a data structure consisting of Baie for each different string
that has been presented to it. To shorten the presentation, a very simple (and inefficient) implen
tation is used:

vector<Pair> pairs;

double& value( const string& s)
/*
maintain a set of Pairs:
search for s, return its value if found; otherwise make a new Pair and return the default value 0
*/
{
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for (int i =0; i < pairs. siz)) ; i++)
if (s== pairg[ i]. name return pairs] i]. val;
Parr p={s 0}
pairs. push_back( p); // add Pair at end (83.7.3)
return pairg| pairs. size()- 1]. val;
}

This function can be understood as an array of floating-point values indexed by character strir
For a given argument stringalug() finds the corresponding floating-point objenb{the value
of the corresponding floating-point object); it then returns a reference to it. For example:

int main() // count the number of occurrences of each word on input

{
string buf;
while ( cin>>buf) value( buf)++;
for ( vector<Pair>: : const_iterator p = pairs. begin() ; p!= pairs. end() ; ++p)
cout << p-> name<<": " << p->val <<’ \n’;
}

Each time around, thehile-loop reads one word from the standard input streiminto the string
buf (83.6) and then updates the counter associated with it. Finally, the resulting table of differe
words in the input, each with its number of occurrences, is printed. For example, given the input

aa bb bb aa aa bb aa aa
this program will produce:

aa 5
bb: 3

It is easy to refine this into a proper associative array type by using a template class with the se
tion operatof] overloaded (§11.8). Itis even easier just to use the standard lihapr{g17.4.1).

5.6 Pointer to Void|ptr.ptrtovoid]

A pointer of any type of object can be assigned to a variable of/oyde, avoid* can be assigned

to anothewoid* , void* s can be compared for equality and inequality, avoidt can be explicitly
converted to another type. Other operations would be unsafe because the compiler cannot k
what kind of object is really pointed to. Consequently, other operations result in compile-tin
errors. To use woid* , we must explicitly convert it to a pointer to a specific type. For example:

void f(int* pi)
{
void* pv=pi; / / ok:implicit conversion of int* to void*

*pv; /I error: can’t dereference void*
pv++; [ | error: can’'t increment void* (the size of the object pointed to is unknown)
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int* pi2 = static_cast<int*>( pv); /| explicit conversion back to int*
double* pdl = pv, [ | error
double* pd2 = pi; [ | error

double* pd3 = static_cast<double*>( pv); / / unsafe

In general, it is not safe to use a pointer that has been converted (“cast”) to a type that differs fr
the type the object pointed to. For example, a machine may assume thalalseyis allocated

on an 8-byte boundary. If so, strange behavior could argiepidinted to arint that wasn't allo-
cated that way. This form of explicit type conversion is inherently unsafe and ugly. Consequent
the notation useditatic_cast, was designed to be ugly.

The primary use foroid* is for passing pointers to functions that are not allowed to make
assumptions about the type of the object and for returning untyped objects from functions. To |
such an object, we must use explicit type conversion.

Functions usingoid* pointers typically exist at the very lowest level of the system, where rea
hardware resources are manipulated. For example:

void* my alloc( size t n); // allocate n bytes from my special heap

Occurrences ofoid* s at higher levels of the system should be viewed with suspicion because th
are likely indicators of design errors. Where used for optimizataid* can be hidden behind a
type-safe interface (§13.5, §24.4.2).

Pointers to functions (87.7) and pointers to members (§15.5) cannot be assigidtiso

5.7 Structuresiptr.struct]

An array is an aggregate of elements of the same typstruét is an aggregate of elements of
(nearly) arbitrary types. For example:

struct address{

char* name [ 1 "Jim Dandy"

long int number; / / 61

char* street; /| "South St"

char* town; / | "New Providence"
char state] 2]; [ [ 'N"Y

long 7p; [ [ 7974

k

This defines a new type calledidress consisting of the items you need in order to send mail to
someone. Note the semicolon at the end. This is one of very few places whére it is neces-
sary to have a semicolon after a curly brace, so people are prone to forget it.

Variables of typeaddress can be declared exactly as other variables, and the individua
membergan be accessed using th€dot) operator. For example:
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void f()

{
address jd;
jd. name="Jim Dandy";
jd. number = 61;

}

The notation used for initializing arrays can also be used for initializing variables of structure type
For example:

address jd = {
" Jim Dandy’,
61, " South St
"New Providence’, {" N',” J}, 7974
3
Using a constructor (§10.2.3) is usually better, however. Notédhstate could not be initialized
by the string'NJ". Strings are terminated by the charact€¥ . Hence,"NJ" has three characters
— one more than will fit intgd. state.
Structure objects are often accessed through pointers using tfetructure pointer derefer-
ence) operator. For example:

void print_addr( address® p)

cout << p-> name<< " \n’
<< p-> number <<~ << p-> street << " \n’
<< p->town<<’\n’
<< p-> state] 0] << p->state] 1] <<~ ~ << p->zip<< \n’;
}

Whenp is a pointerp-> mis equivalent t¢* p). m.
Objects of structure types can be assigned, passed as function arguments, and returned &
result from a function. For example:

address current;
address set_current( address mext)

{
address prev = current;
current = next;
return prev,

}

Other plausible operations, such as comparisenand!= ), are not defined. However, the user
can define such operators (Chapter 11).

The size of an object of a structure type is not necessarily the sum of the sizes of its memb
This is because many machines require objects of certain types to be allocated on architect
dependent boundaries or handle such objects much more efficiently if they are. For example, i
gers are often allocated on word boundaries. On such machines, objects are said to have t
aligned properly. This leads to “holes” in the structures. For example, on many machines
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sizeof( address) is 24, and not22 as might be expected. You can minimize wasted space by sim
ply ordering members by size (largest member first). However, it is usually best to order memb
for readability and sort them by size only if there is a demonstrated need to optimize.

The name of a type becomes available for use immediately after it has been encountered anc
just after the complete declaration has been seen. For example:

struct Link {
Link* previous,
Link* successor;

k

It is not possible to declare new objects of a structure type until the complete declaration has b
seen. For example:

struct No_good {
No_good member; / / error: recursive definition
L

This is an error because the compiler is not able to determine the dipegdod. To allow two
(or more) structure types to refer to each other, we can declare a hame to be the name of a stru
type. For example:

struct List; / | to be defined later

struct Link {
Link* pre;
Link* suc;
List* member_of;
L
struct List {
Link* head;
I3

Without the first declaration dfist, use ofListin the declaration dfink would have caused a syn-
tax error.

The name of a structure type can be used before the type is defined as long as that use doe
require the name of a member or the size of the structure to be known. For example:

class § / / ‘S’ is the name of some type

extern S &
S f) ;
void g( 9);
S h(S);
However, many such declarations cannot be used unless thgisygefined:
void k( S* p)

Sa / [ error: S not defined; size needed to allocate
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fO ; [ [ error: S not defined; size needed to return value
g(a); [ I error: S not defined; size needed to pass argument
p>m=7 [ | error: S not defined; member name not known

S  q=h(p); / [/ ok:pointers can be allocated and passed
g>m=7; [ [ error: S not defined; member name not known

}

A struct is a simple form of &lass(Chapter 10).
For reasons that reach into the pre-history of C, it is possible to decttmectand a non-
structure with the same name in the same scope. For example:

struct stat{ /* ...*/ };
int stat( char* name struct stat* buf);

In that case, the plain namstat) is the name of the non-structure, and the structure must be
referred to with the prefistruct. Similarly, the keywordslass union (8C.8.2), andenum (84.8)

can be used as prefixes for disambiguation. However, it is best not to overload names to make
necessary.

5.7.1 Type Equivalence [ptr.equiv]

Two structures are different types even when they have the same members. For example,

struct S1{ int a; };
struct S2{ int a; };

are two different types, so

S1 x;
S2 y=x;/ / error: type mismatch

Structure types are also different from fundamental types, so

SL x
int i =x;/ / error: type mismatch

Everystruct must have a unique definition in a program (89.2.3).

5.8 Adviceptr.advice]

[1] Avoid nontrivial pointer arithmetic; 85.3.

[2] Take care not to write beyond the bounds of an array; 85.3.1.

[3] UseOrather tharNULL; 85.1.1.

[4] Usevector andvalarray rather than built-in (C-style) arrays; 8§5.3.1.

[5] Usestringrather than zero-terminated array<hér; 85.3.

[6] Minimize use of plain reference arguments; 85.5.

[7] Avoid void* except in low-level code; §5.6.

[8] Avoid nontrivial literals (“magic numbers”) in code. Instead, define and use symbolic con-
stants; §4.8, §5.4.
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5.9 Exercises [ptr.exercises]

1. (1) Write declarations for the following: a pointer to a character, an array of 10 integers, a r
erence to an array of 10 integers, a pointer to an array of character strings, a pointer to a poi
to a character, a constant integer, a pointer to a constant integer, and a constant pointer t
integer. Initialize each one.

2. (L.5) What, on your system, are the restrictions on the pointer ¢hae’s, int*, andvoid* ?
For example, may aimt* have an odd value? Hint: alignment.

3. () Usetypedef to define the typesinsigned char, const unsigned char, pointer to integer,
pointer to pointer tahar, pointer to arrays afhar, array of 7 pointers tmt, pointer to an array
of 7 pointers tant, and array of 8 arrays of 7 pointerdnd

4. () Write a function that swaps (exchanges the values of) two integerdntt/ses the argu-
ment type. Write another swap function usintf as the argument type.

5. (L.5) What is the size of the arraly in the following example:

char str[] ="a short string";

What is the length of the strifq short string"?

6. (1) Define functiond( char) , g( char&) , andh( const char&) . Call them with the arguments
“a’, 49, 3300, c, uc, andsc, wherec is achar, uc is anunsigned char, andsc is a signed
char. Which calls are legal? Which calls cause the compiler to introduce a temporary variabl

7. (L.5) Define a table of the names of months of the year and the number of days in each mo
Write out that table. Do this twice; once using an arraghaf for the names and an array for
the number of days and once using an array of structures, with each structure holding the n:
of a month and the number of days in it.

8. (@) Run some tests to see if your compiler really generates equivalent code for iteration us
pointers and iteration using indexing (85.3.1). If different degrees of optimization can &
requested, see if and how that affects the quality of the generated code.

9. (.5) Find an example where it would make sense to use a name in its own initializer.

10. () Define an array of strings in which the strings contain the names of the months. Print thc
strings. Pass the array to a function that prints those strings.

11. (R) Read a sequence of words from input. Qsit as a word that terminates the input. Print
the words in the order they were entered. Don't print a word twice. Modify the program to sc
the words before printing them.

12. (R) Write a function that counts the number of occurrences of a pair of lettestringaand
another that does the same in a zero-terminated arrelyapfa C-style string). For example,
the pair "ab" appears twice in "xabaacbaxabb".

13. (1L.5) Define astruct Date to keep track of dates. Provide functions that rBates from
input, writeDates to output, and initialize Bate with a date.
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Expressions and Statements

Premature optimization
is the root of all evil.
— D. Knuth

On the other hand,
we cannot ignore efficiency.
— Jon Bentley

Desk calculator example- input — command line arguments- expression summary
— logical and relational operators increment and decrement free store— explicit
type conversior— statement summary- declarations— selection statements- decla-
rations in conditions— iteration statements— the infamousgoto — comments and
indentation— advice— exercises.

6.1 A Desk Calculatorexpr.calculator]

Statements and expressions are introduced by presenting a desk calculator program that pro
the four standard arithmetic operations as infix operators on floating-point numbers. The user
also define variables. For example, given the input

r=2.5
area=pi*r*r

(pi is predefined) the calculator program will write

2.5
19. 635

where2. 5is the result of the first line of input ad®. 635 is the result of the second.
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The calculator consists of four main parts: a parser, an input function, a symbol table, ant
driver. Actually, it is a miniature compiler in which the parser does the syntactic analysis, the inf
function handles input and lexical analysis, the symbol table holds permanent information, and
driver handles initialization, output, and errors. We could add many features to this calculator
make it more useful (§6.6[20]), but the code is long enough as it is, and most features would |
add code without providing additional insight into the usetof.C

6.1.1 The Parser [expr.parser]

Here is a grammar for the language accepted by the calculator:

program
END /1 END is end-of-input
expr_list END

expr_list
expression PRINT /1 PRINT is semicolon

expression PRINT expr_list
expression:
expression + term
expression - term
term
term:
term/ primary
term * primary
primary
primary:
NUMBER
NAME
NAME = expression
- primary
( expression )

In other words, a program is a sequence of expressions separated by semicolons. The basic un
an expression are numbers, names, and the opetatbrst, - (both unary and binary), anel
Names need not be declared before use.

The style of syntax analysis used is usually cakedirsive descenit is a popular and straight-
forward top-down technique. In a language such &8 @ which function calls are relatively
cheap, it is also efficient. For each production in the grammar, there is a function that calls otl
functions. Terminal symbols (for exampEND, NUMBER, +, and- ) are recognized by the lexi-
cal analyzerget token() ; and nonterminal symbols are recognized by the syntax analyzer func
tions,expr() ,term() , andprim() . As soon as both operands of a (sub)expression are known, th
expression is evaluated; in a real compiler, code could be generated at this point.

The parser uses a functiget token() to get input. The value of the most recent call of
get token() can be found in the global varialdarr_tok. The type ofcurr_tok is the enumera-
tion Token value:
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enum Token_value {

NAME, NUMBER, END,
PLUS="+, MINUS="-", MUL="*", DIV="/",
PRINT=";", ASSIGN="=",  LP="(, RP=")

h
Token value curr_tok = PRINT;

Representing each token by the integer value of its character is convenient and efficient and ca
a help to people using debuggers. This works as long as no character used as input has a value
as an enumerater and no character set | know of has a printing character with a single-digit inte
ger value. | chos®RINT as the initial value focurr_tok because that is the value it will have
after the calculator has evaluated an expression and displayed its value. Thus, | “start the syste
in a normal state to minimize the chance of errors and the need for special startup code.

Each parser function takesdaol (84.2) argument indicating whether the function needs to call
get token() to get the next token. Each parser function evaluates “its” expression and returns tl
value. The functiomxpr() handles addition and subtraction. It consists of a single loop that look
for terms to add or subtract:

double expr( bool get) / | add and subtract

double left = term( get);

for (;;) /| “forever”
switch ( curr_tok) {
case PLUS
left += term( true) ;
break;
case MINUS
left -= term( true);
break;
default:
return left;
}

}

This function really does not do much itself. In a manner typical of higher-level functions in
large program, it calls other functions to do the work.

The switch-statemertests the value of its condition, which is supplied in parentheses after th
switch keyword, against a set of constants. Tmeak-statemestare used to exit thswitch-
statement The constants following thease labels must be distinct. If the value tested does not
match anycaselabel, thedefault is chosen. The programmer need not providefault.

Note that an expression such2a8+4 is evaluated a§2- 3)+ 4, as specified in the grammar.

The curious notatioffor(;;) is the standard way to specify an infinite loop; you could pro-
nounce it “forever.” It is a degenerate form ofa-statemen{86.3.3);while( true) is an alterna-
tive. Theswitch-statemens executed repeatedly until something different fromnd- is found,
and then theeturn-statemenin the default case is executed.

The operators= and-= are used to handle the addition and subtracleftslefi+term() and
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left=left- term() could have been used without changing the meaning of the program. Howeve
left+=term() and left-=term() not only are shorter but also express the intended operatior
directly. Each assignment operator is a separate lexical tokar; sdl; is a syntax error because
of the space between thheand the=.

Assignment operators are provided for the binary operators

+ - % & | N << >>

so that the following assignment operators are possible
= += = *= [= Op= &= |: Nz <<= >>=

The %is the modulo, or remainder, operat&y;| , and” are the bitwise logical operators AND,
OR, and exclusive ORs< and>> are the left shift and right shift operators; §6.2 summarizes the
operators and their meanings. For a binary opei@a@pplied to operands of built-in types, an
expressionx@=y meanx=x@y, except thak is evaluated once only.

Chapter 8 and Chapter 9 discuss how to organize a program as a set of modules. With
exception, the declarations for this calculator example can be ordered so that everything is decl:
exactly once and before it is used. The exceptioexps() , which callsterm() , which calls
prim() , which in turn calleexpr() . This loop must be broken somehow. A declaration

double expr( bool);

before the definition oprim() will do nicely.
Functionterm() handles multiplication and division in the same \exr() handles addition
and subtraction:

double term( bool get) /| multiply and divide

double left = prim( get);

for (;;)
switch ( curr_tok) {
case MUL:
left *= prim( true);
break;
case DIV:
if (double d= prim( true)) {
left /= d;
break;
}
return emror(" divide by 0") ;
default:
return left;
}

}

The result of dividing by zero is undefined and usually disastrous. We therefore @stefimre

dividing and callerror() if we detect a zero divisor. The functierror() is described in §6.1.4.
The variabled is introduced into the program exactly where it is needed and initialized immedi

ately. The scope of a name introduced in a condition is the statement controlled by that conditi



Section 6.1.1 The Parser 111

and the resulting value is the value of the condition (86.3.2.1). Consequently, the division a
assignmenteft/= dis done if and only ifl is nonzero.

The functionprim() handling gprimaryis much likeexpr() andtemm() , except that because
we are getting lower in the call hierarchy a bit of real work is being done and no loop is necessar

double mumber_value;
string string_value

double prim( bool get) /| handle primaries

{
if (get) get token() ;

switch ( curr_tok) {

case NUMBER /I floating-point constant
{ double v= number_value
get_token() ;
return v,
}
case NAME:

{ double& v = table| string_value] ;
if (get_token() == ASSIGN) v = expr( true);

return v

case MINUS /| unary minus
return - prim( true);

case LLP:

{ double e= expr( true);
if (curr_tok!= RP) return emror(") expected’) ;

get_token() ; [ | eat’y
return e
}
default:
return eror(" primary expected’) ;
}

}

When aNUMBER (that is, an integer or floating-point literal) is seen, its value is returned. The
input routineget_token() places the value in the global variabamber_value. Use of a global
variable in a program often indicates that the structure is not quite-eléeat some sort of opti-
mization has been applied. Soitis here. ldeally, a lexical token consists of two parts: a value sy
ifying the kind of token (&oken_valuein this program) and (when needed) the value of the token.
Here, there is only a single, simple varialtarr_tok, so the global variablaumber_value is
needed to hold the value of the IBMIMBER read. Eliminating this spurious global variable is left
as an exercise (86.6[21]). Saving the valuawhber_value in the local variables before calling
get_token() is not really necessary. For every legal input, the calculator always uses one numt
in the computation before reading another from input. However, saving the value and displaying
correctly after an error helps the user.

In the same way that the value of the IH&IMBER is kept innumber_value, the character
string representation of the |a¥AME seen is kept irstring_value. Before doing anything to a
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name, the calculator must first look ahead to see if it is being assigned to or simply read. In b
cases, the symbol table is consulted. The symbol tablmap$83.7.4, §17.4.1):

map<string, double> table;

That is, whertable is indexed by atring, the resulting value is th#double corresponding to the
string. For example, if the user enters

radius = 6378. 388;

the calculator will execute

double& v = table[" radius] ;
/1 ... expr() calculates the value to be assigned ...
v = 6378. 388;

The reference is used to hold on to thdouble associated withadius while expr() calculates the
value6378. 388 from the input characters.

6.1.2 The Input Function [expr.input]

Reading input is often the messiest part of a program. This is because a program must comm
cate with a person, it must cope with that person’s whims, conventions, and seemingly rand
errors. Trying to force the person to behave in a manner more suitable for the machine is of
(rightly) considered offensive. The task of a low-level input routine is to read characters and co
pose higher-level tokens from them. These tokens are then the units of input for higher-level r
tines. Here, low-level input is done et token() . Writing a low-level input routine need not be
an everyday task. Many systems provide standard functions for this.

| build get token() in two stages. First, | provide a deceptively simple version that imposes
burden on the user. Next, | modify it into a slightly less elegant, but much easier to use, version.

The idea is to read a character, use that character to decide what kind of token needs to be
posed, and then return theken valuerepresenting the token read.

The initial statements read the first non-whitespace charactechndnd check that the read
operation succeeded:

Token value get token()
{
char ch=0;
cin>>ch;
switch ( ch) {
case O
return curr_tok=END; / / assign and return

By default, operator> skips whitespace (that is, spaces, tabs, newlines, etc.) and leaves the va
of chunchanged if the input operation failed. Consequeakly=0 indicates end of input.
Assignment is an operator, and the result of the assignment is the value of the variable assic
to. This allows me to assign the valsND to curr_tok and return it in the same statement. Hav-
ing a single statement rather than two is useful in maintenance. If the assignment and the re
became separated in the code, a programmer might update the one and forget to update to the c
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Let us look at some of the cases separately before considering the complete function.

expression terminatdr” , the parentheses, and the operators are handled simply by returning the
values:

case’;”:
case *:
case’/:
case’ +:
case’-":
case’(":
case’)’:
case’ =":
return curr_tok=Token value( ch);
Numbers are handled like this:
case’ 0": case’1: case” 2: case” 3: case 4"
case’ 5. case' 6. case’ 7. case 8. case 9
case’.”:
cin. putback( ch);

cin >> number_value;
return curr_tok=NUMBER;

Stackingcase labels horizontally rather than vertically is generally not a good idea because th
arrangement is harder to read. However, having one line for each digit is tedious. Because op
tor >> is already defined for reading floating-point constants irdouble, the code is trivial. First
the initial character (a digit or a dot) is put back ioin. Then the constant can be read into
number_value.

A name is handled similarly:

default: /| NAME, NAME =, or error
if (isalpha( ch)) {
cin. putback( ch);
cin>>string_value;
return curr_tok=NAME;

}
emor(" bad token') ;
return curr_tok=PRINT;

The standard library functiasalpha() (820.4.2) is used to avoid listing every character as a sepa
ratecaselabel. Operator> applied to a string (in this cassiring_value) reads until it hits white-
space. Consequently, a user must terminate a name by a space before an operator using the ne
an operand. This is less than ideal, so we will return to this problem in §6.1.3.

Here, finally, is the complete input function:

Token value get token()

char ch=0;
cin>>ch;
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switch ( ch) {
case @
return curr_tok=END;
case’;’:
case *:
case’/:
case’ +:
case’-":
case (":
case’)":
case’

I ~="1
TS

return curr_tok=Token value( ch);
case’ 0: case’1: case’ 2: case” 3. case 4
case’ 5. case' 6: case’' 7: case’ 8: case 9
case’.”:
cin. putback( ch);
cin >> number_value,
return curr_tok=-NUMBER;

default: /1 NAME, NAME =, or error
if (isalpha( ch)) {
cin. putback( ch);
cin>>string_value,
return curr_tok=NAME;

}
emror(" bad token') ;
return curr_tok=PRINT;

}

Chapter 6

The conversion of an operator to its token value is trivial becauskokea value of an operator

was defined as the integer value of the operator (84.8).

6.1.3 Low-level Input [expr.low]

Using the calculator as defined so far reveals a few inconveniences. It is tedious to remembe
add a semicolon after an expression in order to get its value printed, and having a name termin

by whitespace only is a real nuisance. For exanxpléjs an identifie— rather than the identifier
x followed by the operator and the numbe¥. Both problems are solved by replacing the type-
oriented default input operationsget_token() with code that reads individual characters.

First, we’ll make a newline equivalent to the semicolon used to mark the end of expression:

Token value get token()
{

char ch;

do{/ / skip whitespace except '\n’
if(! cin. get( ch)) return curr_tok = END;
} while (ch!=" \n" &&isspace( ch)) ;
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switch ( ch) {

case’;’:

case’ \n":

return curr_tok=PRINT;

A do-statemenis used; it is equivalent towahile-statemenéxcept that the controlled statement is
always executed at least once. The cill get( ch) reads a single character from the standard
input stream inteh. By default,get() does not skip whitespace the weperator >> does. The
testif (! cin. get( ch)) fails if no character can be read fram,; in this caseEND is returned to
terminate the calculator session. The operatgNOT) is used becaugget() returnstruein case
of success.

The standard library functioisspace() provides the standard test for whitespace (820.4.2);
isgpace( ¢) returns a nonzero value éfis a whitespace character and zero otherwise. The test i
implemented as a table lookup, so usisspace() is much faster than testing for the individual
whitespace characters. Similar functions test if a character is a-dsgligit() — a letter— isal-
pha() — or a digit or letter isalnum() .

After whitespace has been skipped, the next character is used to determine what kind of lex
token is coming.

The problem caused by> reading into a string until whitespace is encountered is solved by
reading one character at a time until a character that is not a letter or a digit is found:

default: !/ | NAME, NAME-=, or error
if (isalpha( ch)) {
string_value = ch;
while ( cin. get( ch) &&isalnum( ch)) string_value. push_back( ch);
cin. putback( ch);
return curr_tok=NAME;

}
emror(" bad token') ;
return curr_tok=PRINT;

Fortunately, these two improvements could both be implemented by modifying a single local s¢
tion of code. Constructing programs so that improvements can be implemented through local m
ifications only is an important design aim.

6.1.4 Error Handling [expr.error]

Because the program is so simple, error handling is not a major concern. The error function sim
counts the errors, writes out an error message, and returns:

int no_of_errors;

double @ror( const string& s)

{
no_of_ermrors++;
car <<"emor: " <<s<<’'\n’;
return 1,

}

The streanterr is an unbuffered output stream usually used to report errors (§21.2.1).
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The reason for returning a value is that errors typically occur in the middle of the evaluation
an expression, so we should either abort that evaluation entirely or return a value that is unlikely
cause subsequent errors. The latter is adequate for this simple calculatayet Hekien() kept
track of the line numbersrror() could have informed the user approximately where the error
occurred. This would be useful when the calculator is used noninteractively (86.6[19]).

Often, a program must be terminated after an error has occurred because no sensible wa
continuing has been devised. This can be done by cabib@ , which first cleans up things like
output streams and then terminates the program with its argument as the return value (§9.4.1.1).

More stylized error-handling mechanisms can be implemented using exceptions (see §¢
Chapter 14), but what we have here is quite suitable for a 150-line calculator.

6.1.5 The Driver [expr.driver]

With all the pieces of the program in place, we need only a driver to start things. In this simy
examplemain() can do that:

int main()
{

table[" pi"] = 3. 1415926535897932385; / / insert predefined names
table[" € = 2. 7182818284590452354;

while ( cin) {
get_token() ;
if ( curr_tok == END) break;
if (curr_tok == PRINT) continue;
cout << expr( false) << \n’;

}

return no_of_errors;

}

Conventionallymain() should return zero if the program terminates normally and nonzero other
wise (83.2). Returning the number of errors accomplishes this nicely. As it happens, the o
initialization needed is to insert the predefined names into the symbol table.

The primary task of the main loop is to read expressions and write out the answer. This
achieved by the line:

cout << expr( false << \n’;

The argumentalsetells expr() that it does not need to cgkt token() to get a current token on
which to work.

Testingcin each time around the loop ensures that the program terminates if something gc
wrong with the input stream, and testing END ensures that the loop is correctly exited when
get_token() encounters end-of-file. Areak-statemergxits its nearest enclosisgvitch-statement
or loop (that is, dor-statementwhile-statementor do-statement Testing forPRINT (that is, for
“\n” and”;” ) relievesexpr() of the responsibility for handling empty expressionscofitinue-
statemenis equivalent to going to the very end of a loop, so in this case
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while ( cin) {
/...
if (curr_tok == PRINT) continue;
cout << expr( false) << \n’;

}
is equivalent to

while ( cin) {
/..
if (curr_tok!= PRINT)
cout << expr( false << \n’;

6.1.6 Headers [expr.headers]

The calculator uses standard library facilities. Therefore, appropriate headers whimsiuded to
complete the program:

#include<iostream> / / /O
#include<string> / | strings
#include<map> /[ map
#include<cctype> / / isalpha(), etc.

All of these headers provide facilities in tbiel namespace, so to use the names they provide we
must either use explicit qualification wisltd: : or bring the names into the global namespace by

using namespace Std;

To avoid confusing the discussion of expressions with modularity issues, | did the latter. Chapte
and Chapter 9 discuss ways of organizing this calculator into modules using hamespaces and
to organize it into source files. On many systems, standard headers have equivalenthwitf a

fix that declare the classes, functions, etc., and place them in the global namespace (89.2.1, §¢
§B.3.1).

6.1.7 Command-Line Arguments [expr.command]

After the program was written and tested, | found it a bother to first start the program, then type

expressions, and finally quit. My most common use was to evaluate a single expression. If t

expression could be presented as a command-line argument, a few keystrokes could be avoidec
A program starts by callingrain() (83.2, §89.4). When this is donmain() is given two

arguments specifying the number of arguments, usually cafige] and an array of arguments,

usually calledargv. The arguments are character strings, so the typegefis char*[ argc+1] .

The name of the program (as it occurs on the command line) is pasaagva8] , soargc is

always at least. The list of arguments is zero-terminated; thaaigy[ argc]== 0. For example,

for the command

dc 150/ 1. 1934

the arguments have these values:



118

Expressions and Statements

argc:

e [ ]

0 |

"de' |

Chapter 6

"150/1.1934"

Because the conventions for callimain() are shared with C, C-style arrays and strings are used.

It is not difficult to get hold of a command-line argument. The problem is how to use it witl
minimal reprogramming. The idea is to read from the command string in the same way that"
read from the input stream. A stream that reads from a string is unsurprisingly called
istringstream.  Unfortunately, there is no elegant way of makamy refer to anistringstream.
Therefore, we must find a way of getting the calculator input functions to refelistriagstream
Furthermore, we must find a way of getting the calculator input functions to refer to a
istringstream or to cin depending on what kind of command-line argument we supply.

A simple solution is to introduce a global poinilput that points to the input stream to be used
and have every input routine use that:

istrean? input;/ / pointer to input stream

int main( int argc, char* argv])

{

switch ( argc) {
case 1L
input = &cin;
break;

case 2

input = new istringstream( argv{ 1]) ;

break;

default:
emror(" too many arguments’) ;
return 1,

}

table[" pi"] = 3. 1415926535897932385;
table[" € = 2. 7182818284590452354;

while (* input) {
get_token() ;
if (curr_tok == END) break;
if (curr_tok == PRINT) continue;
cout << expr( false) << \n’;
}

if (input != &cin) delete input;
return no_of_errors;

| | read from standard input

/| read argument string

/ | insert predefined names
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An istringstream is a kind ofistream that reads from its character string argument (§21.5.3).
Upon reaching the end of its string, isfringstream fails exactly like other streams do when they
hit the end of input (83.6, §21.3.3). To usdsiringstream, you must includessiream>.

It would be easy to modifynain() to accept several command-line arguments, but this does
not appear to be necessary, especially as several expressions can be passed as a single argum

dc"rate=1. 1934; 150/ rate; 19. 75/ rate; 217/ rate"

| use quotes becausds the command separator on my UNIX systems. Other systems have diffe
ent conventions for supplying arguments to a program on startup.

It was inelegant to modify all of the input routines to tiagput rather tharcin to gain the flex-
ibility to use alternative sources of input. The change could have been avoided had | shown fc
sight by introducing something likaput from the start. A more general and useful view is to note
that the source of input really should be the parameter of a calculator module. That is, the fun
mental problem with this calculator example is that what | refer to as “the calculator” is only a co
lection of functions and data. There is no module (82.4) or object (82.5.2) that explicitly represe
the calculator. Had | set out to design a calculator module or a calculator type, | would natura
have considered what its parameters should be (88.5[3], §10.6[16]).

6.1.8 A Note on Style [expr.style]

To programmers unacquainted with associative arrays, the use of the standardnidpasy the
symbol table seems almost like cheating. It is not. The standard library and other libraries
meant to be used. Often, a library has received more care in its design and implementation th
programmer could afford for a handcrafted piece of code to be used in just one program.

Looking at the code for the calculator, especially at the first version, we can see that there i
much traditional C-style, low-level code presented. Many of the traditional tricky details have be
replaced by uses of standard library classes suoltramam, string, andmap (83.4, 83.5, §3.7.4,
Chapter 17).

Note the relative scarcity of arithmetic, loops, and even assignments. This is the way thir
ought to be in code that doesn’t manipulate hardware directly or implement low-level abstraction:

6.2 Operator Summaryexpr.operators]

This section presents a summary of expressions and some examples. Each operator is followe
one or more names commonly used for it and an example of its use. In these thkspame
is the name of a class,naemberis a member name, arbjectis an expression yielding a class
object, apointeris an expression yielding a pointer, expris an expression, and &ralueis an
expression denoting a nonconstant objecttyge can be a fully general type name (with() ,
etc.) only when it appears in parentheses; elsewhere, there are restrictions (8A.5).

The syntax of expressions is independent of operand types. The meanings presented here ¢
when the operands are of built-in types (§84.1.1). In addition, you can define meanings for operat
applied to operands of user-defined types (82.5.2, Chapter 11).
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U Operator Summary U
Hscope resolution class name:: member S
[scope resolution namespacename:: member 0
Cglobal . name O
Lhlobal :» qualified-name g
i - - il
rfnember selection object. member 0
rmember selection pointer-> member 0
CBubscripting pointer[ expr] O
Lfunction call expr( expr list) U

alue construction type( expr list) B
rpost increment Ivalue++ 0
[post decrement Ivalue-- 0
[type identification typeid ( type) a
Lkun-time type identification typeid ( expr) B

un-time checked conversion dynamic_cast < type> ( expr ) 0
rcompile-time checked conversion static_cast < type> ( expr ) 0
runchecked conversion reinterpret_cast < type> ( expr )
Ctonst conversion const_cast < type> ( expr ) a

ize of object sizeof expr H
rsize of type sizeof ( type) 0
[pre increment ++ lvalue 0
Cpre decrement -- Ivalue O
Ltomplement ~ expr O

ot I expr B
Clnary minus - expr 0
runary plus + expr O
Caddress of & lvalue O
Lhereference Oexpr U

reate (allocate) new type B
create (allocate and initialize) new type( expr-list) 0
[create (place) new ( expr-list) type 0
Ctreate (place and initialize) new ( expr-list) type( expr-list) 0O
LHestroy (de-allocate) delete pointer U

estroy array delete]] pointer B
rfast (type conversion) ( type) expr 0
Cmember selection object.* pointer-to-member O
g”nember selection pointer->* pointer-to-member U
Hnultiply exprOexpr B
rdivide expr/ expr 0
Emodulo (remainder) expryoexpr i
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Each box holds operators with the same precedence. Operators in higher boxes have higher p

Operator Summary

rdivide and assign
Cmodulo and assign
Lhdd and assign
ubtract and assign
hift left and assign
rshift right and assign
CAND and assign

Lnclusive OR and assign
xclusive OR and assign

Ivalue/= expr
Ivalue %=expr
Ivalue+= expr
Ivalue-= expr
Ivalue<<= expr
Ivalue>>= expr
Ivalue &= expr
Ivalue|= expr
Ivalue”= expr

rconditional expression

expr? expr: expr

[throw exception

throw expr

U Operator Summary (continued) S
Rdd (plus) expr+ expr 0
[subtract (minus) expr- expr 0
C5hift left expr<< expr O
FD‘Phift right expr>> expr B
rless than expr< expr O
Oess than or equal expr<= expr O
reater than expr> expr N
reater than or equal expr>= expr E
requal expr== expr 0
Chot equal exprl= expr O
ﬁbitwise AND expr& expr g
Chitwise exclusive OR expr™ expr 0
Chitwise inclusive OR expr| expr g
Flogical AND expr&&expr 0
Oogical inclusive OR expr|| expr O
imple assignment Ivalue= expr H
rnultiply and assign Ivalue = expr 0
O

O

0

O

O

0

O

O

0

O

O

[l

O

O

O

) .
[comma (sequencing)

expr, expr
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dence than operators in lower boxes. For exangglb* c meansa+( b*c) rather thar( at+b)* c
becausé has higher precedence than

Unary operators and assignment operators are right-associative; all others are left-associa

For examplea=b=c meansa=( b=c) , a+b+c means( a+b)+ ¢, and* p++ means*( p++), not

(* pt++.

A few grammar rules cannot be expressed in terms of precedence (also known as binc

strength) and associativity. For exampeb<c?d=e: f=g meansa=(( b<c)?( d=e):( f=g)) ,
but you need to look at the grammar (8A.5) to determine that.
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6.2.1 Results [expr.res]

The result types of arithmetic operators are determined by a set of rules known as “the usual ar
metic conversions” (8C.6.3). The overall aim is to produce a result of the “largest” operand typ
For example, if a binary operator has a floating-point operand, the computation is done us
floating-point arithmetic and the result is a floating-point value. If it hieg operand, the com-
putation is done using long integer arithmetic, and the resultdaga Operands that are smaller
than arnint (such adool andchar) are converted tnt before the operator is applied.

The relational operators=, <=, etc., produce Boolean results. The meaning and result type o
user-defined operators are determined by their declarations (811.2).

Where logically feasible, the result of an operator that takes an Ivalue operand is an Iva
denoting that Ivalue operand. For example:

void f(int X, int y)

{
int j=x=vy; /I the value of x=y is the value of x after the assignment
int* p=&++x; / | p points to x
int* q=&(x++); /| error: x++ is not an Ivalue (it is not the value stored in x)
int* pp=&(x>y?x:y); [/ / address of the int with the larger value

}

If both the second and third operand®ofare Ivalues and have the same type, the result is of thai
type and is an lvalue. Preserving Ivalues in this way allows greater flexibility in using operatol
This is particularly useful when writing code that needs to work uniformly and efficiently with bott
built-in and user-defined types (e.g., when writing templates or programs that gereratal€).
The result ofsizeof is of an unsigned integral type callsize t defined in<cstddef>. The
result of pointer subtraction is of a signed integral type caliadiff t defined in<cstddef>.
Implementations do not have to check for arithmetic overflow and hardly any do. For exampl

void f()
{
int i=1;
while (0 < i) i++;
cout<<"i has become megativel" <<i<<’'\n’;

}

This will (eventually) try to increasepast the largest integer. What happens then is undefined, bu
typically the value “wraps around” to a negative number (on my mach2i47483648). Simi-

larly, the effect of dividing by zero is undefined, but doing so usually causes abrupt termination
the program. In particular, underflow, overflow, and division by zero do not throw standard exce
tions (814.10).

6.2.2 Evaluation Order [expr.evaluation]

The order of evaluation of subexpressions within an expression is undefined. In particular, y
cannot assume that the expression is evaluated left to right. For example:

int x=1(2)+g(3); / / undefined whether f() or g() is called first
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Better code can be generated in the absence of restrictions on expression evaluation order.
ever, the absence of restrictions on evaluation order can lead to undefined results. For example
int i=1;
Vv[i] =i++; [ [/ undefined result
may be evaluated as eithgrl]= 1 or v[ 2]= 1 or may cause some even stranger behavior. Com-
pilers can warn about such ambiguities. Unfortunately, most do not.

The operators (comma),&& (logical and), and| (logical or) guarantee that their left-hand
operand is evaluated before their right-hand operand. For examplas2, a+1) assigns3tob.
Examples of the use §if and&&can be found in §6.2.3. For built-in types, the second operand o
&&is evaluated only if its first operandtizie, and the second operand|of is evaluated only if its
first operand idalse this is sometimes calleshort-circuit evaluation Note that the sequencing
operator, (comma) is logically different from the comma used to separate arguments in a functic
call. Consider:

fL( V[ i], i++); [ | two arguments
f2( (V[i],i++) ); [/ [ one argument

The call offl has two arguments) i] andi++, and the order of evaluation of the argument
expressions is undefined. Order dependence of argument expressions is very poor style anc
undefined behavior. The call # has one argument, the comma expreséigri], i++) , which is
equivalent td++.

Parentheses can be used to force grouping. For exaanblec meand a* b)/ ¢ so parenthe-
ses must be used to ge{ b/ ¢) ; a*( b/ ¢) may be evaluated §sa* b)/ c only if the user cannot
tell the difference. In particular, for many floating-point computatitisb/ ¢) and( a*b)/ c are
significantly different, so a compiler will evaluate such expressions exactly as written.

6.2.3 Operator Precedence [expr.precedence]

Precedence levels and associativity rules reflect the most common usage. For example,
if (i<=0] max<i) // ...

means “ifi is less than or equal ®or if maxis less than.” That is, it is equivalent to
if ( (i<=0) || (max<i) ) // ..

and not the legal but nonsensical
if (i<=(0] max) <i) // ...

However, parentheses should be used whenever a programmer is in doubt about those rules. U
parentheses becomes more common as the subexpressions become more complicated, but cc
cated subexpressions are a source of errors. Therefore, if you start feeling the need for parenth
you might consider breaking up the expression by using an extra variable.

There are cases when the operator precedence does not result in the “obvious” interpretat
For example:

if (i&mask == 0) | | oops! == expression as operand for &
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This does not apply a mask it@nd then test if the result is zero. Becassehas higher prece-
dence tharg, the expression is interpretedi&§ mask==0) . Fortunately, it is easy enough for a
compiler to warn about most such mistakes. In this case, parentheses are important:

if ( i&mask) ==0) // ...
It is worth noting that the following does not work the way a mathematician might expect:
if (0<=x<=99) // ..

This is legal, but it is interpreted &8<=x)<= 99, where the result of the first comparison is either
true or false This Boolean value is then implicitly converteditor 0, which is then compared to
99, yieldingtrue. To test whethexis in the rang®.. 99, we might use:

if (0<=x &&x<=99) // ...
A common mistake for novices is to uséassignment) instead sf (equals) in a condition:

if (a=7)/ / oops! constant assignment in condition

This is natural becausemeans “equals” in many languages. Again, it is easy for a compiler to
warn about most such mistakesind many do.

6.2.4 Bitwise Logical Operators [expr.logical]

The bitwise logical operatos | , ~, ~, >>, and<< are applied to objects of integer typethat is,
bool, char, short, int, long, and theiunsigned counterparts. The results are also integers.

A typical use of bitwise logical operators is to implement the notion of a small set (a bit vectol
In this case, each bit of an unsigned integer represents one member of the set, and the numk
bits limits the number of members. The binary oper&tisrinterpreted as intersectiognas union,
"N as symmetric difference, andas complement. An enumeration can be used to name the men
bers of such a set. Here is a small example borrowed from an implementaistreari

enum ios_base : iostate {
goodbit=0, eofbit=1, failbit=2, badbit=4
3
The implementation of a stream can set and test its state like this:
state = goodbit;

/..
if ( state&( badbit| failbit)) // stream no good

The extra parentheses are necessary be&auze higher precedence than
A function that reaches the end of input might report it like this:

state|= eofbit;

The|= operator is used to add to the state. A simple assignstate;eofbit, would have cleared
all other bits.

These stream state flags are observable from outside the stream implementation. For exan
we could see how the states of two streams differ like this:
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int diff = cin. rdstate()" cout. rdstate() ; / / rdstate() returns the state

Computing differences of stream states is not very common. For other similar types, comput
differences is essential. For example, consider comparing a bit vector that represents the se
interrupts being handled with another that represents the set of interrupts waiting to be handled.

Please note that this bit fiddling is taken from the implementation of iostreams rather than frc
the user interface. Convenient bit manipulation can be very important, but for reliability, maintai
ability, portability, etc., it should be kept at low levels of a system. For more general notions of
set, see the standard libraet (817.4.3) bitset (§17.5.3), andector<bool> (§16.3.11).

Using fields (8C.8.1) is really a convenient shorthand for shifting and masking to extract t
fields from a word. This can, of course, also be done using the bitwise logical operators. F
example, one could extract the middle 16 bits of a 3Bhd like this:

unsigned short middle( long @) { return ( a>>8)& Oxffff; }

Do not confuse the bitwise logical operators with the logical opera&&&d] , and ! . The latter
return eithertrue or false and they are primarily useful for writing the test inigrwhile, or for
statement (86.3.2, 86.3.3). For exampl@,(not zero) is the valutrue, whereas-0 (complement
of zero) is the bit pattern all-ones, which in two’s complement representation is the Yalue

6.2.5 Increment and Decrement [expr.incr]

The ++ operator is used to express incrementing directly, rather than expressing it indirectly usi
a combination of an addition and an assignment. By definitiblyalue meandvalue+=1, which
again meansvalue=lvaluet+1 providedlvalue has no side effects. The expression denoting the
object to be incremented is evaluated once (only). Decrementing is similarly expressed-by the
operator. The operatotis- and-- can be used as both prefix and postfix operators. The value o
++X is the new (that is, incremented) valuexofFor exampley=++x is equivalent to/=( x+=1) .
The value ofx++, however, is the old value of. For example,y=x++ is equivalent to
y=(t=x, x+=1, t) , wheret is a variable of the same typexas

Like addition and subtraction of pointets; and-- on pointers operate in terms of elements of
the array into which the pointer poings:+ makesp point to the next element (85.3.1).

The increment operators are particularly useful for incrementing and decrementing variables
loops. For example, one can copy a zero-terminated string like this:

void cpy( char* p, const char* q)

while (* p++ =*qt++) ;

}
Like C, Cr+is both loved and hated for enabling such terse, expression-oriented coding. Becaus
while (* p++ =*qg++) ;

is more than a little obscure to non-C programmers and because the style of coding is not unc
mon in C and €+, it is worth examining more closely.
Consider first a more traditional way of copying an array of characters:
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int length = strlen( q);
for (int i =0; i<=length; i++) p[i] =q[i];

This is wasteful. The length of a zero-terminated string is found by reading the string looking f
the terminating zero. Thus, we read the string twice: once to find its length and once to copy it.
we try this instead:

int i;

for (i=0; q[i]'= O; i++) p[i] =q[i];

p[i] =0;/ / terminating zero
The variabld used for indexing can be eliminated becguaedq are pointers:

while (* q'= 0) {

* p =% q
p++; / | point to next character
g++; [ | point to next character
}
*p=0; /| terminating zero

Because the post-increment operation allows us first to use the value and then to increment it,
can rewrite the loop like this:

while (* q!= 0) {
*pHt = * gt
}

*p=0; // terminating zero
The value of p++ = * gq++ is*q. We can therefore rewrite the example like this:
while (* p++=*g++) 1= 0) { }

In this case, we don’t notice thag] is zero until we already have copied it ifitp and incremented

p. Consequently, we can eliminate the final assignment of the terminating zero. Finally, we c
reduce the example further by observing that we don’t need the empty block and that Bieis
redundant because the result of a pointer or integral condition is always compared to zero anyv
Thus, we get the version we set out to discover:

while (* p++ =*q++) ;

Is this version less readable than the previous versions? Not to an experiencett@mmgéam-
mer. Is this version more efficient in time or space than the previous versions? Except for the f
version that calledstrlen() , not really. Which version is the most efficient will vary among
machine architectures and among compilers.

The most efficient way of copying a zero-terminated character string for your particule
machine ought to be the standard string copy function:

char* strcpy( char*, const char*) ; / / from<string.l>

For more general copying, the standegpy algorithm (8§2.7.2, §18.6.1) can be used. Whenever
possible, use standard library facilities in preference to fiddling with pointers and bytes. Stand:
library functions may be inlined (87.1.1) or even implemented using specialized machir



Section 6.2.5 Increment and Decrement 127

instructions. Therefore, you should measure carefully before believing that some piece of ha
crafted code outperforms library functions.

6.2.6 Free Store [expr.free]

A named object has its lifetime determined by its scope (84.9.4). However, it is often useful to ¢
ate an object that exists independently of the scope in which it was created. In particular, it is cc
mon to create objects that can be used after returning from the function in which they were crea
The operatomew creates such objects, and the operaete can be used to destroy them.
Objects allocated byew are said to be “on the free store” (also, to be “heap objects,” or “allo-
cated in dynamic memory”).

Consider how we might write a compiler in the style used for the desk calculator (86.1). Tl
syntax analysis functions might build a tree of the expressions for use by the code generator:

struct Enode {
Token value aper;
Enode* left;
Enode* right;
/...

b

Enode* expr( bool get)

Enode* left = term( get) ;

for (;;)
switch( curr_tok) {
case PLUS
case MINUS
{ Enode* n=new Enode;, / / create an Enode on free store
n-> oper = curr_tok;

n-> left = left;

n-> right = term( true);

left = n;

break;
}
default:

return left; / | return node
}

}
A code generator would then use the resulting nodes and delete them:

void generate( Enode* n)
{
switch ( n-> oper) {
case PLUS
/...
delete m; / / delete an Enode from the free store
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An object created bpew exists until it is explicitly destroyed hyelete. Then, the space it occu-
pied can be reused mgw. A C++ implementation does not guarantee the presence of a “garbag
collector” that looks out for unreferenced objects and makes them availai#wa for reuse. Con-
sequently, | will assume that objects createdéy are manually freed usindelete. If a garbage
collector is present, theeletes can be omitted in most cases (8C.9.1).

The delete operator may be applied only to a pointer returnecéay or to zero. Applying
delete to zero has no effect.

More specialized versions of operahew can also be defined (§15.6).

6.2.6.1 Arrays [expr.array]

Arrays of objects can also be created usiegy. For example:

char* save string( const char* p)

{
char* s= new char[ strlen( p)+ 1];
strepy( s, p); [ | copyfromptos
return s

}

int main( int argc, char* argv(])

if (argc< 2) exit( 1);

char* p = save string( argv{ 1)) ;
I ...

delete]] p;

The “plain” operatordelete is used to delete individual objectielete]] is used to delete arrays.

To deallocate space allocatedrisw, delete anddelete]] must be able to determine the size of
the object allocated. This implies that an object allocated using the standard implementation
new will occupy slightly more space than a static object. Typically, one word is used to hold tt
object’s size.

Note that avector (83.7.1, §16.3) is a proper object and can therefore be allocated and deall
cated using plainewanddelete. For example:

void f(int n)
{
vector<int>* p = new vector<int>( n); /I individual object
int* q=new int[ n]; | | array
/...
delete m

delete]] q;
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6.2.6.2 Memory Exhaustion [expr.exhaust]
The free store operatonew, delete, new[] , anddelete]] are implemented using functions:

void* operator new( size t); / / space for individual object
void operator delete( void*) ;

void* operator new{]( size t);/ / space for array
void operator delete[]( void*) ;

When operatonew needs to allocate space for an object, it apkrator new() to allocate a suit-
able number of bytes. Similarly, when operatew needs to allocate space for an array, it calls
operator new(]()

The standard implementationsagerator new() andoperator new{]() do not initialize the
memory returned.

What happens whenew can find no store to allocate? By default, the allocator throws a
bad alloc exception. For example:

void f()

try {
for(;;) new char[ 10000];

}
catch( bad_alloc) {
cear << " Memory exhausted! \n";
}
}

However much memory we have available, this will eventually invokbalealloc handler.
We can specify whatew should do upon memory exhaustion. Whnemwv fails, it first calls a
function specified by a call tset new_handler() declared irknew>, if any. For example:

void out_of_store()

{
cer << " operator new failed out of store\n’;
throw bad_alloc() ;
}
int main()
set_new_handler( out_of_store); // make outof_store the newhandler
for (;;) new char[ 10000];
cout << " done\n";
}

This will never get to writelone. Instead, it will write

operator new failed out of store

See §14.4.5 for a plausible implementation obperator new() that checks to see if there is a
new handler to call and that throlwad_alloc if not. A new_handler might do something more
clever than simply terminating the program. If you know Imexw anddelete work — for example,
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because you provided your ovaperator new() and operator delete() — the handler might
attempt to find some memory folew to return. In other words, a user might provide a garbage
collector, thus rendering the used#lete optional. Doing this is most definitely not a task for a
beginner, though. For almost everybody who needs an automatic garbage collector, the right tt
to do is to acquire one that has already been written and tested (8C.9.1).

By providing anew_handler, we take care of the check for memory exhaustion for every ordi-
nary use ohewin the program. Two alternative ways of controlling memory allocation exist. We
can either provide nonstandard allocation and deallocation functions (815.6) for the standard L
of new or rely on additional allocation information provided by the user (§10.4.11, §19.4.5).

6.2.7 Explicit Type Conversion [expr.cast]

Sometimes, we have to deal with“raw memory;” that is, memory that holds or will hold objects ¢
a type not known to the compiler. For example, a memory allocator may retoidt gpointing to
newly allocated memory or we might want to state that a given integer value is to be treated as
address of an 1/O device:

void* malloc( size t);

void f()

{
int* p = static_cast<int*>( malloc( 100)) ; /| new allocation used as ints

10_device* d1 = reinterpret_cast<|O_device*>( 0Xff00); / / device at 0Xff0O
...

}

A compiler does not know the type of the object pointed to byahd* . Nor can it know whether
the integelOXff00 is a valid address. Consequently, the correctness of the conversions are co
pletely in the hands of the programmer. Explicit type conversion, often caléithg is occasion-

ally essential. However, traditionally it is seriously overused and a major source of errors.

The static_cast operator converts between related types such as one pointer type to another,
enumeration to an integral type, or a floating-point type to an integral typereirfierpret_cast
handles conversions between unrelated types such as an integer to a pointer. This distinc
allows the compiler to apply some minimal type checkingstatic_cast and makes it easier for a
programmer to find the more dangerous conversions representezintespret casts. Some
static_casts are portable, but feweinterpret_casts are. Hardly any guarantees are made for
reinterpret_cast, but generally it produces a value of a new type that has the same bit pattern as
argument. If the target has at least as many bits as the original value, reintenpret_cast the
result back to its original type and use it. The result oéiaterpret_cast is guaranteed to be
usable only if its result type is the exact type used to define the value involved. Note th
reinterpret_cast s the kind of conversion that must be used for pointers to functions (87.7).

If you feel tempted to use an explicit type conversion, take the time to consider riéatlis
necessary. In -, explicit type conversion is unnecessary in most cases when C needs it (81.
and also in many cases in which earlier versionstdf ii@eded it (§1.6.2, §B.2.3). In many pro-
grams, explicit type conversion can be completely avoided; in others, its use can be localized 1
few routines. In this book, explicit type conversion is used in realistic situations in §86.2.7, 87.
§13.5, 815.4, and §25.4.1, only.
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A form of run-time checked conversiaiynamic_cast (§15.4.1), and a cast for removiognst
qualifiers,const_cast (§15.4.2.1), are also provided.

From C, G+ inherited the notatio(iT) e, which performs any conversion that can be expressed
as a combination oftatic_casts, reinterpret_casts, andconst_casts to make a value of type
from the expressioa (§8B.2.3). This C-style cast is far more dangerous than the named conversic
operators because the notation is harder to spot in a large program and the kind of conver
intended by the programmer is not explicit. That(i) e might be doing a portable conversion
between related types, a nonportable conversion between unrelated types, or removamgtthe
modifier from a pointer type. Without knowing the exact type® ahde, you cannot tell.

6.2.8 Constructors [expr.ctor]

The construction of a value of tydefrom a valuee can be expressed by the functional notation
T(e). For example:

void f( double d)

{
int i =int(d); [/ truncate d
complex z= complex(d); / / make a complex from d
/..

}

TheT(e) construct is sometimes referred to darection-style castFor a built-in typeT, T( €) is
equivalent tostatic_cast<T>( €) . Unfortunately, this implies that the useTfe) is not always
safe. For arithmetic types, values can be truncated and even explicit conversion of a longer inte
type to a shorter (such &sng to char) can result in undefined behavior. | try to use the notation
exclusively where the construction of a value is well-defined; that is, for narrowing arithmetic col
versions (8C.6), for conversion from integers to enumerations (84.8), and the construction
objects of user-defined types (§2.5.2, §10.2.3).

Pointer conversions cannot be expressed directly usindgltee notation. For example,
char*( 2) is a syntax error. Unfortunately, the protection that the constructor notation provide
against such dangerous conversions can be circumvented bytysédef names (84.9.7) for
pointer types.

The constructor notatiof() is used to express the default value of typd-or example:

void f( double d)
{

int j=int() ; [ | default int value
complex z=complex() ; / / default complex value
/...

}

The value of an explicit use of the constructor for a built-in tyfecisnverted to that type (§4.9.5).
Thus,int() is another way of writin@. For a user-defined typg T() is defined by the default
constructor (§10.4.2), if any.

The use of the constructor notation for built-in types is particularly important when writing tem
plates. Then, the programmer does not know whether a template parameter will refer to a buil
type or a user-defined type (816.3.4, §17.4.1.2).
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6.3 Statement Summaryexpr.stmts]

Here are a summary and some examplestéfstatements:

Statement Syntax

tatement:
declaration
{ statement-ligf, }
try { statement-ligf, } handler-list
expressiog, ;

if ( condition ) statement
if ( condition ) statementelse statement
switch ( condition ) statement

while ( condition ) statement
do statementwhile ( expression) ;
for ( for-init-statement conditiqp, ; expressiog, ) statement

case constant-expression statement
default : statement

break ;

continue ;

return expressiog, ;

goto identifier ;
identifier : statement

tatement-list:
statement statement-|jst

o e e e e A

ondition:
expression
type-specifier declarator= expression

Ooooogoo

rhandler-list:
ad catch ( exception-declaration) {  statement-lig}, }
H handler-list handler-lisg,

e

Note that a declaration is a statement and that there is no assignment statement or procedur
statement; assignments and function calls are expressions. The statements for handling except
try-blocks, are described in §8.3.1.
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6.3.1 Declarations as Statements [expr.dcl]

A declaration is a statement. Unless a variable is dectaéid, its initializer is executed when-
ever the thread of control passes through the declaration (see also §10.4.8). The reason for al
ing declarations wherever a statement can be used (and a few other places; §6.3.2.1, 86.3.3.1)
enable the programmer to minimize the errors caused by uninitialized variables and to allow be
locality in code. There is rarely a reason to introduce a variable before there is a value for it
hold. For example:

void f( vector<string>& v, int i, const char* p)

{
if (p==0) return;
if (i<0|| v.size))<= i) emor(" bad index') ;
string s=V[ i];
if(s==p) {
/..
}
/..
}

The ability to place declarations after executable code is essential for many constants and
single-assignment styles of programming where a value of an object is not changed after init
ization. For user-defined types, postponing the definition of a variable until a suitable initializer
available can also lead to better performance. For example,

string s /* ...*/ s="The lest is the enemy of the good.”;
can easily be much slower than
string s=" Voltaire";

The most common reason to declare a variable without an initializer is that it requires a statem
to initialize it. Examples are input variables and arrays.

6.3.2 Selection Statements [expr.select]

A value can be tested by eitherifistatement or awitch statement:

if ( condition ) statement
if ( condition ) statementlse statement
switch ( condition ) statement

The comparison operators
== = < <= > >=
return thebool trueif the comparison is true arfdlseotherwise.
In anif statement, the first (or only) statement is executed if the expression is nonzero and"

second statement (if it is specified) is executed otherwise. This implies that any arithmetic
pointer expression can be used as a condition. For examyple,ah integer, then

if(x) // ...
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means
if (x!= 0) // ...
For a pointep,

if(p) // ..
is a direct statement of the test “dqepoint to a valid object,” whereas

if(pl= 0) // ...
states the same question indirectly by comparing to a value known not to point to an object. N
that the representation of the pointeis not all-zeros on all machines (85.1.1). Every compiler |

have checked generated the same code for both forms of the test.
The logical operators

&& || !
are most commonly used in conditions. The operadrand|| will not evaluate their second
argument unless doing so is necessary. For example,

if (p &&1<p->count) // ...

first tests thap is nonzero. It testé<p-> count only if p is nonzero.
Someif-statemerg can conveniently be replaceddnpnditional-expressian For example,

if (a<=h)
max = b;
else
max = a;

is better expressed like this:
max = (a<=b) ? b: a;

The parentheses around the condition are not necessary, but | find the code easier to read wher
are used.
A switch-statementan alternatively be written as a setfefstatements. For example,

switch (val) {
case 1
f0 ;
break;
case 2
g0 ;
break;
default:
hQ ;
break;
}

could alternatively be expressed as
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if (val == 1)
f0 ;
else if (val == 2)

g0 ;
hQ ;

The meaning is the same, but the fisstifch) version is preferred because the nature of the opera-
tion (testing a value against a set of constants) is explicit. This makesitbl statement easier
to read for nontrivial examples. It can also lead to the generation of better code.

Beware that a case of a switch must be terminated somehow unless you want to carry on exe
ing the next case. Consider:

switch (val) { / | beware
case 1

cout << " case 1\n";
case 2

cout << " case 2n";
default:

cout << " default: case mot found\n";
}

Invoked withval==1, this prints

case 1
case 2
default: case mot found

to the great surprise of the uninitiated. It is a good idea to comment the (rare) cases in whic
fall-through is intentional so that an uncommented fall-through can be assumed to be an error
break is the most common way of terminating a case, lveturn is often useful (86.1.1).

6.3.2.1 Declarations in Conditions [expr.cond]

To avoid accidental misuse of a variable, it is usually a good idea to introduce the variable into
smallest scope possible. In particular, it is usually best to delay the definition of a local variat
until one can give it an initial value. That way, one cannot get into trouble by using the variak
before its initial value is assigned.

One of the most elegant applications of these two principles is to declare a variable in a cor
tion. Consider:

if (double di= prim( true)) {
left /= d;
break;
}
Here,d is declared and initialized and the valuaddffter initialization is tested as the value of the
condition. The scope af extends from its point of declaration to the end of the statement that th
condition controls. For example, had there beerlsebranch to thef-statementd would be in
scope on both branches.
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The obvious and traditional alternative is to decldrbefore the condition. However, this
opens the scope (literally) for the useddfefore its initialization or after its intended useful life:

double d

/...

d2=d; / / oops!

/...

if (d = prim( true)) {
left /= d;
break;

}

/..

d=2.0; // two unrelated uses of d

In addition to the logical benefits of declaring variables in conditions, doing so also yields the mc
compact source code.
A declaration in a condition must declare and initialize a single varialsienst.

6.3.3 lteration Statements [expr.loop]
A loop can be expressed afos, while, or do statement:

while ( condition ) statement
do statement while ( expression) ;
for ( for- init- statement condition,, ; expression,, ) statement

Each of these statements executes a statement (calledntinelled statement or théody of the
loop) repeatedly until the condition becomes false or the programmer breaks out of the loop so
other way.

The for-statements intended for expressing fairly regular loops. The loop variable, the termi:
nation condition, and the expression that updates the loop variable can be presented “up front”
a single line. This can greatly increase readability and thereby decrease the frequency of error:
no initialization is needed, the initializing statement can be empty. Hahditionis omitted, the
for-statementvill loop forever unless the user explicitly exits it bjpreak, return, goto, throw, or
some less obvious way such as a cakxif() (89.4.1.1). If theexpressioris omitted, we must
update some form of loop variable in the body of the loop. If the loop isn’t of the simple “intro
duce a loop variable, test the condition, update the loop variable” variety, it is often bett
expressed as while-statement A for-statemenis also useful for expressing a loop without an
explicit termination condition:

for(;;) {// “forever”
/..
}

A while-statemensimply executes its controlled statement until its condition bectelses | tend

to preferwhile-statemerst overfor-statemerg when there isn't an obvious loop variable or where
the update of a loop variable naturally comes in the middle of the loop body. An input loop is
example of a loop where there is no obvious loop variable:
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while( cin>>ch) // ...

In my experience, thdo-statemenis a source of errors and confusion. The reason is that its bod\
is always executed once before the condition is evaluated. However, for the body to work c
rectly, something very much like the condition must hold even the first time through. More ofte
than | would have guessed, | have found that condition not to hold as expected either when the
gram was first written and tested or later after the code preceding it has been modified. | also pr
the condition “up front where | can see it.” Consequently, | tend to adwistatemerst

6.3.3.1 Declarations in For-Statements [expr.for]

A variable can be declared in the initializer part dbastatement If that initializer is a declara-
tion, the variable (or variables) it introduces is in scope until the end dbtfsatement For
example:

void f(int V[] , int max)
{

}

for (int i =0; i<max;, i++) V[i] =i*i;

If the final value of an index needs to be known after exit frdior-4oop, the index variable must
be declared outside tlier-loop (e.g., §6.3.4).

6.3.4 Goto [expr.goto]

C++ possesses the infamogsto:

goto identifier ;
identifier : statement

Thegoto has few uses in general high-level programming, but it can be very useful wheode
is generated by a program rather than written directly by a person; for exgotptecan be used
in a parser generated from a grammar by a parser generatogotolen also be important in the
rare cases in which optimal efficiency is essential, for example, in the inner loop of some real-tir
application.

One of the few sensible uses gdto in ordinary code is to break out from a nested loop or
switch-statementa break breaks out of only the innermost enclosing loopwitch-statemeit
For example:

void f()

{ . .
int i
int j;
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for (i =0; i<n; i++)
for (j=0; j<m; j++) if (nm[i][ j] == a) goto found;
// not found
/...
found:
[ nm[i][j] ==

There is also aontinue statement that, in effect, goes to the end of a loop statement, as explain
in 86.1.5.

6.4 Comments and Indentatiorjexpr.comment]

Judicious use of comments and consistent use of indentation can make the task of reading
understanding a program much more pleasant. Several different consistent styles of indentatior
in use. | see no fundamental reason to prefer one over another (although, like most programme
have my preferences, and this book reflects them). The same applies to styles of comments.

Comments can be misused in ways that seriously affect the readability of a program. The cc
piler does not understand the contents of a comment, so it has no way of ensuring that a comme

[1] is meaningful,

[2] describes the program, and

[3] is up to date.
Most programs contain comments that are incomprehensible, ambiguous, and just plain wrc
Bad comments can be worse than no comments.

If something can be staténl the language itselit should be, and not just mentioned in a com-
ment. This remark is aimed at comments such as these:

/1 variable "v" must be initialized

/1 variable "v* must be used only by function "f()"

/1 call function "init()" before calling any other function in this file
/1 call function "cleanup()" at the end of your program

/1 don't use function "weird()"

/1 function "f()" takes two arguments

Such comments can often be rendered unnecessary by proper dge &fo€ example, one might
utilize the linkage rules (89.2) and the visibility, initialization, and cleanup rules for classes (s
§10.4.1) to make the preceding examples redundant.

Once something has been stated clearly in the language, it should not be mentioned a se
time in a comment. For example:

a=b+c; / / abecomes b+c
count++; / / increment the counter

Such comments are worse than simply redundant. They increase the amount of text the reade
to look at, they often obscure the structure of the program, and they may be wrong. Note, howe



Section 6.4 Comments and Indentation 139

that such comments are used extensively for teaching purposes in programming language textb
such as this. This is one of the many ways a program in a textbook differs from a real program.
My preference is for:
[1] A comment for each source file stating what the declarations in it have in common, refe
ences to manuals, general hints for maintenance, etc.
[2] A comment for each class, template, and namespace
[3] A comment for each nontrivial function stating its purpose, the algorithm used (unless it
obvious), and maybe something about the assumptions it makes about its environment
[4] A comment for each global and namespace variable and constant
[5] A few comments where the code is nonobvious and/or nonportable
[6] Very little else
For example:

/1 tbl.c: Implementation of the symbol table.
/*
Gaussian elimination with partial pivoting.

See Ralston: "A first course ..." pg 411.
*

/1 swap() assumes the stack layout of an SGI R6000.

/* * * * *

Copyright (c) 1997 AT&T, Inc.
All rights reserved

* * * * * */

A well-chosen and well-written set of comments is an essential part of a good program. Writi
good comments can be as difficult as writing the program itself. It is an art well worth cultivating.

Note also that if/ comments are used exclusively in a function, then any part of that functiol
can be commented out usiffg */ style comments, and vice versa.

6.5 Advice[expr.advice]

[1] Prefer the standard library to other libraries and to “handcrafted code;” §6.1.8.

[2] Avoid complicated expressions; §86.2.3.

[3] Ifin doubt about operator precedence, parenthesize; §6.2.3.

[4] Avoid explicit type conversion (casts); §6.2.7.

[5] When explicit type conversion is necessary, prefer the more specific cast operators to the
style cast; §6.2.7.

[6] Use theT( e) notation exclusively for well-defined construction; §6.2.8.

[7] Avoid expressions with undefined order of evaluation; §6.2.2.

[8] Avoid goto; §6.3.4.

[9] Avoid do-statemeist §6.3.3.

[10] Don't declare a variable until you have a value to initialize it with; §6.3.1, §6.3.2.1, §86.3.3.1.
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[11] Keep comments crisp; §6.4.

[12] Maintain a consistent indentation style; §6.4.

[13] Prefer defining a membaperator new() (815.6) to replacing the globaperator new) ;
86.2.6.2.

[14] When reading input, always consider ill-formed input; 86.1.3.

6.6 Exercisegexpr.exercises]

1. (@) Rewrite the followindor statement as an equivalavhile statement:
for (i=0; i<max_length; i++) if (input_ling[ i] =="?") quest_count++;

Rewrite it to use a pointer as the controlled variable, that is, so that the test is of the fo
. oo
p=="7".

2. () Fully parenthesize the following expressions:

a=b+c*d<<2&8
a&077'= 3

a==b| a==c&&c<5
c=x!=0

O0<=i<7

f(1, 2+3
a=-1++b-- -5
a=b==c++
a=b=c=0

a4 2] *=*b?c: *d* 2
a-b, c=d

3. (@) Read a sequence of possibly whitespace-separated (name,value) pairs, where the nam
single whitespace-separated word and the value is an integer or a floating-point value. Comg
and print the sum and mean for each name and the sum and mean for all names. Hint: §6.1.

4. () Write a table of values for the bitwise logical operations (86.2.4) for all possible combin:
tions of0 and1 operands.

5. (dL.5) Find 5 different €+ constructs for which the meaning is undefined (8C.PL.5) Find 5
different G-+ constructs for which the meaning is implementation-defined (8C.2).

6. (1) Find 10 different examples of nonportabtetCode.

7. (@) Write 5 expressions for which the order of evaluation is undefined. Execute them to s
what one or preferably— more implementations do with them.

8. (L.5) What happens if you divide by zero on your system? What happens in case of overfl
and underflow?

9. () Fully parenthesize the following expressions:
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*ptt
- p
++a--
(int*) p>m
*p.m
“ali]

10. (*2) Write these functionsstrlen() , which returns the length of a C-style stristycpy() ,
which copies a string into another; astocmp() , which compares two strings. Consider what
the argument types and return types ought to be. Then compare your functions with the st
dard library versions as declareddostring> (<string. h>) and as specified in §20.4.1.

11. () See how your compiler reacts to these errors:

void f(int a, int b)

{
if(a=3) // ..
if (a&077==0) // ...
a:= b+l;

}

Devise more simple errors and see how the compiler reacts.

12. (2) Modify the program from 86.6[3] to also compute the median.

13. () Write a functiorcat() that takes two C-style string arguments and returns a string that i
the concatenation of the arguments. bearto find store for the result.

14. () Write a functiorrew() that takes a string argument and reverses the characters in it. Th
is, afterrem( p) the last character @fwill be the first, etc.

15. (.5) What does the following example do?

void send( int* to, int* from, int count)
/1 Duff's device. Helpful comment deliberately deleted.

{
int n= (count+7)/ 8;
switch ( count¥8) {
case @ do{* to++=*from++;
case 7. * to++ = *from++;
case 6 * to++ = * fromt++;
case o *  to++ = * from++;
case 4 * to++ = * from++;
case 3 * to++ = *from++;
case 2 * to++ = * fromt++;
case 1 * to++ = * fromt++;

} while (- n>0);
}

Why would anyone write something like that?

16. (2) Write a functionatoi( const char*) that takes a string containing digits and returns the
correspondingnt. For exampleatoi(" 123") is 123. Modify atoi() to handle €+ octal and
hexadecimal notation in addition to plain decimal numbers. Matdi) to handle the €+
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character constant notation.

17. (®) Write a functionitoa( int i, char b[]) that creates a string representatiori of b and
returnsb.

18. (*2) Type in the calculator example and get it to work. Do not “save time” by using an alread
entered text. You'll learn most from finding and correcting “little silly errors.”

19. ((2) Modify the calculator to report line numbers for errors.

20. ((B) Allow a user to define functions in the calculator. Hint: Define a function as a sequence
operations just as a user would have typed them. Such a sequence can be stored either
character string or as a list of tokens. Then read and execute those operations when the fun
is called. If you want a user-defined function to take arguments, you will have to invent a not
tion for that.

21. ([.5) Convert the desk calculator to ussymbol structure instead of using the static variables
number_value andstring value.

22.(2.5) Write a program that strips comments out oft& @rogram. That is, read fromin,
remove both// comments and**/  comments, and write the resultd¢out. Do not worry
about making the layout of the output look nice (that would be another, and much harder, ex
cise). Do not worry about incorrect programs. Bewari of* , and*/ in comments, strings,
and character constants.

23. (2) Look at some programs to get an idea of the variety of indentation, naming, and comme
ing styles actually used.
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Functions

To iterate is human,
to recurse divine.
— L. Peter Deutsch

Function declarations and definitiors argument passing- return values— function
overloading— ambiguity resolution— default arguments— stdargs — pointers to
functions— macros— advice— exercises.

7.1 Function Declarationdfct.dcl]

The typical way of getting something done inta-@rogram is to call a function to do it. Defining
a function is the way you specify how an operation is to be done. A function cannot be call
unless it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any) |
the function, and the number and types of the arguments that must be supplied in a call of the fi
tion. For example:

Elem next_elem() ;
char* strcpy( char* to, const char* from);
void exit(int);

The semantics of argument passing are identical to the semantics of initialization. Argument tyj
are checked and implicit argument type conversion takes place when necessary. For example:

double sgrt( double);

double =2 = sqgrt( 2); /I call sgrt() with the argument double(2)
double sq3 = sqrt(" three") ; / [/ error: sqrt() requires an argument of type double

The value of such checking and type conversion should not be underestimated.
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A function declaration may contain argument names. This can be a help to the reader of a |
gram, but the compiler simply ignores such names. As mentioned inv@id7as a return type
means that the function does not return a value.

7.1.1 Function Definitions [fct.def]

Every function that is called in a program must be defined somewhere (once only). A function d
inition is a function declaration in which the body of the function is presented. For example:

extern void swap( int*, int*); / / a declaration
void swap( int* p, int* Q) /| a definition

{
int t="*p;
*p:*q;
*q:t;

}

The type of the definition and all declarations for a function must specify the same type. The art
ment hames, however, are not part of the type and need not be identical.
It is not uncommon to have function definitions with unused arguments:

void search( table* t, const char* key, const char*)

{
}

As shown, the fact that an argument is unused can be indicated by not naming it. Typica
unnamed arguments arise from the simplification of code or from planning ahead for extensions.
both cases, leaving the argument in place, although unused, ensures that callers are not affect
the change.

A function can be defined to lmline. For example:

/1 no use of the third argument

inline int fac(int n)

{
}

The inline specifier is a hint to the compiler that it should attempt to generate code for a call
fac() inline rather than laying down the code for the function once and then calling through tt
usual function call mechanism. A clever compiler can generate the cor@eor a callfac( 6) .

The possibility of mutually recursive inline functions, inline functions that recurse or not dependir
on input, etc., makes it impossible to guarantee that every call wiliae function is actually
inlined. The degree of cleverness of a compiler cannot be legislated, so one compiler might gel
ate720, anothe6* fac( 5) , and yet another an un-inlined ciat( 6) .

To make inlining possible in the absence of unusually clever compilation and linking facilitie:
the definition— and not just the declaration of an inline function must be in scope (89.2). An
inline specifier does not affect the semantics of a function. In particular, an inline function still h
a unique address and so kstatic variables (87.1.2) of an inline function.

return (n<2) ? 1: n*fac(n-1);
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7.1.2 Static Variables [fct.static]

A local variable is initialized when the thread of execution reaches its definition. By default, th
happens in every call of the function and each invocation of the function has its own copy of t
variable. If a local variable is declarsthtic, a single, statically allocated object will be used to
represent that variable in all calls of the function. It will be initialized only the first time the threa
of execution reaches its definition. For example:

void f(int a)
while (a-) {
static int n=0; / | initialized once
int x=0; [/ initialized n times
cout<<"n==" << nt+ <<", x==" << x++<<'\n’;
}
}
int main()
f(3);
}
This prints:
n== 0, Xx==0
n==1, x==0
n==2, x==0

A static variable provides a function with “a memory” without introducing a global variable that
might be accessed and corrupted by other functions (see also §10.2.4).

7.2 Argument Passingfct.arg]

When a function is called, store is set aside for its formal arguments and each formal argumer
initialized by its corresponding actual argument. The semantics of argument passing are ident
to the semantics of initialization. In particular, the type of an actual argument is checked agai
the type of the corresponding formal argument, and all standard and user-defined type convers
are performed. There are special rules for passing arrays (87.2.1), a facility for passing unchec
arguments (87.6), and a facility for specifying default arguments (§7.5). Consider:

void f(int val, int&ref)
{

val++;
ref++;

}

Whenf() is called,val++ increments a local copy of the first actual argument, whenefas-
increments the second actual argument. For example,
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void g()

{
int i=1;
int j=1;
f(i, j);

}

will incrementj but noti. The first argument, is passedy value the second argumerit, is
passedy reference As mentioned in 85.5, functions that modify call-by-reference arguments ca
make programs hard to read and should most often be avoided (but see §21.2.1). It can, howe
be noticeably more efficient to pass a large object by reference than to pass it by value. In f
case, the argument might be declacedst to indicate that the reference is used for efficiency rea-
sons only and not to enable the called function to change the value of the object:

void f( const Large& arg)
/1 the value of "arg" cannot be changed without explicit use of type conversion

}

The absence afonst in the declaration of a reference argument is taken as a statement of intent
modify the variable:

void g( Large& arg); // assume that g() modifies arg

Similarly, declaring a pointer argumerdnst tells readers that the value of an object pointed to by
that argument is not changed by the function. For example:

int strlen( const char*) ; /| number of characters in a C-style string
char* strcpy( char* to, const char* from); /| copy a C-style string
int strcmp( const char*, const char*) ; | | compare C-style strings

The importance of usingpnst arguments increases with the size of a program.

Note that the semantics of argument passing are different from the semantics of assignm
This is important forconst arguments, reference arguments, and arguments of some user-defin
types (810.4.4.1).

A literal, a constant, and an argument that requires conversion can be passedst& @ gu-
ment, but not as a naenst argument. Allowing conversions forcanst T& argument ensures that
such an argument can be given exactly the same set of valu@saaguanent by passing the value
in a temporary, if necessary. For example:

float fsqrt( const float&);/ / Fortran-style sqrt taking a reference argument
void g( double d)

{

float r = fsqrt( 2. Of); | | pass ref to temp holding 2.0f

r = fsgrt(r); | | passreftor

r = fsqrt( d); | | pass ref to temp holding float(d)
}

Disallowing conversions for nooenst reference arguments (85.5) avoids the possibility of silly
mistakes arising from the introduction of temporaries. For example:
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void update( float& i);
void g( double d float r)

{
update( 2. Of); / / error: const argument
update(r); | | passreftor
update( d); /| error: type conversion required
}

Had these calls been allowagydate() would quietly have updated temporaries that immediately

were deleted. Usually, that would come as an unpleasant surprise to the programmer.

7.2.1 Array Arguments [fct.array]

If an array is used as a function argument, a pointer to its initial element is passed. For example
int strlen( const char*) ;

void f()

{
char v[] ="an array’;
int i = strlen( v);

int j = strlen(" Nicholas') ;
}

That is, an argument of typH] will be converted to &* when passed as an argument. This
implies that an assignment to an element of an array argument changes the value of an eleme
the argument array. In other words, arrays differ from other types in that an array is not (and ¢
not be) passed by value.

The size of an array is not available to the called function. This can be a nuisance, but there
several ways of circumventing this problem. C-style strings are zero-terminated, so their size
be computed easily. For other arrays, a second argument specifying the size can be passed.
example:

void computel( int* vec ptr, int vec size); [ | one way
struct Vec{
int* ptr;
int size
3
void compute2( const Vec& v); /| another way

Alternatively, a type such aector (83.7.1, 816.3) can be used instead of an array.
Multidimensional arrays are trickier (see 8§C.7), but often arrays of pointers can be used inste
and they need no special treatment. For example:
char* day[] ={
"mon’, "tue', "wed', "thu', "fri", "sat", "sun'
h
Again, vector and similar types are alternatives to the built-in, low-level arrays and pointers.
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7.3 Value Returnl[fct.return]

A value must be returned from a function that is not decheomti(howevermain() is special; see
§3.2). Conversely, a value cannot be returned frewidifunction. For example:

int f1() {} /| error: no value returned

void f2() {} /I ok

int f3) {return 1, } / / ok

void f4() { return 1, } / / error: return value in void function
int f5() { return; } /| error: return value missing

void f6() { return; } /I ok

A return value is specified by a return statement. For example:
int fac(int n) { return (n>1) ? n*fac(n-1) : 1; }

A function that calls itself is said to becursive
There can be more than one return statement in a function:

int fac2(int n)

{
if (n>1) return n*fac2(n-1);
return 1,

}

Like the semantics of argument passing, the semantics of function value return are identical to
semantics of initialization. A return statement is considered to initialize an unnamed variable of t
returned type. The type of a return expression is checked against the type of the returned type,
all standard and user-defined type conversions are performed. For example:

double f{) { return 1; }/ / 1is implicitly converted to double(1)

Each time a function is called, a new copy of its arguments and local (automatic) variables is ¢
ated. The store is reused after the function returns, so a pointer to a local variable should neve
returned. The contents of the location pointed to will change unpredictably:

int* fp() { int local=1; /* ...* return&local; } / / bad
This error is less common than the equivalent error using references:
int&fr() { int local =1; /* ..*/ return local; } / / bad

Fortunately, a compiler can easily warn about returning references to local variables.

A void function cannot return a value. However, a call wb@ function doesn't yield a value,
so avoid function can use a call ofwid function as the expression inreturn statement. For
example:

void g(int* p);
void h(int* p) { /* ..*/ return g(p); }/ / ok:return of “no value”

This form of return is important when writing template functions where the return type is a ten
plate parameter (see §18.4.4.2).
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7.4 Overloaded Function Namegct.over]

Most often, it is a good idea to give different functions different names, but when some functio
conceptually perform the same task on objects of different types, it can be more convenient to ¢
them the same name. Using the same name for operations on different types mvealbeding
The technique is already used for the basic operations+n That is, there is only one name for
addition,+, yet it can be used to add values of integer, floating-point, and pointer types. This id
is easily extended to functions defined by the programmer. For example:

void print(int); [/ printan int

void print( const char*) ;/ / print a C-style character string

As far as the compiler is concerned, the only thing functions of the same name have in commo
that name. Presumably, the functions are in some sense similar, but the language does not
strain or aid the programmer. Thus overloaded function names are primarily a notational con
nience. This convenience is significant for functions with conventional names ssupit, gBint,
andopen. When a name is semantically significant, this convenience becomes essential. This h
pens, for example, with operators suchtas, and<<, in the case of constructors (§11.7), and in
generic programming (82.7.2, Chapter 18). When a fundtisrcalled, the compiler must figure
out which of the functions with the narfiss to be invoked. This is done by comparing the types of
the actual arguments with the types of the formal arguments of all functionsfcallbd idea is to
invoke the function that is the best match on the arguments and give a compile-time error if
function is the best match. For example:

void print( double);

void print( long);

void f()

{

print( 1L); /I print(long)

print(1. 0); / / print(double)

print( 1); [ | error, ambiguous: print(long(1)) or print(double(1))?
}

Finding the right version to call from a set of overloaded functions is done by looking for a be
match between the type of the argument expression and the parameters (formal arguments) o
functions. To approximate our notions of what is reasonable, a series of criteria are tried in orde
[1] Exact match; that is, match using no or only trivial conversions (for example, array name
pointer, function name to pointer to function, antb const T)
[2] Match using promotions; that is, integral promotiobeod{ to int, char to int, short to int,
and theirunsigned counterparts; 8C.6.1float to double, anddouble to long double
[3] Match using standard conversions (for examisieto double, double to int, Derived* to
Base* (§12.2), T* tovoid* (85.6),int to unsigned int; §C.6)
[4] Match using user-defined conversions (§811.4)
[5] Match using the ellipsis.  in a function declaration (§87.6)
If two matches are found at the highest level where a match is found, the call is rejected as amb
ous. The resolution rules are this elaborate primarily to take into account the elaboratet@ and
rules for built-in numeric types (8C.6). For example:
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void print(int);

void print( const char*) ;
void print( double);
void print( long);

void print( char);

void h(char c, int i, short s, float f)

{
print( c); | | exact match: invoke print(char)
print(i); | | exact match: invoke print(int)
print( s); /| integral promotion: invoke print(int)
print( f); | | float to double promotion: print(double)
print" &) ; / / exact match: invoke print(char)
print( 49); / | exact match: invoke print(int)
print( 0); / | exact match: invoke print(int)
print(" a") ; / / exact match: invoke print(const char*)
}

The call print( 0) invokes print(int) because0 is an int. The call print(" @) invokes
print( char) becausé a’ is achar (84.3.1). The reason to distinguish between conversions anc
promotions is that we want to prefer safe promotions, sucha<o int, over unsafe conversions,
such asnt to char.

The overloading resolution is independent of the order of declaration of the functions consi
ered.

Overloading relies on a relatively complicated set of rules, and occasionally a programmer w
be surprised which function is called. So, why bother? Consider the alternative to overloadir
Often, we need similar operations performed on objects of several types. Without overloading,
must define several functions with different names:

void print_int( int);
void print_char( char);
void print_string( const char*) ; // C-style string

void g(int i, char c, const char* p, double d)

{
print_int(i); ! | ok
print_char( c); ! | ok
print_string(p); / / ok
print_int( c); /| ok? calls printint(int(c))
print_char(i); /| ok? calls printchar(char(i))
print_string( i); [ | error
print_int( d); [ | ok? calls printint(int(d))
}

Compared to the overloadgdint() , we have to remember several names and remember to us
those correctly. This can be tedious, defeats attempts to do generic programming (82.7.2), and
erally encourages the programmer to focus on relatively low-level type issues. Because there i
overloading, all standard conversions apply to arguments to these functions. It can also leac
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errors. In the previous example, this implies that only one of the four calls with a “wrong” argu
ment is caught by the compiler. Thus, overloading can increase the chances that an unsuit
argument will be rejected by the compiler.

7.4.1 Overloading and Return Type [fct.return]

Return types are not considered in overload resolution. The reason is to keep resolution for an i
vidual operator (811.2.1, §11.2.4) or function call context-independent. Consider:

float sqrt( float);
double sgrt( double);

void f( double da, float fla)

{
float fl = sqrt(da); / / call sqrt(double)
double d=sgrt(da); // call sgrt(double)
fl = sqrt( fla); /I call sgrt(float)
d=sgrt(fla); [ | call sgrt(float)

}

If the return type were taken into account, it would no longer be possible to look at asgel()of
in isolation and determine which function was called.

7.4.2 Overloading and Scopes [fct.scope]
Functions declared in different non-namespace scopes do not overload. For example:
void f(int);
void g()
void f( double);

f(1); /I call f(double)
}

Clearly,f(int) would have been the best matchfipt) , but onlyf( double) is in scope. In such
cases, local declarations can be added or subtracted to get the desired behavior. As always, i
tional hiding can be a useful technique, but unintentional hiding is a source of surprises. Wt
overloading across class scopes (815.2.2) or namespace scopes (88.2.9.2) is usanged,
declarationsor using- directivescan be used (88.2.2). See also §8.2.6 and §8.2.9.2.

7.4.3 Manual Ambiguity Resolution [fct.man.ambig]

Declaring too few (or too many) overloaded versions of a function can lead to ambiguities. F
example:

void f1( char);
void f1(long);

void f2( char*) ;
void f2(int*) ;
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void k(int i)
{
f1(i); / / ambiguous: fl(char) or f1(long)

f2(0); / / ambiguous: f2(char*) or f2(int*)
}

Where possible, the thing to do in such cases is to consider the set of overloaded versions of a f
tion as a whole and see if it makes sense according to the semantics of the function. Often
problem can be solved by adding a version that resolves ambiguities. For example, adding

inline void f1(int n) { f1(long(n)) ; }

would resolve all ambiguities similar fa( i) in favor of the larger typbong int.
One can also add an explicit type conversion to resolve a specific call. For example:

f2( static_cast<int*>( 0)) ;

However, this is most often simply an ugly stopgap. Soon another similar call will be made al
have to be dealt with.

Some @+ novices get irritated by the ambiguity errors reported by the compiler. More exper
enced programmers appreciate these error messages as useful indicators of design errors.

7.4.4 Resolution for Multiple Arguments [fct.fct.res]

Given the overload resolution rules, one can ensure that the simplest algorithm (function) will
used when the efficiency or precision of computations differs significantly for the types involveq
For example:

int pow(int, int);
double jpow( double, double);

complex pow( double, complex);
complex pow( complex, int);
complex pow( complex, double);
complex pow( complex, complex);

void k( complex 2)

{
int i = pow( 2, 2); /I invoke pow(int,int)
double d=pow(2.0,2 0); / / invoke pow(double,double)
complex 2= pow( 2, 2); / | invoke pow(double,complex)
complex zZ3= pow( z, 2); / | invoke pow(complex,int)
complex z4 = pow( z, 2); /| invoke pow(complex,complex)
}

In the process of choosing among overloaded functions with two or more arguments, a best m:
is found for each argument using the rules from 87.4. A function that is the best match for ©
argument and a better than or equal match for all other arguments is called. If no such funct
exists, the call is rejected as ambiguous. For example:
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void g()
{

double d=pow( 2.0, 2); / / error: pow(int(2.0),2) or pow(2.0,double(2))?
}

The call is ambiguous becaus2 0 is the best match for the first argument of
pow( double, double) and2 is the best match for the second argumerpowi( int, int) .

7.5 Default Arguments]fct.defarg]

A general function often needs more arguments than are necessary to handle simple cases. Ir
ticular, functions that construct objects (810.2.3) often provide several options for flexibility. Cor
sider a function for printing an integer. Giving the user an option of what base to print it in seer
reasonable, but in most programs integers will be printed as decimal integer values. For exampl

void print(int value, int base=10);/ / default base is 10

void f()

{
print( 31);
print( 31, 10);
print( 31, 16);
print( 31, 2);
}

might produce this output:
31 31 1f 11111

The effect of a default argument can alternatively be achieved by overloading:

void print(int value, int base);
inline void print(int value) { print( value, 10); }

However, overloading makes it less obvious to the reader that the intent is to have a single p
function plus a shorthand.

A default argument is type checked at the time of the function declaration and evaluated at
time of the call. Default arguments may be provided for trailing arguments only. For example:

int f(int, int=0, char* =0); / / ok
int g(int=0, int=0, char*); / / error
int h(int=0, int, char* =0); / / error
Note that the space between thand the= is significant {= is an assignment operator; §6.2):

int nasty( char*=0); | | syntax error

A default argument can be repeated in a subsequent declaration in the same scope but not cha
For example:
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void f(int x=7);

void f(int=7); ! | ok

void f(int = 8); [ | error: different default arguments
void g()

{

void f(int x=9); / / ok: this declaration hides the outer one
...

}

Declaring a hame in a nested scope so that the name hides a declaration of the same name
outer scope is error prone.

7.6 Unspecified Number of Argumentsfct.stdarg]

For some functions, it is not possible to specify the number and type of all arguments expected
call. Such a function is declared by terminating the list of argument declarations with the ellips
(... ), which means “and maybe some more arguments.” For example:

int printf( const char* ...) ;

This specifies that a call of the C standard library fungantf() (821.8) must have at least one
argument, &har* , but may or may not have others. For example:

printf(" Hello, world! \n") ;
printf(" My name is % %8\n", first name second name);
printf("% d + %d = %@d\n", 2, 3, 5);

Such a function must rely on information not available to the compiler when interpreting its arg
ment list. In the case gfrintf() , the first argument is a format string containing special charactel
sequences that alloprintf() to handle other arguments correctd means “expect ahar*
argument” and%d means “expect aint argument.” However, the compiler cannot in general
know that, so it cannot ensure that the expected arguments are really there or that an argument
the proper type. For example,

#include <stdio. h>

int main()

{
}

will compile and (at best) cause some strange-looking output (try it!).

Clearly, if an argument has not been declared, the compiler does not have the informat
needed to perform the standard type checking and type conversion for it. In thatalesegraa
short is passed as ant and afloat is passed as @ouble. This is not necessarily what the pro-
grammer expects.

A well-designed program needs at most a few functions for which the argument types are |
completely specified. Overloaded functions and functions using default arguments can be use

printf(" My name is % %s\n", 2);
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take care of type checking in most cases when one would otherwise consider leaving argun
types unspecified. Only when both the number of argunssmdthe type of arguments vary is the
ellipsis necessary. The most common use of the ellipsis is to specify an interface to C library fu
tions that were defined before€provided alternatives:

rom <cstdio>

int fprintf( FILE*, const char* ...) ; I
/| from UNIX header

f
int exed( const char* ...) ; f
A standard set of macros for accessing the unspecified arguments in such functions can be four
<cstdarg>. Consider writing an error function that takes one integer argument indicating th
severity of the error followed by an arbitrary number of strings. The idea is to compose the er
message by passing each word as a separate string argument. The list of string arguments sl
be terminated by a null pointer ¢har:

extern void emor(int...) ;
extern char* itoa( int, char[]) ; I | see 86.6[17]
const char* Null_cp=0;

int main( int argc, char* argv]])

{
switch (argc) {
case 1
emror( 0, argv] 0], Null_cp);
break;
case 2
emror( 0, argv] 0], argv] 1], Null_cp);
break;
default:
char buffer| 8];
emor( 1, argv 0], "with", itoa( argc- 1, buffer),” arguments’, Null_cp);
}
/.
}

The functionitoa() returns the character string representing its integer argument.

Note that using the integéras the terminator would not have been portable: on some imple
mentations, the integer zero and the null pointer do not have the same representation. This il
trates the subtleties and extra work that face the programmer once type checking has been
pressed using the ellipsis.

The error function could be defined like this:

void error(int severity ...) // "severity" followed by a zero-terminated list of char*s
{

va list ap;

va_start( ap, sewerity); / / arg startup
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for () {
char* p =va_arg( ap, char*) ;
if (p==0) break;
car <<p<<’ 7
}
va_end( ap); / | arg cleanup
cemr <<’ \n';

if ( severity) exit( severity);

}

First, ava list is defined and initialized by a call @& start() . The macrova_start takes the
name of theva_list and the name of the last formal argument as arguments. The vaaarg()

is used to pick the unnamed arguments in order. In each call, the programmer must supply a t
va arg() assumes that an actual argument of that type has been passed, but it typically has no
of ensuring that. Before returning from a function in whiehstart() has been useda end()

must be called. The reason is that start() may modify the stack in such a way that a return
cannot successfully be don&_end() undoes any such modifications.

7.7 Pointer to Function]fct.pf]

There are only two things one can do to a function: call it and take its address. The poin
obtained by taking the address of a function can then be used to call the function. For example:

void emor(string s) { /* ..* }
void (* efct)( string); !/ pointer to function

void f()
efct = &error; /| efct points to error
efct(" emor") ; /I call error through efct
}

The compiler will discover thagfct is a pointer and call the function pointed to. That is, derefer-
encing of a pointer to function usirigis optional. Similarly, using: to get the address of a func-
tion is optional:

void (* f1)( string) = &error; / / ok
void (* f2)( string) = emror; / / also ok; same meaning as &error
void g()

{
f1(" Vasa') ; [ | ok
(* f1)(" Mary Rose") ; / / also ok

Pointers to functions have argument types declared just like the functions themselves. In poir
assignments, the complete function type must match exactly. For example:
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void (* pf)( string); / / pointer to void(string)
void f1( string); /1 void(string)

int f2( string); [ I int(string)

void f3(int*) ; /1 void(int*)

void f()

{
pf = &f1; ! | ok
pf = &f2; | | error: bad return type
pf = &f3; [ I error: bad argument type
pf(" Hera") ; /| ok
pf(1); /| error: bad argument type
int i = pf(" Zeus") ; / / error: void assigned to int

}

The rules for argument passing are the same for calls directly to a function and for calls to a fu
tion through a pointer.

It is often convenient to define a name for a pointer-to-function type to avoid using the som
what nonobvious declaration syntax all the time. Here is an example from a UNIX system heade

typedef void (* SIG_TYP)( int); /| from<signal.l»
typedef void (* SIG_ARG TYP)( int);
SIG_TYP signal( int, SIG_ARG TYP);

An array of pointers to functions is often useful. For example, the menu system for my mous
based editor is implemented using arrays of pointers to functions to represent operations. The
tem cannot be described in detail here, but this is the general idea:

typedef void (* PF)() ;

PF edit opg] ={ | | edit operations
&cut, &paste, &copy, &search

h

PF file opg] ={ / | file management
&open, &append, &close &write

2

We can then define and initialize the pointers that control actions selected from a menu associ
with the mouse buttons:

PF* button2 = edit_ops,
PF* button3 = file_ops,

In a complete implementation, more information is needed to define each menu item. For exam|
a string specifying the text to be displayed must be stored somewhere. As the system is used
meaning of mouse buttons changes frequently with the context. Such changes are perfori
(partly) by changing the value of the button pointers. When a user selects a menu item, sucl
item 3 for button 2, the associated operation is executed:

button2[ 2]() ;/ / call button2’s 3rd function
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One way to gain appreciation of the expressive power of pointers to functions is to try to write su
code without them— and without using their better-behaved cousins, the virtual functions
(812.2.6). A menu can be modified at run-time by inserting new functions into the operator tab
It is also easy to construct new menus at run-time.

Pointers to functions can be used to provide a simple form of polymorphic routines, that is, rc
tines that can be applied to objects of many different types:

typedef int (* CFT)( const void*, const void*) ;

void ssort( void* base size t n, sizet sz CFT cmp)

/*
Sort the "n" elements of vector "base" into increasing order
using the comparison function pointed to by "cmp".
The elements are of size "sz".

Shell sort (Knuth, Vol3, pg84)
*

for (int gap=n/ 2; O<gap; gap/= 2)
for (int i=gap; i<n; i++)
for (int j=i- gap; 0<=j; j-=gap) {
char* b = static_cast<char*>( base);/ / necessary cast
char* pj = bt+j*sz | | &base[j]
char* pjg = b+( j+gap)* sz /1 &base[j+gap]

if (cmp( pj, pjg)< 0) { | | swap base[j] and base[j+gap]:
for (int k=0; k<sz k++) {
char temp = pj[ K|;
pil K = pigl Kl;
pig[ K| = temp;

}

Thessort() routine does not know the type of the objects it sorts, only the number of elements (t
array size), the size of each element, and the function to call to perform a comparison. The typ
ssort() was chosen to be the same as the type of the standard C library sort gqsotife,. Real
programs us@sort() , the G+ standard library algorithreort (§18.7.1), or a specialized sort rou-
tine. This style of code is common in C, but it is not the most elegant way of expressing this al
rithm in CH+ (see §13.3, §13.5.2).

Such a sort function could be used to sort a table such as this:

struct User {
char* name
char* id;
int dept;
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User heads] ={

" Ritchie D. M", " dmr", 11271,
" Sethi R", " rawvi", 11272,
"Szymanski T. G."," tgs', 11273,
"Schryer N. L.", " nls’, 11274,
"Schryer N. L.", " nls’, 11275,
" Kemighan B. W.", " bwk’, 11276
2
void print_id( User* v, int n)
{
for (int i=0; i<n; i++)
cout << V[ i]. name<< Wt << V[i]. id<< " Wt" << V[i]. dept<< \n’;
}

To be able to sort, we must first define appropriate comparison functions. A comparison functi
must return a negative value if its first argument is less than the second, zero if the arguments
equal, and a positive number otherwise:

int cmpl( const void* p, const void* q) / / Compare hame strings

return stremp static_cast<const User*>( p)-> name static_cast<const User>( g)-> name);
}

int cmp2( const void* p, const void* q) / / Compare dept numbers
{

}
This program sorts and prints:

return static_cast<const User*>( p)-> dept - static_cast<const User*>( q)-> dept;

int main()

{
cout << " Heads in alphabetical order: \n";
ssort( heads, 6, sizeof( User), cmpl);
print_id( heads, 6);
cout << "\n";

cout << "Heads in order of department number: \n";
ssort( heads, 6, sizeof( User), cmp2);
print_id( heads, 6);

}

You can take the address of an overloaded function by assigning to or initializing a pointer to fur
tion. In that case, the type of the target is used to select from the set of overloaded functions.
example:

void f(int);
int f( char);

void (* pfl)( int) = &f; / / void f(int)
int (* pf2)( char) =&f; [/ / intf(char)
void (* pf3)( char) = &f; / / error: no void f(char)
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A function must be called through a pointer to function with exactly the right argument and retu
types. There is no implicit conversion of argument or return types when pointers to functions e
assigned or initialized. This means that

int cmp3( const mytype*, const mytype*) ;

is not a suitable argument fesort() . The reason is that acceptiegp3 as an argument to
ssort() would violate the guarantee thanp3 will be called with arguments of typaytype* (see
also §9.2.5).

7.8 Macrosjfct.macro]

Macros are very important in C but have far fewer usestitt 0he first rule about macros is:
Don’t use them unless you have to. Almost every macro demonstrates a flaw in the programm
language, in the program, or in the programmer. Because they rearrange the program text be
the compiler proper sees it, macros are also a major problem for many programming tools.
when you use macros, you should expect inferior service from tools such as debuggers, cr
reference tools, and profilers. If you must use macros, please read the reference manual for
own implementation of the#3 preprocessor carefully and try not to be too clever. Also to warn
readers, follow the convention to name macros using lots of capital letters. The syntax of macro
presented in 8A.11.

A simple macro is defined like this:

#define NAME rest of line
WhereNAME is encountered as a token, it is replaceddsyof line. For example,
named = NAME
will expand into
named = rest of line
A macro can also be defined to take arguments. For example:
#define MAC( x, y) argumentl: x argument2: y

When MAC is used, two argument strings must be presented. They will repland y when
MAC() is expanded. For example,

expanded = MAC( foo bar, yuk yuk)
will be expanded into
expanded = argumentl: foo bar argument2: yuk yuk
Macro names cannot be overloaded, and the macro preprocessor cannot handle recursive calls:

#define PRINT( a, b) cout<<( a)<<( b)
#define PRINT( a, b, ¢) cout<<( a)<<( b)<<( c) /* trouble?: redefines, does not overlodd

#define FAC(n) (n>1)? n* FAC(n-1): 1 [* trouble: recursive macrd/
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Macros manipulate character strings and know little ab#titsgntax and nothing about-€types
or scope rules. Only the expanded form of a macro is seen by the compiler, so an error in a m
will be reported when the macro is expanded, not when it is defined. This leads to very obsc
error messages.

Here are some plausible macros:

#define CASE break; case
#define FOREVER for(;;)

Here are some completely unnecessary macros:

#define PI 3. 141593
#define BEGIN {
#define END }

Here are some dangerous macros:

#define SQUARE( a) a*a
#define INCR xx ( xx)++

To see why they are dangerous, try expanding this:
int xx=0; / | global counter

void f()
{

int xx=0; / 1 local variable
int y=SQUARE( xx+2); / | y=xx+2*xx+2; that is y=xx+(2*xx)+2
INCR_Xxx; /| increments local xx

}

If you must use a macro, use the scope resolution operatathen referring to global names
(84.9.4) and enclose occurrences of a macro argument name in parentheses whenever possible
example:

#define MIN(a, b) (( a)<( b)?( a):( b))

If you must write macros complicated enough to require comments, it is wise fo e com-
ments because C preprocessors that do not know aba@omments are sometimes used as part of
Ct+tools. For example:

#define M2(a) something(a) /* thoughtful commentt

Using macros, you can design your own private language. Even if you prefer this “enhanced Iz
guage” to plain &+, it will be incomprehensible to most€ programmers. Furthermore, the C
preprocessor is a very simple macro processor. When you try to do something nontrivial, you
likely to find it either impossible or unnecessarily hard to do. ddrest, inline, template, and
namespace mechanisms are intended as alternatives to many traditional uses of preprocessor c
structs. For example:

const int answer = 42;
template<class T> inline T min(T a, T b) { return (a<b)? a: b; }
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When writing a macro, it is not unusual to need a new name for something. A string can be cree
by concatenating two strings using ## macro operator. For example,

#define NAME2( a, b) a##b
int NAME2( hack, cah)() ;

will produce
int hackcah() ;

for the compiler to read.
The directive

#undef X

ensures that no macro calledis defined— whether or not one was before the directive. This
affords some protection against undesired macros. However, it is not always easy to know what
effects ofX on a piece of code were supposed to be.

7.8.1 Conditional Compilation [fct.cond]

One use of macros is almost impossible to avoid. The diretifdef identifier conditionally
causes all input to be ignored unti#endif directive is seen. For example,

int f(int a

#ifdef arg_two

,int b

#endif

);

produces

int f(int a
)i
for the compiler to see unless a macro cadlegl two has beertdefined. This example confuses
tools that assume sane behavior from the programmer.
Most uses oftifdef are less bizarre, and when used with restréifidef does little harm. See
also §9.3.3.
Names of the macros used to conttifdef should be chosen carefully so that they don't clash
with ordinary identifiers. For example:

struct Call_info {
Node* arg_one
Node* arg_two;
/..

h
This innocent-looking source text will cause some confusion should someone write:

#define arg_two x

Unfortunately, common and unavoidable headers contain many dangerous and unnecessary ma
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7.9 Advice[dcl.advice]

[1]

2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

Be suspicious of nonenst reference arguments; if you want the function to modify its argu-
ments, use pointers and value return instead; 85.5.

Useconst reference arguments when you need to minimize copying of arguments; 85.5.
Useconst extensively and consistently; §7.2.

Avoid macros; 8§7.8.

Avoid unspecified numbers of arguments; §7.6.

Don'’t return pointers or references to local variables; §7.3.

Use overloading when functions perform conceptually the same task on different types; 8§7.
When overloading on integers, provide functions to eliminate common ambiguities; §7.4.3.
When considering the use of a pointer to function, consider whether a virtual functio
(82.5.5) or a template (82.7.2) would be a better alternative; 87.7.

[10] If you must use macros, use ugly names with lots of capital letters; §7.8.

7.10 Exercisegfct.exercises]

1.

o

(1) Write declarations for the following: a function taking arguments of type pointer to charac
ter and reference to integer and returning no value; a pointer to such a function; a function t
ing such a pointer as an argument; and a function returning such a pointer. Write the definiti
of a function that takes such a pointer as an argument and returns its argument as the re
value. Hint: Usaypedef.

(1) What does the following mean? What would it be good for?

typedef int (& rifii) (int, int);

(C1.5) Write a program like “Hello, world!” that takes a name as a command-line argumer
and writes “Hello,name! ”. Modify this program to take any number of names as arguments
and to say hello to each.

(CL.5) Write a program that reads an arbitrary number of files whose names are given
command-line arguments and writes them one after anotheouin Because this program
concatenates its arguments to produce its output, you might call it

(C2) Convert a small C program ta-€ Modify the header files to declare all functions called
and to declare the type of every argument. Where possible, réjolefimes with enum, const,

or inline. Removeextern declarations from c files and if necessary convert all function defi-
nitions to G+ function definition syntax. Replace callsrélloc() andfreg) with newand
delete. Remove unnecessary casts.

(@) Implementssort() (87.7) using a more efficient sorting algorithm. Higort() .

(C».5) Consider:

struct Tnode{
string word,;
int count;
Tnode* left;
Tnode* right;



164  Functions Chapter 7

Write a function for entering new words into a tre€Tobdes. Write a function to write out a
tree of Tnodes. Write a function to write out a tree ©hodes with the words in alphabetical
order. Modify Tnode so that it stores (only) a pointer to an arbitrarily long word stored as ar
array of characters on free store usiegv. Modify the functions to use the new definition of
Tnode.

(C2.5) Write a function to invert a two-dimensional array. Hint: 8C.7.

9. () Write an encryption program that reads frcimand writes the encoded charactersdat.

You might use this simple encryption scheme: the encrypted form of a charmotekeyf i] ,
wherekey is a string passed as a command-line argument. The program uses the charactel
key in a cyclic manner until all the input has been read. Re-encrypting encoded text with t
same key produces the original text. If no key (or a null string) is passed, then no encryptior
done.

10. ((B.5) Write a program to help decipher messages encrypted with the method described
§7.10[9] without knowing the key. Hint: See David Kahrhe Codebreakersvacmillan,
1967, New York, pp. 207-213.

11. (B) Write anerror function that takes arintf-style format string containings, %, and%d
directives and an arbitrary number of arguments. Don'tpuaef() . Look at §21.8 if you
don’t know the meaning d&fs, %, and%d. Use<cstdarg>.

12. () How would you choose names for pointer to function types defined typiedef?

13. (@) Look at some programs to get an idea of the diversity of styles of names actually us
How are uppercase letters used? How is the underscore used? When are short namées suc
andx used?

14. (1) What is wrong with these macro definitions?

#define PI = 3. 141593,

#define MAX( a, b) a>b?a: b
#define fac(a) (a)* fac(( a)- 1)

©

15. ((B) Write a macro processor that defines and expands simple macros (like the C preproce:
does). Read frongin and write tocout. At first, don’t try to handle macros with arguments.
Hint: The desk calculator (86.1) contains a symbol table and a lexical analyzer that you col
modify.

16. (2) Implemeniprint() from 8§7.5.

17. (2) Add functions such asrt() , log() , andsin() to the desk calculator from §6.1. Hint:
Predefine the names and call the functions through an array of pointers to functions. Don't f
get to check the arguments in a function call.

18. () Write a factorial function that does not use recursion. See also §11.14[6].

19. ((2) Write functions to add one day, one month, and one yeabD#iesas defined in §5.9[13].
Write a function that gives the day of the week for a gbate. Write a function that gives the
Date of the first Monday following a giveDate.
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Namespaces and Exceptions

The year is 787!
AD.?
— Monty Python

No rule is so general,
which admits not some exception.
— Robert Burton

Modularity, interfaces, and exceptions namespaces- using — using namespace —
avoiding name clashes- name lookup— namespace compositier namespace aliases
— namespaces and C code exceptions— throw and catch — exceptions and pro-
gram structure— advice— exercises.

8.1 Modularization and Interfaces[name.module]

Any realistic program consists of a number of separate parts. For example, even the simple “He
world!” program involves at least two parts: the user code reqtieite, world! to be printed,
and the 1/0O system does the printing.

Consider the desk calculator example from §6.1. It can be viewed as being composed of
parts:

[1] The parser, doing syntax analysis

[2] The lexer, composing tokens out of characters

[3] The symbol table, holding (string,value) pairs

[4] The driver,main()

[5] The error handler
This can be represented graphically:
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driver
parser

symbol tablé
ot handes

where an arrow means “using.” To simplify the picture, | have not represented the fact that eve
part relies on error handling. In fact, the calculator was conceived as three parts, with the dri
and error handler added for completeness.

When one module uses another, it doesn't need to know everything about the module us
Ideally, most of the details of a module are unknown to its users. Consequently, we make a dist
tion between a module and its interface. For example, the parser directly relies on the lexer’s in
face (only), rather than on the complete lexer. The lexer simply implements the services adverti
in its interface. This can be presented graphically like this:

driver

parser interface< - - - - - - - parser implementatic#n

lexer interface<=— - - — - /. - {Iexer implementatiqn

symbol table interfac

error handler

Dashed lines means “implements.” | consider this to be the real structure of the program, and «
job as programmers is to represent this faithfully in code. That done, the code will be simple, e
cient, comprehensible, maintainable, etc., because it will directly reflect our fundamental design.

The following sections show how the logical structure of the desk calculator program can |
made clear, and §9.3 shows how the program source text can be physically organized to take ac
tage of it. The calculator is a tiny program, so in “real life” | wouldn't bother using namespace
and separate compilation (82.4.1, 89.1) to the extent | do here. It is simply used to present te
niques useful for larger programs without our drowning in code. In real programs, each “module
represented by a separate namespace will often have hundreds of functions, classes, templates,

To demonstrate a variety of techniques and language features, | develop the modularizatior

-~ - - -/ symbol table implementatign
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the calculator in stages. In “real life,” a program is unlikely to grow through all of these stage:
An experienced programmer might pick a design that is “about right” from the start. However, ¢
a program evolves over the years, dramatic structural changes are not uncommon.

Error handling permeates the structure of a program. When breaking up a program into m
ules or (conversely) when composing a program out of modules, we must take care to minim
dependencies between modules caused by error handhtgpr@vides exceptions to decouple the
detection and reporting of errors from the handling of errors. Therefore, the discussion of how
represent modules as namespaces (88.2) is followed by a demonstration of how we can use e
tions to further improve modularity (88.3).

There are many more notions of modularity than the ones discussed in this chapter and the r
For example, we might use concurrently executing and communicating processes to repre:
important aspects of modularity. Similarly, the use of separate address spaces and the commu
tion of information between address spaces are important topics not discussed here. | cons
these notions of modularity largely independent and orthogonal. Interestingly, in each case, se
rating a system into modules is easy. The hard problem is to provide safe, convenient, and effic
communication across module boundaries.

8.2 Namespacemame.namespace]

A namespace is a mechanism for expressing logical grouping. That is, if some declarations Ic
cally belong together according to some criteria, they can be put in a common namespace
express that fact. For example, the declarations of the parser from the desk calculator (§86.1.1)
be placed in a namespdearser:
namespace Parser {
double expr( bool);
double prim( bool get) { /* ...*/ }
double term( bool get) { /* ...*/ }
double expr( bool get) { /* ...*/ }
}

The functionexpr() must be declared first and then later defined to break the dependency loc
described in §6.1.1.
The input part of the desk calculator could be also placed in its own namespace:

namespace Lexer {
enum Token value {

NAME, NUMBER, END,
PLUS="+, MINUS="-", MUL="*, DIV="/",
PRINT=";, ASSIGN="=", LP="(/, RP=")

h

Token value curr_tok;
double mumber_value;
string string_value;

Token value get token() { /* ..* }
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This use of namespaces makes it reasonably obvious what the lexer and the parser provide
user. However, had | included the source code for the functions, this structure would have b
obscured. If function bodies are included in the declaration of a realistically-sized namespace,
typically have to wade through pages or screenfuls of information to find what services are offer
that is, to find the interface.

An alternative to relying on separately specified interfaces is to provide a tool that extracts
interface from a module that includes implementation details. | don’t consider that a good solutic
Specifying interfaces is a fundamental design activity (see §23.4.3.4), a module can provide diff
ent interfaces to different users, and often an interface is designed long before the implementa
details are made concrete.

Here is a version of thearser with the interface separated from the implementation:

namespace Parser {
double prim( bool);
double term( bool);
double expr( bool);
}

double Parser:: prim( bool get) { /* ...*/ }
double Parser:: term( bool get) { /* ...*/ }
double Parser:: expr( bool get) { /* ...*/ }

Note that as a result of separating the implementation of the interface, each function now |
exactly one declaration and one definition. Users will see only the interface containing declaratio
The implementatior in this case, the function bodieswill be placed “somewhere else” where a
user need not look.

As shown, a member can be declared within a namespace definition and defined later using
namespace-name member-namaotation.

Members of a namespace must be introduced using this notation:

namespace mamespace- name {
/1 declaration and definitions
}

We cannot declare a new member of a namespace outside a namespace definition using the
fier syntax. For example:

void Parser:: logical( bool); / / error: no logical() in Parser

The idea is to make it reasonably easy to find all names in a namespace declaration and als
catch errors such as misspellings and type mismatches. For example:

double Parser:: trem( bool); / / error: no trem() in Parser
double Parser:: prim( int); /| error: Parser::prim() takes a bool argument

A namespace is a scope. Thus, “namespace” is a very fundamental and relatively simple conc
The larger a program is, the more useful namespaces are to express logical separations of its |
Ordinary local scopes, global scopes, and classes are namespaces (8C.10.3).

Ideally, every entity in a program belongs to some recognizable logical unit (“module™)
Therefore, every declaration in a nontrivial program should ideally be in some namespace name
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indicate its logical role in the program. The exceptioma@n() , which must be global in order
for the run-time environment to recognize it as special (§8.3.3).

8.2.1 Qualified Names [name.qualified]

A namespace is a scope. The usual scope rules hold for namespaces, so if a name is previ
declared in the namespace or in an enclosing scope, it can be used without further fuss. A n
from another namespace can be used when qualified by the name of its namespace. For examg

double Parser:: term( bool get) /| note Parser:: qualification

double left = prim( get); /1 no qualification needed

for ()
switch ( Lexer: : curr_tok) { /| note Lexer:: qualification
case Lexer:: MUL: /| note Lexer:: qualification
left *= prim( true); /| no qualification needed
...

..
}

The Parser qualifier is necessary to state that tteam() is the one declared iRarser and not
some unrelated global function. Becatewn() is a member oParser, it need not use a qualifier
for prim() . However, had theexer qualifier not been preseraurr_tok would have been consid-
ered undeclared because the members of namelsexareare not in scope from within thearser
namespace.

8.2.2 Using Declarations [name.using.dcl]

When a name is frequently used outside its hamespace, it can be a bother to repeatedly qual
with its namespace name. Consider:

double Parser:: prim( bool get) /| handle primaries

if (get) Lexer:: get token() ;

switch ( Lexer: : curr_tok) {

case Lexer:: NUMBER /I floating-point constant
Lexer: : get_token() ;
return Lexer:: number_value

case Lexer:: NAME:

{ double& v = table] Lexer: : string_value];
if (Lexer: : get token() == Lexer:: ASSIGN) v = expr( true);
return v,

}

case Lexer:: MINUS [/ unary minus
return - prim( true) ;
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case Lexer:: LP:
{ double e= expr( true);

if (Lexer:: curr_tok!= Lexer:: RP) return Error:: error(") expected’) ;

Lexer: : get_token() ; / | eat’y
return €
}
case lLexer:: END:
return 1,
default:
return Error:: emror(" primary expected’) ;
}

Chapter 8

The repeated qualificatiobexer is tedious and distracting. This redundancy can be eliminated by
ausing-declaratiorto state in one place that thet token used in this scope lsexer’'s get token
For example:

double Parser:: prim( bool get) /| handle primaries

{

}

using Lexer:: get token; / / use Lexer’'s getoken
using Lexer:: curr_tok; / / use Lexer’s currtok
using Error:: error; [ | use Error’s error

if (get) get token() ;

switch ( curr_tok) {

case Lexer:: NUMBER /I floating-point constant
get_token() ;
return Lexer:: number_value

case LLexer:: NAME:

{ double& v = table[ Lexer: : string_value) ;
if (get_token() == Lexer:: ASSIGN) v = expr( true);
return v,

}

case Lexer:: MINUS /| unary minus
return - prim( true) ;

case Lexer:: LP:

{ double e= expr( true);

if (curr_tok != Lexer:: RP) return emror(") expected') ;

get_token() ; / | eat’)
return €
}
case Lexer:: END:
return 1,
default:
return eror(" primary expected’) ;
}

A using-declaratiorintroduces a local synonym.
It is often a good idea to keep local synonyms as local as possible to avoid confusic
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However, all parser functions use similar sets of names from other modules. We can theref
place theusing-declaration in theParser's namespace definition:

namespace Parser {
double prim( bool);
double term( bool);
double expr( bool);

using Lexer:: get tokem; / / use Lexer's getoken
using Lexer:: curr_tok; / / use Lexer’s currtok
using Error:: error; / | use Error’s error

}
This allows us to simplify thParser functions almost to our original version (86.1.1):

double Parser: : term( bool get) /| multiply and divide

double left = prim( get);
for (%))
switch ( curr_tok) {
case Lexer:: MUL:
left *= prim( true);
break;
case Lexer:: DIV:
if (double d= prim( true)) {
left /= d;
break;
}
return eror(" divide by 0") ;

default:
return left;
}

}

| could have introduced the token names into Paeser's namespace. However, | left them
explicitly qualified as a reminder #farser's dependency ohexer.

8.2.3 Using Directives [name.using.dir]

What if our aim were to simplify thParser functions to beexactlyour original versions? This
would be a reasonable aim for a large program that was being converted to using namespaces
a previous version with less explicit modularity.

A using-directivemakes names from a hamespace available almost as if they had been decla
outside their namespace (88.2.8). For example:

namespace Parser {
double prim( bool);
double term( bool);
double expr( bool);
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using namespace Lexer; / / make all names from Lexer available
using namespace Eror; / / make all names from Error available

}
This allows us to writ@arser's functions exactly as we originally did (86.1.1):
double Parser: : term( bool get) /| multiply and divide

double left = prim( get);

for (;})
switch ( curr_tok) { I | Lexer's curr tok
case MUL: / | Lexer's MUL
left *= prim( true);
break;
case DIV: | | Lexer's DIV
if (double d= prim( true)) {
left /= d;
break;
}
return emror(" divide by 0" ; / / Error's error
default:
return left;
}

}

Globalusing-directive are a tool for transition (88.2.9) and are otherwise best avoided. In a nam
space, ausing- directive is a tool for namespace composition (88.2.8). In a function (only), a
using- directive can be safely used as a notational convenience (88.3.3.1).

8.2.4 Multiple Interfaces [name.multi]

It should be clear that the namespace definition we evolveddiser is not the interface that the
Parser presents to its users. Instead, it is the set of declarations that is needed to write the indi
ual parser functions conveniently. TRarser's interface to its users should be far simpler:

namespace Parser {
double expr( bool);
}

Fortunately, the twoamespace-definitianfor Parser can coexist so that each can be used where it
is most appropriate. We see the namesparser used to provide two things:

[1] The common environment for the functions implementing the parser

[2] The external interface offered by the parser to its users
Thus, the driver codenain() , should see only:

namespace Parser { /| interface for users
double expr( bool);
}

The functions implementing the parser should see whichever interface we decided on as the bes
expressing those functions’ shared environment. That is:
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namespace [Parser { /| interface for implementers
double prim( bool);
double term( bool);
double expr( bool);

using Lexer:: get token; / / use Lexer's getoken
using Lexer:: curr_tok; / / use Lexer’s currtok
using Error:: error; / I use Error's error

}
or graphically:

Parser Parser

| Driver | Parser implementation ‘

The arrows represent “relies on the interface provided by” relations.

Parser’ is the small interface offered to users. The n®arser” (Parser prime) is not at€
identifier. It was chosen deliberately to indicate that this interface doesn’'t have a separate nam
the program. The lack of a separate name need not lead to confusion because programmers
rally invent different and obvious names for the different interfaces and because the physical lay
of the program (see §9.3.2) naturally provides separate (file) names.

The interface offered to implementers is larger than the interface offered to users. Had t
interface been for a realistically-sized module in a real system, it would change more often than
interface seen by users. It is important that the users of a module (in thisnaagg, using
Parser) are insulated from such changes.

We don't need to use two separate namespaces to express the two different interfaces, but i
wanted to, we could. Designing interfaces is one of the most fundamental design activities and
in which major benefits can be gained and lost. Consequently, it is worthwhile to consider what
are really trying to achieve and to discuss a number of alternatives.

Please keep in mind that the solution presented is the simplest of those we consider, and c
the best. Its main weaknesses are that the two interfaces don’t have separate names and th
compiler doesn't necessarily have sufficient information to check the consistency of the two defil
tions of the namespace. However, even though the compiler doesn't always get the opportunit
check the consistency, it usually does. Furthermore, the linker catches most errors missed by
compiler.

The solution presented here is the one | use for the discussion of physical modularity (89.3) :
the one | recommend in the absence of further logical constraints (see also §8.2.7).

8.2.4.1 Interface Design Alternatives [name.alternatives]

The purpose of interfaces is to minimize dependencies between different parts of a program. M
mal interfaces lead to systems that are easier to understand, have better data hiding propertie:
easier to modify, and compile faster.
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When dependencies are considered, it is important to remember that compilers and progr
mers tend to take a somewhat simple-minded approach to them: “If a definition is in scope at pc
X, then anything written at point X depends on anything stated in that definition.” Typically
things are not really that bad because most definitions are irrelevant to most code. Given the c
nitions we have used, consider:

namespace Parser { /| interface for implementers
/..
double expr( bool);
..

}

int main()

{
...
Parser: : expr( false);
Il ...

}

The functionmain() depends orParser:: expr() only, but it takes time, brain power, computa-
tion, etc., to figure that out. Consequently, for realistically-sized programs people and compilati
systems often play it safe and assume that where there might be a dependency, there is one. T
typically a perfectly reasonable approach.

Thus, our aim is to express our program so that the set of potential dependencies is reduce
the set of actual dependencies.

First, we try the obvious: define a user interface to the parser in terms of the implementer int
face we already have:

namespace Parser { /| interface for implementers
/...
double expr( bool);
/...

}

namespace Parser_interface { | | interface for users

using Parser: : expr;

}

Clearly, users oParser_interface depend only, and indirectly, dParser:: expr() . However, a
crude look at the dependency graph gives us this:

Parser

Parser_interface

' Parser implementation
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Now thedriver appears vulnerable to any change in Baeser interface from which it was sup-
posed to be insulated. Even this appearance of a dependency is undesirable, so we expli
restrict Parser_interface's dependency oRarser by having only the relevant part of the imple-
menter interface to parser (that was callPdrser’ earlier) in scope where we define
Parser_interface

namespace Parser { /| interface for users
double expr( bool);
}

namespace Parser_interface{ / / separately named interface for users
using Parser: : expr;
}
or graphically:

Parser Parser

Parser_interface

- Parser implementation '

To ensure the consistency Barser and Parser’ , we again rely on the compilation system as a
whole, rather than on just the compiler working on a single compilation unit. This solution diffet
from the one in §88.2.4 only by the extra namesiizarser_interface. If we wanted to, we could
give Parser_interface a concrete representation by giving it its osxpr() function:

namespace Parser_interface {
double expr( bool);
}

Now Parser need not be in scope in order to defRarser_interface. It needs to be in scope only
whereParser_interface: : expr() is defined:

double Parser_interface : expr( bool get)
{

}

return Parser:: expr( get);

This last variant can be represented graphically like this:
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Parser_interface Parser

\/

Parser_interface
implementation

Driver | Parser implementation '

Now all dependencies are minimized. Everything is concrete and properly named. However,
most problems | face, this solution is also massive overkill.

8.2.5 Avoiding Name Clashes [name.clash]

Namespaces are intended to express logical structure. The simplest such structure is the distin
between code written by one person vs. code written by someone else. This simple distinction
be of great practical importance.

When we use only a single global scope, it is unnecessarily difficult to compose a program
of separate parts. The problem is that the supposedly-separate parts each define the same n
When combined into the same program, these names clash. Consider:

/1 my.h:

char f( char);

int f(int);

class Sring{ /* ..* }
/1 your.h:

char f( char);

double f{ double);
class Sring{ /* ...* };

Given these definitions, a third party cannot easily use iogtth andyour. h. The obvious solu-
tion is to wrap each set of declarations in its own namespace:

namespace My {

char f( char);

int f(int);

class Sring{ /* ..*/ };
}
namespace Your {

char f( char);

double f{ double);

class Sring{ /* ..*/ }
}

Now we can use declarations frauty and Your through explicit qualification (88.2.1)ysing-
declarationg(88.2.2), orsing-directive$88.2.3).
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8.2.5.1 Unnamed Namespaces [name.unnamed]

It is often useful to wrap a set of declarations in a namespace simply to protect against the poss
ity of name clashes. That is, the aim is to preserve locality of code rather than to present an ir
face to users. For example:

#include " header. h"
namespace Mine {
int &
vod f) {7/~ ..* }
intg) {7/~ ..* }

Since we don’t want the nanMine to be known outside a local context, it simply becomes a
bother to invent a redundant global name that might accidentally clash with someone else’s nar
In that case, we can simply leave the namespace without a name:

#include " header. h"
namespace {
int a;
vod f) {/~ ..* }
intg) {/* ..* }

Clearly, there has to be some way of accessing members of an unnamed namespace from the
side. Consequently, an unnamed namespace has an ingilgeddirective The previous declara-
tion is equivalent to
namespace $$$ {
int a
void f) {/* ..* }
int g0 {/* ..* }

using namespace $$$;

where$$$ is some name unique to the scope in which the namespace is defined. In particul
unnamed namespaces in different translation units are different. As desired, there is no way
naming a member of an unnamed namespace from another translation unit.

8.2.6 Name Lookup [name.koenig]

A function taking an argument of ty@eis more often than not defined in the same namespace a
T. Consequently, if a function isn’'t found in the context of its use, we look in the namespaces of
arguments. For example:

namespace Chrono {
class Date{ /* ...*/ };

bool operator==( const Date&, const std:: string&);
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std: : string format( const Date&); / / make string representation
...

}
void f( Chrono:: Date d int i)

std: : string s= format( d); | | Chrono::format()
std: : string t = format( i); /I error: no format() in scope

}

This lookup rule saves the programmer a lot of typing compared to using explicit qualification, y
it doesn’t pollute the namespace the waysang-directive(§8.2.3) can. It is especially useful for
operator operands (811.2.4) and template arguments (8C.13.8.4), where explicit qualification
be quite cumbersome.

Note that the namespace itself needs to be in scope and the function must be declared bef
can be found and used.

Naturally, a function can take arguments from more than one namespace. For example:

void f( Chrono:: Date d std:: string )

if(d==9) {
..

}

else if (d == " August 4, 1914") {
...

}

}

In such cases, we look for the function in the scope of the call (as ever) and in the namespace
every argument (including each argument’s class and base classes) and do the usual overload
lution (87.4) of all functions we find. In particular, for the addl=s, we look foroperator== in
the scope surroundinff) , in the std namespace (where= is defined forstring), and in the
Chrono namespace. There isstd: : operator==() , but it doesn't take ®ate argument, so we
useChrono:; : operator==() , which does. See also §11.2.4.

When a class member invokes a function, other members of the same class and its base cl:
are preferred over functions potentially found based on the argument types (§811.2.4).

8.2.7 Namespace Aliases [name.alias]
If users give their namespaces short names, the names of different namespaces will clash:

namespace A{/ / short name, will clash (eventually)
/..
}

A:: String s1=" Grieg’;
A:: Sfring s2 =" Nielsen';

However, long namespace names can be impractical in real code:
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namespace American_Telephone_and Telegraph{ / / too long
..
}

American_Telephone_and_Telegraph: : Siring s3= " Grieg';
American_Telephone_and_Telegraph: : String s4 =" Nielsen';

This dilemma can be resolved by providing a short alias for a longer namespace name:

/1 use namespace alias to shorten names:

namespace ATT = American_Telephone_and_Telegraph;

ATT:: String s3=" Gried';

ATT:: String s4=" Nielsen';
Namespace aliases also allow a user to refer to “the library” and have a single declaration defin
what library that really is. For example:

namespace Lib = Foundation library v2r11,
...

Lib:: set s;
Lib:: String s5=" Sbelius’;

This can immensely simplify the task of replacing one version of a library with another. By usir
Lib rather tharFoundation_library v2r11 directly, you can update to version “v3r02” by chang-
ing the initialization of the aliakib and recompiling. The recompile will catch source level incom-
patibilities. On the other hand, overuse of aliases (of any kind) can lead to confusion.

8.2.8 Namespace Composition [name.compose]
Often, we want to compose an interface out of existing interfaces. For example:

namespace His_string {
class Sring{ /* ..*/ };
String operator+( const String&, const String&);
Siring operator+( const String&, const char*) ;
void fill( char);
/...

}

namespace Her_vector {
template<class T> class Vector { /* ...*/ };
/...

}

namespace My lib {
using namespace His_ string;
using namespace Her_vector;
void my fct( String&);
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Given this, we can now write the program in termMyf lib:

void f()

My_lib:: String s="Byron"; / / finds My lib::His_string::String
..
}

using namespace My _lib;
void g( Vector<String>& vs)

{
...
my_fct(vs 5]) ;
...

}

If an explicitly qualified name (such ady lib:: String) isn’t declared in the namespace men-
tioned, the compiler looks in namespaces mentioneding-directive (such aslis _string).
Only if we need to define something, do we need to know the real namespace of an entity:

void My lib:: fill() [ | error: no fill() declared in Mylib
{
..
}
void His_string:: fill() / / ok: fill() declared in Hisstring
{
/..
}
void My _lib:: my fct( My_lib: : Vector<My_lib:: String>& v) // ok
{
Il ...
}

Ideally, a namespace should

[1] express a logically coherent set of features,

[2] not give users access to unrelated features, and

[3] not impose a significant notational burden on users.
The composition techniques presented here and in the following subsectiogsther with the
#include mechanism (89.2.1H provide strong support for this.

8.2.8.1 Selection [name.select]

Occasionally, we want access to only a few names from a namespace. We could do that by wri
a namespace declaration containing only those names we want. For example, we could decle
version ofHis_string that provided th&tring itself and the concatenation operator only:
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namespace His string { /| part of His string only
class Sring{ /* ...* };
String operator+( const String&, const String&);
String operator+( const String&, const char*) ;

}

However, unless | am the designer or maintaineHi& string, this can easily get messy. A
change to the “real” definition oHis_string will not be reflected in this declaration. Selection of
features from a namespace is more explicitly made wsiihg-declaratios:

namespace My_string {
using His_string: : String;
using His_string: : operator+; / / use any + from Hisstring

}

A using-declaratiorbrings every declaration with a given name into scope. In particular, a singl
using-declaratiorcan bring in every variant of an overloaded function.

In this way, if the maintainer dlis_string adds a member function &fring or an overloaded
version of the concatenation operator, that change will automatically become available to user:
My_string. Conversely, if a feature is removed frddis_string or has its interface changed,
affected uses dfly_string will be detected by the compiler (see also §15.2.2).

8.2.8.2 Composition and Selection [name.comp]

Combining composition (bysing-directive) with selection (byusing-declaration) yields the
flexibility needed for most real-world examples. With these mechanisms, we can provide acces:
a variety of facilities in such a way that we resolve name clashes and ambiguities arising from tt
composition. For example:

namespace His _lib {
class Sring{ /* ..*/ };
template<class T> class Vector { /* ..*/ };
...

}

namespace Her_lib {
template<class T> class Vector { /* ...*/ };
class Sring{ /* ..* };
/..
}
namespace My _lib {
using namespace His lib; // everything from Hidlib
using namespace Her_lib; // everything from Hedib

using His lib:: String; / / resolve potential clash in favor of High
using Her_lib:: Vector; / / resolve potential clash in favor of Héib

template<class T> class List{ /* ...*/ }; // additional stuff
...
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When looking into a namespace, names explicitly declared there (including names declared
using-declaratios) take priority over names made accessible in another scopesiygadirective
(see also 8§C.10.1). Consequently, a usdyflib will see the name clashes fétring andVector
resolved in favor oHis lib:: String andHer _lib: : Vector. Also, My lib:: List will be used by
default independently of whethHlis lib or Her_lib are providing d.ist.

Usually, | prefer to leave a name unchanged when including it into a new namespace. Int
way, | don't have to remember two different names for the same entity. However, sometime:
new name is needed or simply nice to have. For example:

namespace Lib2 {
using namespace His lib; // everything from Higlib
using namespace Her_lib; // everything from Hedib
using His lib:: String; / / resolve potential clash in favor of Hig
using Her_lib: : Vector; / / resolve potential clash in favor of Hdib

typedef Her_lib: : String Her_string; / | rename

template<class T> class His_vec /1 “rename”
: public His lib:: Vector<T>{ /* ...* }

template<class T> class List{ /* ...*/ }; // additional stuff

..
}

There is no specific language mechanism for renaming. Instead, the general mechanisms for di
ing new entities are used.

8.2.9 Namespaces and Old Code [name.get]

Millions of lines of C and &€+ code rely on global names and existing libraries. How can we use
namespaces to alleviate problems in such code? Redesigning existing code isn't always a vi
option. Fortunately, it is possible to use C libraries as if they were defined in a namespace. Hc
ever, this cannot be done for libraries written #+@89.2.4). On the other hand, namespaces are
designed so that they can be introduced with minimal disruption into an elti@r&yram.

8.2.9.1 Namespaces and C [name.c]
Consider the canonical first C program:
#include <stdio. h>

int main()
{
printf(" Hello, world! \n") ;

Breaking this program wouldn’t be a good idea. Making standard libraries special cases isn’
good idea either. Consequently, the language rules for namespaces are designed to make it
tively easy to take a program written without namespaces and turn it into a more explicitly strt
tured one using namespaces. In fact, the calculator program (86.1) is an example of this.
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Theusing-directives the key to achieving this. For example, the declarations of the standard
I/O facilities from the C headstdio. h are wrapped in a namespace like this:

/] stdio.h:

namespace sid {
/...
int printf( const char* ... );
/...

}
using namespace std;

This achieves backwards compatibility. Also, a new headecdttio is defined for people who
don’t want the names implicitly available:

/] cstdio:

namespace std {
/..
int printf( const char* ... );
/..

}

C++ standard library implementers who worry about replication of declarations will, of course
definestdio. h by includingcstdio:

/1 stdio.h:

#include<cstdio>
using namespace std;

I consider nonlocalising-directive primarily a transition tool. Most code referring to names from
other namespaces can be expressed more clearly with explicit qualificatiositagdieclaratios.
The relationship between namespaces and linkage is described in §9.2.4.

8.2.9.2 Namespaces and Overloading [name.over]

Overloading (87.4) works across namespaces. This is essential to allow us to migrate exis
libraries to use namespaces with minimal source code changes. For example:

/1 old A.h:

void f(int);
/..

/1 old B.h:

void f( char);
/..

// old user.c:

#include" A. h"
#include" B. h"
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void )

f(C a); [/ I callsthe f() from B.h
}

This program can be upgraded to a version using namespaces without changing the actual code

/1 new A.h:
namespace A{
void f(int);
/...
}
/1 new B.h:
namespace B{
void f( char);
/...
}

/] new user.c:

#include" A. h"
#include" B. h"

using namespace A
using namespace B
void g()

{

f(C a); [/ [/ callsthe f() from B.h
}

Had we wanted to keayser. ¢ completely unchanged, we would have placedufiag-directive
in the header files.

8.2.9.3 Namespaces Are Open [name.open]

A namespace is open; that is, you can add names to it from several nhamespace declarations.
example:

namespace A{
int f() ; // now A has member f()
}

namespace A{
int g() ; // now A has two members, f() and g()

In this way, we can support large program fragments within a single namespace the way an o
library or application lives within the single global namespace. To do this, we must distribute i
namespace definition over several header and source code files. As shown by the calculator e>
ple (88.2.4), the openness of namespaces allows us to present different interfaces to different k
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of users by presenting different parts of a namespace. This openness is also an aid to transi
For example,

/1 my header:
void f() ; // my function
/...
#include<stdio. h>
int g) ; // my function
/...

can be rewritten without reordering of the declarations:

/1 my header:

namespace Mine {
void f() ; // my function
/...

}

#include<stdio. h>

namespace Mine {
int g() ; // my function
/..

}

When writing new code, | prefer to use many smaller namespaces (see §8.2.8) rather than pu
really major pieces of code into a single namespace. However, that is often impractical when c
verting major pieces of software to use namespaces.

When defining a previously declared member of a namespace, it is safer to Mémethesyn-
tax than to re-opeNline. For example:

void Mine : ff() /I error: no ff() declared in Mine

{
}

A compiler catches this error. However, because new functions can be defined within a namesp
a compiler cannot catch the equivalent error in a re-opened namespace:

..

namespace Mine{ // re-opening Mine to define functions
void ff() / / oops! no ff() declared in Mine; ff() is added to Mine by this definition
{

}
I ..

...

}

The compiler has no way of knowing that you didn’t want that fi@w.
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8.3 Exceptiongname.except]

When a program is composed of separate modules, and especially when those modules come
separately developed libraries, error handling needs to be separated into two distinct parts:

[1] The reporting of error conditions that cannot be resolved locally

[2] The handling of errors detected elsewhere
The author of a library can detect run-time errors but does not in general have any idea what tc
about them. The user of a library may know how to cope with such errors but cannot detect ther
or else they would be handled in the user’'s code and not left for the library to find.

In the calculator example, we bypassed this problem by designing the program as a whole.
doing that, we could fit error handling into our overall framework. However, when we separate tl
logical parts of the calculator into separate namespaces, we see that every namespace deper
namespac&rror (88.2.2) and that the error handling Enror relies on every module behaving
appropriately after an error. Let's assume that we don’t have the freedom to design the calculatc
a whole and don’t want the tight coupling betwé&snor and all other modules. Instead, assume
that the parser, etc., are written without knowledge of how a driver might like to handle errors.

Even thougterror() was very simple, it embodied a strategy for error handling:

namespace Eror {
int no_of_errors;

double aror( const char* s)

{
std: : car << "emor: " <<s<<’'\n’;
no_of ermrors++;
return 1;

}

Theerror() function writes out an error message, supplies a default value that allows its caller
continue a computation, and keeps track of a simple error state. Importantly, every part of the
gram knows thaerror() exists, how to call it, and what to expect from it. For a program com-
posed of separately-developed libraries, that would be too much to assume.

Exceptions are €'s means of separating error reporting from error handling. In this section
exceptions are briefly described in the context of their use in the calculator example. Chapter
provides a more extensive discussion of exceptions and their uses.

8.3.1 Throw and Catch [name.throw]
The notion of arexceptioris provided to help deal with error reporting. For example:
struct Range error {

int i;
Range ermror(int ii) { i =ii; } / / constructor (8§2.5.2, §10.2.3)
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char to_char( int i)

{
if (i<numeric_limits<char>:: min() || numeric_limits<char>:: max()< i)/ / see §22.2
throw Range Error() ;
return c
}

Theto_char() function either returns thehar with the numeric valué or throws aRange_error.

The fundamental idea is that a function that finds a problem it cannot copthmeitys an excep-
tion, hoping that its (direct or indirect) caller can handle the problem. A function that wants to ha
dle a problem can indicate that it is willingdatchexceptions of the type used to report the prob-
lem. For example, to catb_char() and catch the exception it might throw, we could write:

void g(int i)

try {
char c¢=to_char(i);
/..

catch ( Range_error) {
cerr << " oops\n’;
}

}

The construct

catch( /* ..* ) {
/..
}

is called arexception handlerlt can be used only immediately after a block prefixed with the key-
word try or immediately after another exception handtatch is also a keyword. The parentheses
contain a declaration that is used in a way similar to how a function argument declaration is us
That is, it specifies the type of the objects that can be caught by this handler and optionally nar
the object caught. For example, if we wanted to know the value dRahge error thrown, we
would provide a name for the argument#tch exactly the way we name function arguments. For
example:

void h(int i)

{

try {
char c¢=to_char(i);
/...

catch ( Range_error x) {
cerr << "oops to_char(" <<x. i<<") \n"
}

}
If any code in dry-block— or called from it- throws an exception, the try-block’s handlers will be
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examined. If the exception thrown is of a type specified for a handler, that handler is executed.
not, the exception handlers are ignored andrirblockacts just like an ordinary block.

Basically, G+ exception handling is a way to transfer control to designated code in a callin
function. Where needed, some information about the error can be passed along to the callel
programmers can think of exception handling as a well-behaved mechanism replaci
setimp/longjmp (816.1.2). The important interaction between exception handling and classes
described in Chapter 14.

8.3.2 Discrimination of Exceptions [name.discrimination]

Typically, a program will have several different possible run-time errors. Such errors can |
mapped into exceptions with distinct names. | prefer to define types with no other purpose tt
exception handling. This minimizes confusion about their purpose. In particular, | never use
built-in type, such aint, as an exception. In a large program, | would have no effective way tc
find unrelated uses d@ft exceptions. Thus, | could never be sure that such other uses didn't inte
fere with my use.

Our calculator (86.1) must handle two kinds of run-time errors: syntax errors and attempts
divide by zero. No values need to be passed to a handler from the code that detects an attem
divide by zero, so zero divide can be represented by a simple empty type:

struct Zero_divide{ };

On the other hand, a handler would most likely prefer to get an indication of what kind of synt:
error occurred. Here, we pass a string along:

struct Syntax_error {

const char* p;

Syntax_error( const char* q) { p=q; }
h

For notational convenience, | added a constructor (§2.5.2, §10.2.3)stnutte

A user of the parser can discriminate between the two exceptions by adding handlers for botl
atry block. Where needed, the appropriate handler will be entered. If we “fall through the bo
tom” of a handler, the execution continues at the end of the list of handlers:

try {
/...
expr( false);
/1 we get here if and only if expr() didn’t cause an exception
/..
}

catch ( Syntax_error) {
/1 handle syntax error
}
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catch ( Zero_divide) {
/1 handle divide by zero
}
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/1 we get here if expr didn’t cause an exception or if a Syetaar
/1 or Zero divide exception was caught (and its handler didn’t return,
/1 throw an exception, or in some other way alter the flow of control).

A list of handlers looks a bit like awitch statement, but there is no needlioeak statements. The
syntax of a list of handlers differs from the syntax of a list of cases partly for that reason and pal
to indicate that each handler is a scope (§84.9.4).
A function need not catch all possible exceptions. For example, the prémicaleck didn’t
try to catch exceptions potentially generated by the parser’s input operations. Those excepiti
simply “pass through,” searching for a caller with an appropriate handler.
From the language’s point of view, an exception is considered handled immediately upon en
into its handler so that any exceptions thrown while executing a handler must be dealt with by
callers of thdry-block For example, this does not cause an infinite loop:

class input_overflow{ /* ...* };

void f()
{
try {
/...
}
catch ( input_overflow) {
/...
throw input_overflow() ;
}
}

Exception handlers can be nested. For example:

class XXl { /* ...* };

void f()

{
/...
try {

...

}
catch ( XXII) {

try {
/1 something complicated

}
catch ( XXII) {

/1 complicated handler code failed
}
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However, such nesting is rare in human-written code and is more often than not an indication
poor style.

8.3.3 Exceptions in the Calculator [name.calc]

Given the basic exception-handling mechanism, we can rework the calculator example from §6.:
separate the handling of errors found at run-time from the main logic of the calculator. This w
result in an organization of the program that more realistically matches what is found in progra
built from separate, loosely connected parts.

First,emror() can be eliminated. Instead, the parser functions know only the types used to s
nal errors:

namespace Eror {
struct Zero_divide{ };

struct Syntax_error {
const char* p;
Syntax_error( const char* q) { p=q; }

}
The parser detects three syntax errors:

Token_value Lexer:: get_token()

{
using namespace std; / / to use cin, isalpha(), etc.
..
default: ! | NAME, NAME =, or error
if (isalpha( ch)) {
cin. putback( ch);
cin >> string_value;
return curr_tok=NAME;
}
throw Error:: Syntax_error(" bad token’) ;
}
}
double Parser:: prim( bool get) / | handle primaries
{
/..

case lLexer:: LP:

{ double e= expr(true);
if (curr_tok != Lexer:: RP) throw Error:: Syntax _emor(")”  expected’) ;
get token() ; | | eat’y
return €
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case lLexer:: END:
return 1,
default:
throw Error:: Syntax_emror(" primary expected’) ;
}
}

When a syntax error is detectdatirow is used to transfer control to a handler defined in some
(direct or indirect) caller. Thehrow operator also passes a value to the handler. For example,

throw Syntax_error(" primary expected’) ;

passes &yntax_error object containing a pointer to the stripgmary expected to the handler.
Reporting a divide-by-zero error doesn’t require any data to be passed along:

double Parser: : term( bool get) /| multiply and divide

{
/...
case Lexer:: DIV
if (double d= prim( true)) {
left /= d;
break;
}
throw Error:: Zero_divide() ;
/...
}

The driver can now be defined to hand&ro_divide andSyntax_error exceptions. For example:

int main( int argc, char* argv]])

{
/...
while (* input) {
try {
Lexer: : get_token() ;
if (Lexer:: curr_tok == Lexer:: END) break;
if (Lexer: : curr_tok == Lexer:: PRINT) continue;
cout << Parser: : expr( false) << \n’;
i:atch( Error:: Zero_divide) {
cerr << " attempt to divide lby zero\n';
} skip() ;
catch( Error: : Syntax_error e) {
cer << "syntax eror:" <<e p<<"\n";
skip() ;
}
}

if (input != &cin) delete input;
return no_of_errors;
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The functionskip() tries to bring the parser into a well-defined state after an error by skipping
tokens until it finds an end-of-line or a semicolon.nty, of_errors, andinput are obvious candi-
dates for Driver namespace:

namespace Driver {
int no_of_errors;
std: : istreant input;
void skip() ;

void Driver: : skip()
{

no_of _ermrors++;
while (* input) {
char ch;
input-> get( ch);
switch ( ch) {
case’ \n":
case’;’:
input-> get( ch);
return;

}

The code foskip() is deliberately written at a lower level of abstraction than the parser code so ¢
to avoid being caught by exceptions from the parser while handling parser exceptions.

| retained the idea of counting the number of errors and reporting that number as the progra
return value. It is often useful to know if a program encountered an error even if it was able
recover from it.

I did not putmain() in the Driver namespace. The globadain() is the initial function of a
program (83.2); anain() in another namespace has no special meaning.

8.3.3.1 Alternative Error-Handling Strategies [name.strategy]

The original error-handling code was shorter and more elegant than the version using exceptit
However, it achieved that elegance by tightly coupling all parts of the program. That approa
doesn’t scale well to programs composed of separately developed libraries.

We could consider eliminating the separate error-handling funekipf) by introducing a
state variable imain() . For example:

int main( int argc, char* argv{]) / / example of poor style

{
I ..

bool in_ermror = false
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while (* Driver:: input) {

try {
Lexer: : get_token() ;
if (Lexer:: curr_tok == Lexer:: END) break;
if (Lexer:: curr_tok == Lexer: : PRINT) {
in_error = false
continue;
}
if (in_ermror == false) cout << Parser:: expr( false) << " \n’;
}

catch( Error: : Zero_divide) {
car << " attempt to divide lby zero\n';
in_error = true

}

catch( Error: : Syntax_emor e) {
cerr << " syntax eror:" <<e p<<"\n"
in_error = true;

}

if ( Driver:: input |= std:: cin) delete Driver:: input;
return Driver:: no_of errors;

}

| consider this a bad idea for several reasons:

[1] State variables are a common source of confusion and errors, especially if they are allov
to proliferate and affect larger sections of a program. In particular, | consider the version
main() usingin_error less readable than the version usskip() .

[2] It is generally a good strategy to keep error handling and “normal” code separate.

[3] Doing error handling using the same level of abstraction as the code that caused the errc
hazardous; the error-handling code might repeat the same error that triggered the error t
dling in the first place. | leave it as an exercise to find how that can happen for the versi
of main() usingin_error (88.5[7]).

[4] It is more work to modify the “normal” code to add error-handling code than to add sepz
rate error-handling routines.

Exception handling is intended for dealing with nonlocal problems. If an error can be handl
locally, it almost always should be. For example, there is no reason to use an exception to hal
the too-many-arguments error:

int main( int argc, char* argv]])
{
using namespace std;
using namespace Driver;
switch ( argc) {
case 1 / | read from standard input
input = &cin;
break;
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case 2 / | read argument string
input = new istringstream( argV{ 1)) ;
break;
default:
cer << "too many argumentsin’;
return 1,
}

/] as before

}

Exceptions are discussed further in Chapter 14.

8.4 Advice[name.advice]

[1]
2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]

Use namespaces to express logical structure; §8.2.

Place every nonlocal name, exca@in() , in some namespace; 88.2.

Design a namespace so that you can conveniently use it without accidentally gaining acces
unrelated namespaces; §8.2.4.

Avoid very short names for namespaces; §8.2.7.

If necessary, use namespace aliases to abbreviate long namespaces names; §8.2.7.

Avoid placing heavy notational burdens on users of your namespaces; 88.2.2, §8.2.3.

Use theNamespace: : member notation when defining namespace members; §8.2.8.
Useusing namespace only for transition or within a local scope; §8.2.9.

Use exceptions to decouple the treatment of “errors” from the code dealing with the ordinal
processing; §8.3.3.

[10] Use user-defined rather than built-in types as exceptions; §8.3.2.
[11] Don't use exceptions when local control structures are sufficient; 88.3.3.1.

8.5 Exercisegname.exercises]

1.

ok

((2.5) Write a doubly-linked list oftring module in the style of th8tack module from §2.4.
Exercise it by creating a list of names of programming languages. Prosa®))a function

for that list, and provide a function that reverses the order of the strings in it.

((2) Take some not-too-large program that uses at least one library that does not use na
spaces and modify it to use a namespace for that library. Hint: §8.2.9.

(C2) Modify the desk calculator program into a module in the style of §2.4 using namespac
Don't use any globalising-directive. Keep a record of the mistakes you made. Suggest way
of avoiding such mistakes in the future.

(1) Write a program that throws an exception in one function and catches it in another.

(C2) Write a program consisting of functions calling each other to a calling depth of 10. Giv
each function an argument that determines at which level an exception is thrown. Ha
main() catch these exceptions and print out which exception is caught. Don't forget the ca
in which an exception is caught in the function that throws it.
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6. () Modify the program from 88.5[5] to measure if there is a difference in the cost of catchir
exceptions depending on where in a class stack the exception is thrown. Add a string objec
each function and measure again.

7. (L) Find the error in the first version wfain() in §8.3.3.1.

8. ((?) Write a function that either returns a value or that throws that value based on an argume
Measure the difference in run-time between the two ways.

9. (@) Modify the calculator version from §8.5[3] to use exceptions. Keep a record of the mi
takes you make. Suggest ways of avoiding such mistakes in the future.

10. (2.5) Write plus() , minus() , multiply() , anddivide() functions that check for possible
overflow and underflow and that throw exceptions if such errors happen.

11. () Modify the calculator to use the functions from §8.5[10].
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Source Files and Programs

Form must follow function.
— Le Corbusier

Separate compilation- linking — header files— standard library headers- the one-
definition rule— linkage to non-€+ code— linkage and pointers to functiors using
headers to express modularity single-header organizatiea- multiple-header organi-
zation— include guards— programs— advice— exercises.

9.1 Separate Compilatiorfile.separate]

A file is the traditional unit of storage (in a file system) and the traditional unit of compilation
There are systems that do not store, compile, and presemr@yrams to the programmer as sets
of files. However, the discussion here will concentrate on systems that employ the traditional t
of files.

Having a complete program in one file is usually impossible. In particular, the code for tf
standard libraries and the operating system is typically not supplied in source form as part ©
user’s program. For realistically-sized applications, even having all of the user's own code in a s
gle file is both impractical and inconvenient. The way a program is organized into files can he
emphasize its logical structure, help a human reader understand the program, and help the comr
to enforce that logical structure. Where the unit of compilation is a file, all of a file must be recor
piled whenever a change (however small) has been made to it or to something on which it depe
For even a moderately sized program, the amount of time spent recompiling can be significar
reduced by partitioning the program into files of suitable size.

A user presents source fileto the compiler. The file is then preprocessed; that is, macro pro-
cessing (87.8) is done a#tinclude directives bring in headers (82.4.1, §9.2.1). The result of pre-
processing is calledteanslation unit This unit is what the compiler proper works on and what the
C++ language rules describe. In this book, | differentiate between source file and translation u
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only where necessary to distinguish what the programmer sees from what the compiler consider:

To enable separate compilation, the programmer must supply declarations providing the ty
information needed to analyze a translation unit in isolation from the rest of the program. T
declarations in a program consisting of many separately compiled parts must be consisten
exactly the same way the declarations in a program consisting of a single source file must be. Y
system will have tools to help ensure this. In particular, the linker can detect many kinds of incc
sistencies. Thénker is the program that binds together the separately compiled parts. A linker i
sometimes (confusingly) calledi@ader. Linking can be done completely before a program starts
to run. Alternatively, new code can be added to the program (*“dynamically linked”) later.

The organization of a program into source files is commonly calleghygical structureof a
program. The physical separation of a program into separate files should be guided by the log
structure of the program. The same dependency concerns that guide the composition of progr
out of namespaces guide its composition into source files. However, the logical and physical str
ture of a program need not be identical. For example, it can be useful to use several source file
store the functions from a single namespace, to store a collection of namespace definitions in a
gle file, and to scatter the definition of a namespace over several files (§8.2.4).

Here, we will first consider some technicalities relating to linking and then discuss two ways
breaking the desk calculator (86.1, §8.2) into files.

9.2 Linkageffile.link]

Names of functions, classes, templates, variables, namespaces, enumerations, and enume
must be used consistently across all translation units unless they are explicitly specified to be loc

It is the programmer’s task to ensure that every namespace, class, function, etc. is prop
declared in every translation unit in which it appears and that all declarations referring to the sa
entity are consistent. For example, consider two files:

/1 filel.c:
int x=1,;
int f() { /* dosomething/ }

/1] file2.c:
extemn int Xx;
int () ;
void g() { x=f(0; }

Thex andf() used byg() in file2 c are the ones defined filel c. The keywordextem indi-
cates that the declaration »fn file2 c is (just) a declaration and not a definition (§84.9). Kad
been initializedextern would simply be ignored because a declaration with an initializer is always
a definition. An object must be defined exactly once in a program. It may be declared many tim
but the types must agree exactly. For example:

/1 filel.c:
int x=1,;
int b=1;
extemn int c;
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/1 file2.c:
int x; / | meaning int x = 0;
extern double by
extemn int c;

There are three errors heseis defined twicep is declared twice with different types, ands
declared twice but not defined. These kinds of errors (linkage errors) cannot be detected by a ¢
piler that looks at only one file at a time. Most, however, are detectable by the linker. Note tha
variable defined without an initializer in the global or a namespace scope is initialized by defat
This isnotthe case for local variables (§4.9.5, §10.4.2) or objects created on the free store (86.2
For example, the following program fragment contains two errors:

/] filel.c:
int x;
int f) { return x }

/1] file2.c:
int x;
int g) { return ) ; }

The call off() in file2 cis an error becaudé) has not been declaredfibe2 c. Also, the pro-
gram will not link because is defined twice. Note that these are not errors in C (§B.2.2).

A name that can be used in translation units different from the one in which it was defined
said to haveexternal linkage All the names in the previous examples have external linkage. A
name that can be referred to only in the translation unit in which it is defined is said to ha
internal linkage

An inline function (87.1.1, 810.2.9) must be definedoy identical definitions (89.2.3} in
every translation unit in which it is used. Consequently, the following example isn’t just bad tast
it is illegal:

/1 filel.c:

inline int f(int i) { return i; }
/1 file2.c:

inline int f(int i) { return i+1; }

Unfortunately, this error is hard for an implementation to catch, and the follewinigerwise per-
fectly logical— combination of external linkage and inlining is banned to make life simpler for
compiler writers:

/1 filel.c:
extern inline int g(int i);
int h(int i) { return g(i); } / / error: g() undefined in this translation unit

/1 file2.c:
extern inline int g(int i) { return i+1; }

By default,consts (85.4) andypedefs (84.9.7) have internal linkage. Consequently, this example
is legal (although potentially confusing):
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/1 filel.c:
typedef int T,
const int x=7;
/1 file2.c:
typedef void T,

const int x=8§;

Global variables that are local to a single compilation unit are a common source of confusion ¢
are best avoided. To ensure consistency, you should usually place ajnsial andinlines in
header files only (§9.2.1).

A const can be given external linkage by an explicit declaration:

/1 filel.c:
extern const int a= 77,

/1 file2.c:
extern const int a;

void g()
{

}

cout<< a<<’'\n;

Here,g() will print 77.
An unnamed namespace (88.2.5) can be used to make names local to a compilation unit.
effect of an unnamed namespace is very similar to that of internal linkage. For example:

/1 file 1.c:
namespace {
class X{ /* ..* }
void f() ;
int i;
/...
}

/1 file2.c:
class X{ /* ..* };
void f() ;
int i;
/...

The functionf() in filel cis not the same function as tfi¢ in file2 c. Having a name local to
a translation unit and also using that same name elsewhere for an entity with external linkag
asking for trouble.

In C and older €+ programs, the keywordatic is (confusingly) used to mean “use internal
linkage” (8B.2.3). Don't usestatic except inside functions (§87.1.2) and classes (§10.2.4).
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9.2.1 Header Files [file.header]

The types in all declarations of the same object, function, class, etc., must be consistent. Co
quently, the source code submitted to the compiler and later linked together must be consist
One imperfect but simple method of achieving consistency for declarations in different translati
units is to#include header filescontaining interface information in source files containing exe-
cutable code and/or data definitions.

The#include mechanism is a text manipulation facility for gathering source program fragment
together into a single unit (file) for compilation. The directive

#include " to_be_included’

replaces the line in which th&nclude appears with the contents of the fite be included The
content should be+G source text because the compiler will proceed to read it.

To include standard library headers, use the angle bracketd> around the name instead of
quotes. For example:

#include <iostream> / | from standard include directory
#include" myheader. h" / / from current directory

Unfortunately, spaces are significant within the or of an include directive:

#include< iostream > / / will not find <iostrean»

It may seem extravagant to recompile a file each time it is included somewhere, but the incluc
files typically contain only declarations and not code needing extensive analysis by the compil
Furthermore, most modernt+€ implementations provide some form of precompiling of header
files to minimize the work needed to handle repeated compilation of the same header.

As a rule of thumb, a header may contain:

CNamed namespaces namespace NI{/* ...*/} O
D1'ype definitions struct Point{ intx, y;}; g
BTemplate declarations template<class T> class Z 0
Template definitions template<class T>class V{/* ...*}; O
[(Function declarations extern int strlen( const char*); O
Cnline function definitions inline char get( char* p) { return* p++; O

ata declarations extern int a; E

onstant definitions const float pi = 3.141593; 0
rEnumerations enum Light { red, yellow, green}; 0
[Name declarations class Matrix; g
Unclude directives #include <algorithm> O

acro definitions #define VERSION 12 g

onditional compilation directives #ifdef __cplusplus 0
rComments [* check for end of file */ 0

This rule of thumb for what may be placed in a header is not a language requirement. It is simpl
reasonable way of using thénclude mechanism to express the physical structure of a program
Conversely, a header should never contain:
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LOrdinary function definitions char get( char* p) { return*p++; } N

ata definitions int a; E
rf\ggregate definitions short tbl[] = { 1, 2 3} 0
Unnamed namespaces namespace{ /* ...*/}

O
fExported template definitions export template<class T>f(T t) { /* ...* } G

Header files are conventionally suffixed bk, and files containing function or data definitions are
suffixed by. c. They are therefore often referred to as “.h files” and “.c files,” respectively.
Other conventions, such a€, . cxx, . cpp, and. cc, are also found. The manual for your com-
piler will be quite specific about this issue.

The reason for recommending that the definition of simple constants, but not the definition
aggregates, be placed in header files is that it is hard for implementations to avoid replication
aggregates presented in several translation units. Furthermore, the simple cases are far more
mon and therefore more important for generating good code.

It is wise not to be too clever about the usétimiclude. My recommendation is t#include
only complete declarations and definitions and to do so only in the global scope, in linkage spec
cation blocks, and in namespace definitions when converting old code (89.2.2). As usual, it is w
to avoid macro magic. One of my least favorite activities is tracking down an error caused by
name being macro-substituted into something completely different by a macro defined in an in
rectly #included header that | have never even heard of.

9.2.2 Standard Library Headers [file.std.header]

The facilities of the standard library are presented through a set of standard headers (816.1.2).
suffix is needed for standard library headers; they are known to be headers because they
included using th¢finclude<...> syntax rather tha#include'..." . The absence of .ah suf-
fix does not imply anything about how the header is stored. A header sythaps may be
stored as a text file calledap. h in a standard directory. On the other hand, standard headers al
not required to be stored in a conventional manner. An implementation is allowed to take adv
tage of knowledge of the standard library definition to optimize the standard library implementatic
and the way standard headers are handled. For example, an implementation might have knowl
of the standard math library (822.3) built in and tréiaclude<cmath> as a switch that makes the
standard math functions available without reading any file.

For each C standard-library heaget. h>, there is a corresponding standatd-GeadexcX>.
For example#include<cstdio> provides whatfinclude<stdio. h> does. A typicalstdio. h will
look something like this:

#ifdef __ cplusplus /1 for C++ compliers only (89.2.4)
namespace std { / | the standard library is defined in namespace std (§88.2.9)
extemn " C" { /| stdio functions have C linkage (§9.2.4)
#endif
/..

int printf( const char* ...) ;
/...



Section 9.2.2 Standard Library Headers 203

#ifdef __ cplusplus
}
}

using namespace std; /| make stdio available in global namespace
#endif

That is, the actual declarations are (most likely) shared, but linkage and namespace issues mu
addressed to allow C and€to share a header.

9.2.3 The One-Definition Rule [file.odr]

A given class, enumeration, and template, etc., must be defined exactly once in a program.

From a practical point of view, this means that there must be exactly one definition of, say
class residing in a single file somewhere. Unfortunately, the language rule cannot be that sim,
For example, the definition of a class may be composed through macro expansion (ugh!), whil
definition of a class may be textually included in two source filegibglude directives (§9.2.1).
Worse, a “file” isn't a concept that is part of the C antt@anguage definitions; there exist imple-
mentations that do not store programs in source files.

Consequently, the rule in the standard that says that there must be a unique definition of a cl
template, etc., is phrased in a somewhat more complicated and subtle manner. This rule is ¢
monly referred to as “the one-definition rule,” the ODR. That is, two definitions of a class, tem
plate, or inline function are accepted as examples of the same unique definition if and only if

[1] they appear in different translation units, and

[2] they are token-for-token identical, and

[3] the meanings of those tokens are the same in both translation units.

For example:

/1] filel.c:
struct S{ int a; char b; };
void f( S ;

/1] file2.c:
struct S{ int a; char b; };
void f(S*p) { /* ..* }

The ODR says that this example is valid and ®eagfers to the same class in both source files.
However, it is unwise to write out a definition twice like that. Someone maintdile®) c will
naturally assume that the definition 8fin file2 c is the only definition ofS and so feel free to
change it. This could introduce a hard-to-detect error.

The intent of the ODR is to allow inclusion of a class definition in different translation units
from a common source file. For example:

/1 file s.h:
struct S{ int a; char b; };
void f( S ;
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/1 filel.c:
#include" s. h"
/1 use () here

/1 file2.c:
#include" s. h"
vod (S p) { * ..* }

or graphically:

s.h:
struct S{ int a; char b; };
void f( S);
filel.c: file2.c:
#include "s.h" — #include "s.h" -
/I use () here void f(S*p) { I* ..* }

Here are examples of the three ways of violating the ODR:

/1 filel.c:
struct S1{ int a; char b; };

struct S1{ int a; char b; }; / [/ error: double definition
This is an error becausestauct may not be defined twice in a single translation unit.

/] filel.c:
struct S2{ int a; char b; };

/1 file2.c:
struct S2{ int a; char bb; };/ / error

This is an error becauSis used to name classes that differ in a member name.

/1 filel.c:

typedef int X;

struct S3{ X a char b; };
/1] file2.c:

typedef char X;
struct S3{ X a char b; }; / / error

Here the two definitions dd3are token-for-token identical, but the example is an error because th
meaning of the nam¥ has sneakily been made to differ in the two files.

Checking against inconsistent class definitions in separate translation units is beyond the ab
of most G+ implementations. Consequently, declarations that violate the ODR can be a source
subtle errors. Unfortunately, the technique of placing shared definitions in head¢inclading
them doesn'’t protect against this last form of ODR violation. Local typedefs and macros c
change the meaning #fncluded declarations:
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/1 file s.h:
struct S{ Point a; char b; };

/] filel.c:
#define Point int
#include" s. h"
/...

/1 file2.c:
class Point{ /* ..* };
#include" s. h"
/...

The best defense against this kind of hackery is to make headers as self-contained as possible
example, if clas®oint had been declared in teeh header the error would have been detected.

A template definition can béincluded in several translation units as long as the ODR is
adhered to. In addition, an exported template can be used given only a declaration:

/1 filel.c:

export template<class T> T twice( T t) { return t+t; }
/1 file2.c:

template<class T> T twice( T t); /| declaration

int g(int i) { return twice(i); }

The keywordexport means “accessible from another translation unit” (813.7).

9.2.4 Linkage to Non-G+ Code [file.c]

Typically, a G+ program contains parts written in other languages. Similarly, it is common fol
C++ code fragments to be used as parts of programs written mainly in some other language. Cc
eration can be difficult between program fragments written in different languages and even betw
fragments written in the same language but compiled with different compilers. For example, diffe
ent languages and different implementations of the same language may differ in their use
machine registers to hold arguments, the layout of arguments put on a stack, the layout of buil
types such as strings and integers, the form of names passed by the compiler to the linker, an
amount of type checking required from the linker. To help, one can spditikageconvention to

be used in aextern declaration. For example, this declares the C andstandard library func-
tion strepy() and specifies that it should be linked according to the C linkage conventions:

extern " C" char* strcpy( char*, const char*) ;
The effect of this declaration differs from the effect of the “plain” declaration

extern char* strepy( char*, const char*) ;

only in the linkage convention used for callistepy() .

The extern “"C" directive is particularly useful because of the close relationship between C ar
C++. Note that theC in extern "C" names a linkage convention and not a language. CGixtam
"C" is used to link to Fortran and assembler routines that happen to conform to the conventions
C implementation.
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An extern "C" directive specifies the linkage convention (only) and does not affect the semal
tics of calls to the function. In particular, a function declsexeém "C" still obeys the €+ type
checking and argument conversion rules and not the weaker C rules. For example:

extern " C" int f() ;
int g0
{

return f(1); / / error: no argument expected

}

Adding extern "C" to a lot of declarations can be a nuisance. Consequently, there is a mechani
to specify linkage to a group of declarations. For example:

extemn " C" {
char* strcpy( char*, const char*) ;
int strcmp( const char*, const char*) ;
int strlen( const char*®) ;
...

}

This construct, commonly calledliakage block can be used to enclose a complete C header to
make a header suitable for-€use. For example:

extern " C" {
#include <string. h>

}

This technique is commonly used to producet& eader from a C header. Alternatively, condi-
tional compilation (§7.8.1) can be used to create a common Ctarnige@der:

#ifdef _ cplusplus

extem " C" {

#endif

char* strcpy( char*, const char®) ;

int strcmp( const char*, const char*) ;
int strlen( const char*) ;

..

#ifdef __cplusplus

#endif

The predefined macro namecplusplus is used to ensure that theé+constructs are edited out
when the file is used as a C header.
Any declaration can appear within a linkage block:

extern " C" { / | any declaration here, for example:
int g1; [ | definition
extern int g2, / / declaration, not definition

}
In particular, the scope and storage class of variables are not affeqjdds still a global variable
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— and is still defined rather than just declared. To declare but not define a variable, you must af
the keywordextern directly in the declaration. For example:

extern " C" int ¢3; / | declaration, not definition

This looks odd at first glance. However, it is a simple consequence of keeping the mean
unchanged when addif€" to an extern declaration and the meaning of a file unchanged whe
enclosing it in a linkage block.

A name with C linkage can be declared in a namespace. The namespace will affect the way
name is accessed in the+*program, but not the way a linker sees it. pmtf() from std is a
typical example:

#include<cstdio>

void f()

{

std: : printf(" Hello, ") ; / / ok

printf(" world! \n") ; /I error: no global printf()
}

Even when calledtd: : printf, it is still the same old @rintf() (821.8).

Note that this allows us to include libraries with C linkage into a namespace of our choice ratt
than polluting the global namespace. Unfortunately, the same flexibility is not available to us f
headers defining functions with+€linkage in the global namespace. The reason is that linkage o
C++ entities must take namespaces into account so that the object files generated will reflect the
or lack of use of namespaces.

9.2.5 Linkage and Pointers to Functions [file.ptof]

When mixing C and €+ code fragments in one program, we sometimes want to pass pointers
functions defined in one language to functions defined in the other. If the two implementations
the two languages share linkage conventions and function-call mechanisms, such passing of p
ers to functions is trivial. However, such commonality cannot in general be assumed, so care n
be taken to ensure that a function is called the way it expects to be called.

When linkage is specified for a declaration, the specified linkage applies to all function type
function names, and variable names introduced by the declaration(s). This makes all kinds
strange- and occasionally essentialcombinations of linkage possible. For example:

typedef int (* FT)( const void*, const void*) ; /| FT has C++ linkage
extemn " C" {
typedef int (* CFT)( const void*, const void*) ; /| CFT has C linkage

~

void gsort( void* p, size t n, sizet szz CFT cmp); /| cmp has C linkage

}

void isort( void* p, sizet n, sizet sz FT cmp);

void xsort( void* p, size t n, sizet sz CFT cmp);

extern " C" void ysort( void* p, size t n, sizet sz FT cmp);

cmp has C++ linkage
cmp has C linkage
cmp has C++ linkage

compare() has C++ linkage
ccmp() has C linkage

int compare( const void*, const void*) ;
exten " C" int ccmp( const void*, const void*) ;

~ ~ ~~
~ ~ ~~
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void f( char* v, int s2

{
qgsort( v, sz 1,& compare); // error
gsort(v, sz 1,& ccmp); / / ok
isort( v, sz 1,& compare);/ / ok
isort(v, sz 1,&ccmp); / / error
}

An implementation in which C and+€ use the same calling conventions might accept the case:
markederror as a language extension.

9.3 Using Header Filegile.using]

To illustrate the use of headers, | present a few alternative ways of expressing the physical struc
of the calculator program (86.1, §8.2).

9.3.1 Single Header File [file.single]

The simplest solution to the problem of partitioning a program into several files is to put the defir
tions in a suitable number ot files and to declare the types needed for them to communicate in-
single. hfile that each cfile #includes. For the calculator program, we might use fiediles —
lexer. c, parser. c, table. c, error. ¢, andmain. ¢ — to hold function and data definitions, plus the
headedc. hto hold the declarations of every name used in more thanafile.

The headedc. h would look like this:

/1 dc.h:

namespace [Error {
struct Zero_divide{ };

struct Syntax_error {
const char* p;
Syntax_error( const char* g) { p=gq; }

}
#include <string>

namespace Lexer {
enum Token value{

NAME, NUMBER, END,
PLUS="+, MINUS="-", MUL="*", DIV="/",
PRINT=";, ASSIGN="=", LP="(/, RP=")

h

extern Token value curr_tok;
extern double mumber_value;
extern std: : string string_value;
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Token value get token() ;
}

namespace Parser {
double prim( bool get); / / handle primaries
double term( bool get); / / multiply and divide
double expr( bool get); / / add and subtract
using Lexer:: get_tokem;
using Lexer:: curr_tok;

}

#include <map>
exten std: : map<std: : string, double> table;

namespace Driver {
extemn int no_of errors;
extern std: : istreant input;
void skip() ;

The keywordextern is used for every declaration of a variable to ensure that multiple definitions di
not occur as wéinclude dc. h in the various c files. The corresponding definitions are found in
the appropriate cfiles.

Leaving out the actual codkexer. ¢ will look something like this:

/1 lexer.c:

#include" dc. h"
#include <iostream>
#include <cctype>

Lexer: : Token value Lexer:: curr_tok;
double Lexer:: number_value;
std: : string Lexer: : string_value;

Lexer:: Token value Lexer:: get token() { /* ..*/ }
Using headers in this manner ensures that every declaration in a header will at some point

included in the file containing its definition. For example, when complier. ¢ the compiler
will be presented with:

namespace Lexer{ / / fromdc.h
/..
Token value get token() ;

}

..

Lexer:: Token value Lexer:: get token() { /* ..*/ }

This ensures that the compiler will detect any inconsistencies in the types specified for a name.
example, hadjet token() been declared to returnTaken value, but defined to return amt, the
compilation oflexer. ¢ would have failed with a type-mismatch error. If a definition is missing,
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the linker will catch the problem. If a declaration is missing, soatde will fail to compile.
File parser. c will look like this:

/1 parser.c:
#include " dc. h"

double Parser:: prim( bool get) { /* ...*/ }
double Parser:: term( bool get) { /* ...*/ }
double Parser:: expr( bool get) { /* ...*/ }

File table. c will ook like this:
/1 table.c:
#include" dc. h"
std: : map<std: : string, double> table;

The symbol table is simply a variable of the standard libnaap type. This define¢able to be
global. In a realistically-sized program, this kind of minor pollution of the global namespace builc
up and eventually causes problems. | left this sloppiness here simply to get an opportunity to w
against it.

Finally, file main. ¢ will look like this:

// main.c:

#include" dc. h"
#include <sstream>

int Driver:: no_of emrors=0;
std: : istreant* Driver: : input = 0;

void Driver:: skip) { /* ..* }
int main(int argc, char* argv]]) {/* ..* }

To be recognized abe main() of the programmain() must be a global function, so no name-
space is used here.

The physical structure of the system can be presented like this:

<sstream> ‘ [ <map> ‘ [ <sting> | [ <cctype> ‘ ‘<ioslream>'
dc.h
driver.c ‘ ‘ parser.c ‘ ‘ table.c ‘ ‘ lexer.c

Note that the headers on the top are all headers for standard library facilities. For many forms
program analysis, these libraries can be ignored because they are well known and stable. For
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programs, the structure can be simplified by movingiaitlude directives to the common header.

This single-header style of physical partitioning is most useful when the program is small al
its parts are not intended to be used separately. Note that when namespaces are used, the I
structure of the program is still represented witthinh. If namespaces are not used, the structure
is obscured, although comments can be a help.

For larger programs, the single header file approach is unworkable in a conventional file-ba:
development environment. A change to the common header forces recompilation of the whole
gram, and updates of that single header by several programmers are error-prone. Unless st
emphasis is placed on programming styles relying heavily on namespaces and classes, the lo
structure deteriorates as the program grows.

9.3.2 Multiple Header Files [file.multi]

An alternative physical organization lets each logical module have its own header defining t
facilities it provides. Eachc file then has a correspondindy file specifying what it provides (its
interface). Each cfile includes its own h file and usually also otherh files that specify what it
needs from other modules in order to implement the services advertised in the interface. This pt
ical organization corresponds to the logical organization of a module. The interface for users is
into its. hfile, the interface for implementers is put into a file suffixémpl. h, and the module’s
definitions of functions, variables, etc. are placedadrfiles. In this way, the parser is represented
by three files. The parser’s user interface is providepaser. h:

/1 parser.h:

namespace Parser { / | interface for users
double expr( bool get);
}

The shared environment for the functions implementing the parser is presepteddsyimpl. h:
/1 parser impl.h:

#include " parser. h"
#include" emror. h"
#include" lexer. h"

namespace Parser { /| interface for implementers
double prim( bool get);
double term( bool get);
double exr( bool get);
using Lexer:: get_token;
using Lexer:: curr_tok;

}

The user's headeparser. h is #included to give the compiler a chance to check consistency
(89.3.1).

The functions implementing the parser are storquhnser. ¢ together with#include directives
for the headers that tiRarser functions need:
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/1 parser.c:

#include " parser_impl. h"

#include " table. h"

double Parser:: prim( bool get) { /* ...*/ }
double Parser:: term( bool get) { /* ...*/ }
double Parser:: expr( bool get) { /* ...*/ }

Graphically, the parser and the driver’s use of it look like this:

parser.h ‘ lexer.h ‘ ‘ error.h ‘ ‘ table.h

‘ parser_impl.h ‘

driver.c | parser.c '

As intended, this is a rather close match to the logical structure described in §8.3.3. To simp
this structure, we could havéncluded table. h in parser_impl. h rather than irparser. c. How-
ever,table. his an example of something that is not necessary to express the shared context of
parser functions; it is needed only by their implementation. In fact, it is used by just one functic
expr() , so if we were really keen on minimizing dependencies we could gipcd in its own

. cfile and#include table. h there only:

parser.h ‘ lexer.h ‘ ‘ error.h ‘ ‘ table.h ‘

‘ parser_impl.h ‘

‘ parser.c ‘ ‘ expr.c

Such elaboration is not appropriate except for larger modules. For realistically-sized modules, i
common to#include extra files where needed for individual functions. Furthermore, it is not
uncommon to have more than orimpl. h, since different subsets of the module’s functions need
different shared contexts.

Please note that thempl. h notation is not a standard or even a common convention; it is sim:
ply the way I like to name things.

Why bother with this more complicated scheme of multiple header files? It clearly requires f
less thought simply to throw every declaration into a single header, as was ddoenfor

The multiple-header organization scales to modules several magnitudes larger than our
parser and to programs several magnitudes larger than our calculator. The fundamental reaso
using this type of organization is that it provides a better localization of concerns. When analyzi
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and modifying a large program, it is essential for a programmer to focus on a relatively small chu
of code. The multiple-header organization makes it easy to determine exactly what the parser c
depends on and to ignore the rest of the program. The single-header approach forces us to lo
every declaration used by any module and decide if it is relevant. The simple fact is that mair
nance of code is invariably done with incomplete information and from a local perspective. T
multiple-header organization allows us to work successfully “from the inside out” with only a
local perspective. The single-header approadtke every other organization centered around a
global repository of information requires a top-down approach and will forever leave us wonder-
ing exactly what depends on what.

The better localization leads to less information needed to compile a module, and thus to fa:
compiles. The effect can be dramatic. | have seen compile times drop by a factor of ten as
result of a simple dependency analysis leading to a better use of headers.

9.3.2.1 Other Calculator Modules [file.multi.etc]

The remaining calculator modules can be organized similarly to the parser. However, those m
ules are so small that they don’t require their ownpl. h files. Such files are needed only where
a logical module consists of many functions that need a shared context.

The error handler was reduced to the set of exception types so #rebna was needed:

/1 error.h:

namespace Eror {
struct Zero_divide{ };

struct Syntax_error {
const char* p;
Syntax_error( const char* ) { p=g; }

}

The lexer provides a rather large and messy interface:
/1 lexer.h:
#include <string>

namespace Lexer {
enum Token_value{

NAME, NUMBER, END,
PLUS="+, MINUS="-", MUL="*", DIV="/,
PRINT=";", ASSIGN="=", LP=(, RP=")

h

extern Token value curr_tok;
extern double mumber_value
extern sid:: string string value;

Token value get token() ;
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In addition tolexer. h, the implementation of the lexer dependsemmor. h, <iostream>, and the
functions determining the kinds of characters declareatatype>:

/1 lexer.c:

#include" lexer. h"
#include" emror. h"
#include <iostream>
#include <cctype>

Lexer: : Token value Lexer:: curr_tok;
double Lexer:: number_value;
std: : string Lexer: : string_value,

Lexer: : Token value Lexer:: get token) { /* ..* }

We could have factored out thiénclude statements foerror. h as theLexer's _impl. h file.
However, | considered that excessive for this tiny program.

As usual, wefinclude the interface offered by the modulein this caselexer. h — in the
module’s implementation to give the compiler a chance to check consistency.

The symbol table is essentially self-contained, although the standard library keasaper
could drag in all kinds of interesting stuff to implement an efficaap template class:

/] table.h:

#include <map>
#include <string>

extern std: : map<std: : string, double> table;

Because we assume that every header mairimuded in several c files, we must separate the
declaration otable from its definition, even though the difference betwtable. c andtable. his
the single keyworéxtem:

/1 table.c:

#include " table. h"

std: : map<std: : string, double> table;
Basically, the driver depends on everything:

/1 main.c:

#include " parser. h"
#include" lexer. h"
#include" ermror. h"
#include " table. h"

namespace Driver {
int no_of_errors;
std: : istreant input;
void skip() ;
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#include <sstream>

int main(int argc, char* argvf]) {/* ..* }

Because thériver namespace is used exclusively fogin() , | placed it inmain. c. Alterna-
tively, | could have factored it out dsiver. h and#included it.

For a larger system, it is usually worthwhile organizing things so that the driver has fewer dire
dependencies. Often, is it also worth minimizing what is domeain() by havingmain() call a
driver function placed in a separate source file. This is particularly important for code intended
be used as a library. Then, we cannot rely on codeain() and must be prepared to be called
from a variety of functions (89.6[8]).

9.3.2.2 Use of Headers [file.multi.use]

The number of headers to use for a program is a function of many factors. Many of these fact
have more to do with the way files are handled on your system than-ithFor example, if your
editor does not have facilities for looking at several files at the same time, then using many heac
becomes less attractive. Similarly, if opening and reading 20 files of 50 lines each is noticeal
more time-consuming than reading a single file of 1000 lines, you might think twice before usi
the multiple-header style for a small project.

A word of caution: a dozen headers plus the standard headers for the program’s execution e
ronment (which can often be counted in the hundreds) are usually manageable. However, if
partition the declarations of a large program into the logically minimal-sized headers (putting ea
structure declaration in its own file, etc.), you can easily get an unmanageable mess of hundrec
files even for minor projects. | find that excessive.

For large projects, multiple headers are unavoidable. In such projects, hundreds of files (
counting standard headers) are the norm. The real confusion starts when they start to be count
the thousands. At that scale, the basic techniques discussed here still apply, but their manage
becomes a Herculean task. Remember that for realistically-sized programs, the single-header
is not an option. Such programs will have multiple headers. The choice between the two style:
organization occurs (repeatedly) for the parts that make up the program.

The single-header style and the multiple-header style are not really alternatives to each ot
They are complementary techniques that must be considered whenever a significant modul
designed and must be reconsidered as a system evolves. It's crucial to remember that one inte
doesn'’t serve all equally well. It is usually worthwhile to distinguish between the implementer:
interface and the users’ interface. In addition, many larger systems are structured so that provic
a simple interface for the majority of users and a more extensive interface for expert users is a g
idea. The expert users’ interfaces (“complete interfaces”) teriinclude many more features
than the average user would ever want to know about. In fact, the average users’ interface
often be identified by eliminating features that require the inclusion of headers that define faciliti
that would be unknown to the average user. The term “average user” is not derogatory. In 1
fields in which | don’thaveto be an expert, | strongly prefer to be an average user. In that way,
minimize hassles.
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9.3.3 Include Guards [file.guards]

The idea of the multiple-header approach is to represent each logical module as a consistent,
contained unit. Viewed from the program as a whole, many of the declarations needed to m
each logical module complete are redundant. For larger programs, such redundancy can lea
errors, as a header containing class definitions or inline functiongigetaded twice in the same
compilation unit (§89.2.3).

We have two choices. We can

[1] reorganize our program to remove the redundancy, or

[2] find a way to allow repeated inclusion of headers.

The first approack which led to the final version of the calculateis tedious and impractical for
realistically-sized programs. We also need that redundancy to make the individual parts of the
gram comprehensible in isolation.

The benefits of an analysis of redundémcludes and the resulting simplifications of the pro-
gram can be significant both from a logical point of view and by reducing compile times. How
ever, it can rarely be complete, so some method of allowing redutiseiades must be applied.
Preferably, it must be applied systematically, since there is no way of knowing how thorough
analysis a user will find worthwhile.

The traditional solution is to insdrtclude guardsn headers. For example:

/] error.h:

#ifndef CALC_ERROR H
#define CALC_ERROR H

namespace Eror {
...
}

#endif  // CALC ERRORH

The contents of the file between théfndef and #endif are ignored by the compiler if
CALC_ERROR H is defined. Thus, the first timamror. h is seen during a compilation, its con-
tents are read anBALC_ERROR H is given a value. Should the compiler be presented with
error. h again during the compilation, the contents are ignored. This is a piece of macro hacke
but it works and it is pervasive in the C antt+@vorlds. The standard headers all have include
guards.

Header files are included in essentially arbitrary contexts, and there is no namespace protec
against macro name clashes. Consequently, | choose rather long and ugly names as my inc
guards.

Once people get used to headers and include guards, they tend tolotslofleeaders directly
and indirectly. Even with € implementations that optimize the processing of headers, this can b
undesirable. It can cause unnecessarily long compile time, and it candtsin§declarations and
macros into scope. The latter might affect the meaning of the program in unpredictable and adve
ways. Headers should be included only when necessary.
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9.4 Programgfile.programs]

A program is a collection of separately compiled units combined by a linker. Every functior
object, type, etc., used in this collection must have a unique definition (84.9, §9.2.3). The progr
must contain exactly one function calle@in() (83.2). The main computation performed by the
program starts with the invocation afain() and ends with a return frocimain() . The int
returned bymain() is passed to whatever system invokeain() as the result of the program.

This simple story must be elaborated on for programs that contain global variables (§10.4.9)
that throw an uncaught exception (§14.7).

9.4.1 Initialization of Nonlocal Variables [file.nonlocal]

In principle, a variable defined outside any function (that is, global, namespace, anstatiass
variables) is initialized beformain() is invoked. Such nonlocal variables in a translation unit are
initialized in their declaration order (810.4.9). If such a variable has no explicit initializer, it is b
default initialized to the default for its type (§10.4.2). The default initializer value for built-in types
and enumerations & For example:

double x= 2; / 1 nonlocal variables
double y;
double sgx = sqrt( x+y);

Here,x andy are initialized beforeqx, sosgrt( 2) is called.

There is no guaranteed order of initialization of global variables in different translation unit:
Consequently, it is unwise to create order dependencies between initializers of global variable:
different compilation units. In addition, it is not possible to catch an exception thrown by the in
tializer of a global variable (814.7). It is generally best to minimize the use of global variables al
in particular to limit the use of global variables requiring complicated initialization.

Several techniques exist for enforcing an order of initialization of global variables in differer
translation units. However, none are both portable and efficient. In particular, dynamically linke
libraries do not coexist happily with global variables that have complicated dependencies.

Often, a function returning a reference is a good alternative to a global variable. For example

int& use_count()

{
static int uc=0;
return uc;

}

A call use count() now acts as a global variable except that it is initialized at its first use (85.5)
For example:

void f()
{

cout << ++use count() ; / / read and increment
/...

}
The initialization of nonlocal static variables is controlled by whatever mechanism a
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implementation uses to start up &tQrogram. This mechanism is guaranteed to work properly
only if main() is executed. Consequently, one should avoid nonlocal variables that require ru
time initialization in G+ code intended for execution as a fragment of a nenpgtogram.

Note that variables initialized by constant expressions (8C.5) cannot depend on the value
objects from other translation units and do not require run-time initialization. Such variables &
therefore safe to use in all cases.

9.4.1.1 Program Termination [file.termination]

A program can terminate in several ways:

— By returning frommain()

— By calling exit()

— By callingabort()

— By throwing an uncaught exception
In addition, there are a variety of ill-behaved and implementation-dependent ways of making a p
gram crash.

If a program is terminated using the standard library funcsatf) , the destructors for con-
structed static objects are called (810.4.9, §10.2.4). However, if the program is terminated us
the standard library functioabort() , they are not. Note that this implies tlemit() does not ter-
minate a program immediately. Calliegit() in a destructor may cause an infinite recursion. The
type ofexit() is

void exit(int);

Like the return value ahain() (83.2),exit() 's argument is returned to “the system” as the value
of the program. Zero indicates successful completion.

Callingexit() means that the local variables of the calling function and its callers will not hav
their destructors invoked. Throwing an exception and catching it ensures that local objects
properly destroyed (814.4.7). Also, a calledt() terminates the program without giving the
caller of the function that callezkit() a chance to deal with the problem. It is therefore often best
to leave a context by throwing an exception and letting a handler decide what to do next.

The C (and &+) standard library functioatexit() offers the possibility to have code executed
at program termination. For example:

void my cleanup() ;
void somewhere()
{

if (atexit(& my_cleanup)== 0) {
/1 my cleanup will be called at normal termination
}

else{
/1 oops: too many atexit functions
}

}

This strongly resembles the automatic invocation of destructors for global variables at program f
mination (810.4.9, 810.2.4). Note that an argumeratésit() cannot take arguments or return a
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result. Also, there is an implementation-defined limit to the number of atexit funcitenit)
indicates when that limit is reached by returning a nonzero value. These limitationatetie
less useful than it appears at first glance.

The destructor of an object created before a calteit( f) will be invoked afteff is invoked.

The destructor of an object created after a cadketit( f) will be invoked beford is invoked.

Theexit() , abort() , andatexit() functions are declared kcstdlib>.

9.5 Adviceffile.advice]

[1]
2]
3]

[4]
[5]
[6]
[7]
[8]
[9]

Use header files to represent interfaces and to emphasize logical structure; §9.1, §89.3.2.
#include a header in the source file that implements its functions; §89.3.1.

Don't define global entities with the same name and similar-but-different meanings in diffel
ent translation units; §9.2.

Avoid non-inline function definitions in headers; §9.2.1.

Use#include only at global scope and in namespaces; §9.2.1.

#include only complete declarations; §9.2.1.

Use include guards; §9.3.3.

#include C headers in namespaces to avoid global names; §9.3.2.

Make headers self-contained; §9.2.3.

[10] Distinguish between users’ interfaces and implementers’ interfaces; §9.3.2.
[11] Distinguish between average users’ interfaces and expert users’ interfaces; §9.3.2.
[12] Avoid nonlocal objects that require run-time initialization in code intended for use as part

non-CG-+ programs; §9.4.1.

9.6 Exercisegfile.exercises]

1.

N

((») Find where the standard library headers are kept on your system. List their names.
any nonstandard headers kept together with the standard ones? Can any nonstandard head
#included using the<> notation?

() Where are the headers for nonstandard library “foundation” libraries kept?

(2.5) Write a program that reads a source file and writes out the names dfiridhsded.
Indent file names to show filesincluded by included files. Try this program on some real
source files (to get an idea of the amount of information included).

((B) Modify the program from the previous exercise to print the number of comment lines, t
number of non-comment lines, and the number of non-comment, whitespace-separated wc
for each file#tincluded.

(C2.5) An external include guard is a construct that tests outside the file it is guarding a
includes only once per compilation. Define such a construct, devise a way of testing it, and d
cuss its advantages and disadvantages compared to the include guards described in §9.3.
there any significant run-time advantage to external include guards on your system.

(@) How is dynamic linking achieved on your system. What restrictions are placed on dynan
cally linked code? What requirements are placed on code for it to be dynamically linked?
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7. ((B) Open and read 100 files containing 1500 characters each. Open and read one file cont
ing 150,000 characters. Hint: See example in §21.5.1. Is there a performance different
What is the highest number of files that can be simultaneously open on your system? Consi
these questions in relation to the uséimicludefiles.

8. () Modify the desk calculator so that it can be invoked fro@an() or from other functions
as a simple function call.

9. (@) Draw the “module dependency diagrams” (89.3.2) for the version of the calculator the
usederror() instead of exceptions (§8.2.2).
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This part describest@’s facilities for defining and using new types. Techniques com-
monly called object-oriented programming and generic programming are presented.
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“... there is nothing more difficult to carry out, nor more doubtful of success, nor more
dangerous to handle, than to initiate a new order of things. For the reformer makes
enemies of all those who profit by the old order, and only lukewarm defenders in all
those who would profit by the new order...”

— Nicollo Machiavelli (“The Prince” 8vi)
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Classes

Those types are not "abstract”;
they are as real amt andfloat
— Doug Mcllroy

Concepts and classes class members— access contro— constructors— static

members— default copy— const member functions— this — structs — in-class func-
tion definition— concrete classes- member functions and helper functions over-

loaded operators— use of concrete classes destructors— default construction—

local variables— user-defined copy— new anddelete — member objects— arrays—

static storage— temporary variables- unions— advice— exercises.

10.1 Introduction [class.intro]

The aim of the €+ class concept is to provide the programmer with a tool for creating new type
that can be used as conveniently as the built-in types. In addition, derived classes (Chapter 12)
templates (Chapter 13) provide ways of organizing related classes that allow the programme
take advantage of their relationships.

A type is a concrete representation of a concept. For examplettheuilt-in type float with
its operations-, - , *, etc., provides a concrete approximation of the mathematical concept of a re
number. A class is a user-defined type. We design a new type to provide a definition of a conc
that has no direct counterpart among the built-in types. For example, we might provide a ty
Trunk line in a program dealing with telephony, a tygeplosion for a videogame, or a type
list<Paragraph> for a text-processing program. A program that provides types that closely matc
the concepts of the application tends to be easier to understand and easier to modify than a pro
that does not. A well-chosen set of user-defined types makes a program more concise. In addi
it makes many sorts of code analysis feasible. In particular, it enables the compiler to detect ille
uses of objects that would otherwise remain undetected until the program is thoroughly tested.
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The fundamental idea in defining a new type is to separate the incidental details of the imp
mentation (e.g., the layout of the data used to store an object of the type) from the properties es
tial to the correct use of it (e.g., the complete list of functions that can access the data). Such a
aration is best expressed by channeling all uses of the data structure and internal housekeeping
tines through a specific interface.

This chapter focuses on relatively simple “concrete” user-defined types that logically don't dif
fer much from built-in types. Ideally, such types should not differ from built-in types in the wa
they are used, only in the way they are created.

10.2 Classeglass.class]

A classis a user-defined type. This section introduces the basic facilities for defining a class, cre
ing objects of a class, and manipulating such objects.

10.2.1 Member Functions [class.member]

Consider implementing the concept of a date usistyuct to define the representation oDate
and a set of functions for manipulating variables of this type:

struct Date { / | representation

int d m, vy,
h
void init_date( Date& d, int, int, int); / / initialize d
void add year( Date& d, int n); / | add nyearstod
void add_month( Date& d, int n); / / add n months to d
void add day( Date& d, int n); / | add ndaystod

There is no explicit connection between the data type and these functions. Such a connection
be established by declaring the functions as members:

struct Date {
int d m, vy,
void init(int dd, int mm int yy); / / initialize
void add year(int n); / | add n years
void add_month( int n); /| add n months
void add day(int n); / | add n days

h

Functions declared within a class definitiorsauct is a kind of class; §10.2.8) are called member

functions and can be invoked only for a specific variable of the appropriate type using the stand
syntax for structure member access. For example:

Date my_birthday;

void f()

{
Date today;
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today. init( 16, 10, 1996);
my_birthday. init( 30, 12, 1950);

Date tomorrow = today;
tomorrow. add_day( 1);
/...

}

Because different structures can have member functions with the same name, we must specify
structure name when defining a member function;

void Date:: init(int dd, int mm int yy)

d=dd,

m= mmg

Y=Yy,

}
In a member function, member names can be used without explicit reference to an object. In 1
case, the name refers to that member of the object for which the function was invoked. For ex:
ple, whenDate: : init() is invoked fortoday, m=mm assigns tad¢oday. m. On the other hand,
when Date: : init() is invoked formy birthday, m=mm assigns tomy birthday. m. A class
member function always “knows” for which object it was invoked.
The construct

class X{ ... }

is called aclass definitiorbecause it defines a new type. For historical reasons, a class definition
often referred to as @ass declaration Also, like declarations that are not definitions, a class defi-
nition can be replicated in different source files usimclude without violating the one-definition
rule (89.2.3).

10.2.2 Access Control [class.access]

The declaration oDate in the previous subsection provides a set of functions for manipulating ¢
Date. However, it does not specify that those functions should be the only ones to depend diret
on Date's representation and the only ones to directly access objects oDelessThis restriction

can be expressed by usinglassinstead of atruct:

class Date {
int d m, vy,

public:
void init(int dd, int mm, int yy); / / initialize
void add year(int n); /| add n years
void add_month( int n); /| add n months
void add day(int n); / | add n days

h

Thepublic label separates the class body into two parts. The names in therifiatie, part can be
used only by member functions. The secqndlic, part constitutes the public interface to objects
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of the class. Astruct is simply aclass whose members are public by default (§10.2.8); member
functions can be defined and used exactly as before. For example:

inline woid Date: : add_year( int n)

{
}

However, nonmember functions are barred from using private members. For example:

void timewarp( Date& d)
{

}

There are several benefits to be obtained from restricting access to a data structure to an expli
declared list of functions. For example, any error causibDgite to take on an illegal value (for
example, December 36, 1985) must be caused by code in a member function. This implies that
first stage of debugging localization— is completed before the program is even run. This is a
special case of the general observation that any change to the behavior of thateypan and
must be effected by changes to its members. In particular, if we change the representation
class, we need only change the member functions to take advantage of the new represente
User code directly depends only on the public interface and need not be rewritten (although it n
need to be recompiled). Another advantage is that a potential user need examine only the defini
of the member functions in order to learn to use a class.

The protection of private data relies on restriction of the use of the class member names. It
therefore be circumvented by address manipulation and explicit type conversion. But this,
course, is cheating. & protects against accident rather than deliberate circumvention (fraud)
Only hardware can protect against malicious use of a general-purpose language, and even th
hard to do in realistic systems.

Theinit() function was added partially because it is generally useful to have a function th
sets the value of an object and partly because making the data private forces us to provide it.

y+=nm

d.y-= 200; / / error: Date:y is private

10.2.3 Constructors [class.ctor]

The use of functions such mdt() to provide initialization for class objects is inelegant and error-
prone. Because it is nowhere stated that an object must be initialized, a programmer can forge
do so- or do so twice (often with equally disastrous results). A better approach is to allow the pr
grammer to declare a function with the explicit purpose of initializing objects. Because such
function constructs values of a given type, it is calledrsstructor A constructor is recognized by
having the same name as the class itself. For example:

class Date {

...

Date( int, int, int); /| constructor
h

When a class has a constructor, all objects of that class will be initialized. If the construct
requires arguments, these arguments must be supplied:
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Date today = Date( 23, 6, 1983);

Date xmas( 25, 12, 1990); | | abbreviated form

Date my_birthday; [ | error: initializer missing
Date releasel 0( 10, 12); [ | error: 3rd argument missing

It is often nice to provide several ways of initializing a class object. This can be done by providi

several constructors. For example:

class Date {
int d m, y;
public:
/..
Date( int, int, int); / | day, month, year
Date( int, int); / | day, month, today’s year
Date( int); | | day, today's month and year
Date() ; [ | default Date: today
Date( const char*) ; / | date in string representation

k

Constructors obey the same overloading rules as do other functions (§7.4). As long as the cons
tors differ sufficiently in their argument types, the compiler can select the correct one for each us

Date today( 4);

Date july4(" July 4, 1983") ;

Date guy(" 5 Nov') ;

Date mow; /| default initialized as today

The proliferation of constructors in tii2ate example is typical. When designing a class, a pro-
grammer is always tempted to add features just because somebody might want them. It takes r
thought to carefully decide what features are really needed and to include only those. Howe\
that extra thought typically leads to smaller and more comprehensible programs. One way

reducing the number of related functions is to use default arguments (87.5).Diat¢heach argu-
ment can be given a default value interpreted as “pick the deffeddty.”

class Date {
int d, m, vy;

public:
Date( int dd=0, int mm=0, int yy=0);
/..

3

Date: : Date( int dd, int mm int yy)

{

d=dd? dd: today. d;

m=mm? mm: today. m;

y=yy?yy: today.y,

/1 check that the Date is valid
}

When an argument value is used to indicate “pick the default,” the value chosen must be outs

the set of possible values for the argument. dagrandmeonth, this is clearly so, but forear, zero
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may not be an obvious choice. Fortunately, there is no year zero on the European calendar; :
(year==1) comes immediately after 1B@dar==- 1).

10.2.4 Static Members [class.static]

The convenience of a default value fates was bought at the cost of a significant hidden prob-
lem. OurDate class became dependent on the global varimolgy. This Date class can be used
only in a context in whichoday is defined and correctly used by every piece of code. This is the
kind of constraint that causes a class to be useless outside the context in which it was first writ
Users get too many unpleasant surprises trying to use such context-dependent classes, and m
nance becomes messy. Maybe “just one little global variable” isn’t too unmanageable, but tr
style leads to code that is useless except to its original programmer. It should be avoided.

Fortunately, we can get the convenience without the encumbrance of a publicly accessible ¢
bal variable. A variable that is part of a class, yet is not part of an object of that class, is calle
static member. There is exactly one copy dftatic member instead of one copy per object, as for
ordinary nonstatic members. Similarly, a function that needs access to members of a class,
doesn’'t need to be invoked for a particular object, is calktdtac member function.

Here is a redesign that preserves the semantics of default constructor valDagefaithout
the problems stemming from reliance on a global:

class Date {
intd m,y;
static Date default_date;
public:
Date( int dd =0, int mm=0, int yy=0);
..

static void set default( int, int, int);
b
We can now define thBate constructor like this:

Date: : Date( int dd, int mm int yy)

{
d=dd? dd: default_date. d;
m=mm? mm: default_date. m;
y=yy?yy: default_date. y;
/1 check that the Date is valid

}

We can change the default date when appropriate. A static member can be referred to like
other member. In addition, a static member can be referred to without mentioning an obje
Instead, its name is qualified by the name of its class. For example:

void f()
{

}
Static members both function and data membersnust be defined somewhere. For example:

Date: : set_default( 4, 5, 1945);
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Date Date: : default_date( 16, 12, 1770);
void Date:: set_default(int d, int m, int y)
{

}

Now the default value is Beethoven'’s birth datentil someone decides otherwise.
Note thatDate() serves as a notation for the valudatte: : default_date. For example:

Date copy_of_default_date = Date() ;

Date: : default_date = Date(d, m, y);

Consequently, we don’t need a separate function for reading the default date.

10.2.5 Copying Class Objects [class.default.copy]

By default, class objects can be copied. In particular, a class object can be initialized with a cc
of another object of the same class. This can be done even where constructors have been dec
For example:

Date d= today; /I initialization by copy
By default, the copy of a class object is a copy of each member. If that default is not the behay
wanted for a clasX, a more appropriate behavior can be provided by defining a copy constructc

X:: X( const X&) . This is discussed further in §10.4.4.1.
Similarly, class objects can by default be copied by assignment. For example:

void f( Date&. d)
{
}

Again, the default semantics is memberwise copy. If that is not the right choice for X,dlass
user can define an appropriate assignment operator (§10.4.4.1).

d = today;

10.2.6 Constant Member Functions [class.constmem]

The Date defined so far provides member functions for givinate a value and changing it.
Unfortunately, we didn’t provide a way of examining the value bate. This problem can easily
be remedied by adding functions for reading the day, month, and year:

class Date {
intd m, vy,

public:
int day() const{ return d; }
int month() const{ return m }
int year() const
..

h

Note theconst after the (empty) argument list in the function declarations. It indicates that thes
functions do not modify the state oDate.
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Naturally, the compiler will catch accidental attempts to violate this promise. For example:

inline int Date : year() const

{
return y++; / / error: attempt to change member value in const function
}
When aconst member function is defined outside its class,dbmst suffix is required:
inline int Date : year() const /1 correct
{
return vy;
}
inline int Date:: year() / / error: const missing in member function type
{
return vy,
}

In other words, theonstis part of the type dDate: : day() andDate:: year() .
A const member function can be invoked for battnst and noneonst objects, whereas a non-
const member function can be invoked only for nonst objects. For example:

void f( Date& d, const Date& cd)

{

inti=d year(); / / ok

d. add_year( 1); / | ok

int j=cd. year(); / / ok

cd. add year(1); / / error: cannot change value of const cd
}

10.2.7 Self-Reference [class.this]

The state update functioadd year() , add_month() , andadd_day() were defined not to return
values. For such a set of related update functions, it is often useful to return a reference to
updated object so that the operations can be chained. For example, we would like to write

void f( Date& d)

{
/..
d. add_day( 1). add_month( 1). add_year(1);
...

}

to add a day, a month, and a yead.tdT o do this, each function must be declared to return a refer-
ence to Date:

class Date {
/..
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Date& add_year(int n); / / add nyears

Date& add_month(int n);/ / add n months

Date& add_day(int n); / / add ndays
3

Each (nonstatic) member function knows what object it was invoked for and can explictly refer
it. For example:

Date& Date: : add_year(int n)

if (d==29 && m==2 &&! leapyear( y+n)) {/ / beware of February 29
d=1,;
m=3;

}

y+=n

return * this;

}

The expressiof this refers to the object for which a member function is invoked. It is equivalent
to Simula’sTHISand Smalltalk’sself.

In a nonstatic member function, the keywdthis is a pointer to the object for which the func-
tion was invoked. In a nooenst member function of clasX, the type ofthis is X *const. The
const makes it clear that the user is not supposed to change the vahis dh aconst member
function of classX, the type ofthis is const X * const to prevent modification of the object itself
(see also §5.4.1).

Most uses ofhis are implicit. In particular, every reference to a nonstatic member from within
a class relies on an implicit usetbis to get the member of the appropriate object. For example,
theadd year function could equivalently, but tediously, have been defined like this:

Date& Date: : add_year( int n)

if (this-> d==29 && this-> m==2 && ! leapyear( this-> y+n)) {

this>d=1;
this>m=3;
}
this>y +=n;
return * this;

}

One common explicit use thisis in linked-list manipulation (e.g., §24.3.7.4).

10.2.7.1 Physical and Logical Constness [class.const]

Occasionally, a member function is logicatignst, but it still needs to change the value of a mem-
ber. To a user, the function appears not to change the state of its object. However, some detalil
the user cannot directly observe is updated. This is often datiezhl constness For example,

the Date class might have a function returning a string representation that a user could use for c
put. Constructing this representation could be a relatively expensive operation. Therefore, it wo
make sense to keep a copy so that repeated requests would simply return the copy, unles:
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Date’s value had been changed. Caching values like that is more common for more complica
data structures, but let's see how it can be achievedDate

class Date {
bool cache valid;
string cache
void compute_cache value() ; / / fill cache

slri.r.l'g string rep() const; /| string representation

From a user’s point of vievefring_rep doesn’t change the state of Rate, so it clearly should be
a const member function. On the other hand, the cache needs to be filled before it can be us
This can be achieved through brute force:

string Date: : string_rep() const

if ( cache valid == false) {
Date* th = const_cast<Date*>( this);/ / cast away const
th-> compute_cache _value() ;
th-> cache valid = true;

return cache

That is, theconst_cast operator (§15.4.2.1) is used to obtain a pointer of Bak* to this. This
is hardly elegant, and it is not guaranteed to work when applied to an object that was origine
declared as eonst. For example:

Date di,;

const Date d2;

string s1=d1. string_rep() ;

string s2=d2. string_rep() ; / / undefined behavior

In the case ofl1, string_rep() simply casts back td1's original type so that the call will work.
However,d2 was defined as aonst and the implementation could have applied some form of
memory protection to ensure that its value wasn’t corrupted. Consequishtsiring rep() is

not guaranteed to give a single predictable result on all implementations.

10.2.7.2 Mutable [class.mutable]

The explicit type conversion “casting awagnst’ and its consequent implementation-dependent
behavior can be avoided by declaring the data involved in the cache managememitebhe
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class Date {
mutable ool cache valid;
mutable string cache;
void compute_cache value() const, / / fill (mutable) cache
/...
public:
/...
string string_rep() const; | | string representation

k

The storage specifienutable specifies that a member should be stored in a way that allows upda
ing — even when it is a member ofcanst object. In other wordanutable means “can never be
const.” This can be used to simplify the definition stfing_rep() :

string Date: : string_rep() const

if (! cache valid) {
compute_cache value() ;
cache valid = true;

}

return cache

}

and makes reasonable usestding rep() valid. For example:

Date d;

const Date d4,

string s3= d3. string_rep() ;

string s4=d4. string_rep() ; / / ok!

Declaring membermutable is most appropriate when (only) part of a representation is allowed tc
change. If most of an object changes while the object remains logioall; it is often better to
place the changing data in a separate object and access it indirectly. If that technique is used
string-with-cache example becomes:

struct cache{
bool valid;
string rep;
h
class Date {
cache* c; /I initialize in constructor (810.4.6)
void compute_cache value() const, / / fill what cache refers to
/..
public:
/..
string string_rep() const; /| string representation
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string Date: : string_rep() const

{
if (! c>valid) {
compute_cache value() ;
c-> valid = true
}
return c-> rep;
}

The programming techniques that support a cache generalize to various forms of lazy evaluation

10.2.8 Structures and Classes [class.struct]

By definition, astruct is a class in which members are by default public; that is,
struct s{ ...

is simply shorthand for
class s{ public: ...

The access specifi@rivate: can be used to say that the members following are private, just a

public: says that the members following are public. Except for the different names, the followir
declarations are equivalent:

class Datel {
intd m, vy,
public:
Datel( int dd, int mm, int yy);

void add year(int n); / / addnyears

3
struct Date2 {
private:
intd m,y;
public:
Date2( int dd, int mm int yy);
void add year(int n); / / addnyears
h

Which style you use depends on circumstances and taste. | usually prefestructder classes
that have all data public. | think of such classes as “not quite proper types, just data structure
Constructors and access functions can be quite useful even for such structures, but as a shor
rather than guarantors of properties of the type (invariants, see §24.3.7.1).

It is not a requirement to declare data first in a class. In fact, it often makes sense to place
members last to emphasize the functions providing the public user interface. For example:

class Date3{
public:
Date3(int dd, int mm, int yy);
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void add year(int n); / / addnyears
private:

intd m, vy,
h

In real code, where both the public interface and the implementation details typically are mc
extensive than in tutorial examples, | usually prefer the style us&hie8.
Access specifiers can be used many times in a single class declaration. For example:

class Date4 {
public:
Date4( int dd, int mm, int yy);
private:
int d, m, y;
public:
void add year(int n); / / addnyears

kh

Having more than one public section, adDiate4, tends to be messy. So does having more than
one private section. However, allowing many access specifiers in a class is useful for machi
generated code.

10.2.9 In-Class Function Definitions [class.inline]

A member function defined within the class definitierrather than simply declared thereis
taken to be an inline member function. That is, in-class definition of member functions is for sme
frequently-used functions. Like the class definition it is part of, a member function defined in-cla
can be replicated in several translation units uginglude. Like the class itself, its meaning must
be the same wherever it is used (89.2.3).

The style of placing the definition of data members last in a class can lead to a minor probils
with public inline functions that refer to the representation. Consider:

class Date{ / / potentially confusing

public:
int day() const{ return d } / / return Date::d
/..

private:
int d m, vy,

h

This is perfectly good € code because a member function declared within a class can refer
every member of the class as if the class were completely defined before the member function t
ies were considered. However, this can confuse human readers.

Consequently, | usually either place the data first or define the inline member functions after t
class itself. For example:
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class Date {

public:
int day() const
..

private:
intd m, vy,

h

inline int Date: : day() const{ return d, }

10.3 Efficient User-Defined Typegclass.concrete]

The previous section discussed bits and pieces of the desigdaté alass in the context of intro-
ducing the basic language features for defining classes. Here, | reverse the emphasis and dis
the design of a simple and efficieDate class and show how the language features support this
design.

Small, heavily-used abstractions are common in many applications. Examples are Latin char
ters, Chinese characters, integers, floating-point numbers, complex numbers, points, pointers, c
dinates, transforms, p@inter,offset pairs, dates, times, ranges, links, associations, nodes
(value,unij pairs, disk locations, source code locatidEP characters, currencies, lines, rectan-
gles, scaled fixed-point numbers, numbers with fractions, character strings, vectors, and arrz
Every application uses several of these. Often, a few of these simple concrete types are used |
ily. A typical application uses a few directly and many more indirectly from libraries.

C++ and other programming languages directly support a few of these abstractions. Howev
most are not, and cannot be, supported directly because there are too many of them. Furthern
the designer of a general-purpose programming language cannot foresee the detailed needs of
application. Consequently, mechanisms must be provided for the user to define small conci
types. Such types are called concrete types or concrete classes to distinguish them from abs
classes (812.3) and classes in class hierarchies (§12.2.4, §12.4).

It was an explicit aim of €+ to support the definition and efficient use of such user-defined
data types very well. They are a foundation of elegant programming. As usual, the simple ¢
mundane is statistically far more significant than the complicated and sophisticated.

In this light, let us build a better date class:

class Date {
public: / | public interface:
enum Month { jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec};

class Bad date{ };/ / exception class
Date( int dd =0, Month mm=Month( 0), int yy=0);/ / 0 means “pick a default”

/1 functions for examining the Date:
int day() const,
Month month() const,
int year() const
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string string_rep() const; /| string representation
void char_rep( char §[]) const | | C-style string representation

static void set default( int, Month, int);

/1 functions for changing the Date:

Date& add_year( int n); / | add nyears

Date& add_month( int n); / | add n months

Date& add_day( int n); / | add n days
private:

int d, m, y; | | representation

static Date default_date;
2

This set of operations is fairly typical for a user-defined type:

[1] A constructor specifying how objects/variables of the type are to be initialized.

[2] A set of functions allowing a user to examinBate. These functions are markednst to

indicate that they don’t modify the state of the object/variable for which they are called.
[3] A set of functions allowing the user to manipulBtates without actually having to know
the details of the representation or fiddle with the intricacies of the semantics.

[4] A set of implicitly defined operations to alloldates to be freely copied.

[5] A class,Bad_date, to be used for reporting errors as exceptions.
| defined aMonth type to cope with the problem of remembering, for example, whether the 7th c
June is writtenDate( 6, 7) (American style) orDate( 7, 6) (European style). | also added a
mechanism for dealing with default arguments.

| considered introducing separate tyd2ay and Year to cope with possible confusion of
Date( 1995, jul, 27) andDate( 27, jul, 1995) . However, these types would not be as useful as
the Month type. Almost all such errors are caught at run-time anywtne 26th of July year 27 is
not a common date in my work. How to deal with historical dates before year 1800 or so is a tric
issue best left to expert historians. Furthermore, the day of the month can’t be properly checke
isolation from its month and year. See §11.7.1 for a way of defining a conveéeaerype.

The default date must be defined as a Vialle somewhere. For example:

Date Date: : default_date( 22, jan, 1901);

| omitted the cache technique from §10.2.7.1 as unnecessary for a type this simple. If needel
can be added as an implementation detail without affecting the user interface.
Here is a smalk and contrived- example of howDates can be used:

void f( Date& d)

{
Date Ivb_day = Date( 16, Date: : dec, d. year()) ;

if (d. day()== 29 &&d. month()== Date: : feh) {
I
}

if ( midnight()) d. add day( 1);

cout << "day after:" <<d+1l<<’'\n’;
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This assumes that the output operatorand the addition operaterhave been declared fbrates.
| do that in §10.3.3.
Note theDate: : febnotation. The functiof() is not a member dbate, so it must specify that
it is referring toDate's feb and not to some other entity.
Why is it worthwhile to define a specific type for something as simple as a date? After all, w
could define a structure:

struct Date {
int day, month, year;
I3

and let programmers decide what to do with it. If we did that, though, every user would either he
to manipulate the components Dhates directly or provide separate functions for doing so. In
effect, the notion of a date would be scattered throughout the system, which would make it harc
understand, document, or change. Inevitably, providing a concept as only a simple structure ca
extra work for every user of the structure.

Also, even though thBate type seems simple, it takes some thought to get right. For example
incrementing date must deal with leap years, with the fact that months are of different lengths
and so on (note: 810.6[1]). Also, the day-month-and-year representation is rather poor for me
applications. If we decided to change it, we would need to modify only a designated set of fur
tions. For example, to represenbDate as the number of days before or after January 1, 1970, we
would need to change onBate’'s member functions (810.6[2]).

10.3.1 Member Functions [class.memfct]

Naturally, an implementation for each member function must be provided somewhere. For exa
ple, here is the definition d@ate’s constructor:

Date: : Date( int dd, Month mm, int yy)

{
if (yy==0) yy = default_date. year() ;
if (mm== 0) mm= default_date. month() ;
if (dd==0) dd = default_date. day() ;

int max;

switch ( mm) {
case feb:
max = 28+leapyear( yy);
break;
case @pr. case jun. case Sep case Mmov:
max = 30;
break;
case jan: case mar: case may. case jul: case aug. case oct. case dec
max = 31;
break;
default:
throw Bad date() ; / / someone cheated
}
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if (dd<1|| max<dd) throw Bad_date() ;
Y=y
m = mm
d=dd;
}

The constructor checks that the data supplied denotes a Iatd. If not, say for
Date( 30, Date: : feb, 1994) , it throws an exception (88.3, Chapter 14), which indicates that
something went wrong in a way that cannot be ignored. If the data supplied is acceptable, the o
ous initialization is done. Initialization is a relatively complicated operation because it involve
data validation. This is fairly typical. On the other hand, onBate has been created, it can be
used and copied without further checking. In other words, the constructor establishes the invar
for the class (in this case, that it denotes a valid date). Other member functions can rely on-
invariant and must maintain it. This design technique can simplify code immensely (see §24.3.7

I'm using the valueMonth( 0) — which doesn’t represent a monthto represent “pick the
default month.” 1 could have defined an enumeratdvionth specifically to represent that. But |
decided that it was better to use an obviously anomalous value to represent “pick the defe
month” rather than give the appearance that there were 13 months in a year. NOteathdte
used because it is within the range guaranteed for the enumeéatitim (§4.8).

| considered factoring out the data validation in a separate funstidate() . However, |
found the resulting user code more complicated and less robust than code relying on catching
exception. For example, assuming thatis defined foiDate:

void fill( vector<Date>& aa)
while ( cin) {

Date d

try {
cin>> d;
}

catch ( Date: : Bad_date) {
/1 my error handling
continue;
}
aa. push_back(d); / / see 83.7.3
}

As is common for such simple concrete types, the definitions of member functions vary betwe
the trivial and the not-too-complicated. For example:

inline int Date: : day() const

{
}

return d;
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Date& Date: : add_month( int n)

if (n==0) return * this;
if (n>0) {
int delta_y=n/ 12
int mm= m+n%d2,
if (12<mm) {/ / note: int(dec)==12
delta_y++;
mm-= 12;

}

/1 handle the cases where Month(mm) doesn’t have day d
y += delta_y;

m = Month( mm);

return * this;

}

/1 handle negative n

return * this;

10.3.2 Helper Functions [class.helper]

Typically, a class has a number of functions associated with it that need not be defined in the ¢
itself because they don’t need direct access to the representation. For example:

int diff( Date a Date b); // number of days in the range [a,b) or [b,a)
bool leapyear(int y);

Date mext weekday( Date d);

Date mext_saturday( Date d);

Defining such functions in the class itself would complicate the class interface and increase
number of functions that would potentially need to be examined when a change to the represe
tion was considered.

How are such functions “associated” with cla®ate? Traditionally, their declarations were
simply placed in the same file as the declaration of &eds, and users who needBates would
make them all available by including the file that defined the interface (89.2.1). For example:

#include" Date. h"

In addition to using a specifibate. h header, or as an alternative, we can make the associatiol
explicit by enclosing the class and its helper functions in a namespace (88.2):

namespace Chrono { / | facilities for dealing with time
class Date{ /* ...*/};
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int diff( Date a Date b);
bool leapyear(int y);

Date mext weekday( Date d);
Date mext_saturday( Date d);
/...

}

The Chrono namespace would naturally also contain related classes, stianesnd Stopwatch,
and their helper functions. Using a namespace to hold a single class is usually an over-elabore
that leads to inconvenience.

10.3.3 Overloaded Operators [class.over]

It is often useful to add functions to enable conventional notation. For examptperiator==
function defines the equality operator to work for Dates:

inline bool operator==( Date a Date h) / / equality

{
return a. day()== b. day() &&a. month()== b. month() &&a. year()== b. year() ;
}
Other obvious candidates are:
bool operator!'=( Date, Date); /| inequality
bool operator<( Date, Date); /I less than
bool operator>( Date, Date); | | greater than
/...

Date& operator++( Date& d); / | increase Date by one day
Date& operator--( Date& d); | | decrease Date by one day
Date& operator+=( Date& d, int n); / | add n days

Date& operator-=( Date& d, int n); / | subtract n days

Date operator+( Date d, int n); / | add n days

Date aperator-( Date d int n); / | subtract n days

ostream& operator<<( ostream&, Date d);/ / outputd

istream& operator>>( istream&, Date& d);/ / readintod

For Date, these operators can be seen as mere conveniences. However, for manystyglesas
complex numbers (811.3), vectors (83.7.1), and function-like objects (§18w) use of conven-
tional operators is so firmly entrenched in people’s minds that their definition is almost mandato
Operator overloading is discussed in Chapter 11.

10.3.4 The Significance of Concrete Classes [class.significance]

| call simple user-defined types, such Rate, concrete typeso distinguish them from abstract
classes (82.5.4) and class hierarchies (§12.3) and also to emphasize their similarity to built-in ty
such asint and char. They have also been calleglue typesand their usevalue-oriented
programming Their model of use and the “philosophy” behind their design are quite different
from what is often advertised as object-oriented programming (§2.6.2).
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The intent of a concrete type is to do a single, relatively small thing well and efficiently. It i
not usually the aim to provide the user with facilities to modify the behavior of a concrete type.
particular, concrete types are not intended to display polymorphic behavior (see §2.5.5, §12.2.6)

If you don't like some detail of a concrete type, you build a new one with the desired behavi
If you want to “reuse” a concrete type, you use it in the implementation of your new type exactl
as you would have used mt. For example:

class Date_and_time{
private:
Date dt
Time t
public:
Date_and_time( Date d, Time t);
Date_and_time( int d, Date:: Month m, int y, Time t);
I ...
%
The derived class mechanism discussed in Chapter 12 can be used to define new types from a
crete class by describing the desired differences. The definitivlecdirom vector (83.7.2) is an
example of this.

With a reasonably good compiler, a concrete class sublatesincurs no hidden overhead in
time or space. The size of a concrete type is known at compile time so that objects can be alloc
on the run-time stack (that is, without free-store operations). The layout of each object is knowr
compile time so that inlining of operations is trivially achieved. Similarly, layout compatibility
with other languages, such as C and Fortran, comes without special effort.

A good set of such types can provide a foundation for applications. Lack of suitable “sme
efficient types” in an application can lead to gross run-time and space inefficiencies when ove
general and expensive classes are used. Alternatively, lack of concrete types can lead to obs
programs and time wasted when each programmer writes code to directly manipulate “simple ¢
frequently used” data structures.

10.4 Objectdclass.objects]

Objects can be created in several ways. Some are local variables, some are global variables,
are members of classes, etc. This section discusses these alternatives, the rules that govern
the constructors used to initialize objects, and the destructors used to clean up objects before
become unusable.

10.4.1 Destructors [class.dtor]

A constructor initializes an object. In other words, it creates the environment in which the memt
functions operate. Sometimes, creating that environment involves acquiring a ressuoteas a

file, a lock, or some memory that must be released after use (814.4.7). Thus, some classes nee
function that is guaranteed to be invoked when an object is destroyed in a manner similar to
way a constructor is guaranteed to be invoked when an object is created. Inevitably, such funct
are calleddestructors They typically clean up and release resources. Destructors are calle



Section 10.4.1 Destructors 243

implicitly when an automatic variable goes out of scope, an object on the free store is deleted,
Only in very unusual circumstances does the user need to call a destructor explicitly (§10.4.11).

The most common use of a destructor is to release memory acquired in a constructor. Cons
a simple table of elements of some tj{mme The constructor fofable must allocate memory to
hold the elements. When the table is somehow deleted, we must ensure that this memor
reclaimed for further use elsewhere. We do this by providing a special function to complement
constructor:

class Name{
const char* s,
/...
3
class Table {
Name* p;
size t sz
public:
Table( size t s=15) { p=new Nameg sz=s|; }/ / constructor
~Table() { delete]] p; } [ | destructor

Name* lookup( const char *) ;
bool insert( Name) ;
3

The destructor notationTable() uses the complement symbelto hint at the destructor’s rela-
tion to theTable() constructor.

A matching constructor/destructor pair is the usual mechanism for implementing the notion o
variably-sized object in€-. Standard library containers, suchmaap, use a variant of this tech-
nique for providing storage for their elements, so the following discussion illustrates techniqu
you rely on every time you use a standard container (including a stastdag). The discussion
applies to types without a destructor, also. Such types are seen simply as having a destructor
does nothing.

10.4.2 Default Constructors [class.default]

Similarly, most types can be considered to have a default constructor. A default constructor i
constructor that can be called without supplying an argument. Because of the default at§ument
Table: : Table( size t) is a default constructor. If a user has declared a default constructor, th
one will be used; otherwise, the compiler will try to generate one if needed and if the user has
declared other constructors. A compiler-generated default constructor implicitly calls the defa
constructors for a class’ members of class type and bases (§812.2.2). For example:

struct Tables{
int i;
int vi[ 10];
Table ti;
Table [ 10];
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Tables ft;

Here,tt will be initialized using a generated default constructor that Talide( 15) for tt. t1 and
each element dt. vt. On the other handt. i and the elements ¢f. vi are not initialized because
those objects are not of a class type. The reasons for the dissimilar treatment of classes and bt
types are C compatibility and fear of run-time overhead.

Becauseonsts and references must be initialized (85.5, 85.4), a class conteamsipr refer-
ence members cannot be default-constructed unless the programmer explicitly supplies a cons
tor (810.4.6.1). For example:

struct X {
const int a;
const int&r;
b

X x // error: no default constructor for X

Default constructors can be invoked explicitly (810.4.10). Built-in types also have default col
structors (86.2.8).

10.4.3 Construction and Destruction [class.ctor.dtor]

Consider the different ways an object can be created and how it gets destroyed afterwards.
object can be created as:
8§10.4.4 A named automatic object, which is created each time its declaration is encounte
in the execution of the program and destroyed each time the program exits the blo
in which it occurs
8§10.4.5 A free-store object, which is created usingnéag operator and destroyed using the
delete operator
8§10.4.6 A nonstatic member object, which is created as a member of another class object
created and destroyed when the object of which it is a member is created a
destroyed
810.4.7 An array element, which is created and destroyed when the array of which it is an ¢
ment is created and destroyed
810.4.8 A local static object, which is created the first time its declaration is encountered
the execution of the program and destroyed once at the termination of the program
810.4.9 A global, namespace, or class static object, which is created once “at the start of
program” and destroyed once at the termination of the program
§10.4.10 A temporary object, which is created as part of the evaluation of an expression ¢
destroyed at the end of the full expression in which it occurs
§10.4.11 An object placed in memory obtained from a user-supplied function guided by arg
ments supplied in the allocation operation
§10.4.12 Aunion member, which may not have a constructor or a destructor
This list is roughly sorted in order of importance. The following subsections explain these vario
ways of creating objects and their uses.
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10.4.4 Local Variables [class.local]

The constructor for a local variable is executed each time the thread of control passes through
declaration of the local variable. The destructor for a local variable is executed each time the |c
variable’s block is exited. Destructors for local variables are executed in reverse order of their ¢
struction. For example:

void f(int i)

{
Table aa;

Table hb;

if (i>0) {
Table cc;
/...

}
Table dd;
/...

}

Here,aa, bb, anddd are constructed (in that order) each tiff)e is called, andid, bb, andaa are
destroyed (in that order) each time we return ffdm If i>0 for a call,cc will be constructed after
bb and destroyed befodd is constructed.

10.4.4.1 Copying Objects [class.copy]

If t1 andt2 are objects of a clasgable, t2=t1 by default means a memberwise copytbinto t2
(810.2.5). Having assignment interpreted this way can cause a surprising (and usually undesi
effect when used on objects of a class with pointer members. Memberwise copy is usually
wrong semantics for copying objects containing resources managed by a constructor/destru
pair. For example:

void h()
{
Table ti;
Table 2 =1t1; / / copy initialization: trouble
Table t3;
t3=12; / | copy assignment: trouble
}

Here, theTable default constructor is called twice: once eachtloandt3. It is not called fott2
because that variable was initialized by copying. However Tdide destructor is called three
times: once each faf, t2, andt3! The default interpretation of assignment is memberwise copy, sc
t1, t2, andt3 will, at the end oh() , each contain a pointer to the array of names allocated on the
free store whenl was created. No pointer to the array of names allocated t@was created
remains because it was overwritten by tBet2 assignment. Thus, in the absence of automatic
garbage collection (810.4.5), its storage will be lost to the program forever. On the other hand,
array created forl appears irtl, t2, andt3, so it will be deleted thrice. The result of that is unde-
fined and probably disastrous.
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Such anomalies can be avoided by defining what it means to ctablea

class Table {
/...
Table( const Tableg&); ! | copy constructor
Table& operator=( const Table&); / / copy assignment

h

The programmer can define any suitable meaning for these copy operations, but the traditional
for this kind of container is to copy the contained elements (or at least to give the user of the ¢
tainer the appearance that a copy has been done; see 811.12). For example:

Table: : Table( const Table& t) /| copy constructor
{

p = new Nam€ sz=t. s7;

for (int i =0; i<sz i++) p[i] =t. p[i];

}
Table& Table: : operator=( const Table& t) / | assignment
if (this!= &t) { ! | beware of self-assignment: t =t
deletef] p;
p = new Name sz-t. s7;
for (int i =0; i<sz i++) p[i] =t. p[i];
}
return * this;
}

As is almost always the case, the copy constructor and the copy assignment differ considera
The fundamental reason is that a copy constructor initializes uninitialized memory, whereas
copy assignment operator must correctly deal with a well-constructed object.

Assignment can be optimized in some cases, but the general strategy for an assignment ope
is simple: protect against self-assignment, delete old elements, initialize, and copy in new eleme
Usually every nonstatic member must be copied (§10.4.6.3).

10.4.5 Free Store [class.free]

An object created on the free store has its constructor invoked ystheperator and exists until
thedelete operator is applied to a pointer to it. Consider:
int main()
{
Table* p = new Table;

Table* q=new Table;

delete m
delete @ // probably causes run-time error

}

The constructoiTable: : Table() is called twice. So is the destrucibable: :~ Table() . Unfor-
tunately, thenews and thedeletes in this example don’t match, so the object pointed t@ s/
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deleted twice and the object pointed tocgot at all. Not deleting an object is typically not an
error as far as the language is concerned; it is only a waste of space. However, in a program th
meant to run for a long time, such a memory leak is a serious and hard-to-find error. There
tools available for detecting such leaks. Deleprtyvice is a serious error; the behavior is unde-
fined and most likely disastrous.

Some @+ implementations automatically recycle the storage occupied by unreachable objec
(garbage collecting implementations), but their behavior is not standardized. Even when a garb
collector is runningdelete will invoke a destructor if one is defined, so it is still a serious error to
delete an object twice. In many cases, that is only a minor inconvenience. In particular, wher
garbage collector is known to exist, destructors that do memory management only can be eli
nated. This simplification comes at the cost of portability and for some programs, a possil
increase in run time and a loss of predictability of run-time behavior (§C.9.1).

After delete has been applied to an object, it is an error to access that object in any way. Unf
tunately, implementations cannot reliably detect such errors.

The user can specify homew does allocation and hodelete does deallocation (see §6.2.6.2
and 815.6). It is also possible to specify the way an allocation, initialization (construction), ar
exceptions interact (see 814.4.5 and 819.4.5). Arrays on the free store are discussed in §10.4.7

10.4.6 Class Objects as Members [class.m]

Consider a class that might be used to hold information for a small organization:

class Club {
string name
Table mmembers;
Table dofficers;
Date founded
/...
Club( const string& n, Date fd);
3
The Club’s constructor takes the name of the club and its founding date as arguments. Argume
for a member’s constructor are specified in a member initializer list in the definition of the cor
structor of the containing class. For example:

Club: : Club( const string& n, Date fd)
: name( n), members() , officers() , founded( fd)
{

I ...
}

The member initializers are preceded by a colon and the individual member initializers are se
rated by commas.

The members’ constructors are called before the body of the containing class’ own construc
is executed. The constructors are called in the order in which they are declared in the class re
than the order in which they appear in the initializer list. To avoid confusion, it is best to speci
the initializers in declaration order. The member destructors are called in the reverse order of ¢
struction.
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If a member constructor needs no arguments, the member need not be mentioned in the mel
initializer list, so

Club: : Club( const string& n, Date fd)
: name( n), founded( fd)
{

I ...
}

is equivalent to the previous version. In each c8hsh: : officersis constructed byable: : Table
with the default argumens.

When a class object containing class objects is destroyed, the body of that object's o
destructor (if one is specified) is executed first and then the members’ destructors are execute
reverse order of declaration. A constructor assembles the execution environment for the men
functions for a class from the bottom up (members first). The destructor disassembles it from
top down (members last).

10.4.6.1 Necessary Member Initialization [class.ref.init]

Member initializers are essential for types for which initialization differs from assign#ribat is,
for member objects of classes without default constructors;oimst members, and for reference
members. For example:

class X{

const int i;

Club ¢

Club& pc;

/...

X(int ii, const string& n, Date d Club&c) : i(ii), ¢(n, d), pc(c) {}
3

There isn’'t any other way to initialize such members, and it is an error not to initialize objects
those types. For most types, however, the programmer has a choice between using an initia
and using an assignment. In that case, | usually prefer to use the member initializer syntax, t
making explicit the fact that initialization is being done. Often, there also is an efficiency adva
tage to using the initializer syntax. For example:

class Person {
string name
string address
/..
Person( const Person&);
Person( const string& n, const string& a);

3

Person: : Person( const string& n, const string& a)
: name( n)

{
address= a;

}
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Here name is initialized with a copy oh. On the other handyddress is first initialized to the
empty string and then a copyafs assigned.

10.4.6.2 Member Constants [class.memconst]

It is also possible to initialize a static integral constant member by addovstant-expressioni-
tializer to its member declaration. For example:

class Curious{

public:
static const int c1=7,
static int c2=11;
const int c3=13;
static const int c4=1(17);
static const float c5=7. 0;
/...

ok, but remember definition

error: not const

error: not static

error: in-class initializer not constant
error: in-class not integral

~—~ —~ ~
~ — — — —

kh

If (and only if) you use an initialized member in a way that requires it to be stored as an object
memory, the member must be (uniquely) defined somewhere. The initializer may not be repeate

const int Curious: : c1; /| necessary, but don't repeat initializer here

const int* p = &Curious:: cl; /| ok: Curious::cl has been defined

Alternatively, you can use an enumerator (84.8, 814.4.6, §15.3) as a symbolic constant withi
class declaration. For example:

class X{
enum{ c1=7, ¢c2=11, ¢c3=13, c4=17};
/..

h

In that way, you are not tempted to initialize variables, floating-point numbers, etc. within a class

10.4.6.3 Copying Members [class.mem.copy]

A default copy constructor or default copy assignment (810.4.4.1) copies all elements of a class
this copy cannot be done, it is an error to try to copy an object of such a class. For example:

class Unique _handle {
private: | | copy operations are private to prevent copying (§11.2.2)
Unique_handle( const Unique_handle&);
Unique_handle& operator=( const Unique_handle&);
public:
/..
%
struct Y {
Il ..
Unique_handle & / / requires explicit initialization
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Y vL

Y y2=y1, [ | error: cannot copy Y::a
In addition, a default assignment cannot be generated if a nonstatic member is a refeanste, a
or a user-defined type without a copy assignment.

Note that the default copy constructor leaves a reference member referring to the same obje
both the original and the copied object. This can be a problem if the object referred to is suppo
to be deleted.

When writing a copy constructor, we must take care to copy every element that needs to
copied. By default, elements are default-initialized, but that is often not what is desired in a co
constructor. For example:

Person: : Person( const Person& a) : name(a. name { } / / beware!
Here, | forgot to copy thaddress soaddressis initialized to the empty string by default. When

adding a new member to a class, always check if there are user-defined constructors that need
updated in order to initialize and copy the new member.

10.4.7 Arrays [class.array]

If an object of a class can be constructed without supplying an explicit initializer, then arrays of tt
class can be defined. For example:

Table tbl[ 10];

This will create an array df0 Tables and initialize eacfiable by a call ofTable: : Table() with
the default argumerib.

There is no way to specify explicit arguments for a constructor in an array declaration. If yc
absolutely must initialize members of an array with different values, you can write a default co
structor that directly or indirectly reads and writes nonlocal data. For example:

class Ibuffer {

string buf;
public:
Ibuffer() { cin>>buf; }
..
h
void f()
Ibuffer wordg] 100];/ / each word initialized from cin
/..
}

It is usually best to avoid such subtleties.

The destructor for each constructed element of an array is invoked when that array is destroy
This is done implicitly for arrays that are not allocated usiy. Like C, G-+ doesn't distinguish
between a pointer to an individual object and a pointer to the initial element of an array (85..
Consequently, the programmer must state whether an array or an individual object is being dele
For example:
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void f(int s2)

{
Table* t1 = new Table;

Table* t2 = new Table[ s7;
Table* t3 = new Table;
Table* t4 = new Table[ s7;

delete ti; [ | right
delete]] t2; / / right
delete]] t3; / / wrong: trouble
delete 4; / | wrong: trouble

}

Exactly how arrays and individual objects are allocated is implementation-dependent. Therefc
different implementations will react differently to incorrect uses ofdidete anddelete]] opera-
tors. In simple and uninteresting cases like the previous one, a compiler can detect the problem
generally something nasty will happen at run time.

The special destruction operator for arrajelete]] , isn't logically necessary. However, sup-
pose the implementation of the free store had been required to hold sufficient information for eve
object to tell if it was an individual or an array. The user could have been relieved of a burden, |
that obligation would have imposed significant time and space overheads on-sbimglémen-
tations.

As always, if you find C-style arrays too cumbersome, use a class suattaag83.7.1, §16.3)
instead. For example:

void )

{
vector<Table>* pl= new vector<Table>( 10);

Table* p2 = new Table;

delete pi;
delete p2;

10.4.8 Local Static Store [class.obj.static]

The constructor for a local static object (§87.1.2) is called the first time the thread of control pas:
through the object’s definition. Consider this:

void f(int i)
{
static Table tbl;
/...
if (i) {
static Table thl2;
/...
}
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int main()
{
f(0);
f(1);
f(2);
..
}

Here, the constructor is called fthl once the first timef() is called. Becaus#bl is declared
static, it does not get destroyed on return frf{in and it does not get constructed a second time
whenf() is called again. Because the block containing the declaratiti?2adoesn’t get executed
for the callf( 0) , tbl2 doesn’t get constructed until the cilll) . It does not get constructed again
when its block is entered a second time.

The destructors for local static objects are invoked in the reverse order of their constructi
when the program terminates (89.4.1.1). Exactly when is unspecified.

10.4.9 Nonlocal Store [class.global]

A variable defined outside any function (that is, global, namespace, andstaiswvariables) is
initialized (constructed) befommain() is invoked, and any such variable that has been constructe
will have its destructor invoked after exit fromain() . Dynamic linking complicates this picture
slightly by delaying the initialization until the code is linked into the running program.

Constructors for nonlocal objects in a translation unit are executed in the order their definitio
occur. Consider:

class X{
/...
static Table memtbl;

b
Table tbl;
Table X : memtbl;

namespace Z{
Table tbl2;
}

The order of construction ibl, thenX:: memtbl, and thenZ:: tbl2. Note that a declaration (as
opposed to a definition), such as the declaratiomerfbl in X, doesn't affect the order of con-
struction. The destructors are called in the reverse order of construgiotbl2, then
X:: memibl, and thertbl.

No implementation-independent guarantees are made about the order of construction of no
cal objects in different compilation units. For example:

/1 filel.c:
Table tbl1;

/1 file2.c:
Table tbl2;
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Whethertbll is constructed befortbl2 or vice versa is implementation-dependent. The order isn’t
even guaranteed to be fixed in every particular implementation. Dynamic linking, or even a sm
change in the compilation process, can alter the sequence. The order of destruction is simil
implementation-dependent.

Sometimes when you design a library, it is necessary, or simply convenient, to invent a ty
with a constructor and a destructor with the sole purpose of initialization and cleanup. Such a t
would be used once only: to allocate a static object so that the constructor and the destructor
called. For example:

class Zib_init {
Zlib_init() ; / / get Zlib ready for use
~Zlib_init() ; / / clean up after Zlib

b

class Zib {
static Zlib_init x;
/...

b

Unfortunately, it is not guaranteed that such an object is initialized before its first use and destro
after its last use in a program consisting of separately compiled units. A partittilan@emen-
tation may provide such a guarantee, but most don’'t. A programmer may ensure proper initi
ization by implementing the strategy that the implementations usually employ for local stat
objects: a first-time switch. For example:
class Zib {
static bool initialized;
static void initialize() { /* initialize*/ initialized = true; }

public:
// no constructor
void f()
{
if (initialized == false) initialize() ;
/...
}
/...
k

If there are many functions that need to test the first-time switch, this can be tedious, but it is of
manageable. This technique relies on the fact that statically allocated objects without construc
are initialized t00. The really difficult case is the one in which the first operation may be time-
critical so that the overhead of testing and possible initialization can be serious. In that case, fur
trickery is required (8§21.5.2).

An alternative approach for a simple object is to present it as a function (§9.4.1):

int& obj() { static int x=0; return x, } / / initialized upon first use

First-time switches do not handle every conceivable situation. For example, it is possible to cre
objects that refer to each other during construction. Such examples are best avoided. If s
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objects are necessary, they must be constructed carefully in stages. Also, there is no similarly :
ple last-time switch construct. Instead, see §9.4.1.1 and §21.5.2.

10.4.10 Temporary Objects [class.temp]

Temporary objects most often are the result of arithmetic expressions. For example, at some p
in the evaluation ok* y+z the partial resulk* y must exist somewhere. Except when performance
is the issue (811.6), temporary objects rarely become the concern of the programmer. Howeve
happens (§11.6, §22.4.7).

Unless bound to a reference or used to initialize a named object, a temporary object is destrc
at the end of the full expression in which it was createdullfexpressioris an expression that is
not a subexpression of some other expression.

The standardtring class has a member functiorstr() that returns a C-style, zero-terminated
array of characters (83.5.1, §20.4.1). Also, the opetatsrdefined to mean string concatenation.
These are very useful facilities fsirings. However, in combination they can cause obscure prob-
lems. For example:

void f( string& s1, string& s2, string& s3)

{
const char* cs= (sl+s2). c_str() ;
cout << cs
if (strlen( cs=( s2+s3). c_str())< 8&&cq 0]==" a’) {
/1 cs used here
}
}

Probably, your first reaction is “but don’t do that,” and | agree. However, such code does get wr
ten, so it is worth knowing how it is interpreted.

A temporary object of classiring is created to holdl+s2 Next, a pointer to a C-style string
is extracted from that object. Thenat the end of the expressierthe temporary object is deleted.
Now, where was the C-style string allocated? Probably as part of the temporary object holdi
s1+s2, and that storage is not guaranteed to exist after that temporary is destroyed. Conseque
cs points to deallocated storage. The output operafimt<<cs might work as expected, but that
would be sheer luck. A compiler can detect and warn against many variants of this problem.

The example with thé-statementis a bit more subtle. The condition will work as expected
because the full expression in which the temporary holsig3 is created is the condition itself.
However, that temporary is destroyed before the controlled statement is entered, so argsuse ¢
there is not guaranteed to work.

Please note that in this case, as in many others, the problems with temporaries arose from L
a high-level data type in a low-level way. A cleaner programming style would have not onl
yielded a more understandable program fragment, but also avoided the problems with tempora
completely. For example:
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void f( string& s1, string& s2, string& s3)

{
cout << s1+s2;
string s= s2+s3;
if (s. length()< 8&&¢9 0]==" a’) {
/1 use s here
}
}

A temporary can be used as an initializer feoast reference or a named object. For example:
void g( const string&, const string&);

void h( string& s1, string& s2)
{
const string& s = s1+s2,
string ss= s1+s2,

dg(s s9; / / we canuse s and ss here

This is fine. The temporary is destroyed when “its” reference or named object go out of scor
Remember that returning a reference to a local variable is an error (87.3) and that a tempol
object cannot be bound to a noonst reference (85.5).

A temporary object can also be created by explicitly invoking a constructor. For example:

void f( Shape& s, int X, int y)
{

s. move( Point(x, y)) ; / / construct Point to pass to Shape::move()
/...

}
Such temporaries are destroyed in exactly the same way as the implicitly generated temporaries

10.4.11 Placement of Objects [class.placement]

Operatomew creates its object on the free store by default. What if we wanted the object allocat
elsewhere? Consider a simple class:

class X{

public:
X(int);
/..

h

We can place objects anywhere by providing an allocator function with extra arguments and tt
supplying such extra arguments when usiew.
void* operator new( size t, void* p) { return p; } / / explicit placement operator

void* buf = reinterpret_cast<void*>( 0xFOOF); / / significant address
X* p2=new( buf) X;/ / construct an X at ‘buf;’ invokes: operator new(sizeof(X),buf)
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Because of this usage, thew( buf) X syntax for supplying extra argumentsoferator new() is
known as th@lacement syntaxNote that everypperator new() takes a size as its first argument
and that the size of the object allocated is implicitly supplied (815.6).opémtor new() used
by thenew operator is chosen by the usual argument matching rules (87.4);opeeagor new()

has asize t as its first argument.

The “placement”operator new() is the simplest such allocator. It is defined in the standard
headexnew>.

The reinterpret _cast is the crudest and potentially nastiest of the type conversion operator
(86.2.7). In most cases, it simply yields a value with the same bit pattern as its argument with
type required. Thus, it can be used for the inherently implementation-dependent, dangerous,
occasionally absolutely necessary activity of converting integer values to pointers and vice versa

The placememew construct can also be used to allocate memory from a specific arena:

class Arena {

public:
virtual void* alloc( size t) =0;
virtual void free( void*) =0;

/...
3
void* operator new( size t sz, Arena* a)
{
return a> alloc( s2);
}

Now objects of arbitrary types can be allocated from diffefeahas as needed. For example:

extern Arena* Persistent;

extern Arena* Sthared,

void g(int i)

{
X* p = new( Persistent) X(i); / / Xin persistent storage
X* q= new( Stiared) X(i); /| Xin shared memory
/..

}

Placing an object in an area that is not (directly) controlled by the standard free-store mana
implies that some care is required when destroying the object. The basic mechanism for that i
explicit call of a destructor:

void destroy( X* p, Arena* a)

{
p->~ X() ; /| call destructor

a-> freg(p); / / free memory
}

Note that explicit calls of destructors, like the use of special-purglobal allocators, should be
avoided wherever possible. Occasionally, they are essential. For example, it would be harc
implement an efficient general container along the lines of the standard hmetoy (83.7.1,
816.3.8) without using explicit destructor class. However, a novice should think thrice befo
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calling a destructor explicitly and also should ask a more experienced colleague before doing so
See §14.4.7 for an explanation of how placement new interacts with exception handling.
There is no special syntax for placement of arrays. Nor need there be, since arbitrary types
be allocated by placement new. However, a spegeaiator delete() can be defined for arrays
(819.4.5).

10.4.12 Unions [class.union]

A named union is defined assttuct, where every member has the same address (see 8C.8.2).
union can have member functions but not static members.

In general, a compiler cannot know what member of a union is used; that is, the type of 1
object stored in a union is unknown. Consequently, a union may not have members with consti
tors or destructors. It wouldn’t be possible to protect that object against corruption or to guaran
that the right destructor is called when the union goes out of scope.

Unions are best used in low-level code, or as part of the implementation of classes that k
track of what is stored in the union (see §10.6[20]).

10.5 Advice[class.advice]

[1] Represent concepts as classes; §10.1.

[2] Use public datasgructs) only when it really is just data and no invariant is meaningful for the
data members; §10.2.8.

[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type o
more complicated classes and over plain data structures; 810.3.

[4] Make a function a member only if it needs direct access to the representation of a cla
§10.3.2.

[5] Use a namespace to make the association between a class and its helper functions exp
§10.3.2.

[6] Make a member function that doesn’t modify the value of its objeohst member function;
810.2.6.

[7] Make a function that needs access to the representation of a class but needn’t be called {
specific object atatic member function; §10.2.4.

[8] Use a constructor to establish an invariant for a class; §10.3.1.

[9] If a constructor acquires a resource, its class needs a destructor to release the resol
810.4.1.

[10] If a class has a pointer member, it needs copy operations (copy constructor and copy ass
ment); §10.4.4.1.

[11] If a class has a reference member, it probably needs copy operations (copy constructor
copy assignment); §10.4.6.3.

[12] If a class needs a copy operation or a destructor, it probably needs a constructor, a destruct
copy assignment, and a copy constructor; §10.4.4.1.

[13] Check for self-assignment in copy assignments; §10.4.4.1.

[14] When writing a copy constructor, be careful to copy every element that needs to be cop
(beware of default initializers); §10.4.4.1.
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[15] When adding a new member to a class, always check to see if there are user-defined cons
tors that need to be updated to initialize the member; §10.4.6.3.

[16] Use enumerators when you need to define integer constants in class declarations; §10.4.6.1

[17] Avoid order dependencies when constructing global and namespace objects; §10.4.9.

[18] Use first-time switches to minimize order dependencies; §10.4.9.

[19] Remember that temporary objects are destroyed at the end of the full expression in which t
are created; §10.4.10.

10.6 Exercisegclass.exercises]

1. () Find the error irDate: : add_year() in 8§10.2.2. Then find two additional errors in the
version in §10.2.7.

2. (2.5) Complete and teflate. Reimplement it with “number of days after 1/1/1970" repre-
sentation.

3. (@) Find aDate class that is in commercial use. Critique the facilities it offers. If possible,
then discuss th&ate with a real user.

4. (1) How do you accesset default from classDate from namespac€hrono (810.3.2)? Give
at least three different ways.

5. () Define a classlistogram that keeps count of numbers in some intervals specified as argu
ments toHistogram's constructor. Provide functions to print out the histogram. Handle out-
of-range values.

6. () Define some classes for providing random numbers of certain distributions (for exampl
uniform and exponential). Each class has a constructor specifying parameters for the distri
tion and a functiomraw that returns the next value.

7. (R2.5) Complete clastable to hold (name,value) pairs. Then modify the desk calculator pro-
gram from 86.1 to use cla3able instead oimap. Compare and contrast the two versions.

8. ((R) RewriteTnodefrom §7.10[7] as a class with constructors, destructors, etc. Define a tree
Tnodes as a class with constructors, destructors, etc.

9. (B) Define, implement, and test a set of integers, ¢htset. Provide union, intersection, and
symmetric difference operations.

10. (L.5) Modify clasdntsetinto a set of nodes, wheNpdeis a structure you define.

11. (B) Define a class for analyzing, storing, evaluating, and printing simple arithmetic expressio
consisting of integer constants and the operators, *, and/ . The public interface should
look like this:

class Expr {
..
public:
Expr( char*) ;
int eval() ;
void print() ;
h

The string argument for the constructBxpr:: Expr() is the expression. The function
Expr:: eval() returns the value of the expression, &gr:: print() prints a representation
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of the expression ocout. A program might look like this:

Expr x(" 123/ 4+123*4- 3") ;
cout<<"x=" << x. ewval() <<"\n"
X. print() ;

Define clas€Expr twice: once using a linked list of nodes as the representation and once using
character string as the representation. Experiment with different ways of printing the expre
sion: fully parenthesized, postfix notation, assembly code, etc.

12. () Define a clas€har_queue so that the public interface does not depend on the represent:
tion. ImplementChar_queue (a) as a linked list and (b) as a vector. Do not worry about con-
currency.

13. (B) Design a symbol table class and a symbol table entry class for some language. Have a
at a compiler for that language to see what the symbol table really looks like.

14. () Modify the expression class from §10.6[11] to handle variables and the assignment ope
tor=. Use the symbol table class from §10.6[13].

15. () Given this program:

#include <iostream>
int main()
{

}
modify it to produce this output:

std: : cout << " Hello, world! \n";

Initialize
Hello, world!
Clean up

Do not changenain() in any way.

16. (2) Define aCalculator class for which the calculator functions from 86.1 provide most of the
implementation. Creat€alculators and invoke them for input froein, from command-line
arguments, and for strings in the program. Allow output to be delivered to a variety of targe
similar to the way input can be obtained from a variety of sources.

17. () Define two classes, each withstatic member, so that the construction of eastdtic
member involves a reference to the other. Where might such constructs appear in real ca
How can these classes be modified to eliminate the order dependence in the constructors?

18. (2.5) Compare claddate (§10.3) with your solution to 85.9[13] and §7.10[19]. Discuss errors
found and likely differences in maintenance of the two solutions.

19.(B) Write a function that, given aristream and a vedor<string>, produces a
map<string, vector<int>> holding each string and the numbers of the lines on which the string
appears. Run the program on a text-file with no fewer than 1,000 lines looking for no few
than 10 words.

20. () Take clas€ntry from 8C.8.2 and modify it so that each union member is always use
according to its type.
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Operator Overloading

Whenl use a word it means just what
| choose it to mean neither more nor less.
— Humpty Dumpty

Notation— operator functions— binary and unary operators- predefined meanings
for operators— user-defined meanings for operatersoperators and namespacesa
complex type— member and nonmember operaters mixed-mode arithmetic—
initialization — copying— conversions— literals — helper functions— conversion
operators— ambiguity resolutior— friends— members and friends- large objects—
assignment and initialization- subscripting— function call— dereferencing— incre-
ment and decrement a string class— advice— exercises.

11.1 Introduction [over.intro]

Every technical field- and most nontechnical fields have developed conventional shorthand
notation to make convenient the presentation and discussion involving frequently-used conce
For example, because of long acquaintance

X+y* z
is clearer to us than
multiply y by z and add the result to x

It is hard to overestimate the importance of concise notation for common operations.

Like most languages,*@ supports a set of operators for its built-in types. However, most con:
cepts for which operators are conventionally used are not built-in types-js&they must be rep-
resented as user-defined types. For example, if you need complex arithmetic, matrix algebra, Ic
signals, or character strings it you use classes to represent these notions. Defining operatol
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for such classes sometimes allows a programmer to provide a more conventional and conver

notation for manipulating objects than could be achieved using only the basic functional notatic
For example,

class complex{ /| very simplified complex
double re, im;

public:
complex( double r, double i) : re(r), im(i) {}
complex operator+( complex);
complex operator*( complex);

h

defines a simple implementation of the concept of complex humbecemglex s represented by
a pair of double-precision floating-point numbers manipulated by the opefadmid* . The pro-
grammer definesomplex : operator+() andcomplex : operator*() to provide meanings for
and*, respectively. For example, lif andc are of typecomplex b+c meansh. operator+( c) .
We can now approximate the conventional interpretaticyomplex expressions:

void f()

{
complex a= complex( 1, 3. 1);
complex b= complex( 1. 2, 2);
complex c=b;
a=b+c;
b =b+c*g;
¢ = a*b+complex( 1, 2);

}

The usual precedence rules hold, so the second statementbnmbas* a) , notb=( b+c)* a.

Many of the most obvious uses of operator overloading are for concrete types (810.3). Ho
ever, the usefulness of user-defined operators is not restricted to concrete types. For example
design of general and abstract interfaces often leads to the use of operatorssugh aand() .

11.2 Operator Functionsover.oper]

Functions defining meanings for the following operators (86.2) can be declared:

+ - * / % n &

| ~ ! = < > +=

-= *= = %= N= = |:

<< >> >>= <<= == 1= <=

>= && Il ++ - >* ,

-> 1] 0 new new[] delete delete]]

The following operators cannot be defined by a user:
(scope resolution; §4.9.4, §10.2.4),
(member selection; 85.7), and
* (member selection through pointer to function; §15.5).
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They take a name, rather than a value, as their second operand and provide the primary mea
referring to members. Allowing them to be overloaded would lead to subtleties [Stroustrup,1994

It is not possible to define new operator tokens, but you can use the function-call notation wt
this set of operators is not adequate. For examplepowf , not** . These restrictions may
seem Draconian, but more flexible rules can easily lead to ambiguities. For example, defining
operator** to mean exponentiation may seem an obvious and easy task at first glance, but th
again. Should* bind to the left (as in Fortran) or to the right (as in Algol)? Should the expres
siona** p be interpreted aa*(* p) or as( a)**( p)?

The name of an operator function is the keywapdrator followed by the operator itself; for
example operator<<. An operator function is declared and can be called like any other function
A use of the operator is only a shorthand for an explicit call of the operator function. For exampls

void f( complex a, complex b)

{
complex c=a+ b; /| shorthand

complex d= a. operator+( b); / / explicit call

}

Given the previous definition @omplex, the two initializers are synonymous.

11.2.1 Binary and Unary Operators [over.binary]

A binary operator can be defined by either a nonstatic member function taking one argument c
nonmember function taking two arguments. For any binary opegaéa@b can be interpreted as
eitheraa. operator@(bb) or operator@(@a, bb) . If both are defined, overload resolution (§7.4)
determines which, if any, interpretation is used. For example:

class X{
public:
void operator+( int);
X(int);
3
void operator+( X, X);
void operator+( X, double);

void f( X a)

{
at+l; | | a.operator+(1)
1+a; [ | :operator+(X(1),a)
a+1l. 0; / / :operator+(a,1.0)

}

A unary operator, whether prefix or postfix, can be defined by either a nonstatic member functi
taking no arguments or a nonmember function taking one argument. For any prefix unary oper:
@ @a can be interpreted as eittea. operator@() or operator@(@a) . If both are defined, over-
load resolution (87.4) determines which, if any, interpretation is used. For any postfix unary ope
tor @ aa@ can be interpreted as eithaa. operator@(nt) or operator@(@a, int) . This is
explained further in 811.11. If both are defined, overload resolution (87.4) determines which,
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any, interpretation is used. An operator can be declared only for the syntax defined for it in t
grammar (8A.5). For example, a user cannot define a Yary ternary-. Consider:

class X{
/1 members (with implicit ‘this’ pointer):

X* operator&() ;
X operator&( X);

[ | prefix unary & (address of)

/
X operator++( int); / / postfix increment (see §11.11)

/

/

/ binary & (and)

/

X operator&( X, X);/ /| error: ternary

X operator/() ; / error: unary /
2
/1 nonmember functions :
X operator-( X); [ | prefix unary minus
X operator-( X, X); / | binary minus
X operator--( X&, int); / / postfix decrement
X operator-() ; / | error: no operand
X operator-( X, X, X); [/ [/ error: ternary
X operator%(X); /| error: unary %

Operatorf] is described in §11.8, operafQr in 811.9, operator> in 811.10, operators+ and
-- in 811.11, and the allocation and deallocation operators in §6.2.6.2, 810.4.11, and §15.6.

11.2.2 Predefined Meanings for Operators [over.predefined]

Only a few assumptions are made about the meaning of a user-defined operator. In partict
operator=, operator[] , operator() , andoperator-> must be nonstatic member functions; this
ensures that their first operands will be Ivalues (84.9.6).

The meanings of some built-in operators are defined to be equivalent to some combination
other operators on the same arguments. For example &n int,++a meansa+=1, which in turn
meansa=at+1. Such relations do not hold for user-defined operators unless the user happens
define them that way. For example, a compiler will not generate a definiticin operator+=()
from the definitions oZ: : operator+() andZ:: operator=() .

Because of historical accident, the operatofassignment)& (address-of), and (sequencing;
86.2.2) have predefined meanings when applied to class objects. These predefined meanings
be made inaccessible to general users by making them private:

class X{

private:
void operator=( const X&);
void operator&() ;
void operator,( const X&);
..
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void f(X a, X b)

{
=b; / | error: operator= private
&a; /| error: operator& private
a, b; [ | error: operator, private

}

Alternatively, they can be given new meanings by suitable definitions.

11.2.3 Operators and User-Defined Types [over.user]

An operator function must either be a member or take at least one argument of a user-defined
(functions redefining theew and delete operators need not). This rule ensures that a user cannc
change the meaning of an expression unless the expression contains an object of a user-de
type. In particular, it is not possible to define an operator function that operates exclusively
pointers. This ensures that€is extensible but not mutable (with the exception of operatogs

and, for class objects).

An operator function intended to accept a basic type as its first operand cannot be a men
function. For example, consider adding a complex variaal® the intege: aa+2 can, with a
suitably declared member function, be interpretedaa®operator+( 2) , but2+aa cannot because
there is no clasmt for which to definet to mean2. operator+( aa) . Even if there were, two dif-
ferent member functions would be needed to cope 2vitta andaa+2. Because the compiler does
not know the meaning of a user-defingdt cannot assume that it is commutative and so interpret
2+aaasaa+2. This example is trivially handled using nonmember functions (§11.3.2, §11.5).

Enumerations are user-defined types so that we can define operators for them. For example

enum Day{ sun, mon, tue wed, thu, fri, sat};
Day& operator++( Day& d)
{

return d= (sat==d) ? sun: Day(d+1);
}

Every expression is checked for ambiguities. Where a user-defined operator provides a poss
interpretation, the expression is checked according to the rules in §7.4.

11.2.4 Operators in Namespaces [over.namespace]

An operator is either a member of a class or defined in some namespace (possibly the global ne
space). Consider this simplified version of string 1/0 from the standard library:

namespace sid { /| simplified std

class ostream {
/..
ostream& operator<<( const char*) ;

kh

extern osiream cout;
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class siring {
...

3
ostream& operator<<( ostream&, const string&);
}

int main()
{
char* p="Hello";
std: : string s=" world";
std:: cout<< p<<", " <<s<<"l \n"

}

Naturally, this writes ouHello, world! But why? Note that | didn't make everything frcsta
accessible by writing:

using namespace std;

Instead, | used thstd: : prefix for string andcout. In other words, | was at my best behavior and
didn’t pollute the global namespace or in other ways introduce unnecessary dependencies.
The output operator for C-style stringhdér* ) is a member oftd: : ostream, so by definition

std: : cout << p
means
std: : cout. operator<<( p)
However,std: : ostreamdoesn’t have a member function to outpstda: string, so
std: : cout<<'s
means
operator<<( std: : cout, s)

Operators defined in namespaces can be found based on their operand types just like function:
be found based on their argument types (§88.2.6). In partioaialrjs in namespacstd, sostd is
considered when looking for a suitable definitior<ef In that way, the compiler finds and uses:

std: : operator<<( std: : ostream&, const std: : string&)

For a binary operata® x@ wherex is of typeX andy is of typeY is resolved like this:
[1] If Xis a class, determine whether classr a base oK definesoperator@as a member; if
so, that is the@to try to use.
[2] Otherwise,
— look for declarations ofdin the context surrounding@y; and
— if Xis defined in namespad¥ look for declarations a®in N; and
— if Yis defined in namespadé, look for declarations afin M.
If declarations obperator@are found in the surrounding context,Nnor in M, we try to use
those operators.
In either case, declarations for sevespkrator@ may be found and overload resolution rules
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(87.4) are used to find the best match, if any. This lookup mechanism is applied only if the ope
tor has at least one operand of a user-defined type. Therefore, user-defined conversions (811
§11.4) will be considered. Note thatypedef name is just a synonym and not a user-defined type
(84.9.7).

11.3 A Complex Number Typgover.complex]

The implementation of complex numbers presented in the introduction is too restrictive to plee
anyone. For example, from looking at a math textbook we would expect this to work:

void f()

{
complex a= complex( 1, 2);
complex b= 3;
complex c=at+2. 3;
complex d= 2+b;
complex e= - b-c;
b=c*2*c;

}

In addition, we would expect to be provided with a few additional operators, sachfas com-
parison anck< for output, and a suitable set of mathematical functions, susin(as andsqrt() .

Classcomplexis a concrete type, so its design follows the guidelines from §10.3. In additior
users of complex arithmetic rely so heavily on operators that the definitmomplex brings into
play most of the basic rules for operator overloading.

11.3.1 Member and Nonmember Operators [over.member]

| prefer to minimize the number of functions that directly manipulate the representation of ¢
object. This can be achieved by defining only operators that inherently modify the value of the
first argument, such as=, in the class itself. Operators that simply produce a new value based c
the values of its arguments, suchtaare then defined outside the class and use the essential oper
tors in their implementation:

class complex {
double re, im;

public:
complex& operator+=( complex a); / / needs access to representation
...

%

complex operator+( complex a, complex b)

{

complex r = a;
return r +=b; / / access representation through +=

}

Given these declarations, we can write:
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void f( complex x, complex y, complex 2

{
complex rl = x+y+z, // rl = operator+(x,operator+(y,z))
complex r2 = x; [ 1 r2=x
r2+=y;, [ | r2.operator+=(y)
r2+=z ! | r2.operator+=(z)
}

Except for possible efficiency differences, the computatiom& ahdr2 are equivalent.

Composite assignment operators suchtasand *= tend to be simpler to define than their
“simple” counterpartst and*. This surprises most people at first, but it follows from the fact that
three objects are involved in+#aoperation (the two operands and the result), whereas only twc
objects are involved in &= operation. In the latter case, run-time efficiency is improved by elimi-
nating the need for temporary variables. For example:

inline complex& complex : operator+=( complex a)

{
re+=a. re;
im+=a. im;
return * this;
}

does not require a temporary variable to hold the result of the addition and is simple for a comp
to inline perfectly.

A good optimizer will generate close to optimal code for uses of the plaiperator also.
However, we don't always have a good optimizer and not all types are as sincplaplex, so
811.5 discusses ways of defining operators with direct access to the representation of classes.

11.3.2 Mixed-Mode Arithmetic [over.mixed]
To cope with
complex d= 2+b;

we need to define operaterto accept operands of different types. In Fortran terminology, we
needmixed-mode arithmeticWe can achieve that simply by adding appropriate versions of the
operators:

class complex {
double re, im;

public:
complex& operator+=( complex a) {
re+=a. re
im+=a. im;
return * this;
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complex& operator+=( double @ {

re+=a;
return * this;
}
/...
b
complex operator+( complex a, complex b)
{
complex r = g;
return r+=b; / / calls complex::operator+=(complex)
}
complex operator+( complex a, double )
{
complex r = a;
return r +=b; / / calls complex::opera